code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import defaultdict from math import ceil, sqrt def _lowercase( __a : int = 100_0000 , __a : int = 10 ): a__ =defaultdict(__a ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: a__ =max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: a__ =1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__a , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
20
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase=None , lowerCamelCase=None ): return field(default_factory=lambda: default , metadata=lowerCamelCase ) @dataclass class __A : UpperCamelCase = list_field( default=[] , metadata={ """help""": ( """Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version""" """ of all available models""" ) } , ) UpperCamelCase = list_field( default=[8] , metadata={"""help""": """List of batch sizes for which memory and time performance will be evaluated"""} ) UpperCamelCase = list_field( default=[8, 32, 128, 512] , metadata={"""help""": """List of sequence lengths for which memory and time performance will be evaluated"""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to benchmark inference of model. Inference can be disabled via --no-inference."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available cuda devices. Cuda can be disabled via --no-cuda."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to run on available tpu devices. TPU can be disabled via --no-tpu."""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Use FP16 to accelerate inference."""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Benchmark training of model"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Verbose memory tracing"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={"""help""": """Whether to perform speed measurements. Speed measurements can be disabled via --no-speed."""} , ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": """Whether to perform memory measurements. Memory measurements can be disabled via --no-memory""" } , ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Trace memory line by line"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Save result to a CSV file"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Save all print statements in a log file"""} ) UpperCamelCase = field(default=UpperCamelCase__ , metadata={"""help""": """Whether to print environment information"""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use""" """ multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled""" """ for debugging / testing and on TPU.""" ) } , ) UpperCamelCase = field( default=F"""inference_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv."""} , ) UpperCamelCase = field( default=F"""inference_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv."""} , ) UpperCamelCase = field( default=F"""train_time_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving time results to csv for training."""} , ) UpperCamelCase = field( default=F"""train_memory_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving memory results to csv for training."""} , ) UpperCamelCase = field( default=F"""env_info_{round(time() )}.csv""" , metadata={"""help""": """CSV filename used if saving environment information."""} , ) UpperCamelCase = field( default=F"""log_{round(time() )}.csv""" , metadata={"""help""": """Log filename used if print statements are saved in log."""} , ) UpperCamelCase = field(default=3 , metadata={"""help""": """Times an experiment will be run."""} ) UpperCamelCase = field( default=UpperCamelCase__ , metadata={ """help""": ( """Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain""" """ model weights.""" ) } , ) def A__ ( self :List[Any] ): '''simple docstring''' warnings.warn( f"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" """ are deprecated in general and it is advised to use external Benchmarking libraries """ """ to benchmark Transformer models.""" , __snake_case , ) def A__ ( self :Dict ): '''simple docstring''' return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A__ ( self :Union[str, Any] ): '''simple docstring''' if len(self.models ) <= 0: raise ValueError( """Please make sure you provide at least one model name / model identifier, *e.g.* `--models""" """ bert-base-cased` or `args.models = ['bert-base-cased'].""" ) return self.models @property def A__ ( self :Optional[Any] ): '''simple docstring''' if not self.multi_process: return False elif self.is_tpu: logger.info("""Multiprocessing is currently not possible on TPU.""" ) return False else: return True
21
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = {} _UpperCAmelCase = job["started_at"] _UpperCAmelCase = job["completed_at"] _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = get_job_time(args.workflow_run_id) __lowerCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
684
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : lowercase_ = 42 lowercase_ = None lowercase_ = None def snake_case_ (): '''simple docstring''' _a = Node(1 ) _a = Node(2 ) _a = Node(3 ) _a = Node(4 ) _a = Node(5 ) return tree def snake_case_ (UpperCamelCase : Node | None ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def snake_case_ (UpperCamelCase : Node | None ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def snake_case_ (UpperCamelCase : Node | None ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def snake_case_ (UpperCamelCase : Node | None ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def snake_case_ (UpperCamelCase : Node | None ): '''simple docstring''' _a = [] if root is None: return output _a = deque([root] ) while process_queue: _a = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def snake_case_ (UpperCamelCase : Node | None , UpperCamelCase : int ): '''simple docstring''' _a = [] def populate_output(UpperCamelCase : Node | None , UpperCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(UpperCamelCase , UpperCamelCase ) return output def snake_case_ (UpperCamelCase : Node | None , UpperCamelCase : int ): '''simple docstring''' _a = [] def populate_output(UpperCamelCase : Node | None , UpperCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(UpperCamelCase , UpperCamelCase ) return output def snake_case_ (UpperCamelCase : Node | None ): '''simple docstring''' if root is None: return [] _a = [] _a = 0 _a = height(UpperCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase , UpperCamelCase ) ) _a = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase , UpperCamelCase ) ) _a = 0 return output def snake_case_ (): # Main function for testing. '''simple docstring''' _a = make_tree() print(f'In-order Traversal: {inorder(UpperCamelCase )}' ) print(f'Pre-order Traversal: {preorder(UpperCamelCase )}' ) print(f'Post-order Traversal: {postorder(UpperCamelCase )}' , '''\n''' ) print(f'Height of Tree: {height(UpperCamelCase )}' , '''\n''' ) print('''Complete Level Order Traversal: ''' ) print(level_order(UpperCamelCase ) , '''\n''' ) print('''Level-wise order Traversal: ''' ) for level in range(1 , height(UpperCamelCase ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(UpperCamelCase , level=UpperCamelCase ) ) print('''\nZigZag order Traversal: ''' ) print(zigzag(UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
22
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder snake_case__ : Union[str, Any] = """__DUMMY_TRANSFORMERS_USER__""" snake_case__ : Optional[int] = """Dummy User""" snake_case__ : Any = """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""" snake_case__ : List[Any] = """https://hub-ci.huggingface.co""" snake_case__ : Dict = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" snake_case__ : Dict = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" snake_case__ : Optional[int] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def _snake_case (__lowercase): monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , __lowercase) @pytest.fixture def _snake_case (__lowercase): monkeypatch.setattr('datasets.config.HF_ENDPOINT' , __lowercase) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , __lowercase) @pytest.fixture def _snake_case (__lowercase): monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , __lowercase) @pytest.fixture def _snake_case (__lowercase , __lowercase): HfFolder.save_token(__lowercase) yield HfFolder.delete_token() @pytest.fixture(scope='session') def _snake_case (): return HfApi(endpoint=__lowercase) @pytest.fixture(scope='session') def _snake_case (__lowercase): UpperCamelCase_ = HfFolder.get_token() HfFolder.save_token(__lowercase) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__lowercase) @pytest.fixture def _snake_case (__lowercase): def _cleanup_repo(__lowercase): hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') return _cleanup_repo @pytest.fixture def _snake_case (__lowercase): @contextmanager def _temporary_repo(__lowercase): try: yield repo_id finally: cleanup_repo(__lowercase) return _temporary_repo @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = f"""repo_txt_data-{int(time.time() * 10e3)}""" UpperCamelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase) , path_in_repo='data/text_data.txt' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case (__lowercase , __lowercase , __lowercase): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = f"""repo_zipped_txt_data-{int(time.time() * 10e3)}""" UpperCamelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase) , path_in_repo='data.zip' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case (__lowercase , __lowercase , __lowercase): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session') def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = f"""repo_zipped_img_data-{int(time.time() * 10e3)}""" UpperCamelCase_ = f"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__lowercase , token=__lowercase , repo_type='dataset' , private=__lowercase) hf_api.upload_file( token=__lowercase , path_or_fileobj=str(__lowercase) , path_in_repo='data.zip' , repo_id=__lowercase , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(__lowercase , token=__lowercase , repo_type='dataset') except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _snake_case (__lowercase , __lowercase , __lowercase): return hf_private_dataset_repo_zipped_img_data_
23
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __lowerCAmelCase = get_tests_dir("fixtures") class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 500 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase__ ( self : Dict ): with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="test-image-processor" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : int ): CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
684
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCAmelCase ( __lowerCAmelCase): __lowercase : jnp.ndarray @flax_register_to_config class lowerCAmelCase ( nn.Module , __lowerCAmelCase , __lowerCAmelCase): __lowercase : int = 32 __lowercase : int = 4 __lowercase : int = 4 __lowercase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __lowercase : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __lowercase : Union[bool, Tuple[bool]] = False __lowercase : Tuple[int] = (320, 640, 1280, 1280) __lowercase : int = 2 __lowercase : Union[int, Tuple[int]] = 8 __lowercase : Optional[Union[int, Tuple[int]]] = None __lowercase : int = 1280 __lowercase : float = 0.0 __lowercase : bool = False __lowercase : jnp.dtype = jnp.floataa __lowercase : bool = True __lowercase : int = 0 __lowercase : bool = False def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> FrozenDict: '''simple docstring''' __snake_case = (1, self.in_channels, self.sample_size, self.sample_size) __snake_case = jnp.zeros(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) __snake_case = jnp.ones((1,) , dtype=jnp.intaa ) __snake_case = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __snake_case , __snake_case = jax.random.split(__SCREAMING_SNAKE_CASE ) __snake_case = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )["params"] def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = self.block_out_channels __snake_case = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __snake_case = self.num_attention_heads or self.attention_head_dim # input __snake_case = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __snake_case = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __snake_case = FlaxTimestepEmbedding(__SCREAMING_SNAKE_CASE , dtype=self.dtype ) __snake_case = self.only_cross_attention if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = (num_attention_heads,) * len(self.down_block_types ) # down __snake_case = [] __snake_case = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __snake_case = output_channel __snake_case = block_out_channels[i] __snake_case = i == len(__SCREAMING_SNAKE_CASE ) - 1 if down_block_type == "CrossAttnDownBlock2D": __snake_case = FlaxCrossAttnDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __snake_case = FlaxDownBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__SCREAMING_SNAKE_CASE ) __snake_case = down_blocks # mid __snake_case = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __snake_case = [] __snake_case = list(reversed(__SCREAMING_SNAKE_CASE ) ) __snake_case = list(reversed(__SCREAMING_SNAKE_CASE ) ) __snake_case = list(reversed(__SCREAMING_SNAKE_CASE ) ) __snake_case = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __snake_case = output_channel __snake_case = reversed_block_out_channels[i] __snake_case = reversed_block_out_channels[min(i + 1 , len(__SCREAMING_SNAKE_CASE ) - 1 )] __snake_case = i == len(__SCREAMING_SNAKE_CASE ) - 1 if up_block_type == "CrossAttnUpBlock2D": __snake_case = FlaxCrossAttnUpBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __snake_case = FlaxUpBlockaD( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__SCREAMING_SNAKE_CASE ) __snake_case = output_channel __snake_case = up_blocks # out __snake_case = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __snake_case = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ): __snake_case = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__SCREAMING_SNAKE_CASE , jnp.ndarray ) and len(timesteps.shape ) == 0: __snake_case = timesteps.astype(dtype=jnp.floataa ) __snake_case = jnp.expand_dims(__SCREAMING_SNAKE_CASE , 0 ) __snake_case = self.time_proj(__SCREAMING_SNAKE_CASE ) __snake_case = self.time_embedding(__SCREAMING_SNAKE_CASE ) # 2. pre-process __snake_case = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 2, 3, 1) ) __snake_case = self.conv_in(__SCREAMING_SNAKE_CASE ) # 3. down __snake_case = (sample,) for down_block in self.down_blocks: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case , __snake_case = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) else: __snake_case , __snake_case = down_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __snake_case = () for down_block_res_sample, down_block_additional_residual in zip( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __snake_case = new_down_block_res_samples # 4. mid __snake_case = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __snake_case = down_block_res_samples[-(self.layers_per_block + 1) :] __snake_case = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = up_block( __SCREAMING_SNAKE_CASE , temb=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , res_hidden_states_tuple=__SCREAMING_SNAKE_CASE , deterministic=not train , ) else: __snake_case = up_block(__SCREAMING_SNAKE_CASE , temb=__SCREAMING_SNAKE_CASE , res_hidden_states_tuple=__SCREAMING_SNAKE_CASE , deterministic=not train ) # 6. post-process __snake_case = self.conv_norm_out(__SCREAMING_SNAKE_CASE ) __snake_case = nn.silu(__SCREAMING_SNAKE_CASE ) __snake_case = self.conv_out(__SCREAMING_SNAKE_CASE ) __snake_case = jnp.transpose(__SCREAMING_SNAKE_CASE , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__SCREAMING_SNAKE_CASE )
24
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: return getitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: return setitem, k, v def __lowerCamelCase ( _lowerCAmelCase ) -> str: return delitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Optional[int]: try: return fun(_lowerCAmelCase , *_lowerCAmelCase ), None except Exception as e: return None, e __lowerCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __lowerCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = HashMap(initial_block_size=4 ) _UpperCAmelCase = {} for _, (fun, *args) in enumerate(_lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) assert my_res == py_res assert str(_lowerCAmelCase ) == str(_lowerCAmelCase ) assert set(_lowerCAmelCase ) == set(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowerCAmelCase ) -> bool: return not name.startswith("_" ) _UpperCAmelCase = {name for name in dir({} ) if is_public(_lowerCAmelCase )} _UpperCAmelCase = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )} assert dict_public_names > hash_public_names
684
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _UpperCamelCase : '''simple docstring''' def __init__( self : List[Any] , a : List[Any] , a : List[Any]=13 , a : Union[str, Any]=7 , a : Optional[int]=True , a : Optional[int]=True , a : int=True , a : Any=True , a : Dict=99 , a : Tuple=32 , a : Optional[int]=5 , a : List[Any]=4 , a : Optional[int]=4 , a : List[str]="gelu" , a : Optional[int]=0.0 , a : int=0.1 , a : List[Any]=True , a : Union[str, Any]=512 , a : Tuple=16 , a : Union[str, Any]=2 , a : List[str]=0.02 , a : Any=3 , a : int=4 , a : int=None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Any = batch_size SCREAMING_SNAKE_CASE : Dict = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids SCREAMING_SNAKE_CASE : List[str] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : str = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = intermediate_multiple_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : Any = attention_dropout SCREAMING_SNAKE_CASE : str = weight_tying SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Any = type_sequence_label_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Any = num_labels SCREAMING_SNAKE_CASE : List[Any] = num_choices SCREAMING_SNAKE_CASE : List[str] = scope def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[Any] = self.get_config() return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Optional[int] = True return config, input_ids, input_mask, token_labels def __UpperCamelCase ( self : List[str] , a : Union[str, Any] , a : Optional[Any] , a : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = GPTNeoXJapaneseModel(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : str = model(a , attention_mask=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Tuple , a : Optional[int] , a : List[str] , a : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = GPTNeoXJapaneseModel(a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Union[str, Any] , a : Union[str, Any] , a : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(a , attention_mask=a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self : Optional[int] , a : Tuple , a : Tuple , a : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : str = GPTNeoXJapaneseForCausalLM(config=a ) model.to(a ) model.eval() # first forward pass SCREAMING_SNAKE_CASE : List[str] = model(a , attention_mask=a , use_cache=a ) SCREAMING_SNAKE_CASE : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and SCREAMING_SNAKE_CASE : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) SCREAMING_SNAKE_CASE : List[Any] = model(a , attention_mask=a , output_hidden_states=a ) SCREAMING_SNAKE_CASE : Any = output_from_no_past["hidden_states"][0] SCREAMING_SNAKE_CASE : Dict = model( a , attention_mask=a , past_key_values=a , output_hidden_states=a , )["hidden_states"][0] # select random slice SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE : List[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3 ) ) def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () lowerCamelCase__ =(GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () lowerCamelCase__ =( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = GPTNeoXJapaneseModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=a , hidden_size=37 ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(a , a , a ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() SCREAMING_SNAKE_CASE : Dict = None self.model_tester.create_and_check_model_as_decoder(a , a , a ) def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(a , a , a ) def __UpperCamelCase ( self : str ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*a ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = "abeja/gpt-neox-japanese-2.7b" SCREAMING_SNAKE_CASE : Optional[int] = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] SCREAMING_SNAKE_CASE : List[Any] = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] SCREAMING_SNAKE_CASE : List[str] = GPTNeoXJapaneseTokenizer.from_pretrained(a ) SCREAMING_SNAKE_CASE : Tuple = GPTNeoXJapaneseForCausalLM.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for prompt in prompts: SCREAMING_SNAKE_CASE : str = tokenizer(a , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE : Any = model.generate(a , max_length=50 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(a , skip_special_tokens=a ) predicted_outputs += generated_string self.assertListEqual(a , a )
25
def __lowerCamelCase ( _lowerCAmelCase ) -> list: _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(1 , _lowerCAmelCase ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(_lowerCAmelCase , _lowerCAmelCase , -1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": __lowerCAmelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
684
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase = 16 __UpperCamelCase = 32 def _a ( _lowerCamelCase , _lowerCamelCase = 16 ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case : Dict = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) __snake_case : List[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case : Optional[Any] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case : int = 16 elif accelerator.mixed_precision != "no": __snake_case : Any = 8 else: __snake_case : List[Any] = None return tokenizer.pad( _lowerCamelCase , padding="""longest""" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. __snake_case : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) __snake_case : Dict = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase = mocked_dataloaders # noqa: F811 def _a ( _lowerCamelCase , _lowerCamelCase ) -> Tuple: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , _lowerCamelCase ) == "1": __snake_case : Optional[int] = 2 # Initialize accelerator __snake_case : List[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : Union[str, Any] = config["""lr"""] __snake_case : Optional[int] = int(config["""num_epochs"""] ) __snake_case : Optional[int] = int(config["""seed"""] ) __snake_case : List[Any] = int(config["""batch_size"""] ) __snake_case : int = evaluate.load("""glue""" , """mrpc""" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCamelCase ) def inner_training_loop(_lowerCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer __snake_case : int = AdamW(params=model.parameters() , lr=_lowerCamelCase ) __snake_case , __snake_case : Optional[int] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate scheduler __snake_case : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : int = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case : Optional[int] = model(**_lowerCamelCase ) __snake_case : Optional[Any] = outputs.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case : Optional[Any] = model(**_lowerCamelCase ) __snake_case : List[Any] = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case : Optional[int] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) __snake_case : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _a ( ) -> Optional[int]: """simple docstring""" __snake_case : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) __snake_case : Any = parser.parse_args() __snake_case : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
26
__lowerCAmelCase = 2_5_6 # Modulus to hash a string __lowerCAmelCase = 1_0_0_0_0_0_3 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 5) _UpperCAmelCase = "Lü" _UpperCAmelCase = "Lüsai" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = "Lue" assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
684
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase__ ( self ): _A = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=snake_case_ ).to(snake_case_ ) _A = AutoTokenizer.from_pretrained('google/mt5-small' ) _A = tokenizer('Hello there' , return_tensors='pt' ).input_ids _A = tokenizer('Hi I am' , return_tensors='pt' ).input_ids _A = model(input_ids.to(snake_case_ ) , labels=labels.to(snake_case_ ) ).loss _A = -(labels.shape[-1] * loss.item()) _A = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
27
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ): '''simple docstring''' self.test() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[int] = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE : str = self.advance() if not self.does_advance(A ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.update(A ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def UpperCamelCase_ ( self, A=False ): '''simple docstring''' raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) SCREAMING_SNAKE_CASE : Tuple = token_ids SCREAMING_SNAKE_CASE : Tuple = len(self.token_ids ) SCREAMING_SNAKE_CASE : Optional[int] = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE : Any = False def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : str = False SCREAMING_SNAKE_CASE : int = False if self.does_advance(A ): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE : int = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Union[str, Any] = completed else: # failed to make progress. SCREAMING_SNAKE_CASE : int = True self.reset() return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Dict = 0 def UpperCamelCase_ ( self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = PhrasalConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : str = self.seqlen SCREAMING_SNAKE_CASE : List[Any] = self.fulfilled_idx SCREAMING_SNAKE_CASE : List[Any] = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = max([len(A ) for one in nested_token_ids] ) SCREAMING_SNAKE_CASE : Optional[int] = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE : Dict = root for tidx, token_id in enumerate(A ): if token_id not in level: SCREAMING_SNAKE_CASE : Dict = {} SCREAMING_SNAKE_CASE : Optional[Any] = level[token_id] if no_subsets and self.has_subsets(A, A ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F" {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Any = root def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE : Optional[Any] = start[current_token] SCREAMING_SNAKE_CASE : Optional[Any] = list(start.keys() ) return next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.next_tokens(A ) return len(A ) == 0 def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = list(root.values() ) if len(A ) == 0: return 1 else: return sum([self.count_leaves(A ) for nn in next_nodes] ) def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.count_leaves(A ) return len(A ) != leaf_count class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A ): '''simple docstring''' super(A, self ).__init__() if not isinstance(A, A ) or len(A ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(A, A ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(A, A ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) SCREAMING_SNAKE_CASE : Dict = DisjunctiveTrie(A ) SCREAMING_SNAKE_CASE : int = nested_token_ids SCREAMING_SNAKE_CASE : int = self.trie.max_height SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : List[str] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.trie.next_tokens(self.current_seq ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : List[str] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(A )}" ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Optional[Any] = False if self.does_advance(A ): self.current_seq.append(A ) SCREAMING_SNAKE_CASE : Tuple = True else: SCREAMING_SNAKE_CASE : Dict = True self.reset() SCREAMING_SNAKE_CASE : int = self.trie.reached_leaf(self.current_seq ) SCREAMING_SNAKE_CASE : List[str] = completed return stepped, completed, reset def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCamelCase_ ( self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCamelCase_ ( self, A=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = DisjunctiveConstraint(self.token_ids ) if stateful: SCREAMING_SNAKE_CASE : Tuple = self.seqlen SCREAMING_SNAKE_CASE : Dict = self.current_seq SCREAMING_SNAKE_CASE : str = self.completed return new_constraint class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE : List[str] = max([c.seqlen for c in constraints] ) SCREAMING_SNAKE_CASE : str = len(A ) SCREAMING_SNAKE_CASE : Any = False self.init_state() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : str = [constraint.copy(stateful=A ) for constraint in self.constraints] def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE : List[str] = constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) else: SCREAMING_SNAKE_CASE : List[Any] = self.inprogress_constraint.advance() if isinstance(A, A ): token_list.append(A ) elif isinstance(A, A ): token_list.extend(A ) if len(A ) == 0: return None else: return token_list def UpperCamelCase_ ( self, A ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.add(A ) # the entire list of constraints are fulfilled if self.completed: break def UpperCamelCase_ ( self, A ): '''simple docstring''' if not isinstance(A, A ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = False, False if self.completed: SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Dict = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.inprogress_constraint.update(A ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A ) ) SCREAMING_SNAKE_CASE : Dict = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) SCREAMING_SNAKE_CASE : Any = None if len(self.pending_constraints ) == 0: # we're done! SCREAMING_SNAKE_CASE : Optional[int] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = pending_constraint.update(A ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A ) SCREAMING_SNAKE_CASE : Optional[Any] = None if not complete and stepped: SCREAMING_SNAKE_CASE : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE : Dict = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCamelCase_ ( self, A=True ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE : int = [ constraint.copy(stateful=A ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE : List[str] = self.inprogress_constraint.copy(stateful=A ) SCREAMING_SNAKE_CASE : Optional[Any] = [constraint.copy() for constraint in self.pending_constraints] return new_state
28
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase = "huggingface-tools/default-prompts" __lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
684
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black A_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. A_ = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowerCamelCase_ = self.diffusers_dir shutil.copy( os.path.join(UpperCAmelCase , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None ): lowerCamelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: lowerCamelCase_ = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result lowerCamelCase_ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCamelCase_ = black.format_str(UpperCAmelCase , mode=UpperCAmelCase ) lowerCamelCase_ = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(UpperCAmelCase , '''w''' , newline='''\n''' ) as f: f.write(UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase ) with open(UpperCAmelCase , '''r''' ) as f: self.assertTrue(f.read() , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , UpperCAmelCase ) , ) # Copy consistency with a really long name lowerCamelCase_ = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('''Bert''' , UpperCAmelCase , UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , UpperCAmelCase , overwrite_result=re.sub('''DDPM''' , '''Test''' , UpperCAmelCase ) , )
29
from itertools import permutations def __lowerCamelCase ( _lowerCAmelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_lowerCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCamelCase ( _lowerCAmelCase = 10 ) -> int: return sum( int("".join(map(_lowerCAmelCase , _lowerCAmelCase ) ) ) for num in permutations(range(_lowerCAmelCase ) ) if is_substring_divisible(_lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
684
0
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __a = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=False , ): '''simple docstring''' output_path.parent.mkdir(parents=_lowercase , exist_ok=_lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowercase , _lowercase , f=output_path.as_posix() , input_names=_lowercase , output_names=_lowercase , dynamic_axes=_lowercase , do_constant_folding=_lowercase , use_external_data_format=_lowercase , enable_onnx_checker=_lowercase , opset_version=_lowercase , ) else: export( _lowercase , _lowercase , f=output_path.as_posix() , input_names=_lowercase , output_names=_lowercase , dynamic_axes=_lowercase , do_constant_folding=_lowercase , opset_version=_lowercase , ) @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = False ): '''simple docstring''' UpperCAmelCase_ : Any = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): UpperCAmelCase_ : Tuple = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' ) else: UpperCAmelCase_ : Optional[int] = '''cpu''' UpperCAmelCase_ : List[str] = Path(_lowercase ) # VAE DECODER UpperCAmelCase_ : Optional[Any] = AutoencoderKL.from_pretrained(model_path + '''/vae''' ) UpperCAmelCase_ : Union[str, Any] = vae_decoder.config.latent_channels # forward only through the decoder part UpperCAmelCase_ : Optional[Any] = vae_decoder.decode onnx_export( _lowercase , model_args=( torch.randn(1 , _lowercase , 25 , 25 ).to(device=_lowercase , dtype=_lowercase ), False, ) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={ '''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''}, } , opset=_lowercase , ) del vae_decoder if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=14, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') __a = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('SD: Done: ONNX')
30
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotTokenizer def __init__( self : Tuple , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , **__UpperCamelCase : int , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__UpperCamelCase ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) _UpperCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value _UpperCAmelCase = value def UpperCAmelCase__ ( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Dict = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[Any] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Any = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["projector.weight"] _UpperCAmelCase = downstream_dict["projector.bias"] _UpperCAmelCase = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["model.linear.weight"] _UpperCAmelCase = downstream_dict["model.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = WavaVecaForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["connector.weight"] _UpperCAmelCase = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase = checkpoint["Downstream"] _UpperCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _UpperCAmelCase = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
def __lowerCamelCase ( _lowerCAmelCase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = set({"(", "[", "{"} ) _UpperCAmelCase = set({")", "]", "}"} ) _UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def __lowerCamelCase ( ) -> str: _UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , "is balanced" ) else: print(_lowerCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
684
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __magic_name__ (snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : Tuple = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Optional[int]=0 ): snake_case__ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(_a ) ) snake_case__ = np.random.RandomState(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.69643, 0.58484, 0.50314, 0.58760, 0.55368, 0.59643, 0.51529, 0.41217, 0.49087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.61737, 0.54642, 0.53183, 0.54465, 0.52742, 0.60525, 0.49969, 0.40655, 0.48154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations snake_case__ = pipe(**self.get_dummy_inputs() ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52761, 0.59977, 0.49033, 0.49619, 0.54282, 0.50311, 0.47600, 0.40918, 0.45203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.52911, 0.60004, 0.49229, 0.49805, 0.54502, 0.50680, 0.47777, 0.41028, 0.45304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) snake_case__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = self.get_dummy_inputs() snake_case__ = pipe(**_a ).images snake_case__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) snake_case__ = np.array([0.65331, 0.58277, 0.48204, 0.56059, 0.53665, 0.56235, 0.50969, 0.40009, 0.46552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = ort.SessionOptions() snake_case__ = False return options def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) snake_case__ = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = np.random.RandomState(0 ) snake_case__ = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , ) snake_case__ = output.images snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) snake_case__ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) snake_case__ = init_image.resize((7_68, 5_12) ) snake_case__ = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case__ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) snake_case__ = '''A fantasy landscape, trending on artstation''' snake_case__ = np.random.RandomState(0 ) snake_case__ = pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , ) snake_case__ = output.images snake_case__ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) snake_case__ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
33
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def __snake_case ( _lowercase ): """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) SCREAMING_SNAKE_CASE_ = parser.parse_args() SCREAMING_SNAKE_CASE_ = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
34
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: # Initialise PyTorch model _UpperCAmelCase = RemBertConfig.from_json_file(_lowerCAmelCase ) print("Building PyTorch model from configuration: {}".format(str(_lowerCAmelCase ) ) ) _UpperCAmelCase = RemBertModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(_lowerCAmelCase ) ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
