code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants a_ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =['''image_processor''', '''tokenizer'''] _UpperCAmelCase ='''ChineseCLIPImageProcessor''' _UpperCAmelCase =('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self: Optional[Any] , a: Union[str, Any]=None , a: List[Any]=None , **a: Optional[Any]) ->int: '''simple docstring''' a_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a , ) a_ = kwargs.pop("feature_extractor") a_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(a , a) a_ = self.image_processor def __call__( self: Optional[int] , a: Union[str, Any]=None , a: Union[str, Any]=None , a: Optional[int]=None , **a: List[str]) ->int: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: a_ = self.tokenizer(a , return_tensors=a , **a) if images is not None: a_ = self.image_processor(a , return_tensors=a , **a) if text is not None and images is not None: a_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a) , tensor_type=a) def _lowerCAmelCase ( self: List[Any] , *a: Union[str, Any] , **a: Union[str, Any]) ->Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*a , **a) def _lowerCAmelCase ( self: Any , *a: int , **a: Optional[int]) ->Tuple: '''simple docstring''' return self.tokenizer.decode(*a , **a) @property def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = self.tokenizer.model_input_names a_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a , ) return self.image_processor_class
685
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig a_ = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''masked_bert''' def __init__( self: int , a: Dict=3_05_22 , a: List[Any]=7_68 , a: int=12 , a: Union[str, Any]=12 , a: str=30_72 , a: List[Any]="gelu" , a: Tuple=0.1 , a: Tuple=0.1 , a: Union[str, Any]=5_12 , a: List[str]=2 , a: str=0.02 , a: Dict=1e-12 , a: Any=0 , a: List[str]="topK" , a: Optional[int]="constant" , a: Any=0.0 , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , **a) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = pruning_method a_ = mask_init a_ = mask_scale
685
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a_ = logging.get_logger(__name__) a_ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''deformable_detr''' _UpperCAmelCase ={ '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self: Tuple , a: str=True , a: Tuple=None , a: str=3 , a: List[str]=3_00 , a: int=10_24 , a: Dict=6 , a: Dict=10_24 , a: Union[str, Any]=8 , a: Optional[Any]=6 , a: Any=10_24 , a: Any=8 , a: Any=0.0 , a: Optional[Any]=True , a: List[Any]="relu" , a: List[Any]=2_56 , a: Dict=0.1 , a: str=0.0 , a: int=0.0 , a: List[str]=0.02 , a: Union[str, Any]=1.0 , a: Optional[Any]=True , a: Tuple=False , a: List[str]="sine" , a: List[Any]="resnet50" , a: Dict=True , a: Union[str, Any]=False , a: Optional[int]=4 , a: Optional[int]=4 , a: Tuple=4 , a: int=False , a: Tuple=3_00 , a: Any=False , a: List[str]=1 , a: Any=5 , a: Any=2 , a: List[str]=1 , a: Union[str, Any]=1 , a: Union[str, Any]=5 , a: str=2 , a: Any=0.1 , a: str=0.25 , a: str=False , **a: Optional[int] , ) ->Tuple: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") a_ = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(a , a): a_ = backbone_config.get("model_type") a_ = CONFIG_MAPPING[backbone_model_type] a_ = config_class.from_dict(a) a_ = use_timm_backbone a_ = backbone_config a_ = num_channels a_ = num_queries a_ = max_position_embeddings a_ = d_model a_ = encoder_ffn_dim a_ = encoder_layers a_ = encoder_attention_heads a_ = decoder_ffn_dim a_ = decoder_layers a_ = decoder_attention_heads a_ = dropout a_ = attention_dropout a_ = activation_dropout a_ = activation_function a_ = init_std a_ = init_xavier_std a_ = encoder_layerdrop a_ = auxiliary_loss a_ = position_embedding_type a_ = backbone a_ = use_pretrained_backbone a_ = dilation # deformable attributes a_ = num_feature_levels a_ = encoder_n_points a_ = decoder_n_points a_ = two_stage a_ = two_stage_num_proposals a_ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher a_ = class_cost a_ = bbox_cost a_ = giou_cost # Loss coefficients a_ = mask_loss_coefficient a_ = dice_loss_coefficient a_ = bbox_loss_coefficient a_ = giou_loss_coefficient a_ = eos_coefficient a_ = focal_alpha a_ = disable_custom_kernels super().__init__(is_encoder_decoder=a , **a) @property def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' return self.encoder_attention_heads @property def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' return self.d_model def _lowerCAmelCase ( self: List[Any]) ->int: '''simple docstring''' a_ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: a_ = self.backbone_config.to_dict() a_ = self.__class__.model_type return output
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a_ = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =PegasusTokenizer _UpperCAmelCase =PegasusTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Optional[Any]) ->Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a_ = PegasusTokenizer(a) tokenizer.save_pretrained(self.tmpdirname) @cached_property def _lowerCAmelCase ( self: Any) ->Optional[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained("google/pegasus-large") def _lowerCAmelCase ( self: Union[str, Any] , **a: Optional[int]) ->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: str , a: Optional[int]) ->Optional[Any]: '''simple docstring''' return ("This is a test", "This is a test") def _lowerCAmelCase ( self: Tuple) ->Tuple: '''simple docstring''' a_ = "</s>" a_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a) , a) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a) , a) def _lowerCAmelCase ( self: Union[str, Any]) ->List[str]: '''simple docstring''' a_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "<pad>") self.assertEqual(vocab_keys[1] , "</s>") self.assertEqual(vocab_keys[-1] , "v") self.assertEqual(len(a) , 11_03) def _lowerCAmelCase ( self: Union[str, Any]) ->List[str]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03) def _lowerCAmelCase ( self: Tuple) ->Any: '''simple docstring''' a_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) a_ = self.tokenizer_class.from_pretrained(self.tmpdirname) a_ = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) a_ = rust_tokenizer([raw_input_str] , return_tensors=a , add_special_tokens=a).input_ids[0] a_ = py_tokenizer([raw_input_str] , return_tensors=a , add_special_tokens=a).input_ids[0] self.assertListEqual(a , a) def _lowerCAmelCase ( self: int) ->List[str]: '''simple docstring''' a_ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word a_ = "<mask_1> To ensure a <mask_2> flow of bank resolutions." a_ = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] a_ = tokenizer([raw_input_str] , return_tensors=a).input_ids[0] self.assertListEqual(a , a) def _lowerCAmelCase ( self: List[Any]) ->List[Any]: '''simple docstring''' a_ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 a_ = "To ensure a smooth flow of bank resolutions." a_ = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] a_ = tokenizer([raw_input_str] , return_tensors=a).input_ids[0] self.assertListEqual(a , a) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCAmelCase ( self: int) ->Union[str, Any]: '''simple docstring''' a_ = ["This is going to be way too long." * 1_50, "short example"] a_ = ["not super long but more than 5 tokens", "tiny"] a_ = self._large_tokenizer(a , padding=a , truncation=a , return_tensors="pt") a_ = self._large_tokenizer( text_target=a , max_length=5 , padding=a , truncation=a , return_tensors="pt") assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(a) == 2 # input_ids, attention_mask. @slow def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' a_ = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =PegasusTokenizer _UpperCAmelCase =PegasusTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Union[str, Any]) ->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing a_ = PegasusTokenizer(a , offset=0 , mask_token_sent=a , mask_token="[MASK]") tokenizer.save_pretrained(self.tmpdirname) @cached_property def _lowerCAmelCase ( self: Tuple) ->Any: '''simple docstring''' return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv") def _lowerCAmelCase ( self: List[Any] , **a: Dict) ->PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: str , a: List[Any]) ->Tuple: '''simple docstring''' return ("This is a test", "This is a test") def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' a_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) a_ = self.tokenizer_class.from_pretrained(self.tmpdirname) a_ = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) a_ = rust_tokenizer([raw_input_str] , return_tensors=a , add_special_tokens=a).input_ids[0] a_ = py_tokenizer([raw_input_str] , return_tensors=a , add_special_tokens=a).input_ids[0] self.assertListEqual(a , a) @require_torch def _lowerCAmelCase ( self: Tuple) ->Union[str, Any]: '''simple docstring''' a_ = ["This is going to be way too long." * 10_00, "short example"] a_ = ["not super long but more than 5 tokens", "tiny"] a_ = self._large_tokenizer(a , padding=a , truncation=a , return_tensors="pt") a_ = self._large_tokenizer( text_target=a , max_length=5 , padding=a , truncation=a , return_tensors="pt") assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(a) == 2 # input_ids, attention_mask. def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' a_ = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) a_ = self._large_tokenizer(a).input_ids self.assertListEqual( a , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
685
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
1
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' a_ = int(lowercase__ ) a_ , a_ , a_ = t // 3600, (t // 60) % 60, t % 60 return F"""{h}:{m:02d}:{s:02d}""" if h != 0 else F"""{m:02d}:{s:02d}""" def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__=300 ) -> Union[str, Any]: '''simple docstring''' return F""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: a_ = F"""{elt:.6f}""" if isinstance(lowercase__ ,lowercase__ ) else str(lowercase__ ) html_code += F""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =5 _UpperCAmelCase =0.2 def __init__( self: List[str] , a: int , a: Optional[str] = None , a: bool = True , a: Optional["NotebookTrainingTracker"] = None , a: int = 3_00 , ) ->Union[str, Any]: '''simple docstring''' a_ = total a_ = "" if prefix is None else prefix a_ = leave a_ = parent a_ = width a_ = None a_ = None a_ = None def _lowerCAmelCase ( self: List[str] , a: int , a: bool = False , a: str = None) ->str: '''simple docstring''' a_ = value if comment is not None: a_ = comment if self.last_value is None: a_ = a_ = time.time() a_ = a_ = value a_ = a_ = None a_ = self.warmup a_ = 1 self.update_bar(a) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 a_ = time.time() a_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: a_ = self.elapsed_time / (value - self.start_value) else: a_ = None if value >= self.total: a_ = self.total a_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: a_ = self.average_time_per_item * (self.total - value) self.update_bar(a) a_ = value a_ = current_time if self.average_time_per_item is None: a_ = 1 else: a_ = max(int(self.update_every / self.average_time_per_item) , 1) def _lowerCAmelCase ( self: Union[str, Any] , a: List[Any] , a: Union[str, Any]=None) ->Optional[Any]: '''simple docstring''' a_ = " " * (len(str(self.total)) - len(str(a))) + str(a) if self.elapsed_time is None: a_ = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: a_ = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time)}""" else: a_ = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <""" f""" {format_time(self.predicted_remaining)}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment) == 0 else f""", {self.comment}]""" self.display() def _lowerCAmelCase ( self: int) ->Union[str, Any]: '''simple docstring''' a_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: a_ = disp.display(disp.HTML(self.html_code) , display_id=a) else: self.output.update(disp.HTML(self.html_code)) def _lowerCAmelCase ( self: int) ->List[Any]: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML("")) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: Optional[Any] , a: Tuple , a: List[str]=None) ->List[str]: '''simple docstring''' super().__init__(a) a_ = None if column_names is None else [column_names] a_ = None def _lowerCAmelCase ( self: int) ->List[Any]: '''simple docstring''' a_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: a_ = disp.display(disp.HTML(self.html_code) , display_id=a) else: self.output.update(disp.HTML(self.html_code)) def _lowerCAmelCase ( self: Dict , a: Union[str, Any]) ->Dict: '''simple docstring''' if self.inner_table is None: a_ = [list(values.keys()), list(values.values())] else: a_ = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(a) a_ = columns self.inner_table.append([values[c] for c in columns]) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Dict=None , a: Optional[Any]=3_00) ->Optional[int]: '''simple docstring''' a_ = NotebookProgressBar(a , prefix=a , parent=self , width=a) return self.child_bar def _lowerCAmelCase ( self: Dict) ->List[str]: '''simple docstring''' a_ = None self.display() class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: Union[str, Any]) ->List[str]: '''simple docstring''' a_ = None a_ = None a_ = False def _lowerCAmelCase ( self: List[str] , a: Union[str, Any] , a: List[str] , a: Dict , **a: Any) ->Tuple: '''simple docstring''' a_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" a_ = 0 a_ = 0 a_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss") a_ = NotebookTrainingTracker(state.max_steps , a) def _lowerCAmelCase ( self: List[str] , a: List[Any] , a: List[str] , a: Any , **a: List[Any]) ->List[str]: '''simple docstring''' a_ = int(state.epoch) if int(state.epoch) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) a_ = False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: Dict , a: int , a: Dict=None , **a: List[str]) ->List[Any]: '''simple docstring''' if not has_length(a): return if self.prediction_bar is None: if self.training_tracker is not None: a_ = self.training_tracker.add_child(len(a)) else: a_ = NotebookProgressBar(len(a)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def _lowerCAmelCase ( self: Optional[Any] , a: Tuple , a: Any , a: Union[str, Any] , **a: List[Any]) ->Optional[Any]: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() a_ = None def _lowerCAmelCase ( self: Optional[Any] , a: List[str] , a: Optional[int] , a: Dict , a: Optional[int]=None , **a: List[Any]) ->Dict: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: a_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy a_ = state.global_step self.training_tracker.write_line(a) def _lowerCAmelCase ( self: List[Any] , a: Any , a: Dict , a: Dict , a: Optional[Any]=None , **a: List[Any]) ->Any: '''simple docstring''' if self.training_tracker is not None: a_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history): if "loss" in log: a_ = log["loss"] break if self.first_column == "Epoch": a_ = int(state.epoch) else: a_ = state.global_step a_ = "eval" for k in metrics: if k.endswith("_loss"): a_ = re.sub(r"\_loss$" , "" , a) a_ = metrics.pop("total_flos" , a) a_ = metrics.pop("epoch" , a) a_ = metrics.pop(f"""{metric_key_prefix}_runtime""" , a) a_ = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , a) a_ = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , a) a_ = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , a) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": a_ = v else: a_ = k.split("_") a_ = " ".join([part.capitalize() for part in splits[1:]]) a_ = v self.training_tracker.write_line(a) self.training_tracker.remove_child() a_ = None # Evaluation takes a long time so we should force the next update. a_ = True def _lowerCAmelCase ( self: Any , a: int , a: str , a: Tuple , **a: List[str]) ->List[Any]: '''simple docstring''' self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch)}/{state.num_train_epochs}""" , force_update=a) a_ = None
685
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> int: '''simple docstring''' a_ = MobileBertConfig.from_json_file(lowercase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) a_ = MobileBertForPreTraining(lowercase__ ) # Load weights from tf checkpoint a_ = load_tf_weights_in_mobilebert(lowercase__ ,lowercase__ ,lowercase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> list[list]: '''simple docstring''' a_ = current_set.copy() for row_index, row in enumerate(lowercase__ ): a_ = row[0] for column_index, column in enumerate(lowercase__ ): if magnitude == 0: a_ = column continue a_ = column / magnitude # Subtract to cancel term a_ = current_set[0] a_ = [first_row] a_ = current_set[1::] for row in current_set: a_ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowercase__ ) continue for column_index in range(len(lowercase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowercase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: a_ = final_set[0] a_ = [] a_ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) a_ = simplify(lowercase__ ) for i in range(len(lowercase__ ) ): resultant[i].insert(0 ,current_first_column[i] ) resultant.insert(0 ,lowercase__ ) a_ = resultant return final_set def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' if len(lowercase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) a_ = len(lowercase__ ) + 1 if any(len(lowercase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowercase__ ,(int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowercase__ ) == 1: return [equations[0][-1] / equations[0][0]] a_ = equations.copy() if any(0 in row for row in data_set ): a_ = data_set.copy() a_ = [] for row_index, row in enumerate(lowercase__ ): if 0 not in row: a_ = data_set.pop(lowercase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 ,lowercase__ ) a_ = data_set.copy() a_ = simplify(lowercase__ ) a_ = simplified[::-1] a_ = [] for row in simplified: a_ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue a_ = row.copy()[: len(lowercase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowercase__ ) == 0: solutions.append(0 ) continue a_ = temp_row[1::] a_ = temp_row[::-1] for column_index, column in enumerate(lowercase__ ): current_solution -= column * solutions[column_index] solutions.append(lowercase__ ) a_ = [] for item in solutions: final.append(float(round(lowercase__ ,5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() a_ = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
1
'''simple docstring''' from string import ascii_uppercase a_ = {char: i for i, char in enumerate(ascii_uppercase)} a_ = dict(enumerate(ascii_uppercase)) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> str: '''simple docstring''' a_ = len(lowercase__ ) a_ = 0 while True: if x == i: a_ = 0 if len(lowercase__ ) == len(lowercase__ ): break key += key[i] i += 1 return key def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> str: '''simple docstring''' a_ = "" a_ = 0 for letter in message: if letter == " ": cipher_text += " " else: a_ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> str: '''simple docstring''' a_ = "" a_ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: a_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __UpperCAmelCase () -> None: '''simple docstring''' a_ = "THE GERMAN ATTACK" a_ = "SECRET" a_ = generate_key(lowercase__ ,lowercase__ ) a_ = cipher_text(lowercase__ ,lowercase__ ) print(F"""Encrypted Text = {s}""" ) print(F"""Original Text = {original_text(lowercase__ ,lowercase__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
685
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
1