a_ :int = 6_55_21 def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : str = 0 for plain_chr in plain_text: SCREAMING_SNAKE_CASE__ : Any = (a + ord(A__ )) % MOD_ADLER SCREAMING_SNAKE_CASE__ : Optional[int] = (b + a) % MOD_ADLER return (b << 1_6) | a
35
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCAmelCase__ ( *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[int] ): pass @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = vqa_pipeline(__UpperCamelCase , top_k=1 ) self.assertEqual( __UpperCamelCase , [ [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], ] , ) @require_torch def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) @slow @require_torch def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase__ ( self : Optional[int] ): pass
684
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def lowercase ( __A : List[Any] ) -> Any: '''simple docstring''' snake_case : Optional[Any] = 384 if "tiny" in model_name: snake_case : Optional[Any] = [3, 3, 9, 3] snake_case : Optional[int] = [96, 192, 384, 768] if "small" in model_name: snake_case : Union[str, Any] = [3, 3, 27, 3] snake_case : int = [96, 192, 384, 768] if "base" in model_name: snake_case : Optional[Any] = [3, 3, 27, 3] snake_case : int = [128, 256, 512, 1024] snake_case : Optional[int] = 512 if "large" in model_name: snake_case : Optional[Any] = [3, 3, 27, 3] snake_case : Any = [192, 384, 768, 1536] snake_case : int = 768 if "xlarge" in model_name: snake_case : Tuple = [3, 3, 27, 3] snake_case : Any = [256, 512, 1024, 2048] snake_case : Optional[int] = 1024 # set label information snake_case : Optional[int] = 150 snake_case : str = """huggingface/label-files""" snake_case : str = """ade20k-id2label.json""" snake_case : Any = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) snake_case : Dict = {int(__A ): v for k, v in idalabel.items()} snake_case : Any = {v: k for k, v in idalabel.items()} snake_case : int = ConvNextConfig( depths=__A , hidden_sizes=__A , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) snake_case : Tuple = UperNetConfig( backbone_config=__A , auxiliary_in_channels=__A , num_labels=__A , idalabel=__A , labelaid=__A , ) return config def lowercase ( __A : List[str] ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def lowercase ( __A : Union[str, Any] , __A : List[Any] , __A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = dct.pop(__A ) snake_case : List[Any] = val def lowercase ( __A : str , __A : Dict , __A : List[str] ) -> List[Any]: '''simple docstring''' snake_case : Tuple = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } snake_case : List[str] = model_name_to_url[model_name] snake_case : Optional[int] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" )["""state_dict"""] snake_case : Optional[int] = get_upernet_config(__A ) snake_case : Optional[Any] = UperNetForSemanticSegmentation(__A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): snake_case : Tuple = state_dict.pop(__A ) if "bn" in key: snake_case : Dict = key.replace("""bn""" , """batch_norm""" ) snake_case : Union[str, Any] = val # rename keys snake_case : str = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) model.load_state_dict(__A ) # verify on image snake_case : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" snake_case : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ).convert("""RGB""" ) snake_case : List[str] = SegformerImageProcessor() snake_case : Optional[int] = processor(__A , return_tensors="""pt""" ).pixel_values with torch.no_grad(): snake_case : Optional[Any] = model(__A ) if model_name == "upernet-convnext-tiny": snake_case : Any = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": snake_case : List[Any] = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": snake_case : Union[str, Any] = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": snake_case : Optional[Any] = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": snake_case : Tuple = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __A , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__A ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": __lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
36
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A__ ( A__ ): """simple docstring""" _lowercase = (PNDMScheduler,) _lowercase = (('num_inference_steps', 5_0),) def _UpperCamelCase( self : int , **lowerCamelCase__ : str ): a__ : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCamelCase__ ) return config def _UpperCamelCase( self : str , lowerCamelCase__ : Any=0 , **lowerCamelCase__ : Tuple ): a__ : List[str] = dict(self.forward_default_kwargs ) a__ : Any = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) a__ : Union[str, Any] = self.dummy_sample a__ : Optional[int] = 0.1 * sample a__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : List[Any] = self.get_scheduler_config(**lowerCamelCase__ ) a__ : str = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals a__ : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) a__ : Tuple = scheduler_class.from_pretrained(lowerCamelCase__ ) new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals a__ : Optional[Any] = dummy_past_residuals[:] a__ : int = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : Optional[Any] = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : Optional[Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : Dict = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCamelCase( self : Tuple ): pass def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : List[Any]=0 , **lowerCamelCase__ : List[Any] ): a__ : List[Any] = dict(self.forward_default_kwargs ) a__ : List[Any] = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) a__ : int = self.dummy_sample a__ : List[str] = 0.1 * sample a__ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a__ : List[str] = self.get_scheduler_config() a__ : List[str] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residuals (must be after setting timesteps) a__ : Optional[int] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase__ ) a__ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase__ ) # copy over dummy past residual (must be after setting timesteps) a__ : Optional[Any] = dummy_past_residuals[:] a__ : List[str] = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : List[Any] = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" a__ : Union[str, Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : str = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _UpperCamelCase( self : int , **lowerCamelCase__ : Tuple ): a__ : Union[str, Any] = self.scheduler_classes[0] a__ : Dict = self.get_scheduler_config(**lowerCamelCase__ ) a__ : Optional[Any] = scheduler_class(**lowerCamelCase__ ) a__ : Any = 10 a__ : List[str] = self.dummy_model() a__ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase__ ) for i, t in enumerate(scheduler.prk_timesteps ): a__ : Tuple = model(lowerCamelCase__ , lowerCamelCase__ ) a__ : str = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): a__ : str = model(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample return sample def _UpperCamelCase( self : str ): a__ : Optional[Any] = dict(self.forward_default_kwargs ) a__ : Tuple = kwargs.pop("num_inference_steps" , lowerCamelCase__ ) for scheduler_class in self.scheduler_classes: a__ : int = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**lowerCamelCase__ ) a__ : Dict = self.dummy_sample a__ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase__ , "set_timesteps" ): scheduler.set_timesteps(lowerCamelCase__ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , "set_timesteps" ): a__ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a__ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a__ : Dict = dummy_past_residuals[:] a__ : str = scheduler.step_prk(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : Union[str, Any] = scheduler.step_prk(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) a__ : Dict = scheduler.step_plms(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample a__ : str = scheduler.step_plms(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _UpperCamelCase( self : Optional[int] ): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase__ ) a__ : str = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(steps_offset=1 ) a__ : Optional[Any] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _UpperCamelCase( self : List[str] ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase__ ) def _UpperCamelCase( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def _UpperCamelCase( self : Tuple ): for t in [1, 5, 10]: self.check_over_forward(time_step=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 a__ : Optional[int] = 27 for scheduler_class in self.scheduler_classes: a__ : int = self.dummy_sample a__ : Optional[int] = 0.1 * sample a__ : str = self.get_scheduler_config() a__ : List[str] = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(lowerCamelCase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): a__ : Dict = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample def _UpperCamelCase( self : Optional[Any] ): with self.assertRaises(lowerCamelCase__ ): a__ : Union[str, Any] = self.scheduler_classes[0] a__ : Optional[Any] = self.get_scheduler_config() a__ : Union[str, Any] = scheduler_class(**lowerCamelCase__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _UpperCamelCase( self : Any ): a__ : Union[str, Any] = self.full_loop() a__ : str = torch.sum(torch.abs(lowerCamelCase__ ) ) a__ : Dict = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def _UpperCamelCase( self : Tuple ): a__ : Dict = self.full_loop(prediction_type="v_prediction" ) a__ : Optional[int] = torch.sum(torch.abs(lowerCamelCase__ ) ) a__ : int = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def _UpperCamelCase( self : Tuple ): # We specify different beta, so that the first alpha is 0.99 a__ : Tuple = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) a__ : Tuple = torch.sum(torch.abs(lowerCamelCase__ ) ) a__ : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def _UpperCamelCase( self : List[Any] ): # We specify different beta, so that the first alpha is 0.99 a__ : List[str] = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 ) a__ : Optional[int] = torch.sum(torch.abs(lowerCamelCase__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
37
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE : Dict = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Any ): _UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any=0 , **__UpperCamelCase : Any ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : str ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : Optional[int] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Optional[Any] ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
0
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : int ) -> int: '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) snake_case__ : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
38
import math class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 _UpperCAmelCase = n _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # adjacency matrix for weight _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = w def UpperCAmelCase__ ( self : Dict ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
684
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class snake_case_ : '''simple docstring''' @staticmethod def snake_case__( *_UpperCamelCase : List[str] , **_UpperCamelCase : Dict ) ->List[str]: pass def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class snake_case_ ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def snake_case__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : int , _UpperCamelCase : Optional[int] ) ->int: snake_case_ = DepthEstimationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def snake_case__( self : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) ->Optional[int]: snake_case_ = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} , _UpperCamelCase ) import datasets snake_case_ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) snake_case_ = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] , _UpperCamelCase , ) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def snake_case__( self : Optional[Any] ) ->Union[str, Any]: pass @slow @require_torch def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''Intel/dpt-large''' snake_case_ = pipeline('''depth-estimation''' , model=_UpperCamelCase ) snake_case_ = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) snake_case_ = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) , 2.662 ) @require_torch def snake_case__( self : Optional[int] ) ->str: # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
39
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Dict = VQModel __SCREAMING_SNAKE_CASE : Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[int]=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) return {"sample": image} @property def UpperCAmelCase__ ( self : Tuple ): return (3, 32, 32) @property def UpperCAmelCase__ ( self : str ): return (3, 32, 32) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__UpperCamelCase ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCAmelCase = image.to(__UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
684
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Any = "yolos" def __init__( self, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=3072, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-12, SCREAMING_SNAKE_CASE_=[512, 864], SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=100, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=1, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.1, **SCREAMING_SNAKE_CASE_, ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Tuple = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : Any = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : Tuple = image_size UpperCamelCase : int = patch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : List[str] = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : Tuple = use_mid_position_embeddings UpperCamelCase : Tuple = auxiliary_loss # Hungarian matcher UpperCamelCase : Any = class_cost UpperCamelCase : Optional[int] = bbox_cost UpperCamelCase : str = giou_cost # Loss coefficients UpperCamelCase : List[str] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = eos_coefficient class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : List[Any] = version.parse("1.11" ) @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def snake_case_ ( self ) -> float: return 1e-4 @property def snake_case_ ( self ) -> int: return 12
40
import requests __lowerCAmelCase = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def __lowerCamelCase ( _lowerCAmelCase ) -> None: # fetching a list of articles in json format _UpperCAmelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
684
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = DDIMPipeline SCREAMING_SNAKE_CASE : Any = UNCONDITIONAL_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE : int = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } SCREAMING_SNAKE_CASE : Union[str, Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self : Optional[int] ): torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(3_2, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=3 ,out_channels=3 ,down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') ,up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') ,) __lowercase = DDIMScheduler() __lowercase = {'''unet''': unet, '''scheduler''': scheduler} return components def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ,lowercase__ : int=0 ): if str(lowercase__ ).startswith('''mps''' ): __lowercase = torch.manual_seed(lowercase__ ) else: __lowercase = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) __lowercase = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''cpu''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowercase__ ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) __lowercase = self.get_dummy_inputs(lowercase__ ) __lowercase = pipe(**lowercase__ ).images __lowercase = image[0, -3:, -3:, -1] self.assertEqual(image.shape ,(1, 3_2, 3_2, 3) ) __lowercase = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4] ) __lowercase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase__ ,1e-3 ) def SCREAMING_SNAKE_CASE ( self : Dict ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : str ): super().test_save_load_local(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def SCREAMING_SNAKE_CASE ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = '''google/ddpm-cifar10-32''' __lowercase = UNetaDModel.from_pretrained(lowercase__ ) __lowercase = DDIMScheduler() __lowercase = DDIMPipeline(unet=lowercase__ ,scheduler=lowercase__ ) ddim.to(lowercase__ ) ddim.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = ddim(generator=lowercase__ ,eta=0.0 ,output_type='''numpy''' ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = '''google/ddpm-ema-bedroom-256''' __lowercase = UNetaDModel.from_pretrained(lowercase__ ) __lowercase = DDIMScheduler.from_pretrained(lowercase__ ) __lowercase = DDIMPipeline(unet=lowercase__ ,scheduler=lowercase__ ) ddpm.to(lowercase__ ) ddpm.set_progress_bar_config(disable=lowercase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = ddpm(generator=lowercase__ ,output_type='''numpy''' ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) __lowercase = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
41
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = 10 def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = [1, 2, 3, 4] _UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = "" _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) _UpperCAmelCase = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ["It was the best of times."] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = 101 _UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _UpperCAmelCase = compute_token_type_ids(__UpperCamelCase , __UpperCamelCase ) np.testing.assert_array_equal(__UpperCamelCase , __UpperCamelCase )
684
0
'''simple docstring''' A_ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on A_ = {value: key for key, value in MORSE_CODE_DICT.items()} def _UpperCamelCase ( __UpperCamelCase ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _UpperCamelCase ( __UpperCamelCase ) -> str: return "".join(REVERSE_DICT[char] for char in message.split() ) def _UpperCamelCase ( ) -> None: lowerCamelCase_ = 'Morse code here!' print(__UpperCamelCase ) lowerCamelCase_ = encrypt(__UpperCamelCase ) print(__UpperCamelCase ) lowerCamelCase_ = decrypt(__UpperCamelCase ) print(__UpperCamelCase ) if __name__ == "__main__": main()
42
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=SCREAMING_SNAKE_CASE , ) lowercase__ = ViTHybridConfig(backbone_config=SCREAMING_SNAKE_CASE , image_size=3_84 , num_labels=10_00 ) lowercase__ = False # load original model from timm lowercase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTHybridModel(SCREAMING_SNAKE_CASE ).eval() else: lowercase__ = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE ) ) lowercase__ = transform.transforms lowercase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase__ = ViTHybridImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: lowercase__ = timm_model.forward_features(SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: lowercase__ = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(f'ybelkada/{vit_name}' ) processor.push_to_hub(f'ybelkada/{vit_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
43
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = {} _UpperCAmelCase = job["started_at"] _UpperCAmelCase = job["completed_at"] _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = get_job_time(args.workflow_run_id) __lowerCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
684
0
'''simple docstring''' import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCamelCase_ ( self : Dict ): _lowerCamelCase , _lowerCamelCase : int = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2",revision="bf16",dtype=jnp.bfloataa,) _lowerCamelCase : Optional[Any] = "A painting of a squirrel eating a burger" _lowerCamelCase : Tuple = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : int = sd_pipe.prepare_inputs(__A ) _lowerCamelCase : Union[str, Any] = replicate(__A ) _lowerCamelCase : Any = shard(__A ) _lowerCamelCase : Dict = jax.random.PRNGKey(0 ) _lowerCamelCase : List[str] = jax.random.split(__A,jax.device_count() ) _lowerCamelCase : List[Any] = sd_pipe(__A,__A,__A,num_inference_steps=2_5,jit=__A )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : Optional[int] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowerCamelCase : List[str] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : int = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): _lowerCamelCase : Optional[Any] = "stabilityai/stable-diffusion-2" _lowerCamelCase , _lowerCamelCase : int = FlaxDPMSolverMultistepScheduler.from_pretrained(__A,subfolder="scheduler" ) _lowerCamelCase , _lowerCamelCase : Dict = FlaxStableDiffusionPipeline.from_pretrained( __A,scheduler=__A,revision="bf16",dtype=jnp.bfloataa,) _lowerCamelCase : List[str] = scheduler_params _lowerCamelCase : List[str] = "A painting of a squirrel eating a burger" _lowerCamelCase : List[str] = jax.device_count() _lowerCamelCase : Dict = num_samples * [prompt] _lowerCamelCase : Tuple = sd_pipe.prepare_inputs(__A ) _lowerCamelCase : Any = replicate(__A ) _lowerCamelCase : Any = shard(__A ) _lowerCamelCase : Tuple = jax.random.PRNGKey(0 ) _lowerCamelCase : Optional[Any] = jax.random.split(__A,jax.device_count() ) _lowerCamelCase : Optional[Any] = sd_pipe(__A,__A,__A,num_inference_steps=2_5,jit=__A )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _lowerCamelCase : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowerCamelCase : int = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowerCamelCase : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowerCamelCase : str = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
44
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase = "\\n Text data.\n Second line of data." UpperCamelCase = "file" @pytest.fixture(scope="""session""" ) def A ( lowercase__ : List[str] ) -> Union[str, Any]: UpperCamelCase__ :Optional[int] = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") UpperCamelCase__ :Optional[Any] = bytes(lowercase__ , """utf-8""" ) with zstd.open(lowercase__ , """wb""" ) as f: f.write(lowercase__ ) return path @pytest.fixture def A ( lowercase__ : str ) -> int: with open(os.path.join(tmpfs.local_root_dir , lowercase__ ) , """w""" ) as f: f.write(lowercase__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def A ( lowercase__ : Optional[Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Any ) -> Union[str, Any]: UpperCamelCase__ :Optional[int] = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCamelCase__ :List[Any] = input_paths[compression_format] UpperCamelCase__ :Tuple = tmp_path / """cache""" UpperCamelCase__ :Dict = DownloadConfig(cache_dir=lowercase__ , extract_compressed_file=lowercase__ ) UpperCamelCase__ :int = cached_path(lowercase__ , download_config=lowercase__ ) with open(lowercase__ ) as f: UpperCamelCase__ :int = f.read() with open(lowercase__ ) as f: UpperCamelCase__ :Tuple = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def A ( lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : Dict , lowercase__ : Any , lowercase__ : List[Any] ) -> List[str]: UpperCamelCase__ :Dict = """custom_cache""" UpperCamelCase__ :Union[str, Any] = """custom_extracted_dir""" UpperCamelCase__ :Optional[int] = tmp_path / """custom_extracted_path""" if default_extracted: UpperCamelCase__ :Union[str, Any] = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowercase__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowercase__ ) ) UpperCamelCase__ :Dict = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase__ :Optional[int] = xz_file UpperCamelCase__ :Optional[Any] = ( DownloadConfig(extract_compressed_file=lowercase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase__ ) ) UpperCamelCase__ :str = cached_path(lowercase__ , download_config=lowercase__ ) assert Path(lowercase__ ).parent.parts[-2:] == expected def A ( lowercase__ : List[str] ) -> Dict: # absolute path UpperCamelCase__ :Optional[Any] = str(Path(lowercase__ ).resolve() ) assert cached_path(lowercase__ ) == text_file # relative path UpperCamelCase__ :str = str(Path(lowercase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase__ ) == text_file def A ( lowercase__ : Optional[Any] ) -> Tuple: # absolute path UpperCamelCase__ :Tuple = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(lowercase__ ): cached_path(lowercase__ ) # relative path UpperCamelCase__ :Tuple = """./__missing_file__.txt""" with pytest.raises(lowercase__ ): cached_path(lowercase__ ) def A ( lowercase__ : str ) -> Optional[int]: UpperCamelCase__ :Any = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(lowercase__ ) as f: UpperCamelCase__ :Tuple = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( ) -> Tuple: with pytest.raises(lowercase__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( lowercase__ : str ) -> Optional[int]: UpperCamelCase__ :Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase__ ): http_get("""https://huggingface.co""" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( lowercase__ : List[Any] ) -> int: UpperCamelCase__ :List[str] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase__ ): ftp_get("""ftp://huggingface.co""" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowercase__ ) def A ( lowercase__ : Optional[int] ) -> List[Any]: UpperCamelCase__ :Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowercase__ ): fsspec_get("""s3://huggingface.co""" , temp_file=lowercase__ ) with pytest.raises(lowercase__ ): fsspec_head("""s3://huggingface.co""" )
45
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __lowerCAmelCase = get_tests_dir("fixtures") class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 500 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase__ ( self : Dict ): with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="test-image-processor" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : int ): CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
684
0
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin _lowerCAmelCase : Dict = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = SpeechTaTokenizer lowerCAmelCase__ = False lowerCAmelCase__ = True def _lowercase ( self: List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = SpeechTaTokenizer(__lowerCAmelCase ) _lowerCamelCase : Tuple = AddedToken("<mask>" ,lstrip=__lowerCAmelCase ,rstrip=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self: List[str] ,__lowerCAmelCase: str ): '''simple docstring''' _lowerCamelCase : Dict = "this is a test" _lowerCamelCase : Optional[Any] = "this is a test" return input_text, output_text def _lowercase ( self: List[str] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: str=20 ,__lowerCAmelCase: List[Any]=5 ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.get_input_output_texts(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.encode(__lowerCAmelCase ,add_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.decode(__lowerCAmelCase ,clean_up_tokenization_spaces=__lowerCAmelCase ) return text, ids def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = "<pad>" _lowerCamelCase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"<s>" ) self.assertEqual(vocab_keys[1] ,"<pad>" ) self.assertEqual(vocab_keys[-4] ,"œ" ) self.assertEqual(vocab_keys[-2] ,"<mask>" ) self.assertEqual(vocab_keys[-1] ,"<ctc_blank>" ) self.assertEqual(len(__lowerCAmelCase ) ,81 ) def _lowercase ( self: Dict ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size ,79 ) def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Optional[Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _lowerCamelCase : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] _lowerCamelCase : Any = tokenizer.add_tokens(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer.vocab_size _lowerCamelCase : Union[str, Any] = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size + len(__lowerCAmelCase ) ) _lowerCamelCase : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,4 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) _lowerCamelCase : List[Any] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} _lowerCamelCase : str = tokenizer.add_special_tokens(__lowerCAmelCase ) _lowerCamelCase : int = tokenizer.vocab_size _lowerCamelCase : str = len(__lowerCAmelCase ) self.assertNotEqual(__lowerCAmelCase ,0 ) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase ,len(__lowerCAmelCase ) ) self.assertEqual(__lowerCAmelCase ,all_size_a + len(__lowerCAmelCase ) ) _lowerCamelCase : Optional[int] = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" ,add_special_tokens=__lowerCAmelCase ) self.assertGreaterEqual(len(__lowerCAmelCase ) ,6 ) self.assertGreater(tokens[0] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] ,tokens[1] ) self.assertGreater(tokens[-3] ,tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] ,tokens[-4] ) self.assertEqual(tokens[0] ,tokenizer.eos_token_id ) self.assertEqual(tokens[-3] ,tokenizer.pad_token_id ) def _lowercase ( self: Any ): '''simple docstring''' pass def _lowercase ( self: Tuple ): '''simple docstring''' pass def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Tuple = self.get_tokenizer() _lowerCamelCase : Optional[int] = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) ,[4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] ,) _lowerCamelCase : int = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) _lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) # fmt: off self.assertListEqual(__lowerCAmelCase ,[4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase ,[SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : Optional[int] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off _lowerCamelCase : Tuple = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase ,model_name="microsoft/speecht5_asr" ,revision="c5ef64c71905caeccde0e4462ef3f9077224c524" ,sequences=__lowerCAmelCase ,)
46
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: return getitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: return setitem, k, v def __lowerCamelCase ( _lowerCAmelCase ) -> str: return delitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Optional[int]: try: return fun(_lowerCAmelCase , *_lowerCAmelCase ), None except Exception as e: return None, e __lowerCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __lowerCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = HashMap(initial_block_size=4 ) _UpperCAmelCase = {} for _, (fun, *args) in enumerate(_lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) assert my_res == py_res assert str(_lowerCAmelCase ) == str(_lowerCAmelCase ) assert set(_lowerCAmelCase ) == set(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowerCAmelCase ) -> bool: return not name.startswith("_" ) _UpperCAmelCase = {name for name in dir({} ) if is_public(_lowerCAmelCase )} _UpperCAmelCase = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )} assert dict_public_names > hash_public_names
684
0
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = ['''model.decoder.embed_positions.weights'''] def UpperCAmelCase__ ( lowerCamelCase_ : Tuple ): if "emb" in name: __a : Any = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: __a : str = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: __a : List[Any] = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: __a : List[Any] = name.replace('linear1' , 'fc1' ) if "linear2" in name: __a : List[str] = name.replace('linear2' , 'fc2' ) if "norm1" in name: __a : List[str] = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: __a : List[Any] = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: __a : str = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: __a : int = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: __a : Any = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: __a : List[Any] = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def UpperCAmelCase__ ( lowerCamelCase_ : OrderedDict , lowerCamelCase_ : int ): __a : Union[str, Any] = list(state_dict.keys() ) __a : Optional[int] = {} for key in keys: __a : Optional[int] = state_dict.pop(lowerCamelCase_ ) __a : List[Any] = rename_keys(lowerCamelCase_ ) if "in_proj_weight" in key: # split fused qkv proj __a : Optional[Any] = val[:hidden_size, :] __a : Optional[Any] = val[hidden_size : 2 * hidden_size, :] __a : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: __a : List[str] = val else: __a : Any = val return state_dict, enc_dec_proj_state_dict def UpperCAmelCase__ ( lowerCamelCase_ : str ): if checkpoint == "small": # default config values __a : Union[str, Any] = 1_0_2_4 __a : Any = 2_4 __a : Tuple = 1_6 elif checkpoint == "medium": __a : Dict = 1_5_3_6 __a : Dict = 4_8 __a : Union[str, Any] = 2_4 elif checkpoint == "large": __a : int = 2_0_4_8 __a : Dict = 4_8 __a : Union[str, Any] = 3_2 else: raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) __a : str = MusicgenDecoderConfig( hidden_size=lowerCamelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , ) return config @torch.no_grad() def UpperCAmelCase__ ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : List[Any]="cpu" ): __a : str = MusicGen.get_pretrained(lowerCamelCase_ , device=lowerCamelCase_ ) __a : str = decoder_config_from_checkpoint(lowerCamelCase_ ) __a : Tuple = fairseq_model.lm.state_dict() __a , __a : int = rename_state_dict( lowerCamelCase_ , hidden_size=decoder_config.hidden_size ) __a : int = TaEncoderModel.from_pretrained('t5-base' ) __a : List[Any] = EncodecModel.from_pretrained('facebook/encodec_32khz' ) __a : Tuple = MusicgenForCausalLM(lowerCamelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection __a , __a : Optional[int] = decoder.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' ) if len(lowerCamelCase_ ) > 0: raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model __a : Union[str, Any] = MusicgenForConditionalGeneration(text_encoder=lowerCamelCase_ , audio_encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(lowerCamelCase_ ) # check we can do a forward pass __a : Any = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) __a : Tuple = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): __a : Any = model(input_ids=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ).logits if logits.shape != (8, 1, 2_0_4_8): raise ValueError('Incorrect shape for logits' ) # now construct the processor __a : Any = AutoTokenizer.from_pretrained('t5-base' ) __a : Optional[Any] = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) __a : Union[str, Any] = MusicgenProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) # set the appropriate bos/pad token ids __a : Tuple = 2_0_4_8 __a : int = 2_0_4_8 # set other default generation config params __a : Union[str, Any] = int(3_0 * audio_encoder.config.frame_rate ) __a : List[Any] = True __a : Any = 3.0 if pytorch_dump_folder is not None: Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if repo_id: logger.info(f'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(lowerCamelCase_ ) processor.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
47
def __lowerCamelCase ( _lowerCAmelCase ) -> list: _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(1 , _lowerCAmelCase ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(_lowerCAmelCase , _lowerCAmelCase , -1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": __lowerCAmelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
684
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer UpperCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase__ : Union[str, Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart UpperCAmelCase__ : Optional[int] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } UpperCAmelCase__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Optional[int] = VOCAB_FILES_NAMES snake_case__ :Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP snake_case__ :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ :List[Any] = ['input_ids', 'attention_mask'] snake_case__ :Union[str, Any] = BartTokenizer def __init__( self : List[str] , __magic_name__ : Dict=None , __magic_name__ : Optional[int]=None , __magic_name__ : Tuple=None , __magic_name__ : List[Any]="replace" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Optional[int]="</s>" , __magic_name__ : Dict="</s>" , __magic_name__ : Union[str, Any]="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : str="<pad>" , __magic_name__ : Dict="<mask>" , __magic_name__ : Optional[int]=False , __magic_name__ : str=True , **__magic_name__ : Optional[Any] , ): """simple docstring""" super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) lowerCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space: lowerCAmelCase__ = getattr(__magic_name__ , pre_tok_state.pop("type" ) ) lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = pre_tok_class(**__magic_name__ ) lowerCAmelCase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase__ = "post_processor" lowerCAmelCase__ = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: lowerCAmelCase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ = tuple(state["sep"] ) if "cls" in state: lowerCAmelCase__ = tuple(state["cls"] ) lowerCAmelCase__ = False if state.get("add_prefix_space" , __magic_name__ ) != add_prefix_space: lowerCAmelCase__ = add_prefix_space lowerCAmelCase__ = True if state.get("trim_offsets" , __magic_name__ ) != trim_offsets: lowerCAmelCase__ = trim_offsets lowerCAmelCase__ = True if changes_to_apply: lowerCAmelCase__ = getattr(__magic_name__ , state.pop("type" ) ) lowerCAmelCase__ = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[Any] ): """simple docstring""" lowerCAmelCase__ = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value lowerCAmelCase__ = value def __SCREAMING_SNAKE_CASE ( self : str , *__magic_name__ : List[Any] , **__magic_name__ : Any ): """simple docstring""" lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , *__magic_name__ : Any , **__magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = kwargs.get("is_split_into_words" , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" lowerCAmelCase__ = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : Any , __magic_name__ : int=None ): """simple docstring""" lowerCAmelCase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ): """simple docstring""" lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
48
__lowerCAmelCase = 2_5_6 # Modulus to hash a string __lowerCAmelCase = 1_0_0_0_0_0_3 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 5) _UpperCAmelCase = "Lü" _UpperCAmelCase = "Lüsai" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = "Lue" assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
684
0
"""simple docstring""" _lowercase : Dict = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_00_00)] def lowercase__ ( snake_case_ :int ): __UpperCAmelCase = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100_000] number //= 100_000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase : list[bool | None] = [None] * 10_00_00_00 _lowercase : List[Any] = True _lowercase : Any = False def lowercase__ ( snake_case_ :int ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore __UpperCAmelCase = chain(next_number(snake_case_ ) ) __UpperCAmelCase = number_chain while number < 10_000_000: __UpperCAmelCase = number_chain number *= 10 return number_chain def lowercase__ ( snake_case_ :int = 10_000_000 ): for i in range(1 , snake_case_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
49
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = ['input_features', 'attention_mask'] def __init__( self ,_lowerCAmelCase=80 ,_lowerCAmelCase=1_60_00 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=10 ,_lowerCAmelCase=25 ,_lowerCAmelCase="hamming_window" ,_lowerCAmelCase=3_2768.0 ,_lowerCAmelCase=0.97 ,_lowerCAmelCase=1.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,**_lowerCAmelCase ,): super().__init__(feature_size=_lowerCAmelCase ,sampling_rate=_lowerCAmelCase ,padding_value=_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = feature_size lowerCamelCase__ = sampling_rate lowerCamelCase__ = padding_value lowerCamelCase__ = hop_length lowerCamelCase__ = win_length lowerCamelCase__ = frame_signal_scale lowerCamelCase__ = preemphasis_coeff lowerCamelCase__ = mel_floor lowerCamelCase__ = normalize_means lowerCamelCase__ = normalize_vars lowerCamelCase__ = win_function lowerCamelCase__ = return_attention_mask lowerCamelCase__ = win_length * sampling_rate // 10_00 lowerCamelCase__ = hop_length * sampling_rate // 10_00 lowerCamelCase__ = optimal_fft_length(self.sample_size ) lowerCamelCase__ = (self.n_fft // 2) + 1 def UpperCamelCase_ ( self ,_lowerCAmelCase ): if self.win_function == "hamming_window": lowerCamelCase__ = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=_lowerCAmelCase ) else: lowerCamelCase__ = window_function(window_length=self.sample_size ,name=self.win_function ) lowerCamelCase__ = mel_filter_bank( num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,) lowerCamelCase__ = spectrogram( one_waveform * self.frame_signal_scale ,window=_lowerCAmelCase ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=_lowerCAmelCase ,preemphasis=self.preemphasis_coeff ,mel_filters=_lowerCAmelCase ,mel_floor=self.mel_floor ,log_mel="""log""" ,) return msfc_features.T def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): # make sure we normalize float32 arrays if self.normalize_means: lowerCamelCase__ = x[:input_length].mean(axis=0 ) lowerCamelCase__ = np.subtract(_lowerCAmelCase ,_lowerCAmelCase ) if self.normalize_vars: lowerCamelCase__ = x[:input_length].std(axis=0 ) lowerCamelCase__ = np.divide(_lowerCAmelCase ,_lowerCAmelCase ) if input_length < x.shape[0]: lowerCamelCase__ = padding_value # make sure array is in float32 lowerCamelCase__ = x.astype(np.floataa ) return x def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = None ): lowerCamelCase__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowerCAmelCase ,_lowerCAmelCase ,self.padding_value ) for x, n in zip(_lowerCAmelCase ,_lowerCAmelCase )] def __call__( self ,_lowerCAmelCase ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,**_lowerCAmelCase ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase__ = isinstance(_lowerCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCamelCase__ = is_batched_numpy or ( isinstance(_lowerCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCAmelCase ,np.ndarray ): lowerCamelCase__ = np.asarray(_lowerCAmelCase ,dtype=np.floataa ) elif isinstance(_lowerCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ = [raw_speech] # extract fbank features lowerCamelCase__ = [self._extract_mfsc_features(_lowerCAmelCase ) for one_waveform in raw_speech] # convert into correct format for padding lowerCamelCase__ = BatchFeature({"""input_features""": features} ) lowerCamelCase__ = self.pad( _lowerCAmelCase ,padding=_lowerCAmelCase ,max_length=_lowerCAmelCase ,truncation=_lowerCAmelCase ,pad_to_multiple_of=_lowerCAmelCase ,return_attention_mask=_lowerCAmelCase ,**_lowerCAmelCase ,) # make sure list is in array format lowerCamelCase__ = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] ,_lowerCAmelCase ): lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.floataa ) for feature in input_features] lowerCamelCase__ = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCamelCase__ = [np.asarray(_lowerCAmelCase ,dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: lowerCamelCase__ = ( np.array(_lowerCAmelCase ,dtype=np.intaa ) if self._get_padding_strategies(_lowerCAmelCase ,max_length=_lowerCAmelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) lowerCamelCase__ = self.normalize( padded_inputs["""input_features"""] ,attention_mask=_lowerCAmelCase ) if return_tensors is not None: lowerCamelCase__ = padded_inputs.convert_to_tensors(_lowerCAmelCase ) return padded_inputs
50
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase = "huggingface-tools/default-prompts" __lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
684
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available a__ : Optional[Any] = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys a__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
from itertools import permutations def __lowerCamelCase ( _lowerCAmelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_lowerCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCamelCase ( _lowerCAmelCase = 10 ) -> int: return sum( int("".join(map(_lowerCAmelCase , _lowerCAmelCase ) ) ) for num in permutations(range(_lowerCAmelCase ) ) if is_substring_divisible(_lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
684
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A = logging.get_logger(__name__) A = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class __lowercase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''convnextv2''' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=224 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : List[str] = num_channels __a : str = patch_size __a : Dict = num_stages __a : List[str] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes __a : List[str] = [3, 3, 9, 3] if depths is None else depths __a : List[Any] = hidden_act __a : Any = initializer_range __a : Optional[int] = layer_norm_eps __a : List[Any] = drop_path_rate __a : Any = image_size __a : str = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] __a , __a : Optional[int] = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
52
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotTokenizer def __init__( self : Tuple , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , **__UpperCamelCase : int , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__UpperCamelCase ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) _UpperCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value _UpperCAmelCase = value def UpperCAmelCase__ ( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case : str = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , lowerCAmelCase_ : str=1_4_0_8 , lowerCAmelCase_ : List[str]=6_1_4_4 , lowerCAmelCase_ : Any=3_9 , lowerCAmelCase_ : int=1_6 , lowerCAmelCase_ : Optional[int]=2_2_4 , lowerCAmelCase_ : Union[str, Any]=1_4 , lowerCAmelCase_ : str="gelu" , lowerCAmelCase_ : Tuple=1e-6 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Tuple=1e-10 , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Dict , ) -> str: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = hidden_size __lowerCAmelCase = intermediate_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = patch_size __lowerCAmelCase = image_size __lowerCAmelCase = initializer_range __lowerCAmelCase = attention_dropout __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = hidden_act __lowerCAmelCase = qkv_bias @classmethod def lowercase ( cls : List[str] , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : str ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __lowerCAmelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """instructblip_qformer""" def __init__( self : Tuple , lowerCAmelCase_ : Optional[Any]=3_0_5_2_2 , lowerCAmelCase_ : Any=7_6_8 , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Tuple=1_2 , lowerCAmelCase_ : Tuple=3_0_7_2 , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[Any]=1e-12 , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Any="absolute" , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : List[Any]=1_4_0_8 , **lowerCAmelCase_ : Optional[Any] , ) -> int: super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = cross_attention_frequency __lowerCAmelCase = encoder_hidden_size @classmethod def lowercase ( cls : int , lowerCAmelCase_ : Union[str, os.PathLike] , **lowerCAmelCase_ : Tuple ) -> "PretrainedConfig": cls._set_token_in_kwargs(lowerCAmelCase_ ) __lowerCAmelCase , __lowerCAmelCase = cls.get_config_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __lowerCAmelCase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """instructblip""" a_ = True def __init__( self : Dict , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[Any]=3_2 , **lowerCAmelCase_ : Tuple ) -> int: super().__init__(**lowerCAmelCase_ ) if vision_config is None: __lowerCAmelCase = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __lowerCAmelCase = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __lowerCAmelCase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __lowerCAmelCase = InstructBlipVisionConfig(**lowerCAmelCase_ ) __lowerCAmelCase = InstructBlipQFormerConfig(**lowerCAmelCase_ ) __lowerCAmelCase = text_config['model_type'] if 'model_type' in text_config else 'opt' __lowerCAmelCase = CONFIG_MAPPING[text_model_type](**lowerCAmelCase_ ) __lowerCAmelCase = self.text_config.tie_word_embeddings __lowerCAmelCase = self.text_config.is_encoder_decoder __lowerCAmelCase = num_query_tokens __lowerCAmelCase = self.vision_config.hidden_size __lowerCAmelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowerCAmelCase = 1.0 __lowerCAmelCase = 0.02 @classmethod def lowercase ( cls : Dict , lowerCAmelCase_ : InstructBlipVisionConfig , lowerCAmelCase_ : InstructBlipQFormerConfig , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : Tuple , ) -> Union[str, Any]: return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase_ , ) def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = copy.deepcopy(self.__dict__ ) __lowerCAmelCase = self.vision_config.to_dict() __lowerCAmelCase = self.qformer_config.to_dict() __lowerCAmelCase = self.text_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output
53
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["projector.weight"] _UpperCAmelCase = downstream_dict["projector.bias"] _UpperCAmelCase = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["model.linear.weight"] _UpperCAmelCase = downstream_dict["model.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = WavaVecaForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["connector.weight"] _UpperCAmelCase = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase = checkpoint["Downstream"] _UpperCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _UpperCAmelCase = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __lowercase : Optional[int] =logging.get_logger(__name__) # General docstring __lowercase : Tuple ="""PoolFormerConfig""" # Base docstring __lowercase : Union[str, Any] ="""sail/poolformer_s12""" __lowercase : int =[1, 512, 7, 7] # Image classification docstring __lowercase : Tuple ="""sail/poolformer_s12""" __lowercase : Optional[Any] ="""tabby, tabby cat""" __lowercase : List[str] =[ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a__ ( lowercase__ , lowercase__ = 0.0 , lowercase__ = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input UpperCAmelCase_ =1 - drop_prob UpperCAmelCase_ =(input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCAmelCase_ =keep_prob + torch.rand(lowercase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize UpperCAmelCase_ =input.div(lowercase__ ) * random_tensor return output class A ( nn.Module ): def __init__( self: Optional[Any] , _lowerCAmelCase: Optional[float] = None ) -> None: '''simple docstring''' super().__init__() UpperCAmelCase_ =drop_prob def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: torch.Tensor ) -> torch.Tensor: '''simple docstring''' return drop_path(_lowerCAmelCase , self.drop_prob , self.training ) def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: Dict , _lowerCAmelCase: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: str , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[Any]=None ) -> List[str]: '''simple docstring''' super().__init__() UpperCAmelCase_ =patch_size if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) UpperCAmelCase_ =stride if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (stride, stride) UpperCAmelCase_ =padding if isinstance(_lowerCAmelCase , collections.abc.Iterable ) else (padding, padding) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , kernel_size=_lowerCAmelCase , stride=_lowerCAmelCase , padding=_lowerCAmelCase ) UpperCAmelCase_ =norm_layer(_lowerCAmelCase ) if norm_layer else nn.Identity() def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ =self.projection(_lowerCAmelCase ) UpperCAmelCase_ =self.norm(_lowerCAmelCase ) return embeddings class A ( nn.GroupNorm ): def __init__( self: int , _lowerCAmelCase: int , **_lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' super().__init__(1 , _lowerCAmelCase , **_lowerCAmelCase ) class A ( nn.Module ): def __init__( self: Tuple , _lowerCAmelCase: int ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.AvgPoolad(_lowerCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=_lowerCAmelCase ) def lowerCAmelCase__ ( self: List[Any] , _lowerCAmelCase: Optional[int] ) -> Optional[int]: '''simple docstring''' return self.pool(_lowerCAmelCase ) - hidden_states class A ( nn.Module ): def __init__( self: Any , _lowerCAmelCase: int , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: List[str] ) -> Any: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =nn.Convad(_lowerCAmelCase , _lowerCAmelCase , 1 ) UpperCAmelCase_ =PoolFormerDropPath(_lowerCAmelCase ) if isinstance(config.hidden_act , _lowerCAmelCase ): UpperCAmelCase_ =ACTaFN[config.hidden_act] else: UpperCAmelCase_ =config.hidden_act def lowerCAmelCase__ ( self: str , _lowerCAmelCase: int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ =self.conva(_lowerCAmelCase ) UpperCAmelCase_ =self.act_fn(_lowerCAmelCase ) UpperCAmelCase_ =self.drop(_lowerCAmelCase ) UpperCAmelCase_ =self.conva(_lowerCAmelCase ) UpperCAmelCase_ =self.drop(_lowerCAmelCase ) return hidden_states class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: str , _lowerCAmelCase: Any , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ =PoolFormerPooling(_lowerCAmelCase ) UpperCAmelCase_ =PoolFormerOutput(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =PoolFormerGroupNorm(_lowerCAmelCase ) UpperCAmelCase_ =PoolFormerGroupNorm(_lowerCAmelCase ) # Useful for training neural nets UpperCAmelCase_ =PoolFormerDropPath(_lowerCAmelCase ) if drop_path > 0.0 else nn.Identity() UpperCAmelCase_ =config.use_layer_scale if config.use_layer_scale: UpperCAmelCase_ =nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) UpperCAmelCase_ =nn.Parameter( config.layer_scale_init_value * torch.ones((_lowerCAmelCase) ) , requires_grad=_lowerCAmelCase ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: List[str] ) -> List[Any]: '''simple docstring''' if self.use_layer_scale: UpperCAmelCase_ =self.pooling(self.before_norm(_lowerCAmelCase ) ) UpperCAmelCase_ =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection UpperCAmelCase_ =hidden_states + self.drop_path(_lowerCAmelCase ) UpperCAmelCase_ =() UpperCAmelCase_ =self.output(self.after_norm(_lowerCAmelCase ) ) UpperCAmelCase_ =self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection UpperCAmelCase_ =hidden_states + self.drop_path(_lowerCAmelCase ) UpperCAmelCase_ =(output,) + outputs return outputs else: UpperCAmelCase_ =self.drop_path(self.pooling(self.before_norm(_lowerCAmelCase ) ) ) # First residual connection UpperCAmelCase_ =pooling_output + hidden_states UpperCAmelCase_ =() # Second residual connection inside the PoolFormerOutput block UpperCAmelCase_ =self.drop_path(self.output(self.after_norm(_lowerCAmelCase ) ) ) UpperCAmelCase_ =hidden_states + layer_output UpperCAmelCase_ =(output,) + outputs return outputs class A ( nn.Module ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Dict ) -> str: '''simple docstring''' super().__init__() UpperCAmelCase_ =config # stochastic depth decay rule UpperCAmelCase_ =[x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings UpperCAmelCase_ =[] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) UpperCAmelCase_ =nn.ModuleList(_lowerCAmelCase ) # Transformer blocks UpperCAmelCase_ =[] UpperCAmelCase_ =0 for i in range(config.num_encoder_blocks ): # each block consists of layers UpperCAmelCase_ =[] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( _lowerCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(_lowerCAmelCase ) ) UpperCAmelCase_ =nn.ModuleList(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Optional[Any] , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Optional[Any]=False , _lowerCAmelCase: Dict=True ) -> str: '''simple docstring''' UpperCAmelCase_ =() if output_hidden_states else None UpperCAmelCase_ =pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): UpperCAmelCase_ , UpperCAmelCase_ =layers # Get patch embeddings from hidden_states UpperCAmelCase_ =embedding_layer(_lowerCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(_lowerCAmelCase ): UpperCAmelCase_ =blk(_lowerCAmelCase ) UpperCAmelCase_ =layer_outputs[0] if output_hidden_states: UpperCAmelCase_ =all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCAmelCase , hidden_states=_lowerCAmelCase ) class A ( __lowercase ): _snake_case =PoolFormerConfig _snake_case ='''poolformer''' _snake_case ='''pixel_values''' _snake_case =True def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: str ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_lowerCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCAmelCase__ ( self: Tuple , _lowerCAmelCase: Optional[int] , _lowerCAmelCase: Tuple=False ) -> Optional[Any]: '''simple docstring''' if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ =value __lowercase : Union[str, Any] =R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ __lowercase : Union[str, Any] =R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Any , _lowerCAmelCase: List[Any] ) -> str: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config UpperCAmelCase_ =PoolFormerEncoder(_lowerCAmelCase ) # Initialize weights and apply final processing self.post_init() def lowerCAmelCase__ ( self: str ) -> int: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) UpperCAmelCase_ =self.encoder( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) UpperCAmelCase_ =encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class A ( nn.Module ): def __init__( self: str , _lowerCAmelCase: Dict ) -> Dict: '''simple docstring''' super().__init__() UpperCAmelCase_ =nn.Linear(config.hidden_size , config.hidden_size ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ =self.dense(_lowerCAmelCase ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __lowercase , ) class A ( __lowercase ): def __init__( self: Union[str, Any] , _lowerCAmelCase: Optional[int] ) -> Dict: '''simple docstring''' super().__init__(_lowerCAmelCase ) UpperCAmelCase_ =config.num_labels UpperCAmelCase_ =PoolFormerModel(_lowerCAmelCase ) # Final norm UpperCAmelCase_ =PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head UpperCAmelCase_ =( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: Optional[torch.FloatTensor] = None , _lowerCAmelCase: Optional[torch.LongTensor] = None , _lowerCAmelCase: Optional[bool] = None , _lowerCAmelCase: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' UpperCAmelCase_ =return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ =self.poolformer( _lowerCAmelCase , output_hidden_states=_lowerCAmelCase , return_dict=_lowerCAmelCase , ) UpperCAmelCase_ =outputs[0] UpperCAmelCase_ =self.classifier(self.norm(_lowerCAmelCase ).mean([-2, -1] ) ) UpperCAmelCase_ =None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ ="regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ ="single_label_classification" else: UpperCAmelCase_ ="multi_label_classification" if self.config.problem_type == "regression": UpperCAmelCase_ =MSELoss() if self.num_labels == 1: UpperCAmelCase_ =loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ =CrossEntropyLoss() UpperCAmelCase_ =loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ =BCEWithLogitsLoss() UpperCAmelCase_ =loss_fct(_lowerCAmelCase , _lowerCAmelCase ) if not return_dict: UpperCAmelCase_ =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCAmelCase , logits=_lowerCAmelCase , hidden_states=outputs.hidden_states )
54
def __lowerCamelCase ( _lowerCAmelCase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = set({"(", "[", "{"} ) _UpperCAmelCase = set({")", "]", "}"} ) _UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def __lowerCamelCase ( ) -> str: _UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , "is balanced" ) else: print(_lowerCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
684
0
from math import factorial class UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] ,A : Optional[int] ,A : int ): __A = real if isinstance(A ,A ): __A = [1] * rank else: __A = rank def __repr__( self : Tuple ): return ( f'''{self.real}+''' f'''{'+'.join(str(A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def UpperCamelCase_ ( self : List[Any] ): __A = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real ,A ) def __add__( self : Optional[Any] ,A : List[Any] ): if not isinstance(A ,A ): return Dual(self.real + other ,self.duals ) __A = self.duals.copy() __A = other.duals.copy() if len(A ) > len(A ): o_dual.extend([1] * (len(A ) - len(A )) ) elif len(A ) < len(A ): s_dual.extend([1] * (len(A ) - len(A )) ) __A = [] for i in range(len(A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real ,A ) snake_case_ = __add__ def __sub__( self : int ,A : Dict ): return self + other * -1 def __mul__( self : List[Any] ,A : List[str] ): if not isinstance(A ,A ): __A = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other ,A ) __A = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real ,A ) snake_case_ = __mul__ def __truediv__( self : Tuple ,A : Dict ): if not isinstance(A ,A ): __A = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other ,A ) raise ValueError def __floordiv__( self : List[str] ,A : Tuple ): if not isinstance(A ,A ): __A = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other ,A ) raise ValueError def __pow__( self : Optional[Any] ,A : List[str] ): if n < 0 or isinstance(A ,A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self __A = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase ( a_ , a_ , a_ ) -> List[str]: """simple docstring""" if not callable(a_ ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(a_ , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(a_ , a_ ): raise ValueError("differentiate() requires an int as input for order" ) __A = Dual(a_ , 1 ) __A = func(a_ ) if order == 0: return result.real return result.duals[order - 1] * factorial(a_ ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase ( a_ ) -> Dict: """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
55
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _a : int = (3, 9, -11, 0, 7, 5, 1, -1) _a : Tuple = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _lowercase : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : Node | None class _lowercase : def __init__( self : int , SCREAMING_SNAKE_CASE_ : Iterable[int] ) -> None: __snake_case = None for i in sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ): __snake_case = Node(SCREAMING_SNAKE_CASE_ , self.head ) def __iter__( self : str ) -> Iterator[int]: __snake_case = self.head while node: yield node.data __snake_case = node.next_node def __len__( self : Tuple ) -> int: return sum(1 for _ in self ) def __str__( self : List[Any] ) -> str: return " -> ".join([str(SCREAMING_SNAKE_CASE_ ) for node in self] ) def _a (lowercase__ : SortedLinkedList , lowercase__ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(lowercase__ ) + list(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() _a : Tuple = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
56
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: # Initialise PyTorch model _UpperCAmelCase = RemBertConfig.from_json_file(_lowerCAmelCase ) print("Building PyTorch model from configuration: {}".format(str(_lowerCAmelCase ) ) ) _UpperCAmelCase = RemBertModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(_lowerCAmelCase ) ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=1_8 , _lowerCamelCase=3_0 , _lowerCamelCase=4_0_0 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , ): UpperCamelCase_: Dict = size if size is not None else {'height': 1_8, 'width': 1_8} UpperCamelCase_: Union[str, Any] = parent UpperCamelCase_: Any = batch_size UpperCamelCase_: Tuple = num_channels UpperCamelCase_: Tuple = image_size UpperCamelCase_: List[Any] = min_resolution UpperCamelCase_: Union[str, Any] = max_resolution UpperCamelCase_: Dict = do_resize UpperCamelCase_: Any = size UpperCamelCase_: str = apply_ocr def _a ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCAmelCase( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Dict =LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ): UpperCamelCase_: int = LayoutLMvaImageProcessingTester(self ) @property def _a ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ): UpperCamelCase_: Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCamelCase , 'apply_ocr' ) ) def _a ( self ): UpperCamelCase_: List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) UpperCamelCase_: Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def _a ( self ): pass def _a ( self ): # Initialize image_processing UpperCamelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_: str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input UpperCamelCase_: Tuple = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _lowerCamelCase ) self.assertIsInstance(encoding.boxes , _lowerCamelCase ) # Test batched UpperCamelCase_: List[str] = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ): # Initialize image_processing UpperCamelCase_: List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input UpperCamelCase_: Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase_: int = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ): # Initialize image_processing UpperCamelCase_: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_: Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase_: Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase_: int = image_processing(_lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ): # with apply_OCR = True UpperCamelCase_: str = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_: List[Any] = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) UpperCamelCase_: Dict = Image.open(ds[0]['file'] ).convert('RGB' ) UpperCamelCase_: Any = image_processing(_lowerCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_: int = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 UpperCamelCase_: Optional[Any] = [[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowerCamelCase ) self.assertListEqual(encoding.boxes , _lowerCamelCase ) # with apply_OCR = False UpperCamelCase_: Union[str, Any] = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = image_processing(_lowerCamelCase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4) )
57
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCAmelCase__ ( *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[int] ): pass @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = vqa_pipeline(__UpperCamelCase , top_k=1 ) self.assertEqual( __UpperCamelCase , [ [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], ] , ) @require_torch def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) @slow @require_torch def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase__ ( self : Optional[int] ): pass
684
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase : """simple docstring""" def __init__( self , _lowercase , _lowercase=3 , _lowercase=3_2 , _lowercase=3 , _lowercase=1_0 , _lowercase=[1_0, 2_0, 3_0, 4_0] , _lowercase=[1, 1, 2, 1] , _lowercase=True , _lowercase=True , _lowercase="relu" , _lowercase=3 , _lowercase=None , ) -> Optional[int]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : str = batch_size snake_case_ : Union[str, Any] = image_size snake_case_ : str = num_channels snake_case_ : Union[str, Any] = embeddings_size snake_case_ : Tuple = hidden_sizes snake_case_ : int = depths snake_case_ : int = is_training snake_case_ : Dict = use_labels snake_case_ : List[str] = hidden_act snake_case_ : List[str] = num_labels snake_case_ : Optional[Any] = scope snake_case_ : Tuple = len(_lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ : Tuple = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ : Optional[Any] = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = TFResNetModel(config=_lowercase ) snake_case_ : Tuple = model(_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = self.num_labels snake_case_ : Optional[Any] = TFResNetForImageClassification(_lowercase ) snake_case_ : Optional[int] = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ : Dict = config_and_inputs snake_case_ : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _lowerCamelCase = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = TFResNetModelTester(self ) snake_case_ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ : Optional[Any] = model_class(_lowercase ) snake_case_ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ : Any = [*signature.parameters.keys()] snake_case_ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' def check_hidden_states_output(_lowercase , _lowercase , _lowercase ): snake_case_ : str = model_class(_lowercase ) snake_case_ : Tuple = model(**self._prepare_for_class(_lowercase , _lowercase ) ) snake_case_ : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ : Any = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ : Optional[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case_ : List[str] = layer_type snake_case_ : Any = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ : Tuple = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ : str = TFResNetModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' snake_case_ : Optional[int] = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case_ : str = self.default_image_processor snake_case_ : Optional[Any] = prepare_img() snake_case_ : Dict = image_processor(images=_lowercase , return_tensors="""tf""" ) # forward pass snake_case_ : Dict = model(**_lowercase ) # verify the logits snake_case_ : str = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowercase ) snake_case_ : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _lowercase , atol=1E-4 ) )
58
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = CustomTokenizer pass
59
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE : Dict = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Any ): _UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any=0 , **__UpperCamelCase : Any ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : str ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : Optional[int] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Optional[Any] ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
0
import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__=None , **__magic_name__ ) -> Dict: '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __magic_name__ , ) super().__init__(args=__magic_name__ , **__magic_name__ )
60
import math class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 _UpperCAmelCase = n _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # adjacency matrix for weight _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = w def UpperCAmelCase__ ( self : Dict ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['GLPNFeatureExtractor'] UpperCamelCase = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Dict = VQModel __SCREAMING_SNAKE_CASE : Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[int]=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) return {"sample": image} @property def UpperCAmelCase__ ( self : Tuple ): return (3, 32, 32) @property def UpperCAmelCase__ ( self : str ): return (3, 32, 32) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__UpperCamelCase ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCAmelCase = image.to(__UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
684
0
import operator as op def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : Any = lambda lowercase , lowercase : int(x / y ) # noqa: E731 integer division operation SCREAMING_SNAKE_CASE : str = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) , "Action".center(12 ) , "Stack" , sep=" | " ) print("-" * (30 + len(lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("push(" + x + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) else: SCREAMING_SNAKE_CASE : Any = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + b + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) SCREAMING_SNAKE_CASE : int = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) , ("pop(" + a + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " ) stack.append( str(opr[x](int(lowercase ) , int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("push(" + a + x + b + ")").ljust(12 ) , ",".join(lowercase ) , sep=" | " , ) return int(stack[0] ) if __name__ == "__main__": snake_case = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
62
import requests __lowerCAmelCase = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def __lowerCamelCase ( _lowerCAmelCase ) -> None: # fetching a list of articles in json format _UpperCAmelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
684
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : str = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] __UpperCAmelCase : Any = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : int = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 3, 3] __UpperCAmelCase : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: __UpperCAmelCase : str = [4, 4, 4, 4] __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __UpperCAmelCase : Dict = [3, 3, 3, 3] if "lrf" in model_name: __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] else: __UpperCAmelCase : Optional[int] = [2, 2, 2, 2] if "tiny" in model_name: __UpperCAmelCase : List[str] = 96 elif "small" in model_name: __UpperCAmelCase : Dict = 96 elif "base" in model_name: __UpperCAmelCase : List[Any] = 128 elif "large" in model_name: __UpperCAmelCase : Any = 192 elif "xlarge" in model_name: __UpperCAmelCase : Tuple = 256 elif "huge" in model_name: __UpperCAmelCase : int = 352 # set label information __UpperCAmelCase : Tuple = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: __UpperCAmelCase : Any = """imagenet-22k-id2label.json""" else: __UpperCAmelCase : Dict = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[int] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : List[str] = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def lowerCamelCase__ ( __lowerCamelCase : Tuple ): if "patch_embed.proj" in name: __UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCAmelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __UpperCAmelCase : int = """encoder.""" + name if "encoder.layers" in name: __UpperCAmelCase : Optional[int] = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __UpperCAmelCase : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __UpperCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __UpperCAmelCase : List[Any] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __UpperCAmelCase : str = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __UpperCAmelCase : Optional[Any] = """layernorm.weight""" if name == "norm.bias": __UpperCAmelCase : Dict = """layernorm.bias""" if "head" in name: __UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" ) else: __UpperCAmelCase : int = """focalnet.""" + name return name def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ): # fmt: off __UpperCAmelCase : Dict = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on __UpperCAmelCase : int = model_name_to_url[model_name] print("""Checkpoint URL: """ , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase : Tuple = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = val __UpperCAmelCase : Optional[Any] = get_focalnet_config(__lowerCamelCase ) __UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Union[str, Any] = BitImageProcessor( do_resize=__lowerCamelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=224 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) __UpperCAmelCase : List[Any] = processor(images=__lowerCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __UpperCAmelCase : List[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) __UpperCAmelCase : Dict = model(**__lowerCamelCase ) __UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __UpperCAmelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __UpperCAmelCase : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __UpperCAmelCase : int = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __UpperCAmelCase : Optional[int] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __UpperCAmelCase : Optional[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) a : Any = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = 10 def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = [1, 2, 3, 4] _UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = "" _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) _UpperCAmelCase = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ["It was the best of times."] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = 101 _UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _UpperCAmelCase = compute_token_type_ids(__UpperCamelCase , __UpperCamelCase ) np.testing.assert_array_equal(__UpperCamelCase , __UpperCamelCase )
684