'''simple docstring''' from __future__ import annotations from random import choice def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' return choice(lowercase__ ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> int: '''simple docstring''' a_ = random_pivot(lowercase__ ) # partition based on pivot # linear time a_ = [e for e in lst if e < pivot] a_ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowercase__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowercase__ ) < k - 1: return kth_number(lowercase__ ,k - len(lowercase__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowercase__ ,lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller a_ = 3 def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' print("Generating primitive root of p" ) while True: a_ = random.randrange(3 ,lowercase__ ) if pow(lowercase__ ,2 ,lowercase__ ) == 1: continue if pow(lowercase__ ,lowercase__ ,lowercase__ ) == 1: continue return g def __UpperCAmelCase (lowercase__ ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print("Generating prime p..." ) a_ = rabin_miller.generate_large_prime(lowercase__ ) # select large prime number. a_ = primitive_root(lowercase__ ) # one primitive root on modulo p. a_ = random.randrange(3 ,lowercase__ ) # private_key -> have to be greater than 2 for safety. a_ = cryptomath.find_mod_inverse(pow(lowercase__ ,lowercase__ ,lowercase__ ) ,lowercase__ ) a_ = (key_size, e_a, e_a, p) a_ = (key_size, d) return public_key, private_key def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> None: '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() a_ , a_ = generate_key(lowercase__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" ,"w" ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" ,"w" ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def __UpperCAmelCase () -> None: '''simple docstring''' print("Making key files..." ) make_key_files("elgamal" ,2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
685
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
1
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = '▁' a_ = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } a_ = { 'facebook/m2m100_418M': 1_024, } # fmt: off a_ = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =['''input_ids''', '''attention_mask'''] _UpperCAmelCase =[] _UpperCAmelCase =[] def __init__( self: List[str] , a: List[str] , a: str , a: Tuple=None , a: int=None , a: Optional[int]="<s>" , a: Optional[int]="</s>" , a: Tuple="</s>" , a: Optional[int]="<pad>" , a: Optional[int]="<unk>" , a: Tuple="m2m100" , a: Optional[Dict[str, Any]] = None , a: Dict=8 , **a: List[str] , ) ->None: '''simple docstring''' a_ = {} if sp_model_kwargs is None else sp_model_kwargs a_ = language_codes a_ = FAIRSEQ_LANGUAGE_CODES[language_codes] a_ = {lang_code: f"""__{lang_code}__""" for lang_code in fairseq_language_code} a_ = kwargs.get("additional_special_tokens" , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(a) for lang_code in fairseq_language_code if self.get_lang_token(a) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a , tgt_lang=a , bos_token=a , eos_token=a , sep_token=a , unk_token=a , pad_token=a , language_codes=a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a , **a , ) a_ = vocab_file a_ = load_json(a) a_ = {v: k for k, v in self.encoder.items()} a_ = spm_file a_ = load_spm(a , self.sp_model_kwargs) a_ = len(self.encoder) a_ = { self.get_lang_token(a): self.encoder_size + i for i, lang_code in enumerate(a) } a_ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a)} a_ = {v: k for k, v in self.lang_token_to_id.items()} a_ = src_lang if src_lang is not None else "en" a_ = tgt_lang a_ = self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) a_ = num_madeup_words @property def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' return len(self.encoder) + len(self.lang_token_to_id) @property def _lowerCAmelCase ( self: List[str]) ->str: '''simple docstring''' return self._src_lang @src_lang.setter def _lowerCAmelCase ( self: Optional[int] , a: str) ->None: '''simple docstring''' a_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def _lowerCAmelCase ( self: Optional[Any] , a: str) ->List[str]: '''simple docstring''' return self.sp_model.encode(a , out_type=a) def _lowerCAmelCase ( self: Any , a: Tuple) ->Union[str, Any]: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(a , self.encoder[self.unk_token]) def _lowerCAmelCase ( self: Tuple , a: int) ->str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(a , self.unk_token) def _lowerCAmelCase ( self: List[str] , a: int) ->List[str]: '''simple docstring''' a_ = [] a_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a) + token a_ = [] else: current_sub_tokens.append(a) out_string += self.sp_model.decode(a) return out_string.strip() def _lowerCAmelCase ( self: int , a: List[int] , a: Optional[List[int]] = None , a: bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) a_ = [1] * len(self.prefix_tokens) a_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(a)) + suffix_ones return prefix_ones + ([0] * len(a)) + ([0] * len(a)) + suffix_ones def _lowerCAmelCase ( self: Union[str, Any] , a: List[int] , a: Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCAmelCase ( self: Dict) ->Dict: '''simple docstring''' a_ = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self: List[str]) ->Dict: '''simple docstring''' a_ = self.__dict__.copy() a_ = None return state def __setstate__( self: Optional[Any] , a: Dict) ->None: '''simple docstring''' a_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): a_ = {} a_ = load_spm(self.spm_file , self.sp_model_kwargs) def _lowerCAmelCase ( self: List[Any] , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = Path(a) if not save_dir.is_dir(): raise OSError(f"""{save_directory} should be a directory""") a_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) a_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , a) if os.path.abspath(self.spm_file) != os.path.abspath(a) and os.path.isfile(self.spm_file): copyfile(self.spm_file , a) elif not os.path.isfile(self.spm_file): with open(a , "wb") as fi: a_ = self.sp_model.serialized_model_proto() fi.write(a) return (str(a), str(a)) def _lowerCAmelCase ( self: Dict , a: List[str] , a: str = "en" , a: Optional[List[str]] = None , a: str = "ro" , **a: List[Any] , ) ->BatchEncoding: '''simple docstring''' a_ = src_lang a_ = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(a , a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Any , a: Optional[str] , a: Optional[str] , **a: Tuple) ->List[str]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") a_ = src_lang a_ = self(a , add_special_tokens=a , **a) a_ = self.get_lang_id(a) a_ = tgt_lang_id return inputs def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang) def _lowerCAmelCase ( self: Optional[int]) ->Any: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang) def _lowerCAmelCase ( self: str , a: str) ->None: '''simple docstring''' a_ = self.get_lang_token(a) a_ = self.lang_token_to_id[lang_token] a_ = [self.cur_lang_id] a_ = [self.eos_token_id] def _lowerCAmelCase ( self: Union[str, Any] , a: str) ->None: '''simple docstring''' a_ = self.get_lang_token(a) a_ = self.lang_token_to_id[lang_token] a_ = [self.cur_lang_id] a_ = [self.eos_token_id] def _lowerCAmelCase ( self: Tuple , a: str) ->str: '''simple docstring''' return self.lang_code_to_token[lang] def _lowerCAmelCase ( self: Optional[int] , a: str) ->int: '''simple docstring''' a_ = self.get_lang_token(a) return self.lang_token_to_id[lang_token] def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' a_ = sentencepiece.SentencePieceProcessor(**lowercase__ ) spm.Load(str(lowercase__ ) ) return spm def __UpperCAmelCase (lowercase__ ) -> Union[Dict, List]: '''simple docstring''' with open(lowercase__ ,"r" ) as f: return json.load(lowercase__ ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> None: '''simple docstring''' with open(lowercase__ ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ,indent=2 )
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging a_ = logging.get_logger(__name__) a_ = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''perceiver''' def __init__( self: Union[str, Any] , a: str=2_56 , a: Optional[int]=12_80 , a: Optional[Any]=7_68 , a: str=1 , a: int=26 , a: List[str]=8 , a: Any=8 , a: Dict=None , a: Dict=None , a: Optional[int]="kv" , a: Dict=1 , a: Optional[int]=1 , a: str="gelu" , a: Dict=0.1 , a: Optional[Any]=0.02 , a: Any=1e-12 , a: Dict=True , a: Optional[Any]=2_62 , a: str=20_48 , a: Any=56 , a: List[str]=[3_68, 4_96] , a: Optional[Any]=16 , a: List[str]=19_20 , a: Any=16 , a: Tuple=[1, 16, 2_24, 2_24] , **a: Dict , ) ->Optional[Any]: '''simple docstring''' super().__init__(**a) a_ = num_latents a_ = d_latents a_ = d_model a_ = num_blocks a_ = num_self_attends_per_block a_ = num_self_attention_heads a_ = num_cross_attention_heads a_ = qk_channels a_ = v_channels a_ = cross_attention_shape_for_attention a_ = self_attention_widening_factor a_ = cross_attention_widening_factor a_ = hidden_act a_ = attention_probs_dropout_prob a_ = initializer_range a_ = layer_norm_eps a_ = use_query_residual # masked language modeling attributes a_ = vocab_size a_ = max_position_embeddings # image classification attributes a_ = image_size # flow attributes a_ = train_size # multimodal autoencoding attributes a_ = num_frames a_ = audio_samples_per_frame a_ = samples_per_patch a_ = output_shape class SCREAMING_SNAKE_CASE__ ( lowercase_ ): @property def _lowerCAmelCase ( self: Any) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ]) @property def _lowerCAmelCase ( self: Any) ->float: '''simple docstring''' return 1e-4 def _lowerCAmelCase ( self: List[Any] , a: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , a: int = -1 , a: int = -1 , a: int = -1 , a: bool = False , a: Optional[TensorType] = None , a: int = 3 , a: int = 40 , a: int = 40 , ) ->Mapping[str, Any]: '''simple docstring''' if isinstance(a , a): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a_ = preprocessor.num_special_tokens_to_add(a) a_ = compute_effective_axis_dimension( a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a) # Generate dummy inputs according to compute batch and sequence a_ = [" ".join(["a"]) * seq_length] * batch_size a_ = dict(preprocessor(a , return_tensors=a)) a_ = inputs.pop("input_ids") return inputs elif isinstance(a , a) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a_ = compute_effective_axis_dimension(a , fixed_dimension=OnnxConfig.default_fixed_batch) a_ = self._generate_dummy_images(a , a , a , a) a_ = dict(preprocessor(images=a , return_tensors=a)) a_ = inputs.pop("pixel_values") return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.")
685
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) ,np.inf ) a_ = 0 a_ = np.empty((rows, cols) ,dtype=lowercase__ ) a_ = None while queue: ((a_) , (a_)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ ,(dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
685
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =BlenderbotSmallConfig _UpperCAmelCase ={} _UpperCAmelCase ='''gelu''' def __init__( self: List[str] , a: str , a: Tuple=13 , a: Any=7 , a: Union[str, Any]=True , a: str=False , a: str=99 , a: Union[str, Any]=32 , a: List[Any]=2 , a: Dict=4 , a: Optional[int]=37 , a: Optional[int]=0.1 , a: Any=0.1 , a: str=20 , a: Dict=2 , a: Optional[Any]=1 , a: Any=0 , ) ->Tuple: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = eos_token_id a_ = pad_token_id a_ = bos_token_id def _lowerCAmelCase ( self: Tuple) ->str: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) a_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) a_ = tf.concat([input_ids, eos_tensor] , axis=1) a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a_ = prepare_blenderbot_small_inputs_dict(a , a , a) return config, inputs_dict def _lowerCAmelCase ( self: Optional[int] , a: List[str] , a: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = TFBlenderbotSmallModel(config=a).get_decoder() a_ = inputs_dict["input_ids"] a_ = input_ids[:1, :] a_ = inputs_dict["attention_mask"][:1, :] a_ = inputs_dict["head_mask"] a_ = 1 # first forward pass a_ = model(a , attention_mask=a , head_mask=a , use_cache=a) a_ , a_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and a_ = tf.concat([input_ids, next_tokens] , axis=-1) a_ = tf.concat([attention_mask, next_attn_mask] , axis=-1) a_ = model(a , attention_mask=a)[0] a_ = model(a , attention_mask=a , past_key_values=a)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice a_ = int(ids_tensor((1,) , output_from_past.shape[-1])) a_ = output_from_no_past[:, -3:, random_slice_idx] a_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a , a , rtol=1e-3) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__=None ,lowercase__=None ,lowercase__=None ,lowercase__=None ,lowercase__=None ,) -> str: '''simple docstring''' if attention_mask is None: a_ = tf.cast(tf.math.not_equal(lowercase__ ,config.pad_token_id ) ,tf.inta ) if decoder_attention_mask is None: a_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape ,dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ) ,tf.inta ), ] ,axis=-1 ,) if head_mask is None: a_ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a_ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) _UpperCAmelCase =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () _UpperCAmelCase =( { '''conversational''': TFBlenderbotSmallForConditionalGeneration, '''feature-extraction''': TFBlenderbotSmallModel, '''summarization''': TFBlenderbotSmallForConditionalGeneration, '''text2text-generation''': TFBlenderbotSmallForConditionalGeneration, '''translation''': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) _UpperCAmelCase =True _UpperCAmelCase =False _UpperCAmelCase =False def _lowerCAmelCase ( self: List[str]) ->str: '''simple docstring''' a_ = TFBlenderbotSmallModelTester(self) a_ = ConfigTester(self , config_class=a) def _lowerCAmelCase ( self: Dict) ->str: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: str) ->List[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): _UpperCAmelCase =[ '''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ''' ''' i\'m going to throw up.\nand why is that?''' ] _UpperCAmelCase ='''facebook/blenderbot_small-90M''' @cached_property def _lowerCAmelCase ( self: Union[str, Any]) ->Dict: '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M") @cached_property def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' a_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def _lowerCAmelCase ( self: str) ->Tuple: '''simple docstring''' a_ = self.tokenizer(self.src_text , return_tensors="tf") a_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=a , ) a_ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=a)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
685
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule a_ = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =LxmertTokenizer _UpperCAmelCase =LxmertTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(a , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [7, 4, 5, 10, 8, 9]) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' if not self.test_rust_tokenizer: return a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = "I was born in 92000, and this is falsé." a_ = tokenizer.tokenize(a) a_ = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokenizer.encode(a , add_special_tokens=a) a_ = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) a_ = self.get_rust_tokenizer() a_ = tokenizer.encode(a) a_ = rust_tokenizer.encode(a) self.assertListEqual(a , a)
685
1
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> str: '''simple docstring''' if isinstance(lowercase__ ,lowercase__ ): a_ = np.full((len(lowercase__ ), sequence_length, 2) ,lowercase__ ) else: a_ = np.full((len(lowercase__ ), sequence_length) ,lowercase__ ) for i, tensor in enumerate(lowercase__ ): if padding_side == "right": if isinstance(lowercase__ ,lowercase__ ): a_ = tensor[:sequence_length] else: a_ = tensor[:sequence_length] else: if isinstance(lowercase__ ,lowercase__ ): a_ = tensor[:sequence_length] else: a_ = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' a_ = ord(lowercase__ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True a_ = unicodedata.category(lowercase__ ) if cat.startswith("P" ): return True return False @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =42 _UpperCAmelCase =True _UpperCAmelCase =None _UpperCAmelCase =None _UpperCAmelCase =-100 _UpperCAmelCase ="pt" def _lowerCAmelCase ( self: Tuple , a: Optional[int]) ->Optional[int]: '''simple docstring''' import torch a_ = "label" if "label" in features[0].keys() else "labels" a_ = [feature[label_name] for feature in features] if label_name in features[0].keys() else None a_ = self.tokenizer.pad( a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch a_ = torch.tensor(batch["entity_ids"]).shape[1] a_ = self.tokenizer.padding_side if padding_side == "right": a_ = [ list(a) + [self.label_pad_token_id] * (sequence_length - len(a)) for label in labels ] else: a_ = [ [self.label_pad_token_id] * (sequence_length - len(a)) + list(a) for label in labels ] a_ = [feature["ner_tags"] for feature in features] a_ = padding_tensor(a , -1 , a , a) a_ = [feature["original_entity_spans"] for feature in features] a_ = padding_tensor(a , (-1, -1) , a , a) a_ = {k: torch.tensor(a , dtype=torch.intaa) for k, v in batch.items()} return batch
685