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') lowercase_ : Tuple = logging.getLogger(__name__) @dataclass class _lowerCamelCase : __a = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a = field( default=UpperCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a = field( default=UpperCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a = field( default=UpperCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a = field( default=UpperCamelCase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __a = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __a = field( default=UpperCamelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class _lowerCamelCase : __a = field(default=UpperCamelCase_ , metadata={"help": "The input training data file (a text file)."} ) __a = field( default=UpperCamelCase_ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __a = field( default=UpperCamelCase_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) __a = field( default=UpperCamelCase_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) __a = field( default=UpperCamelCase_ , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a = field( default=UpperCamelCase_ , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __a = field( default=UpperCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __a = field( default=UpperCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCamelCase_ ( self ) -> List[Any]: if self.train_file is not None: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class _lowerCamelCase : __a = 42 __a = True __a = None __a = None def __call__( self , lowerCAmelCase ) -> Any: SCREAMING_SNAKE_CASE__: Tuple= '''label''' if '''label''' in features[0].keys() else '''labels''' SCREAMING_SNAKE_CASE__: Optional[Any]= [feature.pop(lowerCAmelCase ) for feature in features] SCREAMING_SNAKE_CASE__: Dict= len(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= len(features[0]['''input_ids'''] ) SCREAMING_SNAKE_CASE__: Union[str, Any]= [ [{k: v[i] for k, v in feature.items()} for i in range(lowerCAmelCase )] for feature in features ] SCREAMING_SNAKE_CASE__: List[Any]= list(chain(*lowerCAmelCase ) ) SCREAMING_SNAKE_CASE__: Any= self.tokenizer.pad( lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten SCREAMING_SNAKE_CASE__: Union[str, Any]= {k: v.view(lowerCAmelCase , lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels SCREAMING_SNAKE_CASE__: List[str]= torch.tensor(lowerCAmelCase , dtype=torch.intaa ) return batch def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE__: Any= HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[Any]= parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , snake_case_ , snake_case_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() SCREAMING_SNAKE_CASE__: Optional[Any]= training_args.get_process_log_level() logger.setLevel(snake_case_ ) datasets.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE__: Union[str, Any]= None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE__: List[str]= get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: SCREAMING_SNAKE_CASE__: Union[str, Any]= {} if data_args.train_file is not None: SCREAMING_SNAKE_CASE__: List[Any]= data_args.train_file if data_args.validation_file is not None: SCREAMING_SNAKE_CASE__: Dict= data_args.validation_file SCREAMING_SNAKE_CASE__: Tuple= data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE__: int= load_dataset( snake_case_ , data_files=snake_case_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. SCREAMING_SNAKE_CASE__: Optional[Any]= load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE__: str= AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__: List[str]= AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) SCREAMING_SNAKE_CASE__: List[str]= AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. SCREAMING_SNAKE_CASE__: Tuple= [F'ending{i}' for i in range(4 )] SCREAMING_SNAKE_CASE__: List[str]= '''sent1''' SCREAMING_SNAKE_CASE__: str= '''sent2''' if data_args.max_seq_length is None: SCREAMING_SNAKE_CASE__: str= tokenizer.model_max_length if max_seq_length > 1_024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) SCREAMING_SNAKE_CASE__: List[str]= 1_024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) SCREAMING_SNAKE_CASE__: Any= min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(snake_case_ : int ): SCREAMING_SNAKE_CASE__: Any= [[context] * 4 for context in examples[context_name]] SCREAMING_SNAKE_CASE__: List[Any]= examples[question_header_name] SCREAMING_SNAKE_CASE__: Union[str, Any]= [ [F'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(snake_case_ ) ] # Flatten out SCREAMING_SNAKE_CASE__: Dict= list(chain(*snake_case_ ) ) SCREAMING_SNAKE_CASE__: Union[str, Any]= list(chain(*snake_case_ ) ) # Tokenize SCREAMING_SNAKE_CASE__: Tuple= tokenizer( snake_case_ , snake_case_ , truncation=snake_case_ , max_length=snake_case_ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(snake_case_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE__: Optional[int]= raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE__: Optional[int]= min(len(snake_case_ ) , data_args.max_train_samples ) SCREAMING_SNAKE_CASE__: int= train_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): SCREAMING_SNAKE_CASE__: Any= train_dataset.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE__: List[str]= raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE__: int= min(len(snake_case_ ) , data_args.max_eval_samples ) SCREAMING_SNAKE_CASE__: Optional[Any]= eval_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): SCREAMING_SNAKE_CASE__: Dict= eval_dataset.map( snake_case_ , batched=snake_case_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator SCREAMING_SNAKE_CASE__: str= ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=snake_case_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(snake_case_ : Optional[Any] ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= eval_predictions SCREAMING_SNAKE_CASE__: Union[str, Any]= np.argmax(snake_case_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer SCREAMING_SNAKE_CASE__: str= Trainer( model=snake_case_ , args=snake_case_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=snake_case_ , data_collator=snake_case_ , compute_metrics=snake_case_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE__: Tuple= None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE__: List[Any]= training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE__: Optional[int]= last_checkpoint SCREAMING_SNAKE_CASE__: int= trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload SCREAMING_SNAKE_CASE__: Optional[Any]= train_result.metrics SCREAMING_SNAKE_CASE__: Dict= ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Any= min(snake_case_ , len(snake_case_ ) ) trainer.log_metrics('''train''' , snake_case_ ) trainer.save_metrics('''train''' , snake_case_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE__: List[Any]= trainer.evaluate() SCREAMING_SNAKE_CASE__: str= data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case_ ) SCREAMING_SNAKE_CASE__: str= min(snake_case_ , len(snake_case_ ) ) trainer.log_metrics('''eval''' , snake_case_ ) trainer.save_metrics('''eval''' , snake_case_ ) SCREAMING_SNAKE_CASE__: List[Any]= { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def A__ ( snake_case_ : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
64
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' if isinstance(__UpperCamelCase , torch.Tensor ): return image elif isinstance(__UpperCamelCase , PIL.Image.Image ): UpperCAmelCase__ : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase__ : Optional[int] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCAmelCase__ : Union[str, Any] = np.concatenate(__UpperCamelCase , axis=0 ) UpperCAmelCase__ : str = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0 UpperCAmelCase__ : List[str] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase__ : Optional[int] = 2.0 * image - 1.0 UpperCAmelCase__ : List[Any] = torch.from_numpy(__UpperCamelCase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase__ : List[Any] = torch.cat(__UpperCamelCase , dim=0 ) return image def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0.9995 ): '''simple docstring''' if not isinstance(__UpperCamelCase , np.ndarray ): UpperCAmelCase__ : Any = True UpperCAmelCase__ : Optional[int] = va.device UpperCAmelCase__ : Tuple = va.cpu().numpy() UpperCAmelCase__ : Optional[int] = va.cpu().numpy() UpperCAmelCase__ : Dict = np.sum(va * va / (np.linalg.norm(__UpperCamelCase ) * np.linalg.norm(__UpperCamelCase )) ) if np.abs(__UpperCamelCase ) > DOT_THRESHOLD: UpperCAmelCase__ : Tuple = (1 - t) * va + t * va else: UpperCAmelCase__ : str = np.arccos(__UpperCamelCase ) UpperCAmelCase__ : int = np.sin(__UpperCamelCase ) UpperCAmelCase__ : Union[str, Any] = theta_a * t UpperCAmelCase__ : int = np.sin(__UpperCamelCase ) UpperCAmelCase__ : Optional[int] = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase__ : Tuple = sin_theta_t / sin_theta_a UpperCAmelCase__ : List[Any] = sa * va + sa * va if inputs_are_torch: UpperCAmelCase__ : Dict = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase ) return va def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = F.normalize(__UpperCamelCase , dim=-1 ) UpperCAmelCase__ : Union[str, Any] = F.normalize(__UpperCamelCase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' for param in model.parameters(): UpperCAmelCase__ : Any = value class __lowercase ( __lowerCamelCase ): def __init__( self : Tuple ,A : AutoencoderKL ,A : CLIPTextModel ,A : CLIPModel ,A : CLIPTokenizer ,A : UNetaDConditionModel ,A : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] ,A : CLIPFeatureExtractor ,A : Optional[Any]=None ,A : Union[str, Any]=None ,A : str=None ,): '''simple docstring''' super().__init__() self.register_modules( vae=A ,text_encoder=A ,clip_model=A ,tokenizer=A ,unet=A ,scheduler=A ,feature_extractor=A ,coca_model=A ,coca_tokenizer=A ,coca_transform=A ,) UpperCAmelCase__ : List[Any] = ( feature_extractor.size if isinstance(feature_extractor.size ,A ) else feature_extractor.size["""shortest_edge"""] ) UpperCAmelCase__ : str = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,A ) set_requires_grad(self.clip_model ,A ) def __lowercase ( self : Optional[int] ,A : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def __lowercase ( self : int ): '''simple docstring''' self.enable_attention_slicing(A ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.vae ,A ) def __lowercase ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.vae ,A ) def __lowercase ( self : List[str] ): '''simple docstring''' set_requires_grad(self.unet ,A ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' set_requires_grad(self.unet ,A ) def __lowercase ( self : Dict ,A : str ,A : List[Any] ,A : int ): '''simple docstring''' # get the original timestep using init_timestep UpperCAmelCase__ : Any = min(int(num_inference_steps * strength ) ,A ) UpperCAmelCase__ : List[Any] = max(num_inference_steps - init_timestep ,0 ) UpperCAmelCase__ : Any = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __lowercase ( self : str ,A : Optional[int] ,A : Dict ,A : int ,A : Optional[int] ,A : Optional[Any] ,A : int=None ): '''simple docstring''' if not isinstance(A ,torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(A )}" ) UpperCAmelCase__ : int = image.to(device=A ,dtype=A ) if isinstance(A ,A ): UpperCAmelCase__ : List[Any] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(A ) ] UpperCAmelCase__ : Union[str, Any] = torch.cat(A ,dim=0 ) else: UpperCAmelCase__ : List[Any] = self.vae.encode(A ).latent_dist.sample(A ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : Any = 0.1_8_2_1_5 * init_latents UpperCAmelCase__ : Tuple = init_latents.repeat_interleave(A ,dim=0 ) UpperCAmelCase__ : Any = randn_tensor(init_latents.shape ,generator=A ,device=A ,dtype=A ) # get latents UpperCAmelCase__ : Optional[Any] = self.scheduler.add_noise(A ,A ,A ) UpperCAmelCase__ : Union[str, Any] = init_latents return latents def __lowercase ( self : List[Any] ,A : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.coca_transform(A ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase__ : Optional[Any] = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) UpperCAmelCase__ : str = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def __lowercase ( self : str ,A : List[str] ,A : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.feature_extractor.preprocess(A ) UpperCAmelCase__ : List[Any] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase__ : Optional[Any] = self.clip_model.get_image_features(A ) UpperCAmelCase__ : Dict = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=A ) UpperCAmelCase__ : Tuple = image_embeddings_clip.repeat_interleave(A ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def __lowercase ( self : Any ,A : List[Any] ,A : List[Any] ,A : int ,A : int ,A : int ,A : List[str] ,A : Optional[int] ,): '''simple docstring''' UpperCAmelCase__ : Tuple = latents.detach().requires_grad_() UpperCAmelCase__ : Tuple = self.scheduler.scale_model_input(A ,A ) # predict the noise residual UpperCAmelCase__ : List[Any] = self.unet(A ,A ,encoder_hidden_states=A ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase__ : str = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase__ : Any = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase__ : Dict = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase__ : int = torch.sqrt(A ) UpperCAmelCase__ : List[Any] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,A ): UpperCAmelCase__ : List[Any] = self.scheduler.sigmas[index] UpperCAmelCase__ : Any = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : List[Any] = 1 / 0.1_8_2_1_5 * sample UpperCAmelCase__ : Union[str, Any] = self.vae.decode(A ).sample UpperCAmelCase__ : Optional[int] = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Tuple = transforms.Resize(self.feature_extractor_size )(A ) UpperCAmelCase__ : List[Any] = self.normalize(A ).to(latents.dtype ) UpperCAmelCase__ : Union[str, Any] = self.clip_model.get_image_features(A ) UpperCAmelCase__ : Optional[int] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=A ) UpperCAmelCase__ : Union[str, Any] = spherical_dist_loss(A ,A ).mean() * clip_guidance_scale UpperCAmelCase__ : List[Any] = -torch.autograd.grad(A ,A )[0] if isinstance(self.scheduler ,A ): UpperCAmelCase__ : List[str] = latents.detach() + grads * (sigma**2) UpperCAmelCase__ : Optional[Any] = noise_pred_original else: UpperCAmelCase__ : Tuple = noise_pred_original - torch.sqrt(A ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Dict ,A : Union[torch.FloatTensor, PIL.Image.Image] ,A : Union[torch.FloatTensor, PIL.Image.Image] ,A : Optional[str] = None ,A : Optional[str] = None ,A : Optional[int] = 512 ,A : Optional[int] = 512 ,A : float = 0.6 ,A : Optional[int] = 50 ,A : Optional[float] = 7.5 ,A : Optional[int] = 1 ,A : float = 0.0 ,A : Optional[float] = 100 ,A : Optional[torch.Generator] = None ,A : Optional[str] = "pil" ,A : bool = True ,A : float = 0.8 ,A : float = 0.1 ,A : float = 0.1 ,): '''simple docstring''' if isinstance(A ,A ) and len(A ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(A )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(A ,torch.Generator ) and batch_size > 1: UpperCAmelCase__ : int = [generator] + [None] * (batch_size - 1) UpperCAmelCase__ : Union[str, Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCAmelCase__ : str = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase__ : Optional[Any] = """, """.join(A ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(A ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase__ : Union[str, Any] = self.get_image_description(A ) if style_prompt is None: if len(A ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCAmelCase__ : Optional[Any] = self.get_image_description(A ) # get prompt text embeddings for content and style UpperCAmelCase__ : Any = self.tokenizer( A ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase__ : List[str] = self.tokenizer( A ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=A ,return_tensors="""pt""" ,) UpperCAmelCase__ : List[str] = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase__ : Tuple = slerp(A ,A ,A ) # duplicate text embeddings for each generation per prompt UpperCAmelCase__ : Any = text_embeddings.repeat_interleave(A ,dim=0 ) # set timesteps UpperCAmelCase__ : List[Any] = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase__ : Any = {} if accepts_offset: UpperCAmelCase__ : List[Any] = 1 self.scheduler.set_timesteps(A ,**A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.get_timesteps(A ,A ,self.device ) UpperCAmelCase__ : List[str] = timesteps[:1].repeat(A ) # Preprocess image UpperCAmelCase__ : Tuple = preprocess(A ,A ,A ) UpperCAmelCase__ : str = self.prepare_latents( A ,A ,A ,text_embeddings.dtype ,self.device ,A ) UpperCAmelCase__ : Tuple = preprocess(A ,A ,A ) UpperCAmelCase__ : Dict = self.prepare_latents( A ,A ,A ,text_embeddings.dtype ,self.device ,A ) UpperCAmelCase__ : int = slerp(A ,A ,A ) if clip_guidance_scale > 0: UpperCAmelCase__ : List[Any] = self.get_clip_image_embeddings(A ,A ) UpperCAmelCase__ : Any = self.get_clip_image_embeddings(A ,A ) UpperCAmelCase__ : Optional[Any] = slerp( A ,A ,A ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase__ : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ : Dict = content_text_input.input_ids.shape[-1] UpperCAmelCase__ : List[Any] = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=A ,return_tensors="""pt""" ) UpperCAmelCase__ : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase__ : Optional[int] = uncond_embeddings.repeat_interleave(A ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase__ : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase__ : Dict = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase__ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase__ : Union[str, Any] = torch.randn(A ,generator=A ,device="""cpu""" ,dtype=A ).to( self.device ) else: UpperCAmelCase__ : Optional[int] = torch.randn(A ,generator=A ,device=self.device ,dtype=A ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCAmelCase__ : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase__ : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase__ : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase__ : Optional[int] = {} if accepts_eta: UpperCAmelCase__ : Union[str, Any] = eta # check if the scheduler accepts generator UpperCAmelCase__ : str = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase__ : Optional[int] = generator with self.progress_bar(total=A ): for i, t in enumerate(A ): # expand the latents if we are doing classifier free guidance UpperCAmelCase__ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase__ : int = self.scheduler.scale_model_input(A ,A ) # predict the noise residual UpperCAmelCase__ : Tuple = self.unet(A ,A ,encoder_hidden_states=A ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = noise_pred.chunk(2 ) UpperCAmelCase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase__ : Optional[int] = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.cond_fn( A ,A ,A ,A ,A ,A ,A ,) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase__ : List[Any] = self.scheduler.step(A ,A ,A ,**A ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase__ : Any = 1 / 0.1_8_2_1_5 * latents UpperCAmelCase__ : int = self.vae.decode(A ).sample UpperCAmelCase__ : Any = (image / 2 + 0.5).clamp(0 ,1 ) UpperCAmelCase__ : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": UpperCAmelCase__ : int = self.numpy_to_pil(A ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=A ,nsfw_content_detected=A )
65
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = {} _UpperCAmelCase = job["started_at"] _UpperCAmelCase = job["completed_at"] _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = get_job_time(args.workflow_run_id) __lowerCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
684
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : torch.FloatTensor _UpperCamelCase : Optional[torch.FloatTensor] = None def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0.999 , SCREAMING_SNAKE_CASE="cosine" , ) -> Tuple: if alpha_transform_type == "cosine": def alpha_bar_fn(SCREAMING_SNAKE_CASE ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(SCREAMING_SNAKE_CASE ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : Dict = [] for i in range(SCREAMING_SNAKE_CASE ): _lowercase : str = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE ) / alpha_bar_fn(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class lowerCAmelCase_ ( __snake_case , __snake_case ): _UpperCamelCase : Optional[int] = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_0_0_0 , _lowerCAmelCase = 0.00_01 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('set_alpha_to_one' , _lowerCAmelCase ) is not None: _lowercase : Optional[int] = ( 'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.' ) deprecate('set_alpha_to_one' , '1.0.0' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowercase : str = kwargs['set_alpha_to_one'] if trained_betas is not None: _lowercase : List[str] = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : str = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Optional[int] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : str = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Dict = 1.0 - self.betas _lowercase : Tuple = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowercase : Union[str, Any] = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowercase : Tuple = 1.0 # setable values _lowercase : List[str] = None _lowercase : int = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" F""" maximal {self.config.num_train_timesteps} timesteps.""" ) _lowercase : int = num_inference_steps _lowercase : int = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowercase : Optional[int] = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowercase : str = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowercase : List[str] = self.alphas_cumprod[timestep] _lowercase : Tuple = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowercase : Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowercase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowercase : List[Any] = model_output elif self.config.prediction_type == "sample": _lowercase : Optional[int] = model_output _lowercase : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowercase : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowercase : List[Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" ' `v_prediction`' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowercase : Optional[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : str = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowercase : Optional[int] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
66
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class A_ ( UpperCAmelCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __UpperCAmelCase ( self : List[str] ) -> Tuple: _lowercase = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} return Dataset.from_dict(__A ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _lowercase = self._create_example_records() _lowercase = Dataset.from_list(__A ) self.assertListEqual(dset.column_names ,['col_1', 'col_2'] ) for i, r in enumerate(__A ): self.assertDictEqual(__A ,example_records[i] ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: _lowercase = self._create_example_records() _lowercase = Dataset.from_list(__A ) _lowercase = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info ,dset_from_dict.info ) def __UpperCAmelCase ( self : int ) -> Tuple: # checks what happens with missing columns _lowercase = [{'col_1': 1}, {'col_2': 'x'}] _lowercase = Dataset.from_list(__A ) self.assertDictEqual(dset[0] ,{'col_1': 1} ) self.assertDictEqual(dset[1] ,{'col_1': None} ) # NB: first record is used for columns def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: # checks if the type can be inferred from the second record _lowercase = [{'col_1': []}, {'col_1': [1, 2]}] _lowercase = Dataset.from_list(__A ) self.assertEqual(dset.info.features['col_1'] ,Sequence(Value('int64' ) ) ) def __UpperCAmelCase ( self : List[str] ) -> str: _lowercase = Dataset.from_list([] ) self.assertEqual(len(__A ) ,0 ) self.assertListEqual(dset.column_names ,[] )
67
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __lowerCAmelCase = get_tests_dir("fixtures") class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 500 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase__ ( self : Dict ): with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="test-image-processor" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : int ): CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
684
0
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowercase__ ( A_: Dict ) -> str: """simple docstring""" if isinstance(A_ , collections.abc.Iterable ): return x return (x, x) @require_tf class _A : """simple docstring""" def _a ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ) -> List[str]: pass def _a ( self : Optional[int] ) -> Tuple: pass def _a ( self : int ) -> str: pass def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[Any]: __UpperCAmelCase =VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : str=None , **__SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase =self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase =self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase ={"""vision_model""": vision_model, """text_model""": text_model} __UpperCAmelCase =TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]=None , **__SCREAMING_SNAKE_CASE : int ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase =self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model(input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =after_output[0].numpy() __UpperCAmelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-5 ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[int]: __UpperCAmelCase , __UpperCAmelCase =self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase =to_atuple(vision_model.config.image_size ) __UpperCAmelCase =to_atuple(vision_model.config.patch_size ) __UpperCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __UpperCAmelCase =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __UpperCAmelCase =output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : float ) -> Tuple: __UpperCAmelCase =np.abs((a - b) ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _a ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__SCREAMING_SNAKE_CASE ) def _a ( self : Union[str, Any] ) -> int: __UpperCAmelCase =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Any: __UpperCAmelCase =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] ) -> Dict: __UpperCAmelCase =self.prepare_config_and_inputs() self.check_save_load(**__SCREAMING_SNAKE_CASE ) def _a ( self : Any ) -> Dict: __UpperCAmelCase =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE ) @slow def _a ( self : Any ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase =self.get_pretrained_model_and_inputs() __UpperCAmelCase =model_a(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model_a(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =after_outputs[0].numpy() __UpperCAmelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-5 ) @require_tf class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" def _a ( self : str ) -> List[Any]: __UpperCAmelCase =TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) __UpperCAmelCase =13 __UpperCAmelCase =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __UpperCAmelCase =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __UpperCAmelCase =random_attention_mask([batch_size, 4] ) __UpperCAmelCase ={"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[Any]: __UpperCAmelCase =TFViTModel(__SCREAMING_SNAKE_CASE , name="""vision_model""" ) __UpperCAmelCase =TFBertModel(__SCREAMING_SNAKE_CASE , name="""text_model""" ) return vision_model, text_model def _a ( self : Union[str, Any] ) -> Tuple: __UpperCAmelCase =TFViTModelTester(self ) __UpperCAmelCase =TFBertModelTester(self ) __UpperCAmelCase =vit_model_tester.prepare_config_and_inputs() __UpperCAmelCase =bert_model_tester.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =vision_config_and_inputs ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" def _a ( self : Optional[Any] ) -> int: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __UpperCAmelCase =TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) __UpperCAmelCase =13 __UpperCAmelCase =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __UpperCAmelCase =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __UpperCAmelCase =random_attention_mask([batch_size, 4] ) __UpperCAmelCase ={"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : Any ) -> Dict: __UpperCAmelCase , __UpperCAmelCase =self.get_vision_text_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase =TFVisionTextDualEncoderModel(vision_model=__SCREAMING_SNAKE_CASE , text_model=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =model( input_ids=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =output.vision_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCAmelCase =to_atuple(vision_model.config.image_size ) __UpperCAmelCase =to_atuple(vision_model.config.patch_size ) __UpperCAmelCase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __UpperCAmelCase =num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __UpperCAmelCase =output.text_model_output.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Any: __UpperCAmelCase =TFDeiTModel(__SCREAMING_SNAKE_CASE , name="""vision_model""" ) __UpperCAmelCase =TFRobertaModel(__SCREAMING_SNAKE_CASE , name="""text_model""" ) return vision_model, text_model def _a ( self : Any ) -> Union[str, Any]: __UpperCAmelCase =TFDeiTModelTester(self ) __UpperCAmelCase =TFRobertaModelTester(self ) __UpperCAmelCase =vit_model_tester.prepare_config_and_inputs() __UpperCAmelCase =bert_model_tester.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =vision_config_and_inputs ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" def _a ( self : Any ) -> Optional[Any]: __UpperCAmelCase =TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) __UpperCAmelCase =13 __UpperCAmelCase =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __UpperCAmelCase =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __UpperCAmelCase =random_attention_mask([batch_size, 4] ) __UpperCAmelCase ={"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : int ) -> Tuple: __UpperCAmelCase =TFCLIPVisionModel(__SCREAMING_SNAKE_CASE , name="""vision_model""" ) __UpperCAmelCase =TFBertModel(__SCREAMING_SNAKE_CASE , name="""text_model""" ) return vision_model, text_model def _a ( self : int ) -> Tuple: __UpperCAmelCase =TFCLIPVisionModelTester(self ) __UpperCAmelCase =TFBertModelTester(self ) __UpperCAmelCase =clip_model_tester.prepare_config_and_inputs() __UpperCAmelCase =bert_model_tester.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase =vision_config_and_inputs ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _A ( unittest.TestCase ): """simple docstring""" @slow def _a ( self : Optional[Any] ) -> Optional[int]: __UpperCAmelCase =TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) __UpperCAmelCase =Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __UpperCAmelCase =processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) __UpperCAmelCase =model(**__SCREAMING_SNAKE_CASE ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __UpperCAmelCase =np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
68
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: return getitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: return setitem, k, v def __lowerCamelCase ( _lowerCAmelCase ) -> str: return delitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Optional[int]: try: return fun(_lowerCAmelCase , *_lowerCAmelCase ), None except Exception as e: return None, e __lowerCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __lowerCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = HashMap(initial_block_size=4 ) _UpperCAmelCase = {} for _, (fun, *args) in enumerate(_lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) assert my_res == py_res assert str(_lowerCAmelCase ) == str(_lowerCAmelCase ) assert set(_lowerCAmelCase ) == set(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowerCAmelCase ) -> bool: return not name.startswith("_" ) _UpperCAmelCase = {name for name in dir({} ) if is_public(_lowerCAmelCase )} _UpperCAmelCase = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )} assert dict_public_names > hash_public_names
684
0
'''simple docstring''' import numpy class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : numpy.ndarray , a_ : numpy.ndarray ): """simple docstring""" __snake_case = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __snake_case = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __snake_case = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __snake_case = numpy.random.rand(3 , 1 ) # Real output values provided. __snake_case = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __snake_case = numpy.zeros(output_array.shape ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __snake_case = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __snake_case = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def A ( self : Optional[Any] ): """simple docstring""" __snake_case = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __snake_case = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __snake_case = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def A ( self : Union[str, Any] , a_ : numpy.ndarray , a_ : int , a_ : bool ): """simple docstring""" for iteration in range(1 , iterations + 1 ): __snake_case = self.feedforward() self.back_propagation() if give_loss: __snake_case = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f'''Iteration {iteration} Loss: {loss}''' ) def A ( self : Optional[Any] , a_ : numpy.ndarray ): """simple docstring""" __snake_case = input_arr __snake_case = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __snake_case = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __snake_case = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __UpperCAmelCase ( _UpperCAmelCase : numpy.ndarray ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def __UpperCAmelCase ( _UpperCAmelCase : numpy.ndarray ) -> numpy.ndarray: return (value) * (1 - (value)) def __UpperCAmelCase ( ) -> int: __snake_case = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __snake_case = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __snake_case = TwoHiddenLayerNeuralNetwork( input_array=_UpperCAmelCase , output_array=_UpperCAmelCase ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_UpperCAmelCase , iterations=10 , give_loss=_UpperCAmelCase ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
69
def __lowerCamelCase ( _lowerCAmelCase ) -> list: _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(1 , _lowerCAmelCase ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(_lowerCAmelCase , _lowerCAmelCase , -1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": __lowerCAmelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
684
0
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCamelCase : Dict = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = argparse.ArgumentParser( description='Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).' ) parser.add_argument('--file_path' , type=lowercase , default='data/dump.txt' , help='The path to the data.' ) parser.add_argument('--tokenizer_type' , type=lowercase , default='bert' , choices=['bert', 'roberta', 'gpt2'] ) parser.add_argument('--tokenizer_name' , type=lowercase , default='bert-base-uncased' , help='The tokenizer to use.' ) parser.add_argument('--dump_file' , type=lowercase , default='data/dump' , help='The dump file prefix.' ) lowerCamelCase_ = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": lowerCamelCase_ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map['cls_token'] # `[CLS]` lowerCamelCase_ = tokenizer.special_tokens_map['sep_token'] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCamelCase_ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map['cls_token'] # `<s>` lowerCamelCase_ = tokenizer.special_tokens_map['sep_token'] # `</s>` elif args.tokenizer_type == "gpt2": lowerCamelCase_ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCamelCase_ = tokenizer.special_tokens_map['bos_token'] # `<|endoftext|>` lowerCamelCase_ = tokenizer.special_tokens_map['eos_token'] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path , 'r' , encoding='utf8' ) as fp: lowerCamelCase_ = fp.readlines() logger.info('Start encoding' ) logger.info(f"""{len(lowercase )} examples to process.""" ) lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = 1_00_00 lowerCamelCase_ = time.time() for text in data: lowerCamelCase_ = f"""{bos} {text.strip()} {sep}""" lowerCamelCase_ = tokenizer.encode(lowercase , add_special_tokens=lowercase ) rslt.append(lowercase ) iter += 1 if iter % interval == 0: lowerCamelCase_ = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) lowerCamelCase_ = time.time() logger.info('Finished binarization' ) logger.info(f"""{len(lowercase )} examples processed.""" ) lowerCamelCase_ = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" lowerCamelCase_ = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCamelCase_ = [np.uintaa(lowercase ) for d in rslt] else: lowerCamelCase_ = [np.intaa(lowercase ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(lowercase , 'wb' ) as handle: pickle.dump(rslt_ , lowercase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
70
__lowerCAmelCase = 2_5_6 # Modulus to hash a string __lowerCAmelCase = 1_0_0_0_0_0_3 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 5) _UpperCAmelCase = "Lü" _UpperCAmelCase = "Lüsai" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = "Lue" assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
684
0
'''simple docstring''' _lowerCamelCase = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
71
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
0
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin _UpperCAmelCase : Dict = logging.get_logger(__name__) enable_full_determinism() class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = UNetaDModel UpperCamelCase__ = 'sample' @property def _A( self ): lowercase =4 lowercase =3 lowercase =(32, 32) lowercase =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) lowercase =torch.tensor([10] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def _A( self ): return (3, 32, 32) @property def _A( self ): return (3, 32, 32) def _A( self ): lowercase ={ '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowercase =self.dummy_input return init_dict, inputs_dict class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = UNetaDModel UpperCamelCase__ = 'sample' @property def _A( self ): lowercase =4 lowercase =4 lowercase =(32, 32) lowercase =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) lowercase =torch.tensor([10] ).to(snake_case_ ) return {"sample": noise, "timestep": time_step} @property def _A( self ): return (4, 32, 32) @property def _A( self ): return (4, 32, 32) def _A( self ): lowercase ={ '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowercase =self.dummy_input return init_dict, inputs_dict def _A( self ): lowercase , lowercase =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case_ ) lowercase =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _A( self ): lowercase , lowercase =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ ) model.to(snake_case_ ) lowercase =model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' , '''This test is supposed to run on GPU''' ) def _A( self ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` lowercase , lowercase =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ ) model_accelerate.to(snake_case_ ) model_accelerate.eval() lowercase =torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase =noise.to(snake_case_ ) lowercase =torch.tensor([10] * noise.shape[0] ).to(snake_case_ ) lowercase =model_accelerate(snake_case_ , snake_case_ )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowercase , lowercase =UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' , output_loading_info=snake_case_ , low_cpu_mem_usage=snake_case_ ) model_normal_load.to(snake_case_ ) model_normal_load.eval() lowercase =model_normal_load(snake_case_ , snake_case_ )['''sample'''] assert torch_all_close(snake_case_ , snake_case_ , rtol=1E-3 ) def _A( self ): lowercase =UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(snake_case_ ) lowercase =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowercase =noise.to(snake_case_ ) lowercase =torch.tensor([10] * noise.shape[0] ).to(snake_case_ ) with torch.no_grad(): lowercase =model(snake_case_ , snake_case_ ).sample lowercase =output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase =torch.tensor([-13.32_58, -20.11_00, -15.98_73, -17.66_17, -23.05_96, -17.94_19, -13.36_75, -16.18_89, -12.38_00] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-3 ) ) class __magic_name__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase__ = UNetaDModel UpperCamelCase__ = 'sample' @property def _A( self , snake_case_=(32, 32) ): lowercase =4 lowercase =3 lowercase =floats_tensor((batch_size, num_channels) + sizes ).to(snake_case_ ) lowercase =torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=snake_case_ ) return {"sample": noise, "timestep": time_step} @property def _A( self ): return (3, 32, 32) @property def _A( self ): return (3, 32, 32) def _A( self ): lowercase ={ '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1E-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowercase =self.dummy_input return init_dict, inputs_dict @slow def _A( self ): lowercase , lowercase =UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' , output_loading_info=snake_case_ ) self.assertIsNotNone(snake_case_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(snake_case_ ) lowercase =self.dummy_input lowercase =floats_tensor((4, 3) + (2_56, 2_56) ).to(snake_case_ ) lowercase =noise lowercase =model(**snake_case_ ) assert image is not None, "Make sure output is not None" @slow def _A( self ): lowercase =UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(snake_case_ ) lowercase =4 lowercase =3 lowercase =(2_56, 2_56) lowercase =torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) lowercase =torch.tensor(batch_size * [1E-4] ).to(snake_case_ ) with torch.no_grad(): lowercase =model(snake_case_ , snake_case_ ).sample lowercase =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase =torch.tensor([-48_42.86_91, -64_99.66_31, -38_00.19_53, -79_78.26_86, -1_09_80.71_29, -2_00_28.85_35, 81_48.28_22, 23_42.29_05, 5_67.76_08] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-2 ) ) def _A( self ): lowercase =UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(snake_case_ ) lowercase =4 lowercase =3 lowercase =(32, 32) lowercase =torch.ones((batch_size, num_channels) + sizes ).to(snake_case_ ) lowercase =torch.tensor(batch_size * [1E-4] ).to(snake_case_ ) with torch.no_grad(): lowercase =model(snake_case_ , snake_case_ ).sample lowercase =output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowercase =torch.tensor([-0.03_25, -0.09_00, -0.08_69, -0.03_32, -0.07_25, -0.02_70, -0.01_01, 0.02_27, 0.02_56] ) # fmt: on self.assertTrue(torch_all_close(snake_case_ , snake_case_ , rtol=1E-2 ) ) def _A( self ): # not required for this model pass
72
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase = "huggingface-tools/default-prompts" __lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
684
0
def lowerCamelCase__ (_UpperCAmelCase): return "".join(chr(ord(_UpperCAmelCase) - 32) if 'a' <= char <= 'z' else char for char in word) if __name__ == "__main__": from doctest import testmod testmod()
73
from itertools import permutations def __lowerCamelCase ( _lowerCAmelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_lowerCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCamelCase ( _lowerCAmelCase = 10 ) -> int: return sum( int("".join(map(_lowerCAmelCase , _lowerCAmelCase ) ) ) for num in permutations(range(_lowerCAmelCase ) ) if is_substring_divisible(_lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
684
0
from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Any , *_A : List[Any] , **_A : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] , *_A : List[str] , **_A : Union[str, Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : List[str] , *_A : Any , **_A : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[Any] , *_A : str , **_A : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *_A : List[Any] , **_A : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *_A : Dict , **_A : int ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *_A : Union[str, Any] , **_A : Optional[int] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : str , *_A : Tuple , **_A : Any ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Dict , *_A : int , **_A : Optional[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Optional[Any] , *_A : int , **_A : List[Any] ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : List[str] , *_A : Union[str, Any] , **_A : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , *_A : Any , **_A : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : Dict , *_A : Any , **_A : Any ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *_A : List[Any] , **_A : Any ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *_A : str , **_A : str ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) class __UpperCamelCase ( metaclass=lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''torch''', '''transformers''', '''onnx'''] def __init__( self : List[str] , *_A : Union[str, Any] , **_A : int ): """simple docstring""" requires_backends(self , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Tuple , *_A : int , **_A : Optional[int] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def UpperCAmelCase__ ( cls : Any , *_A : int , **_A : List[Any] ): """simple docstring""" requires_backends(cls , ['''torch''', '''transformers''', '''onnx'''] )
74
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotTokenizer def __init__( self : Tuple , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , **__UpperCamelCase : int , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__UpperCamelCase ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) _UpperCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value _UpperCAmelCase = value def UpperCAmelCase__ ( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase_ ( unittest.TestCase ): @property def lowercase_ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowercase_ ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Any = self.dummy_uncond_unet UpperCAmelCase__ : str = ScoreSdeVeScheduler() UpperCAmelCase__ : Tuple = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : int = torch.manual_seed(0 ) UpperCAmelCase__ : Any = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_A ).images UpperCAmelCase__ : Tuple = torch.manual_seed(0 ) UpperCAmelCase__ : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=_A , return_dict=_A )[ 0 ] UpperCAmelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase__ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = '''google/ncsnpp-church-256''' UpperCAmelCase__ : Dict = UNetaDModel.from_pretrained(_A ) UpperCAmelCase__ : Optional[Any] = ScoreSdeVeScheduler.from_pretrained(_A ) UpperCAmelCase__ : int = ScoreSdeVePipeline(unet=_A , scheduler=_A ) sde_ve.to(_A ) sde_ve.set_progress_bar_config(disable=_A ) UpperCAmelCase__ : Any = torch.manual_seed(0 ) UpperCAmelCase__ : int = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=_A ).images UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase__ : List[str] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
75
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["projector.weight"] _UpperCAmelCase = downstream_dict["projector.bias"] _UpperCAmelCase = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["model.linear.weight"] _UpperCAmelCase = downstream_dict["model.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = WavaVecaForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["connector.weight"] _UpperCAmelCase = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase = checkpoint["Downstream"] _UpperCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _UpperCAmelCase = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
0
"""simple docstring""" # flake8: noqa # Lint as: python3 a_ = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
76
def __lowerCamelCase ( _lowerCAmelCase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = set({"(", "[", "{"} ) _UpperCAmelCase = set({")", "]", "}"} ) _UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def __lowerCamelCase ( ) -> str: _UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , "is balanced" ) else: print(_lowerCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
684
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
0
'''simple docstring''' from torch import nn class __A ( nn.Module ): def __init__(self : Optional[int] , __a : List[Any] , __a : int ): super().__init__() UpperCAmelCase_ = class_size UpperCAmelCase_ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase_ = nn.Linear(__a , __a ) def _lowercase (self : Optional[Any] , __a : Optional[Any] ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) UpperCAmelCase_ = self.mlp(__a ) return logits
78
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: # Initialise PyTorch model _UpperCAmelCase = RemBertConfig.from_json_file(_lowerCAmelCase ) print("Building PyTorch model from configuration: {}".format(str(_lowerCAmelCase ) ) ) _UpperCAmelCase = RemBertModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(_lowerCAmelCase ) ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _lowerCamelCase ( __lowerCamelCase ) -> List[Any]: '''simple docstring''' def wrapper(*__lowerCamelCase , **__lowerCamelCase ): UpperCAmelCase__ : str = timeit.default_timer() UpperCAmelCase__ : Union[str, Any] = func(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase__ : int = timeit.default_timer() - starttime return delta UpperCAmelCase__ : Dict = func.__name__ return wrapper def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase=100 , __lowerCamelCase=None ) -> Any: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Dict = seq_shapes or {} for i in range(__lowerCamelCase ): UpperCAmelCase__ : Optional[int] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(__lowerCamelCase , _ArrayXD ): UpperCAmelCase__ : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(__lowerCamelCase , datasets.Value ): if v.dtype == "string": UpperCAmelCase__ : Optional[int] = """The small grey turtle was surprisingly fast when challenged.""" else: UpperCAmelCase__ : Union[str, Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(__lowerCamelCase , datasets.Sequence ): while isinstance(__lowerCamelCase , datasets.Sequence ): UpperCAmelCase__ : str = v.feature UpperCAmelCase__ : str = seq_shapes[k] UpperCAmelCase__ : Any = np.random.rand(*__lowerCamelCase ).astype(v.dtype ) UpperCAmelCase__ : Any = data dummy_data.append((i, example) ) return dummy_data def _lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=100 , __lowerCamelCase=None ) -> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = generate_examples(__lowerCamelCase , num_examples=__lowerCamelCase , seq_shapes=__lowerCamelCase ) with ArrowWriter(features=__lowerCamelCase , path=__lowerCamelCase ) as writer: for key, record in dummy_data: UpperCAmelCase__ : List[Any] = features.encode_example(__lowerCamelCase ) writer.write(__lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ : str = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) UpperCAmelCase__ : Any = datasets.Dataset.from_file(filename=__lowerCamelCase , info=datasets.DatasetInfo(features=__lowerCamelCase ) ) return dataset
79
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCAmelCase__ ( *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[int] ): pass @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = vqa_pipeline(__UpperCamelCase , top_k=1 ) self.assertEqual( __UpperCamelCase , [ [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], ] , ) @require_torch def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) @slow @require_torch def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase__ ( self : Optional[int] ): pass
684
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : str = """Hello world! cécé herlolip""" def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = FairseqRobertaModel.from_pretrained(lowerCamelCase ) roberta.eval() # disable dropout __lowercase = roberta.model.encoder.sentence_encoder __lowercase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __lowercase = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowerCamelCase ) __lowercase = XLMRobertaXLForSequenceClassification(lowerCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowercase = roberta_sent_encoder.embed_tokens.weight __lowercase = roberta_sent_encoder.embed_positions.weight __lowercase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowercase = roberta_sent_encoder.layer_norm.weight __lowercase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowercase = model.roberta.encoder.layer[i] __lowercase = roberta_sent_encoder.layers[i] __lowercase = layer.attention __lowercase = roberta_layer.self_attn_layer_norm.weight __lowercase = roberta_layer.self_attn_layer_norm.bias # self attention __lowercase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowercase = roberta_layer.self_attn.q_proj.weight __lowercase = roberta_layer.self_attn.q_proj.bias __lowercase = roberta_layer.self_attn.k_proj.weight __lowercase = roberta_layer.self_attn.k_proj.bias __lowercase = roberta_layer.self_attn.v_proj.weight __lowercase = roberta_layer.self_attn.v_proj.bias # self-attention output __lowercase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowercase = roberta_layer.self_attn.out_proj.weight __lowercase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowercase = roberta_layer.final_layer_norm.weight __lowercase = roberta_layer.final_layer_norm.bias # intermediate __lowercase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowercase = roberta_layer.fca.weight __lowercase = roberta_layer.fca.bias # output __lowercase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowercase = roberta_layer.fca.weight __lowercase = roberta_layer.fca.bias # end of layer if classification_head: __lowercase = roberta.model.classification_heads["""mnli"""].dense.weight __lowercase = roberta.model.classification_heads["""mnli"""].dense.bias __lowercase = roberta.model.classification_heads["""mnli"""].out_proj.weight __lowercase = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __lowercase = roberta.model.encoder.lm_head.dense.weight __lowercase = roberta.model.encoder.lm_head.dense.bias __lowercase = roberta.model.encoder.lm_head.layer_norm.weight __lowercase = roberta.model.encoder.lm_head.layer_norm.bias __lowercase = roberta.model.encoder.lm_head.weight __lowercase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowercase = roberta.encode(lowerCamelCase ).unsqueeze(0 ) # batch of size 1 __lowercase = model(lowerCamelCase )[0] if classification_head: __lowercase = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowerCamelCase ) ) else: __lowercase = roberta.model(lowerCamelCase )[0] print(our_output.shape , their_output.shape ) __lowercase = torch.max(torch.abs(our_output - their_output ) ).item() print(F'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 __lowercase = torch.allclose(lowerCamelCase , lowerCamelCase , atol=1e-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowerCamelCase ).mkdir(parents=lowerCamelCase , exist_ok=lowerCamelCase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
80
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): _snake_case : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right _snake_case : Optional[Any] = 128_022 _snake_case : Optional[Any] = 128_028 @require_sentencepiece class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = MaMaaaTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Dict = True def __snake_case ( self : Union[str, Any] ) -> int: super().setUp() __snake_case : Optional[Any] = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __snake_case : List[Any] = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) __snake_case : Dict = Path(self.tmpdirname ) save_json(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowerCamelCase , save_dir / VOCAB_FILES_NAMES["spm_file"] ) __snake_case : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : Optional[Any] , **lowerCamelCase : Dict ) -> Tuple: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __snake_case ( self : Any , lowerCamelCase : str ) -> List[Any]: return ( "This is a test", "This is a test", ) def __snake_case ( self : Tuple ) -> Optional[Any]: __snake_case : Dict = "</s>" __snake_case : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def __snake_case ( self : str ) -> str: __snake_case : Tuple = self.get_tokenizer() __snake_case : str = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowerCamelCase ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __snake_case ( self : Dict ) -> str: pass def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.get_tokenizer() __snake_case : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [2, 3, 4, 5, 6] , ) __snake_case : Dict = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) __snake_case : Optional[Any] = tokenizer.convert_tokens_to_string(lowerCamelCase ) self.assertEqual(lowerCamelCase , "This is a test" ) @slow def __snake_case ( self : Optional[int] ) -> Optional[Any]: # fmt: off __snake_case : List[str] = {"input_ids": [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class a (unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[int] = "facebook/m2m100_418M" __UpperCAmelCase : Optional[Any] = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] __UpperCAmelCase : Dict = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off __UpperCAmelCase : Optional[Any] = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def __snake_case ( cls : Tuple ) -> int: __snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) __snake_case : Optional[Any] = 1 return cls def __snake_case ( self : Optional[Any] ) -> Dict: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 128063 ) def __snake_case ( self : Tuple ) -> List[str]: __snake_case : List[str] = self.tokenizer.get_vocab() self.assertEqual(len(lowerCamelCase ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowerCamelCase ) def __snake_case ( self : Tuple ) -> int: __snake_case : str = "en" __snake_case : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase ) def __snake_case ( self : Dict ) -> str: self.assertIn(lowerCamelCase , self.tokenizer.all_special_ids ) # fmt: off __snake_case : Any = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on __snake_case : Any = self.tokenizer.decode(lowerCamelCase , skip_special_tokens=lowerCamelCase ) __snake_case : Optional[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase ) self.assertEqual(lowerCamelCase , lowerCamelCase ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase ) def __snake_case ( self : int ) -> int: __snake_case : Dict = tempfile.mkdtemp() __snake_case : Optional[Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowerCamelCase ) __snake_case : Optional[Any] = MaMaaaTokenizer.from_pretrained(lowerCamelCase ) self.assertDictEqual(new_tok.lang_token_to_id , lowerCamelCase ) @require_torch def __snake_case ( self : List[str] ) -> str: __snake_case : Tuple = "en" __snake_case : List[str] = "fr" __snake_case : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase , return_tensors="pt" ) __snake_case : Union[str, Any] = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __snake_case : str = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __snake_case ( self : str ) -> List[str]: __snake_case : Any = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __snake_case : Tuple = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __snake_case ( self : Optional[Any] ) -> int: __snake_case : Optional[Any] = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __snake_case : Dict = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __snake_case ( self : List[str] ) -> List[Any]: __snake_case : List[Any] = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowerCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[128022, 58, 4183, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 128006, } , )
81
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE : Dict = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Any ): _UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any=0 , **__UpperCamelCase : Any ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : str ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : Optional[int] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Optional[Any] ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
0
"""simple docstring""" from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : Distribution , _UpperCAmelCase : Any=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=0 ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = 1.0 if scale is None else scale UpperCAmelCase_ = 0.0 if loc is None else loc super().__init__(_UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=_UpperCAmelCase )] ) @property def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' return self.variance.sqrt() class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Callable[..., Tuple[torch.Tensor]] , **_UpperCAmelCase : List[Any] ) -> None: '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ = args_dim UpperCAmelCase_ = nn.ModuleList([nn.Linear(_UpperCAmelCase , _UpperCAmelCase ) for dim in args_dim.values()] ) UpperCAmelCase_ = domain_map def lowercase__ ( self : Optional[int] , _UpperCAmelCase : torch.Tensor ) -> Tuple[torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [proj(_UpperCAmelCase ) for proj in self.proj] return self.domain_map(*_UpperCAmelCase ) class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' super().__init__() UpperCAmelCase_ = function def lowercase__ ( self : str , _UpperCAmelCase : str , *_UpperCAmelCase : Any ) -> List[Any]: '''simple docstring''' return self.function(_UpperCAmelCase , *_UpperCAmelCase ) class lowercase__ : '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self : List[Any] , _UpperCAmelCase : int = 1 ) -> None: '''simple docstring''' UpperCAmelCase_ = dim UpperCAmelCase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def lowercase__ ( self : int , _UpperCAmelCase : Dict ) -> int: '''simple docstring''' if self.dim == 1: return self.distribution_class(*_UpperCAmelCase ) else: return Independent(self.distribution_class(*_UpperCAmelCase ) , 1 ) def lowercase__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , ) -> Distribution: '''simple docstring''' UpperCAmelCase_ = self._base_distribution(_UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(_UpperCAmelCase , loc=_UpperCAmelCase , scale=_UpperCAmelCase , event_dim=self.event_dim ) @property def lowercase__ ( self : Dict ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def lowercase__ ( self : Dict ) -> int: '''simple docstring''' return len(self.event_shape ) @property def lowercase__ ( self : List[Any] ) -> float: '''simple docstring''' return 0.0 def lowercase__ ( self : Tuple , _UpperCAmelCase : int ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=_UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def lowercase__ ( self : List[str] , *_UpperCAmelCase : torch.Tensor ) -> Tuple: '''simple docstring''' raise NotImplementedError() @staticmethod def lowercase__ ( _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(_UpperCAmelCase ) + 4.0 )) / 2.0 class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = {"df": 1, "loc": 1, "scale": 1} UpperCamelCase = StudentT @classmethod def lowercase__ ( cls : Dict , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor ) -> int: '''simple docstring''' UpperCAmelCase_ = cls.squareplus(_UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCAmelCase_ = 2.0 + cls.squareplus(_UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = {"loc": 1, "scale": 1} UpperCamelCase = Normal @classmethod def lowercase__ ( cls : int , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor ) -> Dict: '''simple docstring''' UpperCAmelCase_ = cls.squareplus(_UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = {"total_count": 1, "logits": 1} UpperCamelCase = NegativeBinomial @classmethod def lowercase__ ( cls : Optional[Any] , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = cls.squareplus(_UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def lowercase__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> Distribution: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=_UpperCAmelCase , logits=_UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=_UpperCAmelCase , logits=_UpperCAmelCase ) , 1 ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None ) -> Distribution: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
82
import math class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 _UpperCAmelCase = n _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # adjacency matrix for weight _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = w def UpperCAmelCase__ ( self : Dict ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
684
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING lowerCAmelCase__ = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def snake_case_ ( A_ : Optional[int], A_ : Any, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : Tuple = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'''config.{attribute}''' in modeling_source or F'''getattr(config, "{attribute}"''' in modeling_source or F'''getattr(self.config, "{attribute}"''' in modeling_source ): _lowerCamelCase : Union[str, Any] = True # Deal with multi-line cases elif ( re.search( RF'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''', A_, ) is not None ): _lowerCamelCase : str = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _lowerCamelCase : Optional[Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _lowerCamelCase : str = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] _lowerCamelCase : Optional[Any] = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed _lowerCamelCase : Any = True if not attribute_used: _lowerCamelCase : Tuple = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _lowerCamelCase : str = True elif attribute in ["tie_word_embeddings"] and default_value is False: _lowerCamelCase : Dict = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _lowerCamelCase : List[str] = True elif attribute.endswith('''_token_id''' ): _lowerCamelCase : Optional[int] = True # configuration class specific cases if not case_allowed: _lowerCamelCase : Optional[int] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) _lowerCamelCase : List[str] = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def snake_case_ ( A_ : Optional[int] ): '''simple docstring''' _lowerCamelCase : Optional[int] = dict(inspect.signature(config_class.__init__ ).parameters ) _lowerCamelCase : List[Any] = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] _lowerCamelCase : Union[str, Any] = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _lowerCamelCase : Union[str, Any] = {} if len(config_class.attribute_map ) > 0: _lowerCamelCase : List[Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _lowerCamelCase : Dict = inspect.getsourcefile(A_ ) _lowerCamelCase : Dict = os.path.dirname(A_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _lowerCamelCase : List[Any] = [os.path.join(A_, A_ ) for fn in os.listdir(A_ ) if fn.startswith('''modeling_''' )] # Get the source code strings _lowerCamelCase : Dict = [] for path in modeling_paths: if os.path.isfile(A_ ): with open(A_ ) as fp: modeling_sources.append(fp.read() ) _lowerCamelCase : Dict = [] for config_param, default_value in zip(A_, A_ ): # `attributes` here is all the variant names for `config_param` _lowerCamelCase : Tuple = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(A_, A_, A_, A_ ): unused_attributes.append(attributes[0] ) return sorted(A_ ) def snake_case_ ( ): '''simple docstring''' _lowerCamelCase : List[str] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _lowerCamelCase : Dict = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda A_ : inspect.isclass(A_ ) and issubclass(A_, A_ ) and inspect.getmodule(A_ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: _lowerCamelCase : Union[str, Any] = check_config_attributes_being_used(A_ ) if len(A_ ) > 0: _lowerCamelCase : Optional[int] = unused_attributes if len(A_ ) > 0: _lowerCamelCase : Union[str, Any] = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F'''{name}: {attributes}\n''' raise ValueError(A_ ) if __name__ == "__main__": check_config_attributes()
83
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Dict = VQModel __SCREAMING_SNAKE_CASE : Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[int]=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) return {"sample": image} @property def UpperCAmelCase__ ( self : Tuple ): return (3, 32, 32) @property def UpperCAmelCase__ ( self : str ): return (3, 32, 32) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__UpperCamelCase ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCAmelCase = image.to(__UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
684
0
import heapq as hq import math from collections.abc import Iterator class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = str(id_ ) lowercase = None lowercase = None lowercase = [] lowercase = {} # {vertex:distance} def __lt__( self , snake_case ): return self.key < other.key def __repr__( self ): return self.id def SCREAMING_SNAKE_CASE__ ( self , snake_case ): self.neighbors.append(snake_case ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = weight def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , __SCREAMING_SNAKE_CASE ) graph[b - 1].add_edge(graph[a - 1] , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [] for u in graph: lowercase = math.inf lowercase = None lowercase = 0 lowercase = graph[:] while q: lowercase = min(__SCREAMING_SNAKE_CASE ) q.remove(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase = u lowercase = u.edges[v.id] for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for u in graph: lowercase = math.inf lowercase = None lowercase = 0 lowercase = list(__SCREAMING_SNAKE_CASE ) hq.heapify(__SCREAMING_SNAKE_CASE ) while h: lowercase = hq.heappop(__SCREAMING_SNAKE_CASE ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase = u lowercase = u.edges[v.id] hq.heapify(__SCREAMING_SNAKE_CASE ) for i in range(1 , len(__SCREAMING_SNAKE_CASE ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCAmelCase_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
84
import requests __lowerCAmelCase = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def __lowerCamelCase ( _lowerCAmelCase ) -> None: # fetching a list of articles in json format _UpperCAmelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
684
0
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class snake_case ( UpperCamelCase_ ): def __lowercase( self : List[str] )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : List[Any] = 8 # DPR tok SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE__ : Dict = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(a_ , exist_ok=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(a_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok SCREAMING_SNAKE_CASE__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE__ : Any = dict(zip(a_ , range(len(a_ ) ) ) ) SCREAMING_SNAKE_CASE__ : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(a_ , exist_ok=a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(a_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(a_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(a_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(a_ ) ) def __lowercase( self : Union[str, Any] )-> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase( self : Union[str, Any] )-> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __lowercase( self : List[Any] )-> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __lowercase( self : str )-> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __lowercase( self : str )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __lowercase( self : List[str] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_dataset() SCREAMING_SNAKE_CASE__ : Optional[int] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: SCREAMING_SNAKE_CASE__ : Any = dataset SCREAMING_SNAKE_CASE__ : int = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __lowercase( self : Tuple , a_ : bool )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_dataset() SCREAMING_SNAKE_CASE__ : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='custom' , ) if from_disk: SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(self.tmpdirname , 'dataset' ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.tmpdirname , 'index.faiss' ) dataset.get_index('embeddings' ).save(os.path.join(self.tmpdirname , 'index.faiss' ) ) dataset.drop_index('embeddings' ) dataset.save_to_disk(os.path.join(self.tmpdirname , 'dataset' ) ) del dataset SCREAMING_SNAKE_CASE__ : Union[str, Any] = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , a_ ) , ) return retriever def __lowercase( self : Any )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = Dataset.from_dict( { 'id': ['0', '1'], 'text': ['foo', 'bar'], 'title': ['Foo', 'Bar'], 'embeddings': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('embeddings' , string_factory='Flat' , metric_type=faiss.METRIC_INNER_PRODUCT ) SCREAMING_SNAKE_CASE__ : str = os.path.join(self.tmpdirname , 'hf_bert_base.hnswSQ8_correct_phi_128.c_index' ) dataset.save_faiss_index('embeddings' , index_file_name + '.index.dpr' ) pickle.dump(dataset['id'] , open(index_file_name + '.index_meta.dpr' , 'wb' ) ) SCREAMING_SNAKE_CASE__ : List[str] = os.path.join(self.tmpdirname , 'psgs_w100.tsv.pkl' ) SCREAMING_SNAKE_CASE__ : List[str] = {sample['id']: [sample['text'], sample['title']] for sample in dataset} pickle.dump(a_ , open(a_ , 'wb' ) ) SCREAMING_SNAKE_CASE__ : Any = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='legacy' , index_path=self.tmpdirname , ) SCREAMING_SNAKE_CASE__ : int = RagRetriever( a_ , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __lowercase( self : Tuple )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = 1 SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , a_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : List[str] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('transformers.models.rag.retrieval_rag.load_dataset' ) as mock_load_dataset: SCREAMING_SNAKE_CASE__ : int = self.get_dummy_dataset() retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : List[Any] = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase( self : Optional[Any] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 1 SCREAMING_SNAKE_CASE__ : int = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , a_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Optional[Any] = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase( self : Union[str, Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : List[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['embeddings', 'id', 'text', 'title'] ) self.assertEqual(len(doc_dicts[0]['id'] ) , a_ ) self.assertEqual(doc_dicts[0]['id'][0] , '1' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['id'][0] , '0' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Any = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) def __lowercase( self : str )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_legacy_index_retriever() SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = retriever.retrieve(a_ , n_docs=a_ ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(a_ ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['text', 'title'] ) self.assertEqual(len(doc_dicts[0]['text'] ) , a_ ) self.assertEqual(doc_dicts[0]['text'][0] , 'bar' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['text'][0] , 'foo' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __lowercase( self : Dict )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RagRetriever.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) SCREAMING_SNAKE_CASE__ : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever.retrieve(a_ , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase( self : int )-> Tuple: """simple docstring""" import torch SCREAMING_SNAKE_CASE__ : List[Any] = 1 SCREAMING_SNAKE_CASE__ : Any = self.get_dummy_canonical_hf_index_retriever() SCREAMING_SNAKE_CASE__ : Optional[Any] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE__ : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = retriever(a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = ( out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(a_ , a_ ) self.assertIsInstance(a_ , a_ ) self.assertIsInstance(a_ , np.ndarray ) SCREAMING_SNAKE_CASE__ : int = retriever( a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = ( # noqa: F841 out['context_input_ids'], out['context_attention_mask'], out['retrieved_doc_embeds'], out['doc_ids'], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(a_ , torch.Tensor ) self.assertIsInstance(a_ , torch.Tensor ) self.assertIsInstance(a_ , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dpr_ctx_encoder_tokenizer() SCREAMING_SNAKE_CASE__ : Dict = 1 SCREAMING_SNAKE_CASE__ : int = self.get_dummy_custom_hf_index_retriever(from_disk=a_ ) retriever.set_ctx_encoder_tokenizer(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [[5, 7], [10, 11]] SCREAMING_SNAKE_CASE__ : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) SCREAMING_SNAKE_CASE__ : int = retriever(a_ , a_ , prefix=retriever.config.generator.prefix , n_docs=a_ ) self.assertEqual( len(a_ ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('tokenized_doc_ids', 'tokenized_doc_attention_mask') ) , a_ ) # check for doc token related keys in dictionary.