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') a_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) _UpperCAmelCase =field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) _UpperCAmelCase =field( default=lowercase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =field(default=lowercase_ , metadata={'''help''': '''The input training data file (a text file).'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) _UpperCAmelCase =field( default=lowercase_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCAmelCase =field( default=lowercase_ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) _UpperCAmelCase =field( default=lowercase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) _UpperCAmelCase =field( default=lowercase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def _lowerCAmelCase ( self: str) ->Tuple: '''simple docstring''' if self.train_file is not None: a_ = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: a_ = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =42 _UpperCAmelCase =True _UpperCAmelCase =None _UpperCAmelCase =None def __call__( self: Optional[Any] , a: str) ->str: '''simple docstring''' a_ = "label" if "label" in features[0].keys() else "labels" a_ = [feature.pop(a) for feature in features] a_ = len(a) a_ = len(features[0]["input_ids"]) a_ = [ [{k: v[i] for k, v in feature.items()} for i in range(a)] for feature in features ] a_ = list(chain(*a)) a_ = self.tokenizer.pad( a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) # Un-flatten a_ = {k: v.view(a , a , -1) for k, v in batch.items()} # Add back labels a_ = torch.tensor(a , dtype=torch.intaa) return batch def __UpperCAmelCase () -> Tuple: '''simple docstring''' a_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a_ , a_ , a_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a_ , a_ , a_ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag" ,lowercase__ ,lowercase__ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a_ = training_args.get_process_log_level() logger.setLevel(lowercase__ ) datasets.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. a_ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a_ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: a_ = {} if data_args.train_file is not None: a_ = data_args.train_file if data_args.validation_file is not None: a_ = data_args.validation_file a_ = data_args.train_file.split("." )[-1] a_ = load_dataset( lowercase__ ,data_files=lowercase__ ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: # Downloading and loading the swag dataset from the hub. a_ = load_dataset( "swag" ,"regular" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) a_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) a_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=lowercase__ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) # When using your own dataset or a different dataset from swag, you will probably need to change this. a_ = [F"""ending{i}""" for i in range(4 )] a_ = "sent1" a_ = "sent2" if data_args.max_seq_length is None: a_ = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( "The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value" " of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can" " override this default with `--block_size xxx`." ) a_ = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) a_ = min(data_args.max_seq_length ,tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(lowercase__ ): a_ = [[context] * 4 for context in examples[context_name]] a_ = examples[question_header_name] a_ = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(lowercase__ ) ] # Flatten out a_ = list(chain(*lowercase__ ) ) a_ = list(chain(*lowercase__ ) ) # Tokenize a_ = tokenizer( lowercase__ ,lowercase__ ,truncation=lowercase__ ,max_length=lowercase__ ,padding="max_length" if data_args.pad_to_max_length else False ,) # Un-flatten return {k: [v[i : i + 4] for i in range(0 ,len(lowercase__ ) ,4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) a_ = raw_datasets["train"] if data_args.max_train_samples is not None: a_ = min(len(lowercase__ ) ,data_args.max_train_samples ) a_ = train_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): a_ = train_dataset.map( lowercase__ ,batched=lowercase__ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) a_ = raw_datasets["validation"] if data_args.max_eval_samples is not None: a_ = min(len(lowercase__ ) ,data_args.max_eval_samples ) a_ = eval_dataset.select(range(lowercase__ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): a_ = eval_dataset.map( lowercase__ ,batched=lowercase__ ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,) # Data collator a_ = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=lowercase__ ,pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(lowercase__ ): a_ , a_ = eval_predictions a_ = np.argmax(lowercase__ ,axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer a_ = Trainer( model=lowercase__ ,args=lowercase__ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,tokenizer=lowercase__ ,data_collator=lowercase__ ,compute_metrics=lowercase__ ,) # Training if training_args.do_train: a_ = None if training_args.resume_from_checkpoint is not None: a_ = training_args.resume_from_checkpoint elif last_checkpoint is not None: a_ = last_checkpoint a_ = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() # Saves the tokenizer too for easy upload a_ = train_result.metrics a_ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase__ ) ) a_ = min(lowercase__ ,len(lowercase__ ) ) trainer.log_metrics("train" ,lowercase__ ) trainer.save_metrics("train" ,lowercase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) a_ = trainer.evaluate() a_ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase__ ) a_ = min(lowercase__ ,len(lowercase__ ) ) trainer.log_metrics("eval" ,lowercase__ ) trainer.save_metrics("eval" ,lowercase__ ) a_ = { "finetuned_from": model_args.model_name_or_path, "tasks": "multiple-choice", "dataset_tags": "swag", "dataset_args": "regular", "dataset": "SWAG", "language": "en", } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> List[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
685
'''simple docstring''' import re def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' a_ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": a_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
685
1
'''simple docstring''' from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def __UpperCAmelCase () -> str: '''simple docstring''' a_ = ArgumentParser("Transformers CLI tool" ,usage="transformers-cli <command> [<args>]" ) a_ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowercase__ ) DownloadCommand.register_subcommand(lowercase__ ) EnvironmentCommand.register_subcommand(lowercase__ ) RunCommand.register_subcommand(lowercase__ ) ServeCommand.register_subcommand(lowercase__ ) UserCommands.register_subcommand(lowercase__ ) AddNewModelCommand.register_subcommand(lowercase__ ) AddNewModelLikeCommand.register_subcommand(lowercase__ ) LfsCommands.register_subcommand(lowercase__ ) PTtoTFCommand.register_subcommand(lowercase__ ) # Let's go a_ = parser.parse_args() if not hasattr(lowercase__ ,"func" ): parser.print_help() exit(1 ) # Run a_ = args.func(lowercase__ ) service.run() if __name__ == "__main__": main()
685
'''simple docstring''' import argparse import os import re a_ = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a_ = re.compile(r'\s*\(\s*"(\S[^"]+)"') def __UpperCAmelCase (lowercase__ ,lowercase__ = False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.read() a_ = content.split("\n" ) a_ = [] a_ = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a_ = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a_ = sorted(lowercase__ ,key=lambda lowercase__ : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def __UpperCAmelCase (lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = [os.path.join(lowercase__ ,lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(".py" )] a_ = [sort_auto_mapping(lowercase__ ,overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): a_ = [f for f, d in zip(lowercase__ ,lowercase__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase__ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def _lowerCAmelCase ( *a: Union[str, Any] , **a: List[Any]) ->str: '''simple docstring''' pass def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): _UpperCAmelCase =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowerCAmelCase ( self: List[str] , a: Optional[Any] , a: List[Any] , a: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = pipeline( "document-question-answering" , model=a , tokenizer=a , image_processor=a) a_ = INVOICE_URL a_ = list(zip(*apply_tesseract(load_image(a) , a , ""))) a_ = "What is the placebo?" a_ = [ { "image": load_image(a), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowerCAmelCase ( self: Dict , a: Optional[Any] , a: Optional[Any]) ->int: '''simple docstring''' a_ = dqa_pipeline(a , top_k=2) self.assertEqual( a , [ [ {"score": ANY(a), "answer": ANY(a), "start": ANY(a), "end": ANY(a)}, {"score": ANY(a), "answer": ANY(a), "start": ANY(a), "end": ANY(a)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self: str) ->str: '''simple docstring''' a_ = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2") a_ = INVOICE_URL a_ = "How many cats are there?" a_ = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual(nested_simplify(a , decimals=4) , a) a_ = dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual(nested_simplify(a , decimals=4) , a) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably a_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual(a , []) # We can optionnally pass directly the words and bounding boxes a_ = "./tests/fixtures/tests_samples/COCO/000000039769.png" a_ = [] a_ = [] a_ = dqa_pipeline(image=a , question=a , words=a , boxes=a , top_k=2) self.assertEqual(a , []) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) a_ = INVOICE_URL a_ = "What is the invoice number?" a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a_ = dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) a_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) a_ = INVOICE_URL a_ = "What is the invoice number?" a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a_ = dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) a_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a) a_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a , revision="3dc6de3" , ) a_ = INVOICE_URL a_ = "What is the invoice number?" a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a_ = dqa_pipeline({"image": image, "question": question} , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) a_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) a_ = list(zip(*apply_tesseract(load_image(a) , a , ""))) # This model should also work if `image` is set to None a_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a) a_ = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a , revision="3dc6de3" , max_seq_len=50 , ) a_ = INVOICE_URL a_ = "What is the invoice number?" a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) a_ = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) a_ = list(zip(*apply_tesseract(load_image(a) , a , ""))) # This model should also work if `image` is set to None a_ = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2) self.assertEqual( nested_simplify(a , decimals=4) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' a_ = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa") , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) a_ = INVOICE_URL a_ = "What is the invoice number?" a_ = dqa_pipeline(image=a , question=a , top_k=2) self.assertEqual(nested_simplify(a , decimals=4) , [{"answer": "us-001"}]) @require_tf @unittest.skip("Document question answering not implemented in TF") def _lowerCAmelCase ( self: Dict) ->List[str]: '''simple docstring''' pass
685
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = chkpt["model"] # We have the base model one level deeper than the original XLM repository a_ = {} for k, v in state_dict.items(): if "pred_layer" in k: a_ = v else: a_ = v a_ = chkpt["params"] a_ = {n: v for n, v in config.items() if not isinstance(lowercase__ ,(torch.FloatTensor, numpy.ndarray) )} a_ = chkpt["dico_word2id"] a_ = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" ,"" ): i for s, i in vocab.items()} # Save pytorch-model a_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME a_ = pytorch_dump_folder_path + "/" + CONFIG_NAME a_ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowercase__ ,lowercase__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(lowercase__ ,indent=2 ) + "\n" ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write(json.dumps(lowercase__ ,indent=2 ) + "\n" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
685
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''new-model''' if is_tf_available(): class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =NewModelConfig @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' a_ = "bert-base-cased" a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModel.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' a_ = "bert-base-cased" a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForPreTraining.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForCausalLM.from_pretrained(a) a_ , a_ = TFAutoModelForCausalLM.from_pretrained(a , output_loading_info=a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: str) ->List[Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelWithLMHead.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForMaskedLM.from_pretrained(a) a_ , a_ = TFAutoModelForMaskedLM.from_pretrained(a , output_loading_info=a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForSeqaSeqLM.from_pretrained(a) a_ , a_ = TFAutoModelForSeqaSeqLM.from_pretrained(a , output_loading_info=a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForSequenceClassification.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow def _lowerCAmelCase ( self: Tuple) ->List[Any]: '''simple docstring''' for model_name in ["bert-base-uncased"]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForQuestionAnswering.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) @slow @require_tensorflow_probability def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: a_ = AutoConfig.from_pretrained(a) self.assertIsNotNone(a) self.assertIsInstance(a , a) a_ = TFAutoModelForTableQuestionAnswering.from_pretrained(a) a_ , a_ = TFAutoModelForTableQuestionAnswering.from_pretrained( a , output_loading_info=a) self.assertIsNotNone(a) self.assertIsInstance(a , a) def _lowerCAmelCase ( self: Tuple) ->List[str]: '''simple docstring''' a_ = TFAutoModelWithLMHead.from_pretrained(a) self.assertIsInstance(a , a) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=a) , 1_44_10) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' a_ = TFAutoModelWithLMHead.from_pretrained(a) self.assertIsInstance(a , a) self.assertEqual(model.num_parameters() , 1_44_10) self.assertEqual(model.num_parameters(only_trainable=a) , 1_44_10) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny") self.assertIsInstance(a , a) a_ = copy.deepcopy(model.config) a_ = ["FunnelBaseModel"] a_ = TFAutoModel.from_config(a) self.assertIsInstance(a , a) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a) a_ = TFAutoModel.from_pretrained(a) self.assertIsInstance(a , a) def _lowerCAmelCase ( self: Any) ->Tuple: '''simple docstring''' try: AutoConfig.register("new-model" , a) a_ = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(a): auto_class.register(a , a) auto_class.register(a , a) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a): auto_class.register(a , a) # Now that the config is registered, it can be used as any other config with the auto-API a_ = BertModelTester(self).get_config() a_ = NewModelConfig(**tiny_config.to_dict()) a_ = auto_class.from_config(a) self.assertIsInstance(a , a) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a) a_ = auto_class.from_pretrained(a) self.assertIsInstance(a , a) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' with self.assertRaisesRegex( a , "bert-base is not a local folder and is not a valid model identifier"): a_ = TFAutoModel.from_pretrained("bert-base") def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' with self.assertRaisesRegex( a , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"): a_ = TFAutoModel.from_pretrained(a , revision="aaaaaa") def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( a , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): a_ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model") def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' with self.assertRaisesRegex(a , "Use `from_pt=True` to load this model"): a_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only") def _lowerCAmelCase ( self: int) ->List[str]: '''simple docstring''' a_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") with RequestCounter() as counter: a_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint a_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") with RequestCounter() as counter: a_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
685
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a_ = '<<<<<<< This should probably be modified because it mentions: ' a_ = '=======\n>>>>>>>\n' a_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] a_ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' return ConvertCommand(args.tfds_path ,args.datasets_directory ) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): @staticmethod def _lowerCAmelCase ( a: ArgumentParser) ->Tuple: '''simple docstring''' a_ = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=a , required=a , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=a , required=a , help="Path to the HuggingFace Datasets folder.") train_parser.set_defaults(func=a) def __init__( self: Optional[Any] , a: str , a: str , *a: Tuple) ->List[Any]: '''simple docstring''' a_ = get_logger("datasets-cli/converting") a_ = tfds_path a_ = datasets_directory def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' if os.path.isdir(self._tfds_path): a_ = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): a_ = os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") a_ = os.path.abspath(self._datasets_directory) self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""") a_ = [] a_ = [] a_ = {} if os.path.isdir(self._tfds_path): a_ = os.listdir(a) else: a_ = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(f"""Looking at file {f_name}""") a_ = os.path.join(a , a) a_ = os.path.join(a , a) if not os.path.isfile(a) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(a , encoding="utf-8") as f: a_ = f.readlines() a_ = [] a_ = False a_ = False a_ = [] for line in lines: a_ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a_ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a_ = "" continue elif "from absl import logging" in out_line: a_ = "from datasets import logging\n" elif "getLogger" in out_line: a_ = out_line.replace("getLogger" , "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): a_ = True a_ = list(filter(lambda a: e in out_line , a)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(a) + "\n") out_lines.append(a) out_lines.append(a) continue else: for pattern, replacement in TO_CONVERT: a_ = re.sub(a , a , a) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a_ = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , a) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) a_ = "from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"""Error converting {out_line.strip()}""") if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a_ = True out_lines.append(a) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a_ = f_name.replace(".py" , "") a_ = os.path.join(a , a) a_ = os.path.join(a , a) os.makedirs(a , exist_ok=a) self._logger.info(f"""Adding directory {output_dir}""") imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(a) if needs_manual_update: with_manual_update.append(a) with open(a , "w" , encoding="utf-8") as f: f.writelines(a) self._logger.info(f"""Converted in {output_file}""") for utils_file in utils_files: try: a_ = os.path.basename(a) a_ = imports_to_builder_map[f_name.replace(".py" , "")] self._logger.info(f"""Moving {dest_folder} to {utils_file}""") shutil.copy(a , a) except KeyError: self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""") if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""")
685
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> list[int]: '''simple docstring''' a_ = len(lowercase__ ) for i in range(lowercase__ ): for j in range(i + 1 ,lowercase__ ): if numbers[j] < numbers[i]: a_ , a_ = numbers[j], numbers[i] return numbers if __name__ == "__main__": a_ = input('Enter numbers separated by a comma:\n').strip() a_ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
685
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
1
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Union[str, Any]: '''simple docstring''' a_ = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] a_ = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } a_ = F"""{src_lang}-{tgt_lang}""" a_ = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=lowercase__ ,exist_ok=lowercase__ ) a_ = os.path.join(lowercase__ ,"README.md" ) print(F"""Generating {path}""" ) with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write(lowercase__ ) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: a_ = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' a_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} a_ = ['a', 'b', 'c', 'd', 'e'] def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> str: '''simple docstring''' a_ = start # add current to visited visited.append(lowercase__ ) a_ = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: a_ = topological_sort(lowercase__ ,lowercase__ ,lowercase__ ) # if all neighbors visited add current to sort sort.append(lowercase__ ) # if all vertices haven't been visited select a new one to visit if len(lowercase__ ) != len(lowercase__ ): for vertice in vertices: if vertice not in visited: a_ = topological_sort(lowercase__ ,lowercase__ ,lowercase__ ) # return sort return sort if __name__ == "__main__": a_ = topological_sort('a', [], []) print(sort)