85
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = 10 def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = [1, 2, 3, 4] _UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = "" _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) _UpperCAmelCase = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ["It was the best of times."] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = 101 _UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _UpperCAmelCase = compute_token_type_ids(__UpperCamelCase , __UpperCamelCase ) np.testing.assert_array_equal(__UpperCamelCase , __UpperCamelCase )
684
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a :int = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _lowerCamelCase : Any = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCamelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase__ : List[str]) ->Any: '''simple docstring''' super().__init__() A__ = torchvision.models.resnetaaa(pretrained=UpperCAmelCase__) A__ = list(model.children())[:-2] A__ = nn.Sequential(*UpperCAmelCase__) A__ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]) ->int: '''simple docstring''' A__ = self.pool(self.model(UpperCAmelCase__)) A__ = torch.flatten(UpperCAmelCase__ , start_dim=2) A__ = out.transpose(1 , 2).contiguous() return out # BxNx2048 class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int) ->Tuple: '''simple docstring''' A__ = [json.loads(UpperCAmelCase__) for l in open(UpperCAmelCase__)] A__ = os.path.dirname(UpperCAmelCase__) A__ = tokenizer A__ = labels A__ = len(UpperCAmelCase__) A__ = max_seq_length A__ = transforms def __len__( self : Optional[int]) ->Any: '''simple docstring''' return len(self.data) def __getitem__( self : int , UpperCAmelCase__ : Tuple) ->str: '''simple docstring''' A__ = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=UpperCAmelCase__)) A__ , A__ , A__ = sentence[0], sentence[1:-1], sentence[-1] A__ = sentence[: self.max_seq_length] A__ = torch.zeros(self.n_classes) A__ = 1 A__ = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''])).convert('''RGB''') A__ = self.transforms(UpperCAmelCase__) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[str]: '''simple docstring''' A__ = Counter() for row in self.data: label_freqs.update(row['''label''']) return label_freqs def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" A__ = [len(row['''sentence'''] ) for row in batch] A__ , A__ = len(lowercase_ ), max(lowercase_ ) A__ = torch.zeros(lowercase_ , lowercase_ , dtype=torch.long ) A__ = torch.zeros(lowercase_ , lowercase_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowercase_ , lowercase_ ) ): A__ = input_row['''sentence'''] A__ = 1 A__ = torch.stack([row['''image'''] for row in batch] ) A__ = torch.stack([row['''label'''] for row in batch] ) A__ = torch.stack([row['''image_start_token'''] for row in batch] ) A__ = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def SCREAMING_SNAKE_CASE ( ) -> List[Any]: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
87
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = {} _UpperCAmelCase = job["started_at"] _UpperCAmelCase = job["completed_at"] _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = get_job_time(args.workflow_run_id) __lowerCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
684
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ) -> str: _lowerCamelCase : str = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Any = use_attention_mask _lowerCamelCase : Optional[int] = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[str] = num_choices def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : List[str] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = config_and_inputs _lowerCamelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = True __UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Tuple = FlaxRobertaModelTester(self) @slow def UpperCamelCase_ ( self) -> Dict: for model_class_name in self.all_model_classes: _lowerCamelCase : Any = model_class_name.from_pretrained("""roberta-base""" , from_pt=SCREAMING_SNAKE_CASE) _lowerCamelCase : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE)
88
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class _lowerCamelCase( _a ): lowercase_ : Any = """deta""" lowercase_ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self, lowerCamelCase=None, lowerCamelCase=9_00, lowerCamelCase=20_48, lowerCamelCase=6, lowerCamelCase=20_48, lowerCamelCase=8, lowerCamelCase=6, lowerCamelCase=10_24, lowerCamelCase=8, lowerCamelCase=0.0, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=2_56, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.0, lowerCamelCase=0.0_2, lowerCamelCase=1.0, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase="sine", lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=4, lowerCamelCase=True, lowerCamelCase=3_00, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=1, lowerCamelCase=1, lowerCamelCase=5, lowerCamelCase=2, lowerCamelCase=0.1, lowerCamelCase=0.2_5, **lowerCamelCase, ) -> Any: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') _lowercase : List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4']) else: if isinstance(lowerCamelCase, lowerCamelCase): _lowercase : Dict = backbone_config.pop('model_type') _lowercase : int = CONFIG_MAPPING[backbone_model_type] _lowercase : Union[str, Any] = config_class.from_dict(lowerCamelCase) _lowercase : Union[str, Any] = backbone_config _lowercase : Any = num_queries _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Union[str, Any] = d_model _lowercase : Optional[int] = encoder_ffn_dim _lowercase : Optional[int] = encoder_layers _lowercase : Optional[Any] = encoder_attention_heads _lowercase : Optional[Any] = decoder_ffn_dim _lowercase : Dict = decoder_layers _lowercase : Tuple = decoder_attention_heads _lowercase : Union[str, Any] = dropout _lowercase : Optional[Any] = attention_dropout _lowercase : int = activation_dropout _lowercase : Tuple = activation_function _lowercase : List[Any] = init_std _lowercase : Union[str, Any] = init_xavier_std _lowercase : int = encoder_layerdrop _lowercase : Optional[int] = auxiliary_loss _lowercase : Dict = position_embedding_type # deformable attributes _lowercase : Any = num_feature_levels _lowercase : str = encoder_n_points _lowercase : Any = decoder_n_points _lowercase : List[str] = two_stage _lowercase : Dict = two_stage_num_proposals _lowercase : Any = with_box_refine _lowercase : List[Any] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher _lowercase : List[Any] = class_cost _lowercase : Optional[int] = bbox_cost _lowercase : str = giou_cost # Loss coefficients _lowercase : Optional[int] = mask_loss_coefficient _lowercase : int = dice_loss_coefficient _lowercase : List[Any] = bbox_loss_coefficient _lowercase : Optional[Any] = giou_loss_coefficient _lowercase : str = eos_coefficient _lowercase : int = focal_alpha super().__init__(is_encoder_decoder=lowerCamelCase, **lowerCamelCase) @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCamelCase ( self) -> int: """simple docstring""" return self.d_model def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = copy.deepcopy(self.__dict__) _lowercase : Optional[int] = self.backbone_config.to_dict() _lowercase : Optional[Any] = self.__class__.model_type return output
89
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __lowerCAmelCase = get_tests_dir("fixtures") class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 500 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase__ ( self : Dict ): with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="test-image-processor" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : int ): CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
684
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __UpperCAmelCase = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' __UpperCAmelCase = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' __UpperCAmelCase = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' __UpperCAmelCase = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' __UpperCAmelCase = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/openai/human-eval''' , codebase_urls=['''https://github.com/openai/human-eval'''] , reference_urls=['''https://github.com/openai/human-eval'''] , license=_LICENSE , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=[1, 10, 1_00] , lowerCamelCase_=4 , lowerCamelCase_=3.0 ) -> Any: if os.getenv('''HF_ALLOW_CODE_EVAL''' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('''This metric is currently not supported on Windows.''' ) with ThreadPoolExecutor(max_workers=lowerCamelCase_ ) as executor: lowerCAmelCase__ = [] lowerCAmelCase__ = Counter() lowerCAmelCase__ = 0 lowerCAmelCase__ = defaultdict(lowerCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): for candidate in candidates: lowerCAmelCase__ = candidate + '''\n''' + test_case lowerCAmelCase__ = (test_program, timeout, task_id, completion_id[task_id]) lowerCAmelCase__ = executor.submit(lowerCamelCase_ , *lowerCamelCase_ ) futures.append(lowerCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase_ ): lowerCAmelCase__ = future.result() results[result["task_id"]].append((result['''completion_id'''], result) ) lowerCAmelCase__ , lowerCAmelCase__ = [], [] for result in results.values(): result.sort() lowerCAmelCase__ = [r[1]['''passed'''] for r in result] total.append(len(lowerCamelCase_ ) ) correct.append(sum(lowerCamelCase_ ) ) lowerCAmelCase__ = np.array(lowerCamelCase_ ) lowerCAmelCase__ = np.array(lowerCamelCase_ ) lowerCAmelCase__ = k lowerCAmelCase__ = {F"""pass@{k}""": estimate_pass_at_k(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _snake_case ( A , A , A ) -> List[str]: def estimator(A , A , A ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A , A ): lowerCAmelCase__ = itertools.repeat(A , len(A ) ) else: assert len(A ) == len(A ) lowerCAmelCase__ = iter(A ) return np.array([estimator(int(A ) , int(A ) , A ) for n, c in zip(A , A )] )
90
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: return getitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: return setitem, k, v def __lowerCamelCase ( _lowerCAmelCase ) -> str: return delitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Optional[int]: try: return fun(_lowerCAmelCase , *_lowerCAmelCase ), None except Exception as e: return None, e __lowerCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __lowerCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = HashMap(initial_block_size=4 ) _UpperCAmelCase = {} for _, (fun, *args) in enumerate(_lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) assert my_res == py_res assert str(_lowerCAmelCase ) == str(_lowerCAmelCase ) assert set(_lowerCAmelCase ) == set(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowerCAmelCase ) -> bool: return not name.startswith("_" ) _UpperCAmelCase = {name for name in dir({} ) if is_public(_lowerCAmelCase )} _UpperCAmelCase = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )} assert dict_public_names > hash_public_names
684
0
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowercase = float('''nan''') class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Tuple ) -> Any: A = sys.stdout A = open(A_ ,'a' ) def __getattr__( self : int ,A_ : Optional[Any] ) -> Tuple: return getattr(self.stdout ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> str: self.stdout.write(A_ ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' ,'' ,A_ ,0 ,re.M ) ) def _snake_case ( snake_case__ : Optional[Any]=80 , snake_case__ : List[str]=False ): A = [] # deal with critical env vars A = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: A = os.environ.get(snake_case__ , snake_case__ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) A = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A = [] A = '' while len(snake_case__ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) A = '' return "\\\n".join(snake_case__ ) def _snake_case ( snake_case__ : str , snake_case__ : str ): # unwrap multi-line input A = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own A = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) A = subprocess.run(snake_case__ , capture_output=snake_case__ , text=snake_case__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams A = variation.replace(' ' , '-' ) with open(Path(snake_case__ ) / F'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / F'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: A = json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[Any] , ): A = [] A = [] A = F'{id}: {variation:<{longest_variation_len}}' A = F'{preamble}: ' A = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ) , desc=snake_case__ , leave=snake_case__ ): A = process_run_single( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A = single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" A = F'\33[2K\r{outcome}' if len(snake_case__ ) > 0: A = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A = round(mean_metrics[target_metric_key] , 2 ) A = F'{outcome} {mean_target}' if len(snake_case__ ) > 1: results_str += F' {tuple(round(snake_case__ , 2 ) for x in results )}' print(snake_case__ ) A = variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def _snake_case ( ): A = torch.cuda.get_device_properties(torch.device('cuda' ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def _snake_case ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): A = pd.DataFrame(snake_case__ ) A = 'variation' A = 'diff_%' A = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel A = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): A = df.apply( lambda snake_case__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns A = [variation_key, target_metric_key, diff_key, *report_metric_keys] A = df.reindex(snake_case__ , axis='columns' ) # reorder cols # capitalize A = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible A = df.rename(lambda snake_case__ : c.replace('_' , '<br>' ) , axis='columns' ) A = df.rename(lambda snake_case__ : c.replace('_' , '\n' ) , axis='columns' ) A = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ , floatfmt='.2f' )] print('\n\n'.join(snake_case__ ) ) def _snake_case ( ): A = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=snake_case__ , type=snake_case__ , nargs='+' , required=snake_case__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=snake_case__ , type=snake_case__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=snake_case__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=snake_case__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=snake_case__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=snake_case__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) A = parser.parse_args() A = args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) A = get_base_command(snake_case__ , snake_case__ ) # split each dimension into its --foo variations A = [list(map(str.strip , re.split(r'\|' , snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A = list(map(str.strip , map(' '.join , itertools.product(*snake_case__ ) ) ) ) A = max(len(snake_case__ ) for x in variations ) # split wanted keys A = args.report_metric_keys.split() # capture prints into a log file for convenience A = F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) A = Tee(snake_case__ ) print(F'\n*** Running {len(snake_case__ )} benchmarks:' ) print(F'Base command: {" ".join(snake_case__ )}' ) A = 'variation' A = [] for id, variation in enumerate(tqdm(snake_case__ , desc='Total completion: ' , leave=snake_case__ ) ): A = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , args.target_metric_key , snake_case__ , args.repeat_times , snake_case__ , args.verbose , ) ) process_results(snake_case__ , args.target_metric_key , snake_case__ , args.base_variation , snake_case__ ) if __name__ == "__main__": main()
91
def __lowerCamelCase ( _lowerCAmelCase ) -> list: _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(1 , _lowerCAmelCase ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(_lowerCAmelCase , _lowerCAmelCase , -1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": __lowerCAmelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
684
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int = 600851475143 ) -> int: try: lowercase : Any =int(__magic_name__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) lowercase : Optional[Any] =2 lowercase : Dict =0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 lowercase : Union[str, Any] =i while n % i == 0: lowercase : Optional[int] =n // i i += 1 return int(__magic_name__ ) if __name__ == "__main__": print(f'''{solution() = }''')
92
__lowerCAmelCase = 2_5_6 # Modulus to hash a string __lowerCAmelCase = 1_0_0_0_0_0_3 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 5) _UpperCAmelCase = "Lü" _UpperCAmelCase = "Lüsai" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = "Lue" assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
684
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ :List[str] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on lowerCAmelCase__ :Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ :int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] lowerCAmelCase__ :List[Any] = {'unk_token': '<unk>'} lowerCAmelCase__ :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCAmelCase__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCAmelCase ) ) lowerCAmelCase__ :str = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } lowerCAmelCase__ :Optional[Any] = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def snake_case ( self , **__UpperCAmelCase ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCAmelCase__ :Optional[Any] = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.get_tokenizer() lowerCAmelCase__ :str = self.get_rust_tokenizer() lowerCAmelCase__ :Optional[Any] = self.get_image_processor() lowerCAmelCase__ :Optional[Any] = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase__ :Tuple = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) lowerCAmelCase__ :int = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase__ :List[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ :str = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCAmelCase__ :Optional[Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) lowerCAmelCase__ :str = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.get_image_processor() lowerCAmelCase__ :Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ :Tuple = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Any = self.prepare_image_inputs() lowerCAmelCase__ :int = image_processor(__UpperCAmelCase , return_tensors='np' ) lowerCAmelCase__ :Optional[Any] = processor(images=__UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.get_image_processor() lowerCAmelCase__ :Dict = self.get_tokenizer() lowerCAmelCase__ :Tuple = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Any = 'lower newer' lowerCAmelCase__ :Any = processor(text=__UpperCAmelCase ) lowerCAmelCase__ :int = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.get_image_processor() lowerCAmelCase__ :int = self.get_tokenizer() lowerCAmelCase__ :Any = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = 'lower newer' lowerCAmelCase__ :Tuple = self.prepare_image_inputs() lowerCAmelCase__ :Any = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.get_image_processor() lowerCAmelCase__ :Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ :Any = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = self.prepare_image_inputs() lowerCAmelCase__ :int = self.prepare_image_inputs() lowerCAmelCase__ :Dict = processor(images=__UpperCAmelCase , visual_prompt=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.get_image_processor() lowerCAmelCase__ :Any = self.get_tokenizer() lowerCAmelCase__ :Dict = CLIPSegProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) lowerCAmelCase__ :int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ :List[Any] = processor.batch_decode(__UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
93
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) SCREAMING_SNAKE_CASE = CLIPImageProcessor() SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') SCREAMING_SNAKE_CASE = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
94
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase = "huggingface-tools/default-prompts" __lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
684
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def snake_case ( ): print("Making key files..." ) make_key_files("rsa" ,10_24 ) print("Key files generation successful." ) def snake_case ( A__ ): print("Generating prime p..." ) UpperCAmelCase_ : int = rabinMiller.generate_large_prime(A__ ) print("Generating prime q..." ) UpperCAmelCase_ : Dict = rabinMiller.generate_large_prime(A__ ) UpperCAmelCase_ : Union[str, Any] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: UpperCAmelCase_ : Any = random.randrange(2 ** (key_size - 1) ,2 ** (key_size) ) if cryptoMath.gcd(A__ ,(p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) UpperCAmelCase_ : Union[str, Any] = cryptoMath.find_mod_inverse(A__ ,(p - 1) * (q - 1) ) UpperCAmelCase_ : List[str] = (n, e) UpperCAmelCase_ : List[str] = (n, d) return (public_key, private_key) def snake_case ( A__ ,A__ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() UpperCAmelCase_ , UpperCAmelCase_ : Any = generate_key(A__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" ,"w" ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" ,"w" ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
95
from itertools import permutations def __lowerCamelCase ( _lowerCAmelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_lowerCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCamelCase ( _lowerCAmelCase = 10 ) -> int: return sum( int("".join(map(_lowerCAmelCase , _lowerCAmelCase ) ) ) for num in permutations(range(_lowerCAmelCase ) ) if is_substring_divisible(_lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
684
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def a ( ) -> Tuple: __magic_name__: Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) __magic_name__: Any = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(__UpperCAmelCase ) # Let's go __magic_name__: int = parser.parse_args() if not hasattr(__UpperCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run __magic_name__: Optional[Any] = args.func(__UpperCAmelCase ) service.run() if __name__ == "__main__": main()
96
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotTokenizer def __init__( self : Tuple , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , **__UpperCamelCase : int , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__UpperCamelCase ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) _UpperCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value _UpperCAmelCase = value def UpperCAmelCase__ ( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase__: """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=1_3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=6 , SCREAMING_SNAKE_CASE_ : int=1_7 , SCREAMING_SNAKE_CASE_ : str=2_3 , SCREAMING_SNAKE_CASE_ : Dict=1_1 , SCREAMING_SNAKE_CASE_ : List[str]=True , ) -> Any: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def _lowercase ( self : str ) -> Optional[Any]: lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowercase ( self : int ) -> List[Any]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , ) -> Dict: lowercase_ = DecisionTransformerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowercase ( self : Union[str, Any] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = (DecisionTransformerModel,) if is_torch_available() else () a :int = () a :Optional[Any] = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a :List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a :Optional[int] = False a :Optional[int] = False a :Union[str, Any] = False a :Optional[Any] = False a :Optional[int] = False a :Optional[Any] = False a :Any = False a :Union[str, Any] = False a :Tuple = False def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : Any ) -> str: self.config_tester.run_common_tests() def _lowercase ( self : Dict ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : List[str] ) -> Union[str, Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> int: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE_ )] , SCREAMING_SNAKE_CASE_ ) @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[Any] ) -> str: lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 1_0 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase_ = model.to(SCREAMING_SNAKE_CASE_ ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=SCREAMING_SNAKE_CASE_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=SCREAMING_SNAKE_CASE_ )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=SCREAMING_SNAKE_CASE_ )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=SCREAMING_SNAKE_CASE_ , actions=SCREAMING_SNAKE_CASE_ , rewards=SCREAMING_SNAKE_CASE_ , returns_to_go=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=SCREAMING_SNAKE_CASE_ , dtype=torch.long ) * (step + 1)] , dim=1 )
97
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["projector.weight"] _UpperCAmelCase = downstream_dict["projector.bias"] _UpperCAmelCase = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["model.linear.weight"] _UpperCAmelCase = downstream_dict["model.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = WavaVecaForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["connector.weight"] _UpperCAmelCase = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase = checkpoint["Downstream"] _UpperCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _UpperCAmelCase = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
0
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ : Dict = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowerCAmelCase : """simple docstring""" _snake_case : Tuple = PegasusConfig _snake_case : Any = {} _snake_case : Dict = 'gelu' def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Dict=13 , lowerCAmelCase__ : Optional[Any]=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Tuple=99 , lowerCAmelCase__ : Optional[Any]=32 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : Dict=4 , lowerCAmelCase__ : Union[str, Any]=37 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : List[str]=20 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Tuple=0 , ) -> int: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = eos_token_id _UpperCamelCase = pad_token_id _UpperCamelCase = bos_token_id def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCamelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCamelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase = prepare_pegasus_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' _UpperCamelCase = 20 _UpperCamelCase = model_class_name(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] ) _UpperCamelCase , _UpperCamelCase = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , ) _UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ ) _UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def a__ ( lowercase : Union[str, Any], lowercase : Tuple, lowercase : Optional[Any], lowercase : Union[str, Any]=None, lowercase : Optional[Any]=None, ) -> Any: """simple docstring""" if attention_mask is None: _UpperCamelCase = np.not_equal(lowercase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCamelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _snake_case : Optional[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _snake_case : Union[str, Any] = True _snake_case : Optional[int] = False _snake_case : Any = False _snake_case : List[Any] = False def snake_case__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = FlaxPegasusModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = model_class(lowerCAmelCase__ ) @jax.jit def encode_jitted(lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=None , **lowerCAmelCase__ : Union[str, Any] ): return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCamelCase = model_class(lowerCAmelCase__ ) _UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _UpperCamelCase = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ): return model.decode( decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self : Any ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=lowerCAmelCase__ ) _UpperCamelCase = np.ones((1, 1) ) _UpperCamelCase = model(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow def snake_case__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) _UpperCamelCase = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) _UpperCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _UpperCamelCase = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _UpperCamelCase = tokenizer(lowerCAmelCase__ , return_tensors='''np''' , truncation=lowerCAmelCase__ , max_length=512 , padding=lowerCAmelCase__ ) _UpperCamelCase = model.generate(**lowerCAmelCase__ , num_beams=2 ).sequences _UpperCamelCase = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) assert tgt_text == decoded
98
def __lowerCamelCase ( _lowerCAmelCase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = set({"(", "[", "{"} ) _UpperCAmelCase = set({")", "]", "}"} ) _UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def __lowerCamelCase ( ) -> str: _UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , "is balanced" ) else: print(_lowerCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
684
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class __UpperCAmelCase : """simple docstring""" def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = num_choices __a = scope __a = self.vocab_size - 1 def snake_case_ ( self ): __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = None __a = None __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a = ids_tensor([self.batch_size] , self.num_choices ) __a = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) __a = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def snake_case_ ( self , __A , __A , __A , __A , *__A ): __a = OpenAIGPTModel(config=__A ) model.to(__A ) model.eval() __a = model(__A , token_type_ids=__A , head_mask=__A ) __a = model(__A , token_type_ids=__A ) __a = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , __A , __A , __A , __A , *__A ): __a = OpenAIGPTLMHeadModel(__A ) model.to(__A ) model.eval() __a = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , __A , __A , __A , __A , *__A ): __a = OpenAIGPTDoubleHeadsModel(__A ) model.to(__A ) model.eval() __a = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self , __A , __A , __A , __A , *__A ): __a = self.num_labels __a = OpenAIGPTForSequenceClassification(__A ) model.to(__A ) model.eval() __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ): __a = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) = config_and_inputs __a = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask, } return config, inputs_dict @require_torch class __UpperCAmelCase ( __A , __A , __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) _lowerCamelCase = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly _lowerCamelCase = ( { """feature-extraction""": OpenAIGPTModel, """text-classification""": OpenAIGPTForSequenceClassification, """text-generation""": OpenAIGPTLMHeadModel, """zero-shot""": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def snake_case_ ( self , __A , __A , __A , __A , __A ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def snake_case_ ( self , __A , __A , __A=False ): __a = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__A , ) __a = inputs_dict["""labels"""] __a = inputs_dict["""labels"""] __a = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__A , ) __a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def snake_case_ ( self ): __a = OpenAIGPTModelTester(self ) __a = ConfigTester(self , config_class=__A , n_embd=37 ) def snake_case_ ( self ): self.config_tester.run_common_tests() def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__A ) def snake_case_ ( self ): __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__A ) @slow def snake_case_ ( self ): for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = OpenAIGPTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self ): __a = OpenAIGPTLMHeadModel.from_pretrained("""openai-gpt""" ) model.to(__A ) __a = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__A ) # the president is __a = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the __a = model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
99
def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[float, float]: # Check if the input is valid if not len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == 3: raise ValueError("Please enter a valid equation." ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("Both a & b of two equations can't be zero." ) # Extract the coefficients _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = equationa # Calculate the determinants of the matrices _UpperCAmelCase = aa * ba - aa * ba _UpperCAmelCase = ca * ba - ca * ba _UpperCAmelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("Infinite solutions. (Consistent system)" ) else: raise ValueError("No solution. (Inconsistent system)" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: _UpperCAmelCase = determinant_x / determinant _UpperCAmelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
684
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __snake_case ( lowerCAmelCase_=None ) -> str: if subparsers is not None: SCREAMING_SNAKE_CASE__ = subparsers.add_parser('''env''' ) else: SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=lowerCAmelCase_ , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def __snake_case ( lowerCAmelCase_ ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = torch.__version__ SCREAMING_SNAKE_CASE__ = torch.cuda.is_available() SCREAMING_SNAKE_CASE__ = is_xpu_available() SCREAMING_SNAKE_CASE__ = is_npu_available() SCREAMING_SNAKE_CASE__ = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = load_config_from_file(args.config_file ).to_dict() SCREAMING_SNAKE_CASE__ = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': f'''{pt_version} ({pt_cuda_available})''', '''PyTorch XPU available''': str(lowerCAmelCase_ ), '''PyTorch NPU available''': str(lowerCAmelCase_ ), '''System RAM''': f'''{psutil.virtual_memory().total / 1_0_2_4 ** 3:.2f} GB''', } if pt_cuda_available: SCREAMING_SNAKE_CASE__ = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([f'''- {prop}: {val}''' for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) SCREAMING_SNAKE_CASE__ = ( '''\n'''.join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else f'''\t{accelerate_config}''' ) print(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = accelerate_config return info def __snake_case ( ) -> int: SCREAMING_SNAKE_CASE__ = env_command_parser() SCREAMING_SNAKE_CASE__ = parser.parse_args() env_command(lowerCAmelCase_ ) return 0 if __name__ == "__main__": raise SystemExit(main())
100
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: # Initialise PyTorch model _UpperCAmelCase = RemBertConfig.from_json_file(_lowerCAmelCase ) print("Building PyTorch model from configuration: {}".format(str(_lowerCAmelCase ) ) ) _UpperCAmelCase = RemBertModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(_lowerCAmelCase ) ) torch.save(model.state_dict() , _lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
684
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a__ ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A__ ): requests.request('GET', 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET', 'https://huggingface.co', timeout=1.0 ) @pytest.mark.integration def a__ ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET', 'https://huggingface.co' ) def a__ ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A__ ): http_head('https://huggingface.co' )
101
import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __SCREAMING_SNAKE_CASE : @staticmethod def UpperCAmelCase__ ( *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[int] ): pass @is_pipeline_test @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): __SCREAMING_SNAKE_CASE : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase__ ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): _UpperCAmelCase = vqa_pipeline(__UpperCamelCase , top_k=1 ) self.assertEqual( __UpperCamelCase , [ [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}], ] , ) @require_torch def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question="How many cats are there?" , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( __UpperCamelCase , [{"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}, {"score": ANY(__UpperCamelCase ), "answer": ANY(__UpperCamelCase )}] ) @slow @require_torch def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) _UpperCAmelCase = "./tests/fixtures/tests_samples/COCO/000000039769.png" _UpperCAmelCase = "How many cats are there?" _UpperCAmelCase = vqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) _UpperCAmelCase = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [[{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase__ ( self : Optional[int] ): pass