685
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''roberta-prelayernorm''' def __init__( self: Tuple , a: Tuple=5_02_65 , a: List[Any]=7_68 , a: Tuple=12 , a: Dict=12 , a: Optional[int]=30_72 , a: Any="gelu" , a: int=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: Tuple=2 , a: Any=0.02 , a: str=1e-12 , a: List[str]=1 , a: int=0 , a: Union[str, Any]=2 , a: Tuple="absolute" , a: Any=True , a: Any=None , **a: Dict , ) ->Optional[int]: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class SCREAMING_SNAKE_CASE__ ( lowercase_ ): @property def _lowerCAmelCase ( self: Dict) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
685
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
1
'''simple docstring''' a_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} a_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> list[int]: '''simple docstring''' a_ = True a_ = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(lowercase__ ,lowercase__ ,lowercase__ ) order.append(lowercase__ ) return order def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> list[int]: '''simple docstring''' a_ = True a_ = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(lowercase__ ,lowercase__ ,lowercase__ ) return component def __UpperCAmelCase (lowercase__ ) -> list[list[int]]: '''simple docstring''' a_ = len(lowercase__ ) * [False] a_ = {vert: [] for vert in range(len(lowercase__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(lowercase__ ) a_ = [] for i, was_visited in enumerate(lowercase__ ): if not was_visited: order += topology_sort(lowercase__ ,lowercase__ ,lowercase__ ) a_ = [] a_ = len(lowercase__ ) * [False] for i in range(len(lowercase__ ) ): a_ = order[len(lowercase__ ) - i - 1] if not visited[vert]: a_ = find_components(lowercase__ ,lowercase__ ,lowercase__ ) components_list.append(lowercase__ ) return components_list
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig a_ = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''albert''' def __init__( self: Dict , a: List[str]=3_00_00 , a: Union[str, Any]=1_28 , a: Union[str, Any]=40_96 , a: List[Any]=12 , a: Optional[int]=1 , a: Tuple=64 , a: Any=1_63_84 , a: Union[str, Any]=1 , a: int="gelu_new" , a: Dict=0 , a: Dict=0 , a: Tuple=5_12 , a: int=2 , a: int=0.02 , a: str=1e-12 , a: Any=0.1 , a: int="absolute" , a: Tuple=0 , a: List[Any]=2 , a: Tuple=3 , **a: int , ) ->Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = embedding_size a_ = hidden_size a_ = num_hidden_layers a_ = num_hidden_groups a_ = num_attention_heads a_ = inner_group_num a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = classifier_dropout_prob a_ = position_embedding_type class SCREAMING_SNAKE_CASE__ ( lowercase_ ): @property def _lowerCAmelCase ( self: str) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ])
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
1
'''simple docstring''' import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) _UpperCAmelCase =field(default=lowercase_ , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) _UpperCAmelCase =field(default=lowercase_ , metadata={'''help''': '''whether to use adafactor'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) _UpperCAmelCase =field(default=lowercase_ , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) _UpperCAmelCase =field( default=lowercase_ , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) _UpperCAmelCase =field( default='''linear''' , metadata={'''help''': F'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
685
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
1
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' if hor == 128: a_ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a_ = (32, 128, 256) a_ = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: a_ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") a_ = (32, 64, 128, 256) a_ = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") a_ = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) a_ = model.state_dict() a_ = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } a_ = UNetaDModel(**lowercase__ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) a_ = dict(zip(model.state_dict().keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a_ = state_dict.pop(lowercase__ ) hf_value_function.load_state_dict(lowercase__ ) torch.save(hf_value_function.state_dict() ,F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) def __UpperCAmelCase () -> int: '''simple docstring''' a_ = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } a_ = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) a_ = model a_ = UNetaDModel(**lowercase__ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) a_ = dict(zip(state_dict.keys() ,hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): a_ = state_dict.pop(lowercase__ ) hf_value_function.load_state_dict(lowercase__ ) torch.save(hf_value_function.state_dict() ,"hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
685
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
1
'''simple docstring''' from typing import Any import numpy as np def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' return np.array_equal(lowercase__ ,matrix.conjugate().T ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = v.conjugate().T a_ = v_star.dot(lowercase__ ) assert isinstance(lowercase__ ,np.ndarray ) return (v_star_dot.dot(lowercase__ )) / (v_star.dot(lowercase__ )) def __UpperCAmelCase () -> None: '''simple docstring''' a_ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) a_ = np.array([[1], [2], [3]] ) assert is_hermitian(lowercase__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(lowercase__ ,lowercase__ ) ) a_ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(lowercase__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(lowercase__ ,lowercase__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
685
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) a_ = str(bin(lowercase__ ) )[2:] # remove the leading "0b" a_ = str(bin(lowercase__ ) )[2:] # remove the leading "0b" a_ = max(len(lowercase__ ) ,len(lowercase__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) ,b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =42 _UpperCAmelCase =field(default_factory=lowercase_ ) _UpperCAmelCase =field(default_factory=lowercase_ ) def _lowerCAmelCase ( self: Optional[int] , a: List[Any] , a: Tensor , a: Tensor) ->Tuple: '''simple docstring''' a_ = len(list(m.modules())) == 1 or isinstance(a , nn.Convad) or isinstance(a , nn.BatchNormad) if has_not_submodules: self.traced.append(a) def __call__( self: str , a: Tensor) ->Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(a) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[Any]: '''simple docstring''' return list(filter(lambda a: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =42 _UpperCAmelCase =42 _UpperCAmelCase =0 _UpperCAmelCase =field(default_factory=lowercase_ ) _UpperCAmelCase =field(default_factory=lowercase_ ) def __call__( self: List[str] , a: Tensor) ->int: '''simple docstring''' a_ = Tracker(self.dest)(a).parametrized a_ = Tracker(self.src)(a).parametrized a_ = list(filter(lambda a: type(a) not in self.src_skip , a)) a_ = list(filter(lambda a: type(a) not in self.dest_skip , a)) if len(a) != len(a): raise Exception( f"""Numbers of operations are different. Source module has {len(a)} operations while""" f""" destination module has {len(a)}.""") for dest_m, src_m in zip(a , a): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""") def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = True ) -> Union[str, Any]: '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): a_ = timm.create_model(lowercase__ ,pretrained=lowercase__ ).eval() a_ = ResNetForImageClassification(lowercase__ ).eval() a_ = ModuleTransfer(src=lowercase__ ,dest=lowercase__ ) a_ = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase__ ) assert torch.allclose(from_model(lowercase__ ) ,our_model(lowercase__ ).logits ), "The model logits don't match the original one." a_ = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(lowercase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add model" ,use_temp_dir=lowercase__ ,) # we can use the convnext one a_ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add image processor" ,use_temp_dir=lowercase__ ,) print(F"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase (lowercase__ ,lowercase__ = None ,lowercase__ = True ) -> int: '''simple docstring''' a_ = "imagenet-1k-id2label.json" a_ = 1000 a_ = (1, num_labels) a_ = "huggingface/label-files" a_ = num_labels a_ = json.load(open(hf_hub_download(lowercase__ ,lowercase__ ,repo_type="dataset" ) ,"r" ) ) a_ = {int(lowercase__ ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} a_ = partial(lowercase__ ,num_labels=lowercase__ ,idalabel=lowercase__ ,labelaid=lowercase__ ) a_ = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), } if model_name: convert_weight_and_push(lowercase__ ,names_to_config[model_name] ,lowercase__ ,lowercase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) return config, expected_shape if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) a_ = parser.parse_args() a_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
685
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
1
'''simple docstring''' import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self: Dict , a: Union[str, Any] , a: int=13 , a: Any=7 , a: int=True , a: List[Any]=True , a: int=True , a: Optional[int]=True , a: List[Any]=99 , a: Tuple=32 , a: List[str]=5 , a: Union[str, Any]=4 , a: Tuple=37 , a: Optional[Any]="gelu" , a: Any=0.1 , a: List[Any]=0.1 , a: List[Any]=5_12 , a: List[str]=16 , a: Optional[Any]=2 , a: str=0.02 , a: Optional[int]=4 , ) ->Union[str, Any]: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_attention_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_choices def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_attention_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=a , ) return config, input_ids, attention_mask def _lowerCAmelCase ( self: Union[str, Any]) ->List[str]: '''simple docstring''' a_ = self.prepare_config_and_inputs() a_ , a_ , a_ = config_and_inputs a_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = FlaxDistilBertModelTester(self) @slow def _lowerCAmelCase ( self: Union[str, Any]) ->Dict: '''simple docstring''' for model_class_name in self.all_model_classes: a_ = model_class_name.from_pretrained("distilbert-base-uncased") a_ = model(np.ones((1, 1))) self.assertIsNotNone(a) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: Any) ->str: '''simple docstring''' a_ = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased") a_ = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) a_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) a_ = model(a , attention_mask=a)[0] a_ = (1, 11, 7_68) self.assertEqual(output.shape , a) a_ = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4))
685
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) ,np.inf ) a_ = 0 a_ = np.empty((rows, cols) ,dtype=lowercase__ ) a_ = None while queue: ((a_) , (a_)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ ,(dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
685
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __UpperCAmelCase () -> str: '''simple docstring''' a_ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" ,type=lowercase__ ,default=1 ,help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" ,type=lowercase__ ,help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) ,) # rest from the training program parser.add_argument("training_script_args" ,nargs=lowercase__ ) return parser.parse_args() def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = parse_args() # Import training_script as a module. a_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a_ = script_fpath.stem a_ = importlib.import_module(lowercase__ ) # Patch sys.argv a_ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
685
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =LxmertTokenizer _UpperCAmelCase =LxmertTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(a , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [7, 4, 5, 10, 8, 9]) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' if not self.test_rust_tokenizer: return a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = "I was born in 92000, and this is falsé." a_ = tokenizer.tokenize(a) a_ = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokenizer.encode(a , add_special_tokens=a) a_ = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) a_ = self.get_rust_tokenizer() a_ = tokenizer.encode(a) a_ = rust_tokenizer.encode(a) self.assertListEqual(a , a)
685
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a_ = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(lowercase_ ) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''rag''' _UpperCAmelCase =True def __init__( self: Tuple , a: Tuple=None , a: Tuple=True , a: Any=None , a: Tuple=None , a: Union[str, Any]=None , a: int=None , a: Optional[Any]=None , a: Optional[int]=" / " , a: Optional[int]=" // " , a: Any=5 , a: Union[str, Any]=3_00 , a: str=7_68 , a: List[str]=8 , a: str="wiki_dpr" , a: Union[str, Any]="train" , a: List[Any]="compressed" , a: List[str]=None , a: Any=None , a: str=False , a: Dict=False , a: List[str]=0.0 , a: List[str]=True , a: Tuple=False , a: str=False , a: List[Any]=False , a: Union[str, Any]=True , a: str=None , **a: Any , ) ->Optional[Any]: '''simple docstring''' super().__init__( bos_token_id=a , pad_token_id=a , eos_token_id=a , decoder_start_token_id=a , forced_eos_token_id=a , is_encoder_decoder=a , prefix=a , vocab_size=a , **a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" a_ = kwargs.pop("question_encoder") a_ = question_encoder_config.pop("model_type") a_ = kwargs.pop("generator") a_ = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig a_ = AutoConfig.for_model(a , **a) a_ = AutoConfig.for_model(a , **a) a_ = reduce_loss a_ = label_smoothing a_ = exclude_bos_score a_ = do_marginalize a_ = title_sep a_ = doc_sep a_ = n_docs a_ = max_combined_length a_ = dataset a_ = dataset_split a_ = index_name a_ = retrieval_vector_size a_ = retrieval_batch_size a_ = passages_path a_ = index_path a_ = use_dummy_dataset a_ = output_retrieved a_ = do_deduplication a_ = use_cache if self.forced_eos_token_id is None: a_ = getattr(self.generator , "forced_eos_token_id" , a) @classmethod def _lowerCAmelCase ( cls: Optional[int] , a: PretrainedConfig , a: PretrainedConfig , **a: List[str]) ->PretrainedConfig: '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **a) def _lowerCAmelCase ( self: List[Any]) ->Tuple: '''simple docstring''' a_ = copy.deepcopy(self.__dict__) a_ = self.question_encoder.to_dict() a_ = self.generator.to_dict() a_ = self.__class__.model_type return output
685
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
1
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def __UpperCAmelCase (lowercase__ ) -> str: '''simple docstring''' if not sentence: return "" a_ = dict(zip(lowercase__ ,lowercase__ ) ) return lower_to_upper.get(sentence[0] ,sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
685
'''simple docstring''' import re def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' a_ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": a_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
685
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) # TODO Update this a_ = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''esm''' def __init__( self: int , a: int=None , a: List[Any]=None , a: Tuple=None , a: Dict=7_68 , a: Tuple=12 , a: Union[str, Any]=12 , a: int=30_72 , a: Tuple=0.1 , a: List[Any]=0.1 , a: Optional[int]=10_26 , a: int=0.02 , a: List[Any]=1e-12 , a: str="absolute" , a: Any=True , a: Tuple=None , a: Dict=False , a: Any=False , a: Any=None , a: Optional[Any]=None , **a: Optional[int] , ) ->Any: '''simple docstring''' super().__init__(pad_token_id=a , mask_token_id=a , **a) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = emb_layer_norm_before a_ = token_dropout a_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values.") a_ = EsmFoldConfig() elif isinstance(a , a): a_ = EsmFoldConfig(**a) a_ = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!") a_ = get_default_vocab_list() else: a_ = vocab_list else: a_ = None a_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , a): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!") def _lowerCAmelCase ( self: List[str]) ->Dict: '''simple docstring''' a_ = super().to_dict() if isinstance(self.esmfold_config , a): a_ = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =None _UpperCAmelCase =True _UpperCAmelCase =False _UpperCAmelCase =False _UpperCAmelCase =False _UpperCAmelCase =0 _UpperCAmelCase =True _UpperCAmelCase =False _UpperCAmelCase =128 _UpperCAmelCase =None def _lowerCAmelCase ( self: Dict) ->Dict: '''simple docstring''' if self.trunk is None: a_ = TrunkConfig() elif isinstance(self.trunk , a): a_ = TrunkConfig(**self.trunk) def _lowerCAmelCase ( self: Optional[Any]) ->List[Any]: '''simple docstring''' a_ = asdict(self) a_ = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =48 _UpperCAmelCase =1024 _UpperCAmelCase =128 _UpperCAmelCase =32 _UpperCAmelCase =32 _UpperCAmelCase =32 _UpperCAmelCase =0 _UpperCAmelCase =0 _UpperCAmelCase =False _UpperCAmelCase =4 _UpperCAmelCase =128 _UpperCAmelCase =None def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' if self.structure_module is None: a_ = StructureModuleConfig() elif isinstance(self.structure_module , a): a_ = StructureModuleConfig(**self.structure_module) if self.max_recycles <= 0: raise ValueError(f"""`max_recycles` should be positive, got {self.max_recycles}.""") if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f""" {self.sequence_state_dim} and {self.sequence_state_dim}.""") if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""") a_ = self.sequence_state_dim // self.sequence_head_width a_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""") if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""") if self.pairwise_state_dim % 2 != 0: raise ValueError(f"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""") if self.dropout >= 0.4: raise ValueError(f"""`dropout` should not be greater than 0.4, got {self.dropout}.""") def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = asdict(self) a_ = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =384 _UpperCAmelCase =128 _UpperCAmelCase =16 _UpperCAmelCase =128 _UpperCAmelCase =12 _UpperCAmelCase =4 _UpperCAmelCase =8 _UpperCAmelCase =0.1 _UpperCAmelCase =8 _UpperCAmelCase =1 _UpperCAmelCase =2 _UpperCAmelCase =7 _UpperCAmelCase =10 _UpperCAmelCase =1e-8 _UpperCAmelCase =1e5 def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' return asdict(self) def __UpperCAmelCase () -> Optional[int]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
685
'''simple docstring''' import argparse import os import re a_ = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a_ = re.compile(r'\s*\(\s*"(\S[^"]+)"') def __UpperCAmelCase (lowercase__ ,lowercase__ = False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.read() a_ = content.split("\n" ) a_ = [] a_ = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a_ = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a_ = sorted(lowercase__ ,key=lambda lowercase__ : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def __UpperCAmelCase (lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = [os.path.join(lowercase__ ,lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(".py" )] a_ = [sort_auto_mapping(lowercase__ ,overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): a_ = [f for f, d in zip(lowercase__ ,lowercase__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase__ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' a_ = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function" ) a_ = hex_num[0] == "-" if is_negative: a_ = hex_num[1:] try: a_ = int(lowercase__ ,16 ) except ValueError: raise ValueError("Invalid value was passed to the function" ) a_ = "" while int_num > 0: a_ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class SCREAMING_SNAKE_CASE__ : def __init__( self: List[str] , a: Optional[Any] , a: Union[str, Any] , a: bool = True , a: bool = False) ->Any: '''simple docstring''' a_ = scheduler a_ = optimizers if isinstance(a , (list, tuple)) else [optimizers] a_ = split_batches a_ = step_with_optimizer a_ = GradientState() def _lowerCAmelCase ( self: Optional[Any] , *a: str , **a: Optional[int]) ->Optional[Any]: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*a , **a) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*a , **a) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step a_ = AcceleratorState().num_processes for _ in range(a): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps"): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*a , **a) else: self.scheduler.step(*a , **a) def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' return self.scheduler.get_last_lr() def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' return self.scheduler.state_dict() def _lowerCAmelCase ( self: List[str] , a: List[str]) ->Optional[int]: '''simple docstring''' self.scheduler.load_state_dict(a) def _lowerCAmelCase ( self: Tuple) ->int: '''simple docstring''' return self.scheduler.get_lr() def _lowerCAmelCase ( self: Dict , *a: int , **a: Any) ->Optional[int]: '''simple docstring''' return self.scheduler.print_lr(*a , **a)
685
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase ='''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCAmelCase ( self: str , a: Optional[int]=0) ->int: '''simple docstring''' a_ = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(a)) a_ = np.random.RandomState(a) a_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=a) a_ = self.get_dummy_inputs() a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) a_ = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") a_ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a) pipe.set_progress_bar_config(disable=a) a_ = self.get_dummy_inputs() a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _lowerCAmelCase ( self: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") a_ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) # warmup pass to apply optimizations a_ = pipe(**self.get_dummy_inputs()) a_ = self.get_dummy_inputs() a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _lowerCAmelCase ( self: List[Any]) ->str: '''simple docstring''' a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") a_ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) a_ = self.get_dummy_inputs() a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _lowerCAmelCase ( self: Tuple) ->Optional[int]: '''simple docstring''' a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") a_ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) a_ = self.get_dummy_inputs() a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def _lowerCAmelCase ( self: Union[str, Any]) ->Union[str, Any]: '''simple docstring''' a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") a_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=a) a_ = self.get_dummy_inputs() a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a_ = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def _lowerCAmelCase ( self: Optional[Any]) ->List[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCAmelCase ( self: str) ->str: '''simple docstring''' a_ = ort.SessionOptions() a_ = False return options def _lowerCAmelCase ( self: List[Any]) ->int: '''simple docstring''' a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") a_ = init_image.resize((7_68, 5_12)) # using the PNDM scheduler by default a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a) a_ = "A fantasy landscape, trending on artstation" a_ = np.random.RandomState(0) a_ = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) a_ = output.images a_ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) a_ = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") a_ = init_image.resize((7_68, 5_12)) a_ = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx") a_ = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a) a_ = "A fantasy landscape, trending on artstation" a_ = np.random.RandomState(0) a_ = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) a_ = output.images a_ = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) a_ = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
685
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a_ = logging.get_logger(__name__) a_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } a_ = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } a_ = { 'facebook/blenderbot_small-90M': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =BlenderbotSmallTokenizer def __init__( self: str , a: Optional[Any]=None , a: Optional[int]=None , a: Tuple="<|endoftext|>" , a: Any="<|endoftext|>" , a: int="<|endoftext|>" , a: List[Any]=False , a: Optional[Any]=True , **a: Dict , ) ->Union[str, Any]: '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=a , merges=a , add_prefix_space=a , trim_offsets=a , ) , bos_token=a , eos_token=a , unk_token=a , **a , ) a_ = add_prefix_space def _lowerCAmelCase ( self: Tuple , a: str , a: List[str]=None) ->Dict: '''simple docstring''' a_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self: Dict , a: List[int] , a: Optional[List[int]] = None) ->List[int]: '''simple docstring''' a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
685
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
1
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig a_ = logging.get_logger(__name__) # General docstring a_ = 'RegNetConfig' # Base docstring a_ = 'facebook/regnet-y-040' a_ = [1, 1_088, 7, 7] # Image classification docstring a_ = 'facebook/regnet-y-040' a_ = 'tabby, tabby cat' a_ = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , a: int , a: int = 3 , a: int = 1 , a: int = 1 , a: Optional[str] = "relu" , **a: Any , ) ->Optional[Any]: '''simple docstring''' super().__init__(**a) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2) a_ = tf.keras.layers.ConvaD( filters=a , kernel_size=a , strides=a , padding="VALID" , groups=a , use_bias=a , name="convolution" , ) a_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization") a_ = ACTaFN[activation] if activation is not None else tf.identity def _lowerCAmelCase ( self: Optional[Any] , a: Tuple) ->Tuple: '''simple docstring''' a_ = self.convolution(self.padding(a)) a_ = self.normalization(a) a_ = self.activation(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Dict , a: RegNetConfig , **a: List[Any]) ->Union[str, Any]: '''simple docstring''' super().__init__(**a) a_ = config.num_channels a_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def _lowerCAmelCase ( self: Optional[Any] , a: Any) ->Optional[int]: '''simple docstring''' a_ = shape_list(a)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration.") # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a_ = tf.transpose(a , perm=(0, 2, 3, 1)) a_ = self.embedder(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Any , a: int , a: int = 2 , **a: int) ->List[str]: '''simple docstring''' super().__init__(**a) a_ = tf.keras.layers.ConvaD( filters=a , kernel_size=1 , strides=a , use_bias=a , name="convolution") a_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization") def _lowerCAmelCase ( self: Optional[Any] , a: tf.Tensor , a: bool = False) ->tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(a) , training=a) class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Tuple , a: int , a: int , **a: Any) ->Optional[int]: '''simple docstring''' super().__init__(**a) a_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a , name="pooler") a_ = [ tf.keras.layers.ConvaD(filters=a , kernel_size=1 , activation="relu" , name="attention.0"), tf.keras.layers.ConvaD(filters=a , kernel_size=1 , activation="sigmoid" , name="attention.2"), ] def _lowerCAmelCase ( self: List[str] , a: Union[str, Any]) ->Any: '''simple docstring''' a_ = self.pooler(a) for layer_module in self.attention: a_ = layer_module(a) a_ = hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[int] , a: RegNetConfig , a: int , a: int , a: int = 1 , **a: Any) ->Tuple: '''simple docstring''' super().__init__(**a) a_ = in_channels != out_channels or stride != 1 a_ = max(1 , out_channels // config.groups_width) a_ = ( TFRegNetShortCut(a , stride=a , name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut") ) # `self.layers` instead of `self.layer` because that is a reserved argument. a_ = [ TFRegNetConvLayer(a , kernel_size=1 , activation=config.hidden_act , name="layer.0"), TFRegNetConvLayer( a , stride=a , groups=a , activation=config.hidden_act , name="layer.1"), TFRegNetConvLayer(a , kernel_size=1 , activation=a , name="layer.2"), ] a_ = ACTaFN[config.hidden_act] def _lowerCAmelCase ( self: List[Any] , a: List[str]) ->Optional[Any]: '''simple docstring''' a_ = hidden_state for layer_module in self.layers: a_ = layer_module(a) a_ = self.shortcut(a) hidden_state += residual a_ = self.activation(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , a: RegNetConfig , a: int , a: int , a: int = 1 , **a: List[Any]) ->List[str]: '''simple docstring''' super().__init__(**a) a_ = in_channels != out_channels or stride != 1 a_ = max(1 , out_channels // config.groups_width) a_ = ( TFRegNetShortCut(a , stride=a , name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut") ) a_ = [ TFRegNetConvLayer(a , kernel_size=1 , activation=config.hidden_act , name="layer.0"), TFRegNetConvLayer( a , stride=a , groups=a , activation=config.hidden_act , name="layer.1"), TFRegNetSELayer(a , reduced_channels=int(round(in_channels / 4)) , name="layer.2"), TFRegNetConvLayer(a , kernel_size=1 , activation=a , name="layer.3"), ] a_ = ACTaFN[config.hidden_act] def _lowerCAmelCase ( self: str , a: Any) ->List[str]: '''simple docstring''' a_ = hidden_state for layer_module in self.layers: a_ = layer_module(a) a_ = self.shortcut(a) hidden_state += residual a_ = self.activation(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Optional[Any] , a: RegNetConfig , a: int , a: int , a: int = 2 , a: int = 2 , **a: Optional[int]) ->List[str]: '''simple docstring''' super().__init__(**a) a_ = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer a_ = [ # downsampling is done in the first layer with stride of 2 layer(a , a , a , stride=a , name="layers.0"), *[layer(a , a , a , name=f"""layers.{i+1}""") for i in range(depth - 1)], ] def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->Optional[int]: '''simple docstring''' for layer_module in self.layers: a_ = layer_module(a) return hidden_state class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): def __init__( self: Tuple , a: RegNetConfig , **a: Union[str, Any]) ->Optional[Any]: '''simple docstring''' super().__init__(**a) a_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , )) a_ = zip(config.hidden_sizes , config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(a , config.depths[1:])): self.stages.append(TFRegNetStage(a , a , a , depth=a , name=f"""stages.{i+1}""")) def _lowerCAmelCase ( self: List[Any] , a: tf.Tensor , a: bool = False , a: bool = True) ->TFBaseModelOutputWithNoAttention: '''simple docstring''' a_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ = hidden_states + (hidden_state,) a_ = stage_module(a) if output_hidden_states: a_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=a , hidden_states=a) @keras_serializable class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): _UpperCAmelCase =RegNetConfig def __init__( self: Optional[Any] , a: List[str] , **a: Optional[int]) ->str: '''simple docstring''' super().__init__(**a) a_ = config a_ = TFRegNetEmbeddings(a , name="embedder") a_ = TFRegNetEncoder(a , name="encoder") a_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=a , name="pooler") @unpack_inputs def _lowerCAmelCase ( self: Optional[int] , a: tf.Tensor , a: Optional[bool] = None , a: Optional[bool] = None , a: bool = False , ) ->TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.embedder(a , training=a) a_ = self.encoder( a , output_hidden_states=a , return_dict=a , training=a) a_ = encoder_outputs[0] a_ = self.pooler(a) # Change to NCHW output format have uniformity in the modules a_ = tf.transpose(a , perm=(0, 3, 1, 2)) a_ = tf.transpose(a , perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a_ = tuple([tf.transpose(a , perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=a , pooler_output=a , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =RegNetConfig _UpperCAmelCase ='''regnet''' _UpperCAmelCase ='''pixel_values''' @property def _lowerCAmelCase ( self: Optional[Any]) ->int: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa)} a_ = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' a_ = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , lowercase_ , ) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: Union[str, Any] , a: RegNetConfig , *a: str , **a: Any) ->Any: '''simple docstring''' super().__init__(a , *a , **a) a_ = TFRegNetMainLayer(a , name="regnet") @unpack_inputs @add_start_docstrings_to_model_forward(a) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self: str , a: tf.Tensor , a: Optional[bool] = None , a: Optional[bool] = None , a: List[str]=False , ) ->Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.regnet( pixel_values=a , output_hidden_states=a , return_dict=a , training=a , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowercase_ , ) class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): def __init__( self: List[Any] , a: RegNetConfig , *a: List[str] , **a: Any) ->List[Any]: '''simple docstring''' super().__init__(a , *a , **a) a_ = config.num_labels a_ = TFRegNetMainLayer(a , name="regnet") # classification head a_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1") if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(a) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self: Any , a: tf.Tensor = None , a: tf.Tensor = None , a: bool = None , a: bool = None , a: Tuple=False , ) ->Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = self.regnet( a , output_hidden_states=a , return_dict=a , training=a) a_ = outputs.pooler_output if return_dict else outputs[1] a_ = self.classifier[0](a) a_ = self.classifier[1](a) a_ = None if labels is None else self.hf_compute_loss(labels=a , logits=a) if not return_dict: a_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=a , logits=a , hidden_states=outputs.hidden_states)
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import _LazyModule a_ = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart a_ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } a_ = { 'facebook/bart-base': 1_024, 'facebook/bart-large': 1_024, 'facebook/bart-large-mnli': 1_024, 'facebook/bart-large-cnn': 1_024, 'facebook/bart-large-xsum': 1_024, 'yjernite/bart_eli5': 1_024, } @lru_cache() def __UpperCAmelCase () -> Optional[int]: '''simple docstring''' a_ = ( list(range(ord("!" ) ,ord("~" ) + 1 ) ) + list(range(ord("¡" ) ,ord("¬" ) + 1 ) ) + list(range(ord("®" ) ,ord("ÿ" ) + 1 ) ) ) a_ = bs[:] a_ = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase__ ) cs.append(2**8 + n ) n += 1 a_ = [chr(lowercase__ ) for n in cs] return dict(zip(lowercase__ ,lowercase__ ) ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = set() a_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ = char return pairs class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: Optional[Any] , a: int , a: Optional[Any] , a: List[Any]="replace" , a: Union[str, Any]="<s>" , a: Optional[int]="</s>" , a: Optional[Any]="</s>" , a: int="<s>" , a: Tuple="<unk>" , a: int="<pad>" , a: Any="<mask>" , a: Union[str, Any]=False , **a: Any , ) ->Dict: '''simple docstring''' a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else bos_token a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else eos_token a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else sep_token a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else cls_token a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else unk_token a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else pad_token # Mask token behave like a normal word, i.e. include the space before it a_ = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding="utf-8") as vocab_handle: a_ = json.load(a) a_ = {v: k for k, v in self.encoder.items()} a_ = errors # how to handle errors in decoding a_ = bytes_to_unicode() a_ = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding="utf-8") as merges_handle: a_ = merges_handle.read().split("\n")[1:-1] a_ = [tuple(merge.split()) for merge in bpe_merges] a_ = dict(zip(a , range(len(a)))) a_ = {} a_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a_ = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+") @property def _lowerCAmelCase ( self: Dict) ->Optional[Any]: '''simple docstring''' return len(self.encoder) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Optional[int] , a: str) ->Union[str, Any]: '''simple docstring''' if token in self.cache: return self.cache[token] a_ = tuple(a) a_ = get_pairs(a) if not pairs: return token while True: a_ = min(a , key=lambda a: self.bpe_ranks.get(a , float("inf"))) if bigram not in self.bpe_ranks: break a_ , a_ = bigram a_ = [] a_ = 0 while i < len(a): try: a_ = word.index(a , a) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) a_ = j if word[i] == first and i < len(a) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 a_ = tuple(a) a_ = new_word if len(a) == 1: break else: a_ = get_pairs(a) a_ = " ".join(a) a_ = word return word def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = [] for token in re.findall(self.pat , a): a_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8")) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a).split(" ")) return bpe_tokens def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any]) ->Optional[Any]: '''simple docstring''' return self.encoder.get(a , self.encoder.get(self.unk_token)) def _lowerCAmelCase ( self: Dict , a: Tuple) ->Any: '''simple docstring''' return self.decoder.get(a) def _lowerCAmelCase ( self: Union[str, Any] , a: List[Any]) ->Union[str, Any]: '''simple docstring''' a_ = "".join(a) a_ = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8" , errors=self.errors) return text def _lowerCAmelCase ( self: Optional[Any] , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' if not os.path.isdir(a): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(a , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a) + "\n") a_ = 0 with open(a , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!") a_ = token_index writer.write(" ".join(a) + "\n") index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self: List[str] , a: List[int] , a: Optional[List[int]] = None) ->List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ = [self.cls_token_id] a_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCAmelCase ( self: str , a: List[int] , a: Optional[List[int]] = None , a: bool = False) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) if token_ids_a is None: return [1] + ([0] * len(a)) + [1] return [1] + ([0] * len(a)) + [1, 1] + ([0] * len(a)) + [1] def _lowerCAmelCase ( self: List[str] , a: List[int] , a: Optional[List[int]] = None) ->List[int]: '''simple docstring''' a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def _lowerCAmelCase ( self: Dict , a: str , a: str=False , **a: Union[str, Any]) ->Optional[Any]: '''simple docstring''' a_ = kwargs.pop("add_prefix_space" , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(a) > 0 and not text[0].isspace()): a_ = " " + text return (text, kwargs)