684
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : """simple docstring""" @staticmethod def _a ( *_A , **_A ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def _a ( self , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Any = ObjectDetectionPipeline(model=_A , image_processor=_A ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def _a ( self , _A , _A ): '''simple docstring''' UpperCamelCase : Any = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(_A ) , 0 ) for detected_object in outputs: self.assertEqual( _A , { """score""": ANY(_A ), """label""": ANY(_A ), """box""": {"""xmin""": ANY(_A ), """ymin""": ANY(_A ), """xmax""": ANY(_A ), """ymax""": ANY(_A )}, } , ) import datasets UpperCamelCase : int = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) UpperCamelCase : Optional[int] = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] UpperCamelCase : Dict = object_detector(_A , threshold=0.0 ) self.assertEqual(len(_A ) , len(_A ) ) for outputs in batch_outputs: self.assertGreater(len(_A ) , 0 ) for detected_object in outputs: self.assertEqual( _A , { """score""": ANY(_A ), """label""": ANY(_A ), """box""": {"""xmin""": ANY(_A ), """ymin""": ANY(_A ), """xmax""": ANY(_A ), """ymax""": ANY(_A )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def _a ( self ): '''simple docstring''' pass @require_torch def _a ( self ): '''simple docstring''' UpperCamelCase : int = """hf-internal-testing/tiny-detr-mobilenetsv3""" UpperCamelCase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_A ) UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(_A ) UpperCamelCase : Tuple = ObjectDetectionPipeline(model=_A , feature_extractor=_A ) UpperCamelCase : Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ] , ) UpperCamelCase : int = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], [ {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, {"""score""": 0.33_76, """label""": """LABEL_0""", """box""": {"""xmin""": 1_5_9, """ymin""": 1_2_0, """xmax""": 4_8_0, """ymax""": 3_5_9}}, ], ] , ) @require_torch @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Any = """facebook/detr-resnet-50""" UpperCamelCase : int = AutoModelForObjectDetection.from_pretrained(_A ) UpperCamelCase : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A ) UpperCamelCase : Dict = ObjectDetectionPipeline(model=_A , feature_extractor=_A ) UpperCamelCase : Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) UpperCamelCase : Optional[int] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = """facebook/detr-resnet-50""" UpperCamelCase : Optional[Any] = pipeline("""object-detection""" , model=_A ) UpperCamelCase : Optional[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) UpperCamelCase : int = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], [ {"""score""": 0.99_82, """label""": """remote""", """box""": {"""xmin""": 4_0, """ymin""": 7_0, """xmax""": 1_7_5, """ymax""": 1_1_7}}, {"""score""": 0.99_60, """label""": """remote""", """box""": {"""xmin""": 3_3_3, """ymin""": 7_2, """xmax""": 3_6_8, """ymax""": 1_8_7}}, {"""score""": 0.99_55, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_3_9, """ymax""": 4_7_3}}, {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ], ] , ) @require_torch @slow def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = 0.99_85 UpperCamelCase : Tuple = """facebook/detr-resnet-50""" UpperCamelCase : Dict = pipeline("""object-detection""" , model=_A ) UpperCamelCase : str = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=_A ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_88, """label""": """cat""", """box""": {"""xmin""": 1_3, """ymin""": 5_2, """xmax""": 3_1_4, """ymax""": 4_7_0}}, {"""score""": 0.99_87, """label""": """cat""", """box""": {"""xmin""": 3_4_5, """ymin""": 2_3, """xmax""": 6_4_0, """ymax""": 3_6_8}}, ] , ) @require_torch @require_pytesseract @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = """Narsil/layoutlmv3-finetuned-funsd""" UpperCamelCase : Optional[int] = 0.99_93 UpperCamelCase : List[Any] = pipeline("""object-detection""" , model=_A , threshold=_A ) UpperCamelCase : Tuple = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(_A , decimals=4 ) , [ {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, {"""score""": 0.99_93, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_9_4, """ymin""": 2_5_4, """xmax""": 3_4_3, """ymax""": 2_6_4}}, ] , )
102
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
684
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} snake_case = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } snake_case = { '''allenai/longformer-base-4096''': 4_0_9_6, '''allenai/longformer-large-4096''': 4_0_9_6, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_0_9_6, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_0_9_6, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def snake_case ( ) -> Tuple: _snake_case = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) _snake_case = bs[:] _snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase_ ) cs.append(2**8 + n ) n += 1 _snake_case = [chr(lowerCAmelCase_ ) for n in cs] return dict(zip(lowerCAmelCase_ , lowerCAmelCase_ ) ) def snake_case ( lowerCAmelCase_ ) -> Optional[Any]: _snake_case = set() _snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _snake_case = char return pairs class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): A__ : Dict = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]="replace" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : str="<s>" , __lowerCamelCase : Dict="<unk>" , __lowerCamelCase : Any="<pad>" , __lowerCamelCase : Optional[Any]="<mask>" , __lowerCamelCase : List[str]=False , **__lowerCamelCase : Optional[Any] , ): """simple docstring""" _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: _snake_case = json.load(__lowerCamelCase ) _snake_case = {v: k for k, v in self.encoder.items()} _snake_case = errors # how to handle errors in decoding _snake_case = bytes_to_unicode() _snake_case = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding='''utf-8''' ) as merges_handle: _snake_case = merges_handle.read().split('''\n''' )[1:-1] _snake_case = [tuple(merge.split() ) for merge in bpe_merges] _snake_case = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) _snake_case = {} _snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _snake_case = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return len(self.encoder ) def __UpperCAmelCase ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : int , __lowerCamelCase : List[Any] ): """simple docstring""" if token in self.cache: return self.cache[token] _snake_case = tuple(__lowerCamelCase ) _snake_case = get_pairs(__lowerCamelCase ) if not pairs: return token while True: _snake_case = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _snake_case , _snake_case = bigram _snake_case = [] _snake_case = 0 while i < len(__lowerCamelCase ): try: _snake_case = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _snake_case = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _snake_case = tuple(__lowerCamelCase ) _snake_case = new_word if len(__lowerCamelCase ) == 1: break else: _snake_case = get_pairs(__lowerCamelCase ) _snake_case = ''' '''.join(__lowerCamelCase ) _snake_case = word return word def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int ): """simple docstring""" _snake_case = [] for token in re.findall(self.pat , __lowerCamelCase ): _snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(''' ''' ) ) return bpe_tokens def __UpperCAmelCase ( self : str , __lowerCamelCase : Optional[Any] ): """simple docstring""" return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Dict ): """simple docstring""" return self.decoder.get(__lowerCamelCase ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] ): """simple docstring""" _snake_case = ''''''.join(__lowerCamelCase ) _snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + '''\n''' ) _snake_case = 0 with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _snake_case = token_index writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case = [self.cls_token_id] _snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): """simple docstring""" _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Dict ): """simple docstring""" _snake_case = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): _snake_case = ''' ''' + text return (text, kwargs)
103
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = (UniPCMultistepScheduler,) __SCREAMING_SNAKE_CASE : Dict = (("""num_inference_steps""", 25),) def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Any ): _UpperCAmelCase = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__UpperCamelCase ) return config def UpperCAmelCase__ ( self : int , __UpperCamelCase : Any=0 , **__UpperCamelCase : Any ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase , _UpperCAmelCase = sample, sample for t in range(__UpperCamelCase , time_step + scheduler.config.solver_order + 1 ): _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__UpperCamelCase ) _UpperCAmelCase = scheduler_class.from_pretrained(__UpperCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__UpperCamelCase ) # copy over dummy past residual (must be after setting timesteps) _UpperCAmelCase = dummy_past_residuals[: new_scheduler.config.solver_order] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = new_scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict=None , **__UpperCamelCase : Optional[Any] ): if scheduler is None: _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample return sample def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = dict(self.forward_default_kwargs ) _UpperCAmelCase = kwargs.pop("num_inference_steps" , __UpperCamelCase ) for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config() _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = self.dummy_sample _UpperCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(__UpperCamelCase , "set_timesteps" ): scheduler.set_timesteps(__UpperCamelCase ) elif num_inference_steps is not None and not hasattr(__UpperCamelCase , "set_timesteps" ): _UpperCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _UpperCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.10] _UpperCAmelCase = dummy_past_residuals[: scheduler.config.solver_order] _UpperCAmelCase = scheduler.timesteps[5] _UpperCAmelCase = scheduler.timesteps[6] _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase__ ( self : Union[str, Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults _UpperCAmelCase = UniPCMultistepScheduler(**self.get_scheduler_config() ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 _UpperCAmelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DEISMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = DPMSolverMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = UniPCMultistepScheduler.from_config(scheduler.config ) _UpperCAmelCase = self.full_loop(scheduler=__UpperCamelCase ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : str ): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): self.check_over_configs(thresholding=__UpperCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__UpperCamelCase , prediction_type=__UpperCamelCase , sample_max_value=__UpperCamelCase , solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , ) def UpperCAmelCase__ ( self : int ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def UpperCAmelCase__ ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) _UpperCAmelCase = self.full_loop( solver_order=__UpperCamelCase , solver_type=__UpperCamelCase , prediction_type=__UpperCamelCase , ) assert not torch.isnan(__UpperCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self : Optional[int] ): self.check_over_configs(lower_order_final=__UpperCamelCase ) self.check_over_configs(lower_order_final=__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__UpperCamelCase , time_step=0 ) def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase = self.full_loop() _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.full_loop(prediction_type="v_prediction" ) _UpperCAmelCase = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = self.scheduler_classes[0] _UpperCAmelCase = self.get_scheduler_config(thresholding=__UpperCamelCase , dynamic_thresholding_ratio=0 ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) _UpperCAmelCase = 10 _UpperCAmelCase = self.dummy_model() _UpperCAmelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): _UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self : str , **__UpperCamelCase : Optional[Any] ): for scheduler_class in self.scheduler_classes: _UpperCAmelCase = self.get_scheduler_config(**__UpperCamelCase ) _UpperCAmelCase = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
684
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase = logging.get_logger(__name__) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : int = ["pixel_values"] def __init__( self , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = 1 / 255 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> None: super().__init__(**SCREAMING_SNAKE_CASE__ ) A__ = size if size is not None else {"shortest_edge": 256} A__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(SCREAMING_SNAKE_CASE__ ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: A__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) A__ = get_resize_output_image_size(SCREAMING_SNAKE_CASE__ , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE__ ) return resize(SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: A__ = get_size_dict(SCREAMING_SNAKE_CASE__ ) return center_crop(SCREAMING_SNAKE_CASE__ , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ ) -> np.ndarray: return rescale(SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> np.ndarray: return normalize(SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ , data_format=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]: A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(SCREAMING_SNAKE_CASE__ , default_to_square=SCREAMING_SNAKE_CASE__ ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(SCREAMING_SNAKE_CASE__ ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = make_list_of_images(SCREAMING_SNAKE_CASE__ ) if not valid_images(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. A__ = [to_numpy_array(SCREAMING_SNAKE_CASE__ ) for image in images] if do_resize: A__ = [self.resize(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ , resample=SCREAMING_SNAKE_CASE__ ) for image in images] if do_center_crop: A__ = [self.center_crop(image=SCREAMING_SNAKE_CASE__ , size=SCREAMING_SNAKE_CASE__ ) for image in images] if do_rescale: A__ = [self.rescale(image=SCREAMING_SNAKE_CASE__ , scale=SCREAMING_SNAKE_CASE__ ) for image in images] if do_normalize: A__ = [self.normalize(image=SCREAMING_SNAKE_CASE__ , mean=SCREAMING_SNAKE_CASE__ , std=SCREAMING_SNAKE_CASE__ ) for image in images] A__ = [to_channel_dimension_format(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE__ , tensor_type=SCREAMING_SNAKE_CASE__ )
104
import math class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __UpperCamelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 _UpperCAmelCase = n _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # adjacency matrix for weight _UpperCAmelCase = [ [math.inf for j in range(0 , __UpperCamelCase )] for i in range(0 , __UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ): _UpperCAmelCase = w def UpperCAmelCase__ ( self : Dict ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _UpperCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ): return self.dp[u][v] if __name__ == "__main__": __lowerCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 1_0) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 1_0) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
684
0
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __UpperCAmelCase ( lowerCamelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = model.config SCREAMING_SNAKE_CASE_ : Union[str, Any] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) SCREAMING_SNAKE_CASE_ : List[str] = MBartConfig( is_decoder=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , add_cross_attention=lowerCamelCase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCamelCase_ , add_final_layer_norm=lowerCamelCase_ , ) return encoder_config, decoder_config def __UpperCAmelCase ( lowerCamelCase_ : Optional[int] ) -> int: """simple docstring""" if "encoder.model" in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: SCREAMING_SNAKE_CASE_ : int = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE_ : Any = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: SCREAMING_SNAKE_CASE_ : Any = 'encoder.' + name if "attn.proj" in name: SCREAMING_SNAKE_CASE_ : Dict = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: SCREAMING_SNAKE_CASE_ : List[str] = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE_ : Union[str, Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE_ : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE_ : Tuple = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE_ : Optional[Any] = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'encoder.layernorm.weight' if name == "encoder.norm.bias": SCREAMING_SNAKE_CASE_ : Tuple = 'encoder.layernorm.bias' return name def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE_ : List[str] = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: SCREAMING_SNAKE_CASE_ : Dict = key.split('.' ) SCREAMING_SNAKE_CASE_ : Optional[int] = int(key_split[3] ) SCREAMING_SNAKE_CASE_ : Tuple = int(key_split[5] ) SCREAMING_SNAKE_CASE_ : List[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE_ : str = val[:dim, :] SCREAMING_SNAKE_CASE_ : Optional[int] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE_ : Union[str, Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = val[:dim] SCREAMING_SNAKE_CASE_ : Dict = val[dim : dim * 2] SCREAMING_SNAKE_CASE_ : Optional[Any] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: SCREAMING_SNAKE_CASE_ : List[str] = val return orig_state_dict def __UpperCAmelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=False ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = DonutModel.from_pretrained(lowerCamelCase_ ).eval() # load HuggingFace model SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = get_configs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = DonutSwinModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Any = MBartForCausalLM(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] = VisionEncoderDecoderModel(encoder=lowerCamelCase_ , decoder=lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = original_model.state_dict() SCREAMING_SNAKE_CASE_ : Any = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify results on scanned document SCREAMING_SNAKE_CASE_ : Dict = load_dataset('hf-internal-testing/example-documents' ) SCREAMING_SNAKE_CASE_ : int = dataset['test'][0]['image'].convert('RGB' ) SCREAMING_SNAKE_CASE_ : List[Any] = XLMRobertaTokenizerFast.from_pretrained(lowerCamelCase_ , from_slow=lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) SCREAMING_SNAKE_CASE_ : List[Any] = DonutProcessor(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = processor(lowerCamelCase_ , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": SCREAMING_SNAKE_CASE_ : Union[str, Any] = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' SCREAMING_SNAKE_CASE_ : List[Any] = 'When is the coffee break?' SCREAMING_SNAKE_CASE_ : str = task_prompt.replace('{user_input}' , lowerCamelCase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": SCREAMING_SNAKE_CASE_ : Union[str, Any] = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: SCREAMING_SNAKE_CASE_ : Any = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": SCREAMING_SNAKE_CASE_ : int = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": SCREAMING_SNAKE_CASE_ : str = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'hello world' else: raise ValueError('Model name not supported' ) SCREAMING_SNAKE_CASE_ : Optional[int] = original_model.decoder.tokenizer(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors='pt' )[ 'input_ids' ] SCREAMING_SNAKE_CASE_ : int = original_model.encoder.model.patch_embed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = model.encoder.embeddings(lowerCamelCase_ ) assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) # verify encoder hidden states SCREAMING_SNAKE_CASE_ : Any = original_model.encoder(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model.encoder(lowerCamelCase_ ).last_hidden_state assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-2 ) # verify decoder hidden states SCREAMING_SNAKE_CASE_ : Dict = original_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).logits SCREAMING_SNAKE_CASE_ : int = model(lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ ).logits assert torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) UpperCamelCase__ : Optional[int] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
105
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase , lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : Dict = VQModel __SCREAMING_SNAKE_CASE : Optional[int] = """sample""" @property def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Optional[int]=(32, 32) ): _UpperCAmelCase = 4 _UpperCAmelCase = 3 _UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase ) return {"sample": image} @property def UpperCAmelCase__ ( self : Tuple ): return (3, 32, 32) @property def UpperCAmelCase__ ( self : str ): return (3, 32, 32) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } _UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self : Dict ): pass def UpperCAmelCase__ ( self : str ): pass def UpperCAmelCase__ ( self : List[str] ): _UpperCAmelCase , _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__UpperCamelCase ) _UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(__UpperCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _UpperCAmelCase = image.to(__UpperCamelCase ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase ).sample _UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _UpperCAmelCase = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143] ) # fmt: on self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
684
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case :Tuple ={ 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Dict =['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] =[ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] =[ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys __snake_case :Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
import requests __lowerCAmelCase = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def __lowerCamelCase ( _lowerCAmelCase ) -> None: # fetching a list of articles in json format _UpperCAmelCase = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
684
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _UpperCAmelCase : Dict = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' _UpperCAmelCase : Any = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' _UpperCAmelCase : Dict = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='https://github.com/krishnap25/mauve', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence' ), 'references': datasets.Value('string', id='sequence' ), } ), codebase_urls=['https://github.com/krishnap25/mauve'], reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ], ) def __UpperCAmelCase ( self : int, UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[int]=None, UpperCamelCase__ : Any=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : str=None, UpperCamelCase__ : Any="auto", UpperCamelCase__ : Optional[int]=-1, UpperCamelCase__ : Dict=0.9, UpperCamelCase__ : List[str]=5, UpperCamelCase__ : Dict=5_00, UpperCamelCase__ : Optional[int]="gpt2-large", UpperCamelCase__ : Dict=-1, UpperCamelCase__ : Union[str, Any]=10_24, UpperCamelCase__ : str=25, UpperCamelCase__ : Any=5, UpperCamelCase__ : str=True, UpperCamelCase__ : List[Any]=25, ) -> Tuple: _A = compute_mauve( p_text=UpperCamelCase__, q_text=UpperCamelCase__, p_features=UpperCamelCase__, q_features=UpperCamelCase__, p_tokens=UpperCamelCase__, q_tokens=UpperCamelCase__, num_buckets=UpperCamelCase__, pca_max_data=UpperCamelCase__, kmeans_explained_var=UpperCamelCase__, kmeans_num_redo=UpperCamelCase__, kmeans_max_iter=UpperCamelCase__, featurize_model_name=UpperCamelCase__, device_id=UpperCamelCase__, max_text_length=UpperCamelCase__, divergence_curve_discretization_size=UpperCamelCase__, mauve_scaling_factor=UpperCamelCase__, verbose=UpperCamelCase__, seed=UpperCamelCase__, ) return out
107
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = 10 def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = [1, 2, 3, 4] _UpperCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _UpperCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = "" _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) self.assertEqual(__UpperCamelCase , [] ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) _UpperCAmelCase , _UpperCAmelCase = process_story(__UpperCamelCase ) _UpperCAmelCase = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = ["It was the best of times."] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Optional[int] ): _UpperCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _UpperCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = 101 _UpperCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _UpperCAmelCase = compute_token_type_ids(__UpperCamelCase , __UpperCamelCase ) np.testing.assert_array_equal(__UpperCamelCase , __UpperCamelCase )
684
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a: Optional[Any] = logging.get_logger(__name__) __a: Optional[Any] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _lowerCamelCase = '''camembert''' def __init__( self : Optional[int] , lowerCamelCase : List[str]=3_0522 , lowerCamelCase : Dict=768 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : List[Any]=12 , lowerCamelCase : List[Any]=3072 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Dict=0.1 , lowerCamelCase : Optional[int]=512 , lowerCamelCase : int=2 , lowerCamelCase : Any=0.02 , lowerCamelCase : List[Any]=1E-12 , lowerCamelCase : int=1 , lowerCamelCase : Dict=0 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : str="absolute" , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' @property def lowerCamelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
108
from __future__ import annotations from collections import namedtuple def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> tuple: _UpperCAmelCase = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
684
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __a ( _snake_case ): def __init__( self : Optional[int] ,lowerCamelCase : Optional[NestedDataStructureLike[PathLike]] = None ,lowerCamelCase : Optional[NamedSplit] = None ,lowerCamelCase : Optional[Features] = None ,lowerCamelCase : str = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : Optional[int] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = path_or_paths __SCREAMING_SNAKE_CASE = split if split or isinstance(lowerCamelCase ,lowerCamelCase ) else """train""" __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def UpperCAmelCase__ ( self : int ): '''simple docstring''' pass class __a ( _snake_case ): def __init__( self : Tuple ,lowerCamelCase : Optional[Features] = None ,lowerCamelCase : str = None ,lowerCamelCase : bool = False ,lowerCamelCase : bool = False ,lowerCamelCase : Optional[int] = None ,**lowerCamelCase : Optional[int] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = features __SCREAMING_SNAKE_CASE = cache_dir __SCREAMING_SNAKE_CASE = keep_in_memory __SCREAMING_SNAKE_CASE = streaming __SCREAMING_SNAKE_CASE = num_proc __SCREAMING_SNAKE_CASE = kwargs @abstractmethod def UpperCAmelCase__ ( self : str ): '''simple docstring''' pass
109
import argparse import math import traceback import dateutil.parser as date_parser import requests def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = {} _UpperCAmelCase = job["started_at"] _UpperCAmelCase = job["completed_at"] _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = date_parser.parse(_lowerCAmelCase ) _UpperCAmelCase = round((end_datetime - start_datetime).total_seconds() / 60.0 ) _UpperCAmelCase = start _UpperCAmelCase = end _UpperCAmelCase = duration_in_min return job_info def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=None ) -> str: _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} _UpperCAmelCase = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _UpperCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() _UpperCAmelCase = {} try: job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) _UpperCAmelCase = math.ceil((result["total_count"] - 100) / 100 ) for i in range(_lowerCAmelCase ): _UpperCAmelCase = requests.get(url + F'''&page={i + 2}''' , headers=_lowerCAmelCase ).json() job_time.update({job["name"]: extract_time_from_single_job(_lowerCAmelCase ) for job in result["jobs"]} ) return job_time except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = get_job_time(args.workflow_run_id) __lowerCAmelCase = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(F'''{k}: {v["duration"]}''')
684
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = """M-CLIP""" def __init__( self : Optional[int] , lowerCAmelCase : Union[str, Any]=1024 , lowerCAmelCase : Dict=768 , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" _snake_case : List[Any] = transformerDimSize _snake_case : Optional[Any] = imageDimSize super().__init__(**__UpperCamelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = MCLIPConfig def __init__( self : Union[str, Any] , lowerCAmelCase : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" super().__init__(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase) _snake_case : str = XLMRobertaModel(__UpperCamelCase) _snake_case : List[str] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" _snake_case : List[Any] = self.transformer(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase)[0] _snake_case : List[str] = (embs * attention_mask.unsqueeze(2)).sum(dim=1) / attention_mask.sum(dim=1)[:, None] return self.LinearTransformation(__UpperCamelCase), embs
477
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __lowerCAmelCase = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 6_5_5_3_6, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8_0_0_0, "sample_size": 1_3_1_0_7_2, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6_0_0_0, "sample_size": 6_5_5_3_6, }, } def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: return torch.atana(_lowerCAmelCase , _lowerCAmelCase ) / math.pi * 2 def __lowerCamelCase ( _lowerCAmelCase ) -> Union[str, Any]: _UpperCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 _UpperCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) class __SCREAMING_SNAKE_CASE ( lowercase): pass class __SCREAMING_SNAKE_CASE ( nn.Module): def __init__( self : str , __UpperCamelCase : Optional[int] ): super().__init__() _UpperCAmelCase = DiffusionAttnUnetaD(__UpperCamelCase , n_attn_layers=4 ) _UpperCAmelCase = deepcopy(self.diffusion ) _UpperCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=__UpperCamelCase ) def __lowerCamelCase ( _lowerCAmelCase ) -> int: _UpperCAmelCase = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __lowerCAmelCase = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __lowerCAmelCase = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __lowerCAmelCase = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __lowerCAmelCase = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __lowerCAmelCase = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[Any]: for key, value in ATTN_MAP.items(): if name.startswith(_lowerCAmelCase ) and not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return name.replace(_lowerCAmelCase , _lowerCAmelCase ) elif name.startswith(_lowerCAmelCase ): return [name.replace(_lowerCAmelCase , _lowerCAmelCase ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=13 ) -> List[Any]: _UpperCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _UpperCAmelCase = 0 if string.startswith("net.3." ): depth += 1 _UpperCAmelCase = string[6:] elif string.startswith("net." ): _UpperCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 _UpperCAmelCase = string[7:] if string.startswith("main." ): _UpperCAmelCase = string[5:] # mid block if string[:2].isdigit(): _UpperCAmelCase = string[:2] _UpperCAmelCase = string[2:] else: _UpperCAmelCase = string[0] _UpperCAmelCase = string[1:] if depth == max_depth: _UpperCAmelCase = MID_NUM_TO_LAYER[layer_num] _UpperCAmelCase = "mid_block" elif depth > 0 and int(_lowerCAmelCase ) < 7: _UpperCAmelCase = DOWN_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''down_blocks.{depth}''' elif depth > 0 and int(_lowerCAmelCase ) > 7: _UpperCAmelCase = UP_NUM_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: _UpperCAmelCase = DEPTH_0_TO_LAYER[layer_num] _UpperCAmelCase = F'''up_blocks.{max_depth - 1}''' if int(_lowerCAmelCase ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) _UpperCAmelCase = string_left[1:] if "resnets" in new_layer: _UpperCAmelCase = convert_resconv_naming(_lowerCAmelCase ) elif "attentions" in new_layer: _UpperCAmelCase = convert_attn_naming(_lowerCAmelCase ) _UpperCAmelCase = new_string_left if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = prefix + "." + new_layer + "." + string_left else: _UpperCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __lowerCamelCase ( _lowerCAmelCase ) -> Optional[int]: _UpperCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _UpperCAmelCase = rename(_lowerCAmelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): _UpperCAmelCase = transform_conv_attns(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: _UpperCAmelCase = v return new_state_dict def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Union[str, Any]: if len(_lowerCAmelCase ) == 1: if len(v.shape ) == 3: # weight _UpperCAmelCase = v[:, :, 0] else: # bias _UpperCAmelCase = v else: # qkv matrices _UpperCAmelCase = v.shape[0] _UpperCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _UpperCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _lowerCAmelCase ) -> Tuple: _UpperCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _UpperCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' _UpperCAmelCase = download(_lowerCAmelCase ) _UpperCAmelCase = MODELS_MAP[model_name]["sample_rate"] _UpperCAmelCase = MODELS_MAP[model_name]["sample_size"] _UpperCAmelCase = Object() _UpperCAmelCase = sample_size _UpperCAmelCase = sample_rate _UpperCAmelCase = 0 _UpperCAmelCase = UNetaDModel(sample_size=_lowerCAmelCase , sample_rate=_lowerCAmelCase ) _UpperCAmelCase = diffusers_model.state_dict() _UpperCAmelCase = DiffusionUncond(_lowerCAmelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_lowerCAmelCase )["state_dict"] ) _UpperCAmelCase = orig_model.diffusion_ema.eval() _UpperCAmelCase = orig_model.state_dict() _UpperCAmelCase = rename_orig_weights(_lowerCAmelCase ) _UpperCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _UpperCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_lowerCAmelCase ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(_lowerCAmelCase ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": _UpperCAmelCase = value.squeeze() _UpperCAmelCase = value diffusers_model.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase = 100 _UpperCAmelCase = 33 _UpperCAmelCase = IPNDMScheduler(num_train_timesteps=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(_lowerCAmelCase ) _UpperCAmelCase = torch.randn([1, 2, config.sample_size] , generator=_lowerCAmelCase ).to(_lowerCAmelCase ) _UpperCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=_lowerCAmelCase )[:-1] _UpperCAmelCase = get_crash_schedule(_lowerCAmelCase ) _UpperCAmelCase = DanceDiffusionPipeline(unet=_lowerCAmelCase , scheduler=_lowerCAmelCase ) _UpperCAmelCase = torch.manual_seed(33 ) _UpperCAmelCase = pipe(num_inference_steps=_lowerCAmelCase , generator=_lowerCAmelCase ).audios _UpperCAmelCase = sampling.iplms_sample(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , {} ) _UpperCAmelCase = generated.clamp(-1 , 1 ) _UpperCAmelCase = (generated - audio).abs().sum() _UpperCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , _lowerCAmelCase ) print("Diff max" , _lowerCAmelCase ) assert diff_max < 1E-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") __lowerCAmelCase = parser.parse_args() main(args)
684
0
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable A_ = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["DPTFeatureExtractor"] A_ = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
391