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
1
'''simple docstring''' import qiskit def __UpperCAmelCase (lowercase__ = 2 ) -> qiskit.result.counts.Counts: '''simple docstring''' a_ = qubits # Using Aer's simulator a_ = qiskit.Aer.get_backend("aer_simulator" ) # Creating a Quantum Circuit acting on the q register a_ = qiskit.QuantumCircuit(lowercase__ ,lowercase__ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 ,lowercase__ ): # Adding CX (CNOT) gate circuit.cx(i - 1 ,lowercase__ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowercase__ ) ) ,list(range(lowercase__ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator a_ = qiskit.execute(lowercase__ ,lowercase__ ,shots=1000 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
685
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt'} a_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } a_ = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } a_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =ConvBertTokenizer def __init__( self: Union[str, Any] , a: Union[str, Any]=None , a: List[str]=None , a: List[Any]=True , a: Optional[int]="[UNK]" , a: Tuple="[SEP]" , a: Any="[PAD]" , a: List[Any]="[CLS]" , a: int="[MASK]" , a: Tuple=True , a: Any=None , **a: Optional[Any] , ) ->Tuple: '''simple docstring''' super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) a_ = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase" , a) != do_lower_case or normalizer_state.get("strip_accents" , a) != strip_accents or normalizer_state.get("handle_chinese_chars" , a) != tokenize_chinese_chars ): a_ = getattr(a , normalizer_state.pop("type")) a_ = do_lower_case a_ = strip_accents a_ = tokenize_chinese_chars a_ = normalizer_class(**a) a_ = do_lower_case def _lowerCAmelCase ( self: str , a: Optional[Any] , a: str=None) ->Any: '''simple docstring''' a_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase ( self: Union[str, Any] , a: List[int] , a: Optional[List[int]] = None) ->List[int]: '''simple docstring''' a_ = [self.sep_token_id] a_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCAmelCase ( self: Union[str, Any] , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = self._tokenizer.model.save(a , name=a) return tuple(a)
685
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal a_ = logging.get_logger(__name__) a_ = TypeVar('DatasetType', Dataset, IterableDataset) def __UpperCAmelCase (lowercase__ ,lowercase__ = None ,lowercase__ = None ,lowercase__ = None ,lowercase__ = None ,lowercase__ = "first_exhausted" ,) -> DatasetType: '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ ,(Dataset, IterableDataset) ): if isinstance(lowercase__ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowercase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.""" ) if i == 0: a_ , a_ = ( (Dataset, IterableDataset) if isinstance(lowercase__ ,lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ ,lowercase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowercase__ ,lowercase__ ,lowercase__ ,info=lowercase__ ,split=lowercase__ ,stopping_strategy=lowercase__ ) else: return _interleave_iterable_datasets( lowercase__ ,lowercase__ ,lowercase__ ,info=lowercase__ ,split=lowercase__ ,stopping_strategy=lowercase__ ) def __UpperCAmelCase (lowercase__ ,lowercase__ = None ,lowercase__ = None ,lowercase__ = 0 ,) -> DatasetType: '''simple docstring''' if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(lowercase__ ): if not isinstance(lowercase__ ,(Dataset, IterableDataset) ): if isinstance(lowercase__ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(lowercase__ )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowercase__ ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowercase__ ).__name__}.""" ) if i == 0: a_ , a_ = ( (Dataset, IterableDataset) if isinstance(lowercase__ ,lowercase__ ) else (IterableDataset, Dataset) ) elif not isinstance(lowercase__ ,lowercase__ ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowercase__ ,info=lowercase__ ,split=lowercase__ ,axis=lowercase__ ) else: return _concatenate_iterable_datasets(lowercase__ ,info=lowercase__ ,split=lowercase__ ,axis=lowercase__ )
685
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] a_ = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) return sd def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__=rename_keys_prefix ) -> Any: '''simple docstring''' a_ = OrderedDict() a_ = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue a_ = key for name_pair in rename_keys_prefix: a_ = new_key.replace(name_pair[0] ,name_pair[1] ) a_ = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately a_ = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Optional[int]: '''simple docstring''' assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: a_ = "pretraining" if "vcr" in checkpoint_path: a_ = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: a_ = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: a_ = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: a_ = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: a_ = {"visual_embedding_dim": 512} a_ = "multichoice" elif "vqa_advanced" in checkpoint_path: a_ = {"visual_embedding_dim": 2048} a_ = "vqa_advanced" elif "vqa" in checkpoint_path: a_ = {"visual_embedding_dim": 2048, "num_labels": 3129} a_ = "vqa" elif "nlvr" in checkpoint_path: a_ = { "visual_embedding_dim": 1024, "num_labels": 2, } a_ = "nlvr" a_ = VisualBertConfig(**lowercase__ ) # Load State Dict a_ = load_state_dict(lowercase__ ) a_ = get_new_dict(lowercase__ ,lowercase__ ) if model_type == "pretraining": a_ = VisualBertForPreTraining(lowercase__ ) elif model_type == "vqa": a_ = VisualBertForQuestionAnswering(lowercase__ ) elif model_type == "nlvr": a_ = VisualBertForVisualReasoning(lowercase__ ) elif model_type == "multichoice": a_ = VisualBertForMultipleChoice(lowercase__ ) model.load_state_dict(lowercase__ ) # Save Checkpoints Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') a_ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> str: '''simple docstring''' a_ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __UpperCAmelCase (lowercase__ ) -> dict[str, str]: '''simple docstring''' a_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key a_ = remove_duplicates(key.upper() ) a_ = len(lowercase__ ) # First fill cipher with key characters a_ = {alphabet[i]: char for i, char in enumerate(lowercase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase__ ) ,26 ): a_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 a_ = alphabet[i - offset] a_ = char return cipher_alphabet def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> str: '''simple docstring''' return "".join(cipher_map.get(lowercase__ ,lowercase__ ) for ch in message.upper() ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> str: '''simple docstring''' a_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase__ ,lowercase__ ) for ch in message.upper() ) def __UpperCAmelCase () -> None: '''simple docstring''' a_ = input("Enter message to encode or decode: " ).strip() a_ = input("Enter keyword: " ).strip() a_ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: a_ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) a_ = create_cipher_map(lowercase__ ) print(func(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
685
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' if not isinstance(lowercase__ ,lowercase__ ): raise TypeError("Input value must be an 'int' type" ) a_ = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) ,np.inf ) a_ = 0 a_ = np.empty((rows, cols) ,dtype=lowercase__ ) a_ = None while queue: ((a_) , (a_)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ ,(dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
685
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() a_ = logging.get_logger(__name__) a_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } a_ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' a_ = {} with open(lowercase__ ,"r" ) as file: for line_number, line in enumerate(lowercase__ ): a_ = line.strip() if line: a_ = line.split() a_ = line_number a_ = words[0] a_ = value return result def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> int: '''simple docstring''' for attribute in key.split("." ): a_ = getattr(lowercase__ ,lowercase__ ) a_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase__ ): a_ = PARAM_MAPPING[full_name.split("." )[-1]] a_ = "param" if weight_type is not None and weight_type != "param": a_ = getattr(lowercase__ ,lowercase__ ).shape elif weight_type is not None and weight_type == "param": a_ = hf_pointer for attribute in hf_param_name.split("." ): a_ = getattr(lowercase__ ,lowercase__ ) a_ = shape_pointer.shape # let's reduce dimension a_ = value[0] else: a_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): a_ = getattr(lowercase__ ,lowercase__ ) a_ = value else: a_ = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowercase__ ): a_ = PARAM_MAPPING[full_name.split("." )[-1]] a_ = "param" if weight_type is not None and weight_type != "param": a_ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a_ = ".".join([key, hf_param_name] ) else: a_ = key a_ = value if "lm_head" in full_key else value[0] a_ = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__=None ,lowercase__=None ) -> List[Any]: '''simple docstring''' a_ = False for key, mapped_key in MAPPING.items(): a_ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(lowercase__ )[0].split("." )[-2] a_ = mapped_key.replace("*" ,lowercase__ ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "bias" in name: a_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ = "weight" else: a_ = None if hf_dict is not None: rename_dict(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: set_recursively(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) return is_used return is_used def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> str: '''simple docstring''' a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,hf_model.config.feat_extract_norm == "group" ,) a_ = True else: a_ = load_wavaveca_layer(lowercase__ ,lowercase__ ,lowercase__ ) if not is_used: unused_weights.append(lowercase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a_ = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) a_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) a_ = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__=None ,lowercase__=None ,lowercase__=True ,lowercase__=False ) -> Optional[Any]: '''simple docstring''' if config_path is not None: a_ = WavaVecaConfig.from_pretrained(lowercase__ ) else: a_ = WavaVecaConfig() if is_seq_class: a_ = read_txt_into_dict(lowercase__ ) a_ = idalabel a_ = WavaVecaForSequenceClassification(lowercase__ ) a_ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=lowercase__ ,return_attention_mask=lowercase__ ,) feature_extractor.save_pretrained(lowercase__ ) elif is_finetuned: if dict_path: a_ = Dictionary.load(lowercase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.eos_index a_ = len(target_dict.symbols ) a_ = os.path.join(lowercase__ ,"vocab.json" ) if not os.path.isdir(lowercase__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowercase__ ) ) return os.makedirs(lowercase__ ,exist_ok=lowercase__ ) a_ = target_dict.indices # fairseq has the <pad> and <s> switched a_ = 0 a_ = 1 with open(lowercase__ ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(lowercase__ ,lowercase__ ) a_ = WavaVecaCTCTokenizer( lowercase__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=lowercase__ ,) a_ = True if config.feat_extract_norm == "layer" else False a_ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=lowercase__ ,return_attention_mask=lowercase__ ,) a_ = WavaVecaProcessor(feature_extractor=lowercase__ ,tokenizer=lowercase__ ) processor.save_pretrained(lowercase__ ) a_ = WavaVecaForCTC(lowercase__ ) else: a_ = WavaVecaForPreTraining(lowercase__ ) if is_finetuned or is_seq_class: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a_ = argparse.Namespace(task="audio_pretraining" ) a_ = fairseq.tasks.setup_task(lowercase__ ) a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ,task=lowercase__ ) a_ = model[0].eval() recursively_load_weights(lowercase__ ,lowercase__ ,not is_finetuned ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) a_ = parser.parse_args() a_ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
685
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
1
'''simple docstring''' from collections.abc import Callable class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[int] , a: Callable | None = None) ->None: '''simple docstring''' a_ = [] # Stores indexes of each item for supporting updates and deletion. a_ = {} # Stores current size of heap. a_ = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. a_ = key or (lambda a: x) def _lowerCAmelCase ( self: List[Any] , a: int) ->int | None: '''simple docstring''' return int((i - 1) / 2) if i > 0 else None def _lowerCAmelCase ( self: Optional[int] , a: int) ->int | None: '''simple docstring''' a_ = int(2 * i + 1) return left if 0 < left < self.size else None def _lowerCAmelCase ( self: List[str] , a: int) ->int | None: '''simple docstring''' a_ = int(2 * i + 2) return right if 0 < right < self.size else None def _lowerCAmelCase ( self: List[Any] , a: int , a: int) ->None: '''simple docstring''' a_ , a_ = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. a_ , a_ = self.arr[j], self.arr[i] def _lowerCAmelCase ( self: List[str] , a: int , a: int) ->bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def _lowerCAmelCase ( self: Optional[Any] , a: int) ->int: '''simple docstring''' a_ = self._left(a) a_ = self._right(a) a_ = i if left is not None and not self._cmp(a , a): a_ = left if right is not None and not self._cmp(a , a): a_ = right return valid_parent def _lowerCAmelCase ( self: str , a: int) ->None: '''simple docstring''' a_ = self._parent(a) while parent is not None and not self._cmp(a , a): self._swap(a , a) a_ , a_ = parent, self._parent(a) def _lowerCAmelCase ( self: List[Any] , a: int) ->None: '''simple docstring''' a_ = self._get_valid_parent(a) while valid_parent != index: self._swap(a , a) a_ , a_ = valid_parent, self._get_valid_parent(a) def _lowerCAmelCase ( self: Optional[int] , a: int , a: int) ->None: '''simple docstring''' if item not in self.pos_map: return a_ = self.pos_map[item] a_ = [item, self.key(a)] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(a) self._heapify_down(a) def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if item not in self.pos_map: return a_ = self.pos_map[item] del self.pos_map[item] a_ = self.arr[self.size - 1] a_ = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(a) self._heapify_down(a) def _lowerCAmelCase ( self: Tuple , a: int , a: int) ->None: '''simple docstring''' a_ = len(self.arr) if arr_len == self.size: self.arr.append([item, self.key(a)]) else: a_ = [item, self.key(a)] a_ = self.size self.size += 1 self._heapify_up(self.size - 1) def _lowerCAmelCase ( self: Dict) ->tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def _lowerCAmelCase ( self: List[str]) ->tuple | None: '''simple docstring''' a_ = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0]) return top_item_tuple def __UpperCAmelCase () -> None: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =LxmertTokenizer _UpperCAmelCase =LxmertTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(a , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [7, 4, 5, 10, 8, 9]) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' if not self.test_rust_tokenizer: return a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = "I was born in 92000, and this is falsé." a_ = tokenizer.tokenize(a) a_ = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokenizer.encode(a , add_special_tokens=a) a_ = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) a_ = self.get_rust_tokenizer() a_ = tokenizer.encode(a) a_ = rust_tokenizer.encode(a) self.assertListEqual(a , a)
685
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() a_ = [ 'word_embeddings_layernorm.weight', 'word_embeddings_layernorm.bias', 'input_layernorm.weight', 'input_layernorm.bias', 'post_attention_layernorm.weight', 'post_attention_layernorm.bias', 'self_attention.dense.bias', 'mlp.dense_4h_to_h.bias', 'ln_f.weight', 'ln_f.bias', ] a_ = [ 'mlp.dense_4h_to_h.weight', 'self_attention.dense.weight', ] def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks a_ = int(re.match(r".*layer_(\d*).*" ,lowercase__ )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' if dtype == torch.bool: return 1 / 8 a_ = re.search(r"[^\d](\d+)$" ,str(lowercase__ ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) a_ = int(bit_search.groups()[0] ) return bit_size // 8 def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' if bloom_config_file == "": a_ = BloomConfig() else: a_ = BloomConfig.from_json_file(lowercase__ ) if shard_model: a_ = os.listdir(lowercase__ ) a_ = sorted(filter(lambda lowercase__ : s.startswith("layer" ) and "model_00" in s ,lowercase__ ) ) a_ = {"weight_map": {}, "metadata": {}} a_ = 0 a_ = None a_ = BloomConfig() for j, file in enumerate(lowercase__ ): print("Processing file: {}".format(lowercase__ ) ) a_ = None for i in range(lowercase__ ): # load all TP files a_ = file.replace("model_00" ,F"""model_0{i}""" ) a_ = torch.load(os.path.join(lowercase__ ,lowercase__ ) ,map_location="cpu" ) # Rename keys in the transformers names a_ = list(temp.keys() ) for key in keys: a_ = temp.pop(lowercase__ ) if tensors is None: a_ = temp else: for key in tensors.keys(): if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a_ = torch.cat([tensors[key], temp[key]] ,dim=lowercase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a_ = tensors[key] / pretraining_tp torch.save( lowercase__ ,os.path.join( lowercase__ ,"pytorch_model_{}-of-{}.bin".format(str(j + 1 ).zfill(5 ) ,str(len(lowercase__ ) ).zfill(5 ) ) ,) ,) for key in tensors.keys(): a_ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: a_ = "pytorch_model_{}-of-{}.bin".format( str(j + 1 ).zfill(5 ) ,str(len(lowercase__ ) ).zfill(5 ) ) a_ = BloomConfig() a_ = pytorch_dump_folder_path + "/" + CONFIG_NAME a_ = total_size with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) with open(os.path.join(lowercase__ ,WEIGHTS_NAME + ".index.json" ) ,"w" ,encoding="utf-8" ) as f: a_ = json.dumps(lowercase__ ,indent=2 ,sort_keys=lowercase__ ) + "\n" f.write(lowercase__ ) else: a_ = BloomModel(lowercase__ ) a_ = os.listdir(lowercase__ ) a_ = sorted(filter(lambda lowercase__ : s.startswith("layer" ) and "model_00" in s ,lowercase__ ) ) a_ = None for i, file in enumerate(lowercase__ ): a_ = None for i in range(lowercase__ ): # load all TP files a_ = file.replace("model_00" ,F"""model_0{i}""" ) a_ = torch.load(os.path.join(lowercase__ ,lowercase__ ) ,map_location="cpu" ) # Rename keys in the transformers names a_ = list(temp.keys() ) for key in keys: a_ = temp.pop(lowercase__ ) if tensors is None: a_ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel a_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks a_ = torch.cat([tensors[key], temp[key]] ,dim=lowercase__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(lowercase__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): a_ = tensors[key] / pretraining_tp a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: a_ = set(other_keys.missing_keys ) else: a_ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(lowercase__ ,exist_ok=lowercase__ ) a_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME a_ = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: a_ = model.to(config.torch_dtype ) torch.save(model.state_dict() ,lowercase__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bloom_checkpoint_path', default=None, type=str, required=True, help='Path to the Megatron-LM checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--bloom_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--shard_model', action='store_true', help='An optional setting to shard the output model \nThis enables sharding the converted checkpoint', ) parser.add_argument( '--pretraining_tp', default=4, type=int, help='Pretraining TP rank that has been used when training the model in Megatron-LM \n', ) a_ = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
685
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
1
'''simple docstring''' a_ = range(2, 20 + 1) a_ = [10**k for k in range(ks[-1] + 1)] a_ = {} def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = sum(a_i[j] for j in range(lowercase__ ,len(lowercase__ ) ) ) a_ = sum(a_i[j] * base[j] for j in range(min(len(lowercase__ ) ,lowercase__ ) ) ) a_ , a_ = 0, 0 a_ = n - i a_ = memo.get(lowercase__ ) if sub_memo is not None: a_ = sub_memo.get(lowercase__ ) if jumps is not None and len(lowercase__ ) > 0: # find and make the largest jump without going over a_ = -1 for _k in range(len(lowercase__ ) - 1 ,-1 ,-1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a_ = _k break if max_jump >= 0: a_ , a_ , a_ = jumps[max_jump] # since the difference between jumps is cached, add c a_ = diff + c for j in range(min(lowercase__ ,len(lowercase__ ) ) ): a_ , a_ = divmod(lowercase__ ,10 ) if new_c > 0: add(lowercase__ ,lowercase__ ,lowercase__ ) else: a_ = [] else: a_ = {c: []} a_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a_ , a_ = next_term(lowercase__ ,k - 1 ,i + dn ,lowercase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a_ , a_ = compute(lowercase__ ,lowercase__ ,i + dn ,lowercase__ ) diff += _diff dn += terms_jumped a_ = sub_memo[c] # keep jumps sorted by # of terms skipped a_ = 0 while j < len(lowercase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase__ ,(diff, dn, k) ) return (diff, dn) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> str: '''simple docstring''' if i >= n: return 0, i if k > len(lowercase__ ): a_i.extend([0 for _ in range(k - len(lowercase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a_ = i a_ , a_ , a_ = 0, 0, 0 for j in range(len(lowercase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a_ = ds_c + ds_b diff += addend a_ = 0 for j in range(lowercase__ ): a_ = a_i[j] + addend a_ , a_ = divmod(lowercase__ ,10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase__ ,lowercase__ ,lowercase__ ) return diff, i - start_i def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> int: '''simple docstring''' for j in range(lowercase__ ,len(lowercase__ ) ): a_ = digits[j] + addend if s >= 10: a_ , a_ = divmod(lowercase__ ,10 ) a_ = addend // 10 + quotient else: a_ = s a_ = addend // 10 if addend == 0: break while addend > 0: a_ , a_ = divmod(lowercase__ ,10 ) digits.append(lowercase__ ) def __UpperCAmelCase (lowercase__ = 10**15 ) -> int: '''simple docstring''' a_ = [1] a_ = 1 a_ = 0 while True: a_ , a_ = next_term(lowercase__ ,20 ,i + dn ,lowercase__ ) dn += terms_jumped if dn == n - i: break a_ = 0 for j in range(len(lowercase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'{solution() = }')
685
'''simple docstring''' import re def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' a_ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": a_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
685
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''rwkv''' _UpperCAmelCase ={'''max_position_embeddings''': '''context_length'''} def __init__( self: List[str] , a: str=5_02_77 , a: Optional[Any]=10_24 , a: Any=40_96 , a: Union[str, Any]=32 , a: Optional[int]=None , a: Optional[Any]=None , a: int=1e-5 , a: Optional[int]=0 , a: Optional[int]=0 , a: Any=6 , a: Any=False , a: Dict=True , **a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = vocab_size a_ = context_length a_ = hidden_size a_ = num_hidden_layers a_ = attention_hidden_size if attention_hidden_size is not None else hidden_size a_ = intermediate_size if intermediate_size is not None else 4 * hidden_size a_ = layer_norm_epsilon a_ = rescale_every a_ = use_cache a_ = bos_token_id a_ = eos_token_id super().__init__( tie_word_embeddings=a , bos_token_id=a , eos_token_id=a , **a)
685
'''simple docstring''' import argparse import os import re a_ = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a_ = re.compile(r'\s*\(\s*"(\S[^"]+)"') def __UpperCAmelCase (lowercase__ ,lowercase__ = False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.read() a_ = content.split("\n" ) a_ = [] a_ = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a_ = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a_ = sorted(lowercase__ ,key=lambda lowercase__ : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def __UpperCAmelCase (lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = [os.path.join(lowercase__ ,lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(".py" )] a_ = [sort_auto_mapping(lowercase__ ,overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): a_ = [f for f, d in zip(lowercase__ ,lowercase__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase__ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
1
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
685
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
1
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =CTRLTokenizer _UpperCAmelCase =False _UpperCAmelCase =False def _lowerCAmelCase ( self: Dict) ->Optional[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a_ = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] a_ = dict(zip(a , range(len(a)))) a_ = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] a_ = {"unk_token": "<unk>"} a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(a) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(a)) def _lowerCAmelCase ( self: Any , **a: List[Any]) ->Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: List[str] , a: str) ->List[Any]: '''simple docstring''' a_ = "adapt react readapt apt" a_ = "adapt react readapt apt" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' a_ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a_ = "adapt react readapt apt" a_ = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() a_ = tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokens + [tokenizer.unk_token] a_ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , a)
685
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self: int , a: List[str] , a: str=13 , a: Union[str, Any]=7 , a: Optional[Any]=True , a: Optional[Any]=True , a: str=True , a: Optional[int]=True , a: Optional[int]=99 , a: str=32 , a: str=5 , a: Optional[int]=4 , a: Union[str, Any]=37 , a: List[str]="gelu" , a: int=0.1 , a: Dict=0.1 , a: Dict=1_28 , a: Optional[Any]=32 , a: str=16 , a: int=2 , a: List[str]=0.02 , a: Optional[Any]=3 , a: str=4 , a: Optional[int]=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self: int) ->Any: '''simple docstring''' ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.prepare_config_and_inputs() a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCAmelCase ( self: Optional[Any] , a: List[str] , a: Optional[Any] , a: Optional[Any] , a: Tuple , a: Tuple , a: Union[str, Any] , a: str) ->Any: '''simple docstring''' a_ = NezhaModel(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a) a_ = model(a , token_type_ids=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Any , a: int , a: Tuple , a: Dict , a: List[Any] , a: Optional[int] , a: Optional[int] , a: Optional[int] , a: List[Any] , ) ->int: '''simple docstring''' a_ = True a_ = NezhaModel(a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , encoder_attention_mask=a , ) a_ = model( a , attention_mask=a , token_type_ids=a , encoder_hidden_states=a , ) a_ = model(a , attention_mask=a , token_type_ids=a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[Any] , a: Dict , a: List[Any] , a: Union[str, Any] , a: List[Any] , a: List[Any] , a: List[str]) ->List[str]: '''simple docstring''' a_ = NezhaForMaskedLM(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: int , a: Dict , a: Dict , a: Dict , a: Dict , a: Optional[int] , a: Any , a: Union[str, Any]) ->str: '''simple docstring''' a_ = NezhaForNextSentencePrediction(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def _lowerCAmelCase ( self: int , a: Optional[int] , a: int , a: Any , a: int , a: str , a: Union[str, Any] , a: str) ->int: '''simple docstring''' a_ = NezhaForPreTraining(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , next_sentence_label=a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: str , a: Dict , a: int , a: int , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = NezhaForQuestionAnswering(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: List[Any] , a: Optional[Any] , a: Union[str, Any] , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Dict , a: Dict) ->Dict: '''simple docstring''' a_ = self.num_labels a_ = NezhaForSequenceClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCAmelCase ( self: Any , a: List[str] , a: Optional[Any] , a: Any , a: Optional[Any] , a: Optional[Any] , a: List[Any] , a: Optional[int]) ->str: '''simple docstring''' a_ = self.num_labels a_ = NezhaForTokenClassification(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: List[Any] , a: List[str] , a: int , a: List[Any] , a: Optional[Any] , a: Optional[Any] , a: int , a: Dict) ->Tuple: '''simple docstring''' a_ = self.num_choices a_ = NezhaForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': NezhaModel, '''fill-mask''': NezhaForMaskedLM, '''question-answering''': NezhaForQuestionAnswering, '''text-classification''': NezhaForSequenceClassification, '''token-classification''': NezhaForTokenClassification, '''zero-shot''': NezhaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase =True def _lowerCAmelCase ( self: str , a: Tuple , a: Dict , a: Optional[int]=False) ->Optional[int]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class in get_values(a): a_ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: List[Any]) ->List[Any]: '''simple docstring''' a_ = NezhaModelTester(self) a_ = ConfigTester(self , config_class=a , hidden_size=37) def _lowerCAmelCase ( self: Tuple) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def _lowerCAmelCase ( self: Union[str, Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*a) def _lowerCAmelCase ( self: List[str]) ->Dict: '''simple docstring''' ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() a_ = None self.model_tester.create_and_check_model_as_decoder( a , a , a , a , a , a , a , a , a , ) def _lowerCAmelCase ( self: Optional[int]) ->str: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a) def _lowerCAmelCase ( self: int) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a) def _lowerCAmelCase ( self: Optional[int]) ->str: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*a) def _lowerCAmelCase ( self: Any) ->int: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a) def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a) def _lowerCAmelCase ( self: List[str]) ->List[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a) def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a) @slow def _lowerCAmelCase ( self: Tuple) ->Tuple: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = NezhaModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "bert.pt")) a_ = torch.jit.load(os.path.join(a , "bert.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = NezhaModel.from_pretrained("sijunhe/nezha-cn-base") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) a_ = torch.tensor([[0, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(a , attention_mask=a)[0] a_ = torch.Size((1, 6, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4)) @slow def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) a_ = torch.tensor([[1, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(a , attention_mask=a)[0] a_ = torch.Size((1, 6, 2_11_28)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a , atol=1e-4))
685
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
1
'''simple docstring''' a_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = [False] * len(lowercase__ ) a_ = [s] a_ = True while queue: a_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowercase__ ) a_ = True a_ = u return visited[t] def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> int: '''simple docstring''' a_ = [-1] * (len(lowercase__ )) a_ = 0 a_ = [] a_ = [i[:] for i in graph] # Record original cut, copy. while bfs(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ): a_ = float("Inf" ) a_ = sink while s != source: # Find the minimum value in select path a_ = min(lowercase__ ,graph[parent[s]][s] ) a_ = parent[s] max_flow += path_flow a_ = sink while v != source: a_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow a_ = parent[v] for i in range(len(lowercase__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
685
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class SCREAMING_SNAKE_CASE__ : def __init__( self: Union[str, Any] , a: Union[str, Any] , a: str=13 , a: List[str]=7 , a: Tuple=True , a: Optional[Any]=True , a: str=False , a: Tuple=True , a: Optional[Any]=99 , a: Any=32 , a: Optional[int]=5 , a: Optional[Any]=4 , a: Optional[Any]=37 , a: Dict="gelu" , a: List[Any]=0.1 , a: Union[str, Any]=0.1 , a: List[Any]=5_12 , a: List[str]=16 , a: Tuple=2 , a: List[Any]=0.02 , a: Dict=3 , a: Optional[int]=4 , a: Dict=None , ) ->Any: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self: str) ->str: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple , a: Any , a: Union[str, Any] , a: Dict , a: str , a: str , a: List[str]) ->Dict: '''simple docstring''' a_ = LlamaModel(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: Tuple , a: Dict , a: List[str] , a: List[Any] , a: Optional[Any] , a: List[Any] , a: Any , ) ->Any: '''simple docstring''' a_ = True a_ = LlamaModel(a) model.to(a) model.eval() a_ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , ) a_ = model( a , attention_mask=a , encoder_hidden_states=a , ) a_ = model(a , attention_mask=a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: int , a: str , a: str , a: str , a: List[str] , a: int , a: List[str] , a: Optional[int] , a: Any , a: Dict , ) ->int: '''simple docstring''' a_ = LlamaForCausalLM(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: List[Any] , a: Any , a: List[str] , a: Optional[int] , a: str , a: Any , a: Any , a: int , a: Optional[Any] , a: Optional[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = True a_ = True a_ = LlamaForCausalLM(config=a) model.to(a) model.eval() # first forward pass a_ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , use_cache=a , ) a_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ = ids_tensor((self.batch_size, 3) , config.vocab_size) a_ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and a_ = torch.cat([input_ids, next_tokens] , dim=-1) a_ = torch.cat([input_mask, next_mask] , dim=-1) a_ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , output_hidden_states=a , )["hidden_states"][0] a_ = model( a , attention_mask=a , encoder_hidden_states=a , encoder_attention_mask=a , past_key_values=a , output_hidden_states=a , )["hidden_states"][0] # select random slice a_ = ids_tensor((1,) , output_from_past.shape[-1]).item() a_ = output_from_no_past[:, -3:, random_slice_idx].detach() a_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a , a , atol=1e-3)) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCAmelCase =(LlamaForCausalLM,) if is_torch_available() else () _UpperCAmelCase =( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase =False _UpperCAmelCase =False def _lowerCAmelCase ( self: Dict) ->Optional[int]: '''simple docstring''' a_ = LlamaModelTester(self) a_ = ConfigTester(self , config_class=a , hidden_size=37) def _lowerCAmelCase ( self: List[Any]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(a) a_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) a_ = LlamaForSequenceClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCAmelCase ( self: Tuple) ->int: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = "single_label_classification" a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(a) a_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) a_ = LlamaForSequenceClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _lowerCAmelCase ( self: Optional[int]) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = 3 a_ = "multi_label_classification" a_ = input_dict["input_ids"] a_ = input_ids.ne(1).to(a) a_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) a_ = LlamaForSequenceClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test") def _lowerCAmelCase ( self: Any) ->List[str]: '''simple docstring''' pass @parameterized.expand([("linear",), ("dynamic",)]) def _lowerCAmelCase ( self: str , a: str) ->Tuple: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = ids_tensor([1, 10] , config.vocab_size) a_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights a_ = LlamaModel(a) original_model.to(a) original_model.eval() a_ = original_model(a).last_hidden_state a_ = original_model(a).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights a_ = {"type": scaling_type, "factor": 10.0} a_ = LlamaModel(a) scaled_model.to(a) scaled_model.eval() a_ = scaled_model(a).last_hidden_state a_ = scaled_model(a).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a , a , atol=1e-5)) else: self.assertFalse(torch.allclose(a , a , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(a , a , atol=1e-5)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!") @slow def _lowerCAmelCase ( self: List[Any]) ->List[Any]: '''simple docstring''' a_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto") a_ = model(torch.tensor([input_ids])) # Expected mean on dim = -1 a_ = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]]) torch.testing.assert_close(out.mean(-1) , a , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off a_ = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1e-5 , rtol=1e-5) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!") @slow def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto") a_ = model(torch.tensor(a)) # Expected mean on dim = -1 a_ = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]]) torch.testing.assert_close(out.mean(-1) , a , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off a_ = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1e-5 , rtol=1e-5) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!") @slow def _lowerCAmelCase ( self: int) ->List[str]: '''simple docstring''' a_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto") a_ = model(torch.tensor(a)) # Expected mean on dim = -1 a_ = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]]) torch.testing.assert_close(out.mean(-1) , a , atol=1e-2 , rtol=1e-2) # slicing logits[0, 0, 0:30] # fmt: off a_ = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513]) # fmt: on torch.testing.assert_close(out.mean(-1) , a , atol=1e-2 , rtol=1e-2) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test") @slow def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' a_ = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] a_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto") a_ = model(torch.tensor(a)) a_ = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa) torch.testing.assert_close(out.mean(-1) , a , atol=1e-2 , rtol=1e-2) # fmt: off a_ = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312]) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a , atol=1e-5 , rtol=1e-5) @unittest.skip("Model is curently gated") @slow def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" a_ = "Simply put, the theory of relativity states that " a_ = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf") a_ = tokenizer.encode(a , return_tensors="pt") a_ = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=a) # greedy generation outputs a_ = model.generate(a , max_new_tokens=64 , top_p=a , temperature=1 , do_sample=a) a_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=a) self.assertEqual(a , a)