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 __lowerCAmelCase = get_tests_dir("fixtures") class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Dict ): # A mock response for an HTTP head request to emulate server down _UpperCAmelCase = mock.Mock() _UpperCAmelCase = 500 _UpperCAmelCase = {} _UpperCAmelCase = HTTPError _UpperCAmelCase = {} # Download this model to make sure it's in the cache. _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__UpperCamelCase ) as mock_head: _UpperCAmelCase = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : List[Any] ): # This test is for deprecated behavior and can be removed in v5 _UpperCAmelCase = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCAmelCase__ ( self : Dict ): with self.assertRaises(__UpperCamelCase ): # config is in subfolder, the following should not work without specifying the subfolder _UpperCAmelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__UpperCamelCase ) @is_staging_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase): @classmethod def UpperCAmelCase__ ( cls : str ): _UpperCAmelCase = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def UpperCAmelCase__ ( cls : Optional[Any] ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="test-image-processor" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained(F'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = ViTImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-image-processor-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) _UpperCAmelCase = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def UpperCAmelCase__ ( self : int ): CustomImageProcessor.register_for_auto_class() _UpperCAmelCase = CustomImageProcessor.from_pretrained(__UpperCamelCase ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _UpperCAmelCase = AutoImageProcessor.from_pretrained( F'''{USER}/test-dynamic-image-processor''' , trust_remote_code=__UpperCamelCase ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
684
0
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __a ( __UpperCAmelCase ): a__ = [] for line in lines: a__ = re.sub(R'''#.*''' , '''''' , _lowerCAmelCase ) # remove comments if line: filtered_lines.append(_lowerCAmelCase ) a__ = '''\n'''.join(_lowerCAmelCase ) # Make a hash from all this code a__ = full_str.encode('''utf-8''' ) return shaaaa(_lowerCAmelCase ).hexdigest() # get importable module names and hash for caching a_ : List[Any] = { 'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), 'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), 'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), 'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), 'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), 'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), 'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), 'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions a_ : int = { '.csv': ('csv', {}), '.tsv': ('csv', {'sep': '\t'}), '.json': ('json', {}), '.jsonl': ('json', {}), '.parquet': ('parquet', {}), '.arrow': ('arrow', {}), '.txt': ('text', {}), } _EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) a_ : str = {'imagefolder', 'audiofolder'} # Used to filter data files based on extensions given a module name a_ : str = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('.zip') _MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
194
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: return getitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: return setitem, k, v def __lowerCamelCase ( _lowerCAmelCase ) -> str: return delitem, k def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) -> Optional[int]: try: return fun(_lowerCAmelCase , *_lowerCAmelCase ), None except Exception as e: return None, e __lowerCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __lowerCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __lowerCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __lowerCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __lowerCamelCase ( _lowerCAmelCase ) -> List[str]: _UpperCAmelCase = HashMap(initial_block_size=4 ) _UpperCAmelCase = {} for _, (fun, *args) in enumerate(_lowerCAmelCase ): _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase = _run_operation(_lowerCAmelCase , _lowerCAmelCase , *_lowerCAmelCase ) assert my_res == py_res assert str(_lowerCAmelCase ) == str(_lowerCAmelCase ) assert set(_lowerCAmelCase ) == set(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ) -> List[Any]: def is_public(_lowerCAmelCase ) -> bool: return not name.startswith("_" ) _UpperCAmelCase = {name for name in dir({} ) if is_public(_lowerCAmelCase )} _UpperCAmelCase = {name for name in dir(HashMap() ) if is_public(_lowerCAmelCase )} assert dict_public_names > hash_public_names
684
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase_ ( unittest.TestCase): @parameterized.expand([(None,), ("foo.json",)] ) def _snake_case ( self : str , __A : Optional[int] ) ->Optional[Any]: """simple docstring""" a__ :int = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCamelCase , config_name=__UpperCamelCase ) a__ :List[str] = GenerationConfig.from_pretrained(__UpperCamelCase , config_name=__UpperCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __UpperCamelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , __UpperCamelCase ) def _snake_case ( self : Any ) ->int: """simple docstring""" a__ :Optional[int] = AutoConfig.from_pretrained("gpt2" ) a__ :Dict = GenerationConfig.from_model_config(__UpperCamelCase ) a__ :List[str] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def _snake_case ( self : Optional[int] ) ->Optional[int]: """simple docstring""" a__ :str = GenerationConfig() a__ :Optional[int] = { "max_new_tokens": 1024, "foo": "bar", } a__ :Union[str, Any] = copy.deepcopy(__UpperCamelCase ) a__ :Optional[int] = generation_config.update(**__UpperCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__UpperCamelCase , {"foo": "bar"} ) def _snake_case ( self : str ) ->Any: """simple docstring""" a__ :Any = GenerationConfig() a__ :List[Any] = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(__UpperCamelCase ) a__ :Dict = GenerationConfig.from_pretrained(__UpperCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) a__ :Optional[Any] = GenerationConfig.from_model_config(__UpperCamelCase ) assert not hasattr(__UpperCamelCase , "foo" ) # no new kwargs should be initialized if from config def _snake_case ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a__ :List[Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __UpperCamelCase ) self.assertEqual(default_config.num_beams , 1 ) a__ :Optional[Any] = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __UpperCamelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCamelCase ) a__ :Any = GenerationConfig.from_pretrained(__UpperCamelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __UpperCamelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCAmelCase_ ( unittest.TestCase): @classmethod def _snake_case ( cls : List[Any] ) ->List[Any]: """simple docstring""" a__ :List[str] = TOKEN HfFolder.save_token(__UpperCamelCase ) @classmethod def _snake_case ( cls : Dict ) ->str: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def _snake_case ( self : Dict ) ->str: """simple docstring""" a__ :List[Any] = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) a__ :int = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCamelCase , repo_id="test-generation-config" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) a__ :Union[str, Any] = GenerationConfig.from_pretrained(F'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) def _snake_case ( self : List[Any] ) ->Dict: """simple docstring""" a__ :Optional[int] = GenerationConfig( do_sample=__UpperCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) a__ :List[str] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__UpperCamelCase , use_auth_token=self._token ) a__ :Optional[int] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCamelCase , getattr(__UpperCamelCase , __UpperCamelCase ) )
395
def __lowerCamelCase ( _lowerCAmelCase ) -> list: _UpperCAmelCase = len(_lowerCAmelCase ) for i in range(1 , _lowerCAmelCase ): _UpperCAmelCase = collection[i] _UpperCAmelCase = 0 _UpperCAmelCase = i - 1 while low <= high: _UpperCAmelCase = (low + high) // 2 if val < collection[mid]: _UpperCAmelCase = mid - 1 else: _UpperCAmelCase = mid + 1 for j in range(_lowerCAmelCase , _lowerCAmelCase , -1 ): _UpperCAmelCase = collection[j - 1] _UpperCAmelCase = val return collection if __name__ == "__main__": __lowerCAmelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCAmelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
684
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A__ ( A_ ) -> Any: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def A__ ( A_ ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: _lowercase = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A__ ( A_ ) -> List[str]: _lowercase = set() for token in tokens: _lowercase = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _lowercase = list(_lowerCAmelCase ) return word_list def A__ ( A_ , A_ ) -> str: if not chinese_word_set: return bert_tokens _lowercase = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _lowercase = bert_tokens _lowercase , _lowercase = 0, len(_lowerCAmelCase ) while start < end: _lowercase = True if is_chinese(bert_word[start] ): _lowercase = min(end - start , _lowerCAmelCase ) for i in range(_lowerCAmelCase , 1 , -1 ): _lowercase = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowercase = "##" + bert_word[j] _lowercase = start + i _lowercase = False break if single_word: start += 1 return bert_word def A__ ( A_ , A_ , A_ ) -> List[str]: _lowercase = [] for i in range(0 , len(_lowerCAmelCase ) , 100 ): _lowercase = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowercase = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _lowercase = [] for i in range(0 , len(_lowerCAmelCase ) , 100 ): _lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _lowercase = [] for input_ids, chinese_word in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowercase = [] for id in input_ids: _lowercase = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _lowercase = add_sub_symbol(_lowerCAmelCase , _lowerCAmelCase ) _lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _lowercase = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A__ ( A_ ) -> Tuple: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _lowercase = f.readlines() _lowercase = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowercase = LTP(args.ltp ) # faster in GPU device _lowercase = BertTokenizer.from_pretrained(args.bert ) _lowercase = prepare_ref(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _lowercase = [json.dumps(_lowerCAmelCase ) + "\n" for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __magic_name__ : Optional[int] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __magic_name__ : str = parser.parse_args() main(args)
497
__lowerCAmelCase = 2_5_6 # Modulus to hash a string __lowerCAmelCase = 1_0_0_0_0_0_3 def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: _UpperCAmelCase = len(_lowerCAmelCase ) _UpperCAmelCase = len(_lowerCAmelCase ) if p_len > t_len: return False _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _UpperCAmelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _UpperCAmelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _UpperCAmelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _UpperCAmelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowerCamelCase ( ) -> None: _UpperCAmelCase = "abc1abc12" _UpperCAmelCase = "alskfjaldsabc1abc1abc12k23adsfabcabc" _UpperCAmelCase = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 2) _UpperCAmelCase = "ABABX" _UpperCAmelCase = "ABABZABABYABABX" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 3) _UpperCAmelCase = "AAAB" _UpperCAmelCase = "ABAAAAAB" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 4) _UpperCAmelCase = "abcdabcy" _UpperCAmelCase = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) # Test 5) _UpperCAmelCase = "Lü" _UpperCAmelCase = "Lüsai" assert rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) _UpperCAmelCase = "Lue" assert not rabin_karp(_lowerCAmelCase , _lowerCAmelCase ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
684
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = """efficientformer""" def __init__( self , lowerCAmelCase_ = [3, 2, 6, 4] , lowerCAmelCase_ = [48, 96, 224, 448] , lowerCAmelCase_ = [True, True, True, True] , lowerCAmelCase_ = 448 , lowerCAmelCase_ = 32 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 7 , lowerCAmelCase_ = 5 , lowerCAmelCase_ = 8 , lowerCAmelCase_ = 4 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 16 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 3 , lowerCAmelCase_ = 2 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = "gelu" , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = 1E-1_2 , lowerCAmelCase_ = 224 , lowerCAmelCase_ = 1E-0_5 , **lowerCAmelCase_ , ): super().__init__(**__UpperCamelCase ) __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = hidden_sizes __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = patch_size __lowercase = num_channels __lowercase = depths __lowercase = mlp_expansion_ratio __lowercase = downsamples __lowercase = dim __lowercase = key_dim __lowercase = attention_ratio __lowercase = resolution __lowercase = pool_size __lowercase = downsample_patch_size __lowercase = downsample_stride __lowercase = downsample_pad __lowercase = drop_path_rate __lowercase = num_metaad_blocks __lowercase = distillation __lowercase = use_layer_scale __lowercase = layer_scale_init_value __lowercase = image_size __lowercase = batch_norm_eps
321
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase = random.Random() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> List[str]: if rng is None: _UpperCAmelCase = global_rng _UpperCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Union[str, Any]=400 , __UpperCamelCase : List[Any]=2_000 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : Optional[int]=160 , __UpperCamelCase : Any=8 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=4_000 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = min_seq_length _UpperCAmelCase = max_seq_length _UpperCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _UpperCAmelCase = padding_value _UpperCAmelCase = sampling_rate _UpperCAmelCase = return_attention_mask _UpperCAmelCase = do_normalize _UpperCAmelCase = feature_size _UpperCAmelCase = chunk_length _UpperCAmelCase = hop_length def UpperCAmelCase__ ( self : Optional[Any] ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=False ): def _flatten(__UpperCamelCase : Any ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _UpperCAmelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _UpperCAmelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __SCREAMING_SNAKE_CASE ( lowercase , unittest.TestCase): __SCREAMING_SNAKE_CASE : str = WhisperFeatureExtractor if is_speech_available() else None def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = WhisperFeatureExtractionTester(self ) def UpperCAmelCase__ ( self : str ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , "feat_extract.json" ) feat_extract_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _UpperCAmelCase = feat_extract_first.to_dict() _UpperCAmelCase = feat_extract_second.to_dict() _UpperCAmelCase = feat_extract_first.mel_filters _UpperCAmelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def UpperCAmelCase__ ( self : int ): # Tests that all call wrap to encode_plus and batch_encode_plus _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test feature size _UpperCAmelCase = feature_extractor(__UpperCamelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _UpperCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test batched _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _UpperCAmelCase = [floats_list((1, x) )[0] for x in (800, 800, 800)] _UpperCAmelCase = np.asarray(__UpperCamelCase ) _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) # Test truncation required _UpperCAmelCase = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] _UpperCAmelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _UpperCAmelCase = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs_truncated] _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCamelCase , __UpperCamelCase ): self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def UpperCAmelCase__ ( self : Union[str, Any] ): import torch _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = np.random.rand(100 , 32 ).astype(np.floataa ) _UpperCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _UpperCAmelCase = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Tuple ): _UpperCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _UpperCAmelCase = ds.sort("id" ).select(range(__UpperCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCAmelCase__ ( self : Tuple ): # fmt: off _UpperCAmelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _UpperCAmelCase = self._load_datasamples(1 ) _UpperCAmelCase = WhisperFeatureExtractor() _UpperCAmelCase = feature_extractor(__UpperCamelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __UpperCamelCase , atol=1e-4 ) ) def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _UpperCAmelCase = self._load_datasamples(1 )[0] _UpperCAmelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _UpperCAmelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__UpperCamelCase )[0] self.assertTrue(np.all(np.mean(__UpperCamelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCamelCase ) - 1 ) < 1e-3 ) )
684
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=False ) -> Any: try: __snake_case = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case = default else: # KEY is set, convert it to True or False. try: __snake_case = strtobool(_lowerCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value a : List[Any] = parse_flag_from_env('''RUN_SLOW''', default=False) a : Optional[Any] = parse_flag_from_env('''RUN_REMOTE''', default=False) a : int = parse_flag_from_env('''RUN_LOCAL''', default=True) a : Any = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a : Any = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a : Tuple = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a : Optional[int] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a : List[str] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a : Union[str, Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a : Tuple = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Tuple: try: import faiss # noqa except ImportError: __snake_case = unittest.skip("test requires faiss" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Union[str, Any]: try: import regex # noqa except ImportError: __snake_case = unittest.skip("test requires regex" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> str: try: import elasticsearch # noqa except ImportError: __snake_case = unittest.skip("test requires elasticsearch" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Dict: try: import sqlalchemy # noqa except ImportError: __snake_case = unittest.skip("test requires sqlalchemy" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: if not config.TORCH_AVAILABLE: __snake_case = unittest.skip("test requires PyTorch" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if not config.TF_AVAILABLE: __snake_case = unittest.skip("test requires TensorFlow" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[int]: if not config.JAX_AVAILABLE: __snake_case = unittest.skip("test requires JAX" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Union[str, Any]: if not config.PIL_AVAILABLE: __snake_case = unittest.skip("test requires Pillow" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> int: try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers" )(_lowerCAmelCase ) else: return test_case def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Any: try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken" )(_lowerCAmelCase ) else: return test_case def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy" )(_lowerCAmelCase ) else: return test_case def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Tuple: def _require_spacy_model(_UpperCAmelCase : Tuple ): try: import spacy # noqa F401 spacy.load(_lowerCAmelCase ) except ImportError: return unittest.skip("test requires spacy" )(_lowerCAmelCase ) except OSError: return unittest.skip("test requires spacy model '{}'".format(_lowerCAmelCase ) )(_lowerCAmelCase ) else: return test_case return _require_spacy_model def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> str: try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark" )(_lowerCAmelCase ) else: return test_case def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Any: try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark" )(_lowerCAmelCase ) else: return test_case def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> int: if not _run_slow_tests or _run_slow_tests == 0: __snake_case = unittest.skip("test is slow" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[int]: if not _run_local_tests or _run_local_tests == 0: __snake_case = unittest.skip("test is local" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[Any]: if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case = unittest.skip("test is packaged" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: if not _run_remote_tests or _run_remote_tests == 0: __snake_case = unittest.skip("test requires remote" )(_lowerCAmelCase ) return test_case def __UpperCAmelCase ( *_UpperCAmelCase : Tuple ) -> Tuple: def decorate(cls : str ): for name, fn in cls.__dict__.items(): if callable(_lowerCAmelCase ) and name.startswith("test" ): for decorator in decorators: __snake_case = decorator(_lowerCAmelCase ) setattr(cls , _lowerCAmelCase , _lowerCAmelCase ) return cls return decorate class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 @contextmanager def __UpperCAmelCase ( _UpperCAmelCase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , _UpperCAmelCase : int=1E-1_6 ) -> List[Any]: __snake_case = requests.Session().request def timeout_request(_UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[Any] ): # Change the url to an invalid url so that the connection hangs __snake_case = "https://10.255.255.1" if kwargs.get("timeout" ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) __snake_case = timeout try: return online_request(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case = url __snake_case = e.args[0] __snake_case = (max_retry_error.args[0].replace("10.255.255.1" , F'''OfflineMock[{url}]''' ),) __snake_case = (max_retry_error,) raise def raise_connection_error(_UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : Dict ): raise requests.ConnectionError("Offline mode is enabled." , request=_lowerCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _lowerCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _lowerCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCAmelCase ): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum." ) @contextmanager def __UpperCAmelCase ( *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Optional[Any] ) -> Any: __snake_case = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_lowerCAmelCase , **_lowerCAmelCase ) as tmp_dir: try: os.chdir(_lowerCAmelCase ) yield finally: os.chdir(_lowerCAmelCase ) @contextmanager def __UpperCAmelCase ( ) -> str: import gc gc.collect() __snake_case = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def __UpperCAmelCase ( ) -> Optional[Any]: import gc gc.collect() __snake_case = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> List[Any]: return deepcopy(_lowerCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(_lowerCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> str: import decorator from requests.exceptions import HTTPError def _wrapper(_UpperCAmelCase : Optional[int] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): try: return func(*_lowerCAmelCase , **_lowerCAmelCase ) except HTTPError as err: if str(_lowerCAmelCase ).startswith("500" ) or str(_lowerCAmelCase ).startswith("502" ): pytest.xfail(str(_lowerCAmelCase ) ) raise err return decorator.decorator(_wrapper , _lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , a_ : Optional[Any] , a_ : str , a_ : List[Any] ): """simple docstring""" __snake_case = returncode __snake_case = stdout __snake_case = stderr async def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> List[str]: while True: __snake_case = await stream.readline() if line: callback(_lowerCAmelCase ) else: break async def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : str=False ) -> _RunOutput: if echo: print("\nRunning: " , " ".join(_lowerCAmelCase ) ) __snake_case = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case = [] __snake_case = [] def tee(_UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str="" ): __snake_case = line.decode("utf-8" ).rstrip() sink.append(_lowerCAmelCase ) if not quiet: print(_lowerCAmelCase , _lowerCAmelCase , file=_lowerCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _UpperCAmelCase : tee(_lowerCAmelCase , _lowerCAmelCase , sys.stdout , label="stdout:" ) ), _read_stream(p.stderr , lambda _UpperCAmelCase : tee(_lowerCAmelCase , _lowerCAmelCase , sys.stderr , label="stderr:" ) ), ] , timeout=_lowerCAmelCase , ) return _RunOutput(await p.wait() , _lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=1_80 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Any=True ) -> _RunOutput: __snake_case = asyncio.get_event_loop() __snake_case = loop.run_until_complete( _stream_subprocess(_lowerCAmelCase , env=_lowerCAmelCase , stdin=_lowerCAmelCase , timeout=_lowerCAmelCase , quiet=_lowerCAmelCase , echo=_lowerCAmelCase ) ) __snake_case = " ".join(_lowerCAmelCase ) if result.returncode > 0: __snake_case = "\n".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = os.environ.get("PYTEST_XDIST_WORKER" , "gw0" ) __snake_case = re.sub(R"^gw" , "" , _lowerCAmelCase , 0 , re.M ) return int(_lowerCAmelCase ) def __UpperCAmelCase ( ) -> Optional[Any]: __snake_case = 2_95_00 __snake_case = pytest_xdist_worker_id() return port + uniq_delta
69
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __lowerCAmelCase = "\nHuman: <<task>>\n\nAssistant: " __lowerCAmelCase = "huggingface-tools/default-prompts" __lowerCAmelCase = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase="run" ) -> Union[str, Any]: if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , _lowerCAmelCase ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _lowerCAmelCase , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name} ) with open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f: return f.read()
684
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { '''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json''', } class __a ( SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = """gpt_neox_japanese""" def __init__( self : Optional[Any] , snake_case_ : List[str]=3_20_00 , snake_case_ : Any=25_60 , snake_case_ : List[Any]=32 , snake_case_ : int=32 , snake_case_ : List[str]=4 , snake_case_ : Tuple="gelu" , snake_case_ : Union[str, Any]=1.0_0 , snake_case_ : int=1_00_00 , snake_case_ : Any=20_48 , snake_case_ : str=0.0_2 , snake_case_ : List[str]=1e-5 , snake_case_ : Tuple=True , snake_case_ : Union[str, Any]=3_19_96 , snake_case_ : int=3_19_99 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : str=0.0 , **snake_case_ : Optional[int] , )-> List[Any]: super().__init__(bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase) __lowerCAmelCase =vocab_size __lowerCAmelCase =max_position_embeddings __lowerCAmelCase =hidden_size __lowerCAmelCase =num_hidden_layers __lowerCAmelCase =num_attention_heads __lowerCAmelCase =intermediate_multiple_size __lowerCAmelCase =hidden_act __lowerCAmelCase =rotary_pct __lowerCAmelCase =rotary_emb_base __lowerCAmelCase =initializer_range __lowerCAmelCase =layer_norm_eps __lowerCAmelCase =use_cache __lowerCAmelCase =attention_dropout __lowerCAmelCase =hidden_dropout
354
from itertools import permutations def __lowerCamelCase ( _lowerCAmelCase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _UpperCAmelCase = [7, 11, 13, 17] for i, test in enumerate(_lowerCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __lowerCamelCase ( _lowerCAmelCase = 10 ) -> int: return sum( int("".join(map(_lowerCAmelCase , _lowerCAmelCase ) ) ) for num in permutations(range(_lowerCAmelCase ) ) if is_substring_divisible(_lowerCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
684
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration UpperCamelCase_ = """facebook/wmt19-en-de""" UpperCamelCase_ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model UpperCamelCase_ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) UpperCamelCase_ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test UpperCamelCase_ = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase_ = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save UpperCamelCase_ = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
92
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : Optional[int] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[Any] = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE : List[str] = BlenderbotTokenizer def __init__( self : Tuple , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]="replace" , __UpperCamelCase : Tuple="<s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<unk>" , __UpperCamelCase : Tuple="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : List[str]=True , **__UpperCamelCase : int , ): super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , errors=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , trim_offsets=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = pre_tok_class(**__UpperCamelCase ) _UpperCAmelCase = add_prefix_space _UpperCAmelCase = "post_processor" _UpperCAmelCase = getattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) if tokenizer_component_instance: _UpperCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase = tuple(state["cls"] ) _UpperCAmelCase = False if state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: _UpperCAmelCase = add_prefix_space _UpperCAmelCase = True if state.get("trim_offsets" , __UpperCamelCase ) != trim_offsets: _UpperCAmelCase = trim_offsets _UpperCAmelCase = True if changes_to_apply: _UpperCAmelCase = getattr(__UpperCamelCase , state.pop("type" ) ) _UpperCAmelCase = component_class(**__UpperCamelCase ) setattr(self.backend_tokenizer , __UpperCamelCase , __UpperCamelCase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else value _UpperCAmelCase = value def UpperCAmelCase__ ( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ): _UpperCAmelCase = kwargs.get("is_split_into_words" , __UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def UpperCAmelCase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : "Conversation" ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__UpperCamelCase ) _UpperCAmelCase = " ".join(__UpperCamelCase ) _UpperCAmelCase = self.encode(__UpperCamelCase ) if len(__UpperCamelCase ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
0
import string import numpy def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , _lowerCAmelCase ) class UpperCamelCase : '''simple docstring''' lowercase : Union[str, Any] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowercase : Optional[Any] =numpy.vectorize(lambda lowercase__ : x % 36 ) lowercase : Union[str, Any] =numpy.vectorize(lowercase__ ) def __init__( self , UpperCamelCase_ ): lowercase_ :Dict = self.modulus(__UpperCamelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase_ :Tuple = encrypt_key.shape[0] def UpperCamelCase ( self , UpperCamelCase_ ): return self.key_string.index(__UpperCamelCase ) def UpperCamelCase ( self , UpperCamelCase_ ): return self.key_string[round(__UpperCamelCase )] def UpperCamelCase ( self ): lowercase_ :List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ :Any = det % len(self.key_string ) lowercase_ :int = len(self.key_string ) if greatest_common_divisor(__UpperCamelCase , len(self.key_string ) ) != 1: lowercase_ :List[str] = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(__UpperCamelCase ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :List[str] = [char for char in text.upper() if char in self.key_string] lowercase_ :int = chars[-1] while len(__UpperCamelCase ) % self.break_key != 0: chars.append(__UpperCamelCase ) return "".join(__UpperCamelCase ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Union[str, Any] = self.process_text(text.upper() ) lowercase_ :int = '''''' for i in range(0 , len(__UpperCamelCase ) - self.break_key + 1 , self.break_key ): lowercase_ :int = text[i : i + self.break_key] lowercase_ :Any = [self.replace_letters(__UpperCamelCase ) for char in batch] lowercase_ :int = numpy.array([vec] ).T lowercase_ :Union[str, Any] = self.modulus(self.encrypt_key.dot(__UpperCamelCase ) ).T.tolist()[ 0 ] lowercase_ :Any = ''''''.join( self.replace_digits(__UpperCamelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def UpperCamelCase ( self ): lowercase_ :List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ :List[Any] = det % len(self.key_string ) lowercase_ :Optional[int] = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase_ :Optional[Any] = i break lowercase_ :str = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(__UpperCamelCase ) ) def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Dict = self.make_decrypt_key() lowercase_ :List[str] = self.process_text(text.upper() ) lowercase_ :List[Any] = '''''' for i in range(0 , len(__UpperCamelCase ) - self.break_key + 1 , self.break_key ): lowercase_ :Optional[Any] = text[i : i + self.break_key] lowercase_ :List[str] = [self.replace_letters(__UpperCamelCase ) for char in batch] lowercase_ :Dict = numpy.array([vec] ).T lowercase_ :Dict = self.modulus(decrypt_key.dot(__UpperCamelCase ) ).T.tolist()[0] lowercase_ :List[str] = ''''''.join( self.replace_digits(__UpperCamelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase_ :Union[str, Any] = int(input('''Enter the order of the encryption key: ''' ) ) lowercase_ :List[str] = [] print('''Enter each row of the encryption key with space separated integers''' ) for _ in range(_lowerCAmelCase ): lowercase_ :List[str] = [int(_lowerCAmelCase ) for x in input().split()] hill_matrix.append(_lowerCAmelCase ) lowercase_ :Tuple = HillCipher(numpy.array(_lowerCAmelCase ) ) print('''Would you like to encrypt or decrypt some text? (1 or 2)''' ) lowercase_ :Union[str, Any] = input('''\n1. Encrypt\n2. Decrypt\n''' ) if option == "1": lowercase_ :int = input('''What text would you like to encrypt?: ''' ) print('''Your encrypted text is:''' ) print(hc.encrypt(_lowerCAmelCase ) ) elif option == "2": lowercase_ :Dict = input('''What text would you like to decrypt?: ''' ) print('''Your decrypted text is:''' ) print(hc.decrypt(_lowerCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
257
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() __lowerCAmelCase = logging.get_logger(__name__) def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _UpperCAmelCase = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["projector.weight"] _UpperCAmelCase = downstream_dict["projector.bias"] _UpperCAmelCase = downstream_dict["model.post_net.linear.weight"] _UpperCAmelCase = downstream_dict["model.post_net.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> str: _UpperCAmelCase = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["model.linear.weight"] _UpperCAmelCase = downstream_dict["model.linear.bias"] return model def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = WavaVecaForXVector.from_pretrained(_lowerCAmelCase , config=_lowerCAmelCase ) _UpperCAmelCase = downstream_dict["connector.weight"] _UpperCAmelCase = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _UpperCAmelCase = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] _UpperCAmelCase = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _UpperCAmelCase = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _UpperCAmelCase = downstream_dict["objective.W"] return model @torch.no_grad() def __lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: _UpperCAmelCase = torch.load(_lowerCAmelCase , map_location="cpu" ) _UpperCAmelCase = checkpoint["Downstream"] _UpperCAmelCase = WavaVecaConfig.from_pretrained(_lowerCAmelCase ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained( _lowerCAmelCase , return_attention_mask=_lowerCAmelCase , do_normalize=_lowerCAmelCase ) _UpperCAmelCase = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _UpperCAmelCase = convert_classification(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForAudioFrameClassification" ): _UpperCAmelCase = convert_diarization(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) elif arch.endswith("ForXVector" ): _UpperCAmelCase = convert_xvector(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: _UpperCAmelCase = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_lowerCAmelCase ) hf_model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") __lowerCAmelCase = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
684
0