685
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
1
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , *a: str , **a: Dict) ->List[str]: '''simple docstring''' super().__init__(*a , **a) a_ = {} def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple , *a: List[Any] , **a: Optional[Any]) ->str: '''simple docstring''' a_ = super().add_tokens(a , *a , **a) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer.") def _lowerCAmelCase ( self: Tuple , a: Union[str, Any] , *a: Optional[int] , a: Optional[int]=1 , **a: Optional[Any]) ->Optional[Any]: '''simple docstring''' a_ = [] if num_vec_per_token == 1: self.try_adding_tokens(a , *a , **a) output.append(a) else: a_ = [] for i in range(a): a_ = placeholder_token + f"""_{i}""" self.try_adding_tokens(a , *a , **a) output.append(a) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a_ = output def _lowerCAmelCase ( self: str , a: List[str] , a: Optional[Any]=False , a: Optional[int]=1.0) ->str: '''simple docstring''' if isinstance(a , a): a_ = [] for i in range(len(a)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=a)) return output for placeholder_token in self.token_map: if placeholder_token in text: a_ = self.token_map[placeholder_token] a_ = tokens[: 1 + int(len(a) * prop_tokens_to_load)] if vector_shuffle: a_ = copy.copy(a) random.shuffle(a) a_ = text.replace(a , " ".join(a)) return text def __call__( self: Optional[Any] , a: Optional[int] , *a: Any , a: Optional[int]=False , a: Optional[Any]=1.0 , **a: List[Any]) ->str: '''simple docstring''' return super().__call__( self.replace_placeholder_tokens_in_text( a , vector_shuffle=a , prop_tokens_to_load=a) , *a , **a , ) def _lowerCAmelCase ( self: Dict , a: str , *a: Any , a: Union[str, Any]=False , a: List[str]=1.0 , **a: List[Any]) ->Optional[Any]: '''simple docstring''' return super().encode( self.replace_placeholder_tokens_in_text( a , vector_shuffle=a , prop_tokens_to_load=a) , *a , **a , )
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __UpperCAmelCase (lowercase__ ) -> Optional[Any]: '''simple docstring''' if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' for char in word: a_ = ord(lowercase__ ) if not _is_chinese_char(lowercase__ ): return 0 return 1 def __UpperCAmelCase (lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = set() for token in tokens: a_ = len(lowercase__ ) > 1 and is_chinese(lowercase__ ) if chinese_word: word_set.add(lowercase__ ) a_ = list(lowercase__ ) return word_list def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' if not chinese_word_set: return bert_tokens a_ = max([len(lowercase__ ) for w in chinese_word_set] ) a_ = bert_tokens a_ , a_ = 0, len(lowercase__ ) while start < end: a_ = True if is_chinese(bert_word[start] ): a_ = min(end - start ,lowercase__ ) for i in range(lowercase__ ,1 ,-1 ): a_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): a_ = "##" + bert_word[j] a_ = start + i a_ = False break if single_word: start += 1 return bert_word def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = [] for i in range(0 ,len(lowercase__ ) ,100 ): a_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] a_ = [get_chinese_word(lowercase__ ) for r in res] ltp_res.extend(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) a_ = [] for i in range(0 ,len(lowercase__ ) ,100 ): a_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=lowercase__ ,truncation=lowercase__ ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(lowercase__ ) == len(lowercase__ ) a_ = [] for input_ids, chinese_word in zip(lowercase__ ,lowercase__ ): a_ = [] for id in input_ids: a_ = bert_tokenizer._convert_id_to_token(lowercase__ ) input_tokens.append(lowercase__ ) a_ = add_sub_symbol(lowercase__ ,lowercase__ ) a_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase__ ): if token[:2] == "##": a_ = token[2:] # save chinese tokens' pos if len(lowercase__ ) == 1 and _is_chinese_char(ord(lowercase__ ) ): ref_id.append(lowercase__ ) ref_ids.append(lowercase__ ) assert len(lowercase__ ) == len(lowercase__ ) return ref_ids def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' with open(args.file_name ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [line.strip() for line in data if len(lowercase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a_ = LTP(args.ltp ) # faster in GPU device a_ = BertTokenizer.from_pretrained(args.bert ) a_ = prepare_ref(lowercase__ ,lowercase__ ,lowercase__ ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: a_ = [json.dumps(lowercase__ ) + "\n" for ref in ref_ids] f.writelines(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') a_ = parser.parse_args() main(args)
685
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' a_ = -1 a_ = 0 for a in range(1 ,n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c a_ = (n * n - 2 * a * n) // (2 * n - 2 * a) a_ = n - a - b if c * c == (a * a + b * b): a_ = a * b * c if candidate >= product: a_ = candidate return product if __name__ == "__main__": print(F'{solution() = }')
685
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> float: '''simple docstring''' a_ = x a_ = y for step in range(lowercase__ ): # noqa: B007 a_ = a * a - b * b + x a_ = 2 * a * b + y a_ = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def __UpperCAmelCase (lowercase__ ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def __UpperCAmelCase (lowercase__ ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase__ ,1 ,1 ) ) def __UpperCAmelCase (lowercase__ = 800 ,lowercase__ = 600 ,lowercase__ = -0.6 ,lowercase__ = 0 ,lowercase__ = 3.2 ,lowercase__ = 50 ,lowercase__ = True ,) -> Image.Image: '''simple docstring''' a_ = Image.new("RGB" ,(image_width, image_height) ) a_ = img.load() # loop through the image-coordinates for image_x in range(lowercase__ ): for image_y in range(lowercase__ ): # determine the figure-coordinates based on the image-coordinates a_ = figure_width / image_width * image_height a_ = figure_center_x + (image_x / image_width - 0.5) * figure_width a_ = figure_center_y + (image_y / image_height - 0.5) * figure_height a_ = get_distance(lowercase__ ,lowercase__ ,lowercase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: a_ = get_color_coded_rgb(lowercase__ ) else: a_ = get_black_and_white_rgb(lowercase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": a_ = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') a_ = F'https://www.google.com/search?q={query}&num=100' a_ = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: a_ = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: a_ = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
1
'''simple docstring''' import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __UpperCAmelCase (lowercase__ ,lowercase__=0.999 ,lowercase__="cosine" ,) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) a_ = [] for i in range(lowercase__ ): a_ = i / num_diffusion_timesteps a_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) ,lowercase__ ) ) return torch.tensor(lowercase__ ,dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase =[e.name for e in KarrasDiffusionSchedulers] _UpperCAmelCase =2 @register_to_config def __init__( self: Union[str, Any] , a: int = 10_00 , a: float = 0.0_0085 , a: float = 0.012 , a: str = "linear" , a: Optional[Union[np.ndarray, List[float]]] = None , a: str = "epsilon" , a: str = "linspace" , a: int = 0 , ) ->Optional[int]: '''simple docstring''' if trained_betas is not None: a_ = torch.tensor(a , dtype=torch.floataa) elif beta_schedule == "linear": a_ = torch.linspace(a , a , a , dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a_ = betas_for_alpha_bar(a) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""") a_ = 1.0 - self.betas a_ = torch.cumprod(self.alphas , dim=0) # set all values self.set_timesteps(a , a , a) def _lowerCAmelCase ( self: Union[str, Any] , a: Any , a: Tuple=None) ->Dict: '''simple docstring''' if schedule_timesteps is None: a_ = self.timesteps a_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: a_ = 1 if len(a) > 1 else 0 else: a_ = timestep.cpu().item() if torch.is_tensor(a) else timestep a_ = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCAmelCase ( self: int) ->List[Any]: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCAmelCase ( self: List[str] , a: torch.FloatTensor , a: Union[float, torch.FloatTensor] , ) ->torch.FloatTensor: '''simple docstring''' a_ = self.index_for_timestep(a) if self.state_in_first_order: a_ = self.sigmas[step_index] else: a_ = self.sigmas_interpol[step_index] a_ = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCAmelCase ( self: Dict , a: int , a: Union[str, torch.device] = None , a: Optional[int] = None , ) ->Dict: '''simple docstring''' a_ = num_inference_steps a_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": a_ = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a)[::-1].copy() elif self.config.timestep_spacing == "leading": a_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a_ = (np.arange(0 , a) * step_ratio).round()[::-1].copy().astype(a) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": a_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 a_ = (np.arange(a , 0 , -step_ratio)).round().copy().astype(a) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""") a_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) a_ = torch.from_numpy(np.log(a)).to(a) a_ = np.interp(a , np.arange(0 , len(a)) , a) a_ = np.concatenate([sigmas, [0.0]]).astype(np.floataa) a_ = torch.from_numpy(a).to(device=a) # interpolate sigmas a_ = sigmas.log().lerp(sigmas.roll(1).log() , 0.5).exp() a_ = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) a_ = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(a).startswith("mps"): # mps does not support float64 a_ = torch.from_numpy(a).to(a , dtype=torch.floataa) else: a_ = torch.from_numpy(a).to(a) # interpolate timesteps a_ = self.sigma_to_t(a).to(a , dtype=timesteps.dtype) a_ = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1).flatten() a_ = torch.cat([timesteps[:1], interleaved_timesteps]) a_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter a_ = defaultdict(a) def _lowerCAmelCase ( self: List[Any] , a: Dict) ->str: '''simple docstring''' a_ = sigma.log() # get distribution a_ = log_sigma - self.log_sigmas[:, None] # get sigmas range a_ = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) a_ = low_idx + 1 a_ = self.log_sigmas[low_idx] a_ = self.log_sigmas[high_idx] # interpolate sigmas a_ = (low - log_sigma) / (low - high) a_ = w.clamp(0 , 1) # transform interpolation to time range a_ = (1 - w) * low_idx + w * high_idx a_ = t.view(sigma.shape) return t @property def _lowerCAmelCase ( self: Any) ->Tuple: '''simple docstring''' return self.sample is None def _lowerCAmelCase ( self: Any , a: Union[torch.FloatTensor, np.ndarray] , a: Union[float, torch.FloatTensor] , a: Union[torch.FloatTensor, np.ndarray] , a: bool = True , ) ->Union[SchedulerOutput, Tuple]: '''simple docstring''' a_ = self.index_for_timestep(a) # advance index counter by 1 a_ = timestep.cpu().item() if torch.is_tensor(a) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: a_ = self.sigmas[step_index] a_ = self.sigmas_interpol[step_index + 1] a_ = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method a_ = self.sigmas[step_index - 1] a_ = self.sigmas_interpol[step_index] a_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API a_ = 0 a_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": a_ = sigma_hat if self.state_in_first_order else sigma_interpol a_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": a_ = sigma_hat if self.state_in_first_order else sigma_interpol a_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample") else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""") if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order a_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep a_ = sigma_interpol - sigma_hat # store for 2nd order step a_ = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order a_ = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep a_ = sigma_next - sigma_hat a_ = self.sample a_ = None a_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a) def _lowerCAmelCase ( self: Tuple , a: torch.FloatTensor , a: torch.FloatTensor , a: torch.FloatTensor , ) ->torch.FloatTensor: '''simple docstring''' a_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(a): # mps does not support float64 a_ = self.timesteps.to(original_samples.device , dtype=torch.floataa) a_ = timesteps.to(original_samples.device , dtype=torch.floataa) else: a_ = self.timesteps.to(original_samples.device) a_ = timesteps.to(original_samples.device) a_ = [self.index_for_timestep(a , a) for t in timesteps] a_ = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): a_ = sigma.unsqueeze(-1) a_ = original_samples + noise * sigma return noisy_samples def __len__( self: int) ->Optional[Any]: '''simple docstring''' return self.config.num_train_timesteps
685
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
1
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser a_ = re.compile(r'\s+') def __UpperCAmelCase (lowercase__ ) -> Dict: '''simple docstring''' return {"hash": hashlib.mda(re.sub(lowercase__ ,"" ,example["content"] ).encode("utf-8" ) ).hexdigest()} def __UpperCAmelCase (lowercase__ ) -> int: '''simple docstring''' a_ = [len(lowercase__ ) for line in example["content"].splitlines()] return {"line_mean": np.mean(lowercase__ ), "line_max": max(lowercase__ )} def __UpperCAmelCase (lowercase__ ) -> Optional[int]: '''simple docstring''' a_ = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def __UpperCAmelCase (lowercase__ ,lowercase__=5 ) -> List[Any]: '''simple docstring''' a_ = ["auto-generated", "autogenerated", "automatically generated"] a_ = example["content"].splitlines() for _, line in zip(range(lowercase__ ) ,lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCAmelCase (lowercase__ ,lowercase__=5 ,lowercase__=0.05 ) -> Optional[Any]: '''simple docstring''' a_ = ["unit tests", "test file", "configuration file"] a_ = example["content"].splitlines() a_ = 0 a_ = 0 # first test for _, line in zip(range(lowercase__ ) ,lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test a_ = example["content"].count("\n" ) a_ = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCAmelCase (lowercase__ ) -> List[Any]: '''simple docstring''' a_ = ["def ", "class ", "for ", "while "] a_ = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCAmelCase (lowercase__ ,lowercase__=4 ) -> Dict: '''simple docstring''' a_ = example["content"].splitlines() a_ = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCAmelCase (lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = tokenizer(example["content"] ,truncation=lowercase__ )["input_ids"] a_ = len(example["content"] ) / len(lowercase__ ) return {"ratio": ratio} def __UpperCAmelCase (lowercase__ ) -> List[str]: '''simple docstring''' a_ = {} results.update(get_hash(lowercase__ ) ) results.update(line_stats(lowercase__ ) ) results.update(alpha_stats(lowercase__ ) ) results.update(char_token_ratio(lowercase__ ) ) results.update(is_autogenerated(lowercase__ ) ) results.update(is_config_or_test(lowercase__ ) ) results.update(has_no_keywords(lowercase__ ) ) results.update(has_few_assignments(lowercase__ ) ) return results def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' if not check_uniques(lowercase__ ,lowercase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCAmelCase (lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"rb" ) as f_in: with gzip.open(str(lowercase__ ) + ".gz" ,"wb" ,compresslevel=6 ) as f_out: shutil.copyfileobj(lowercase__ ,lowercase__ ) os.unlink(lowercase__ ) # Settings a_ = HfArgumentParser(PreprocessingArguments) a_ = parser.parse_args() if args.num_workers is None: a_ = multiprocessing.cpu_count() a_ = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset a_ = time.time() a_ = load_dataset(args.dataset_name, split='train') print(F'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing a_ = time.time() a_ = ds.map(preprocess, num_proc=args.num_workers) print(F'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes a_ = set(ds.unique('hash')) a_ = len(uniques) / len(ds) print(F'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics a_ = time.time() a_ = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(F'Time to filter dataset: {time.time()-t_start:.2f}') print(F'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: a_ = time.time() a_ , a_ = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(F'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file a_ = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) a_ = output_dir / 'data' data_dir.mkdir(exist_ok=True) a_ = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): a_ = str(data_dir / F'file-{file_number+1:012}.json') a_ = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'Time to save dataset: {time.time()-t_start:.2f}')
685
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , lowercase_ ): def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ = load_tool("text-classification") self.tool.setup() a_ = load_tool("text-classification" , remote=a) def _lowerCAmelCase ( self: Any) ->List[str]: '''simple docstring''' a_ = self.tool("That's quite cool" , ["positive", "negative"]) self.assertEqual(a , "positive") def _lowerCAmelCase ( self: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = self.remote_tool("That's quite cool" , ["positive", "negative"]) self.assertEqual(a , "positive") def _lowerCAmelCase ( self: int) ->Any: '''simple docstring''' a_ = self.tool(text="That's quite cool" , labels=["positive", "negative"]) self.assertEqual(a , "positive") def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' a_ = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"]) self.assertEqual(a , "positive")
685
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
1
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCAmelCase (lowercase__ ,lowercase__=() ,lowercase__=None ,lowercase__="no" ,lowercase__="29500" ) -> List[Any]: '''simple docstring''' a_ = False a_ = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): a_ = True elif "IPython" in sys.modules: a_ = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: a_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" ,lowercase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: a_ = 8 a_ = PrepareForLaunch(lowercase__ ,distributed_type="TPU" ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(lowercase__ ,args=lowercase__ ,nprocs=lowercase__ ,start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*lowercase__ ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowercase__ ,master_addr="127.0.01" ,master_port=lowercase__ ,mixed_precision=lowercase__ ): a_ = PrepareForLaunch(lowercase__ ,distributed_type="MULTI_GPU" ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(lowercase__ ,args=lowercase__ ,nprocs=lowercase__ ,start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): a_ = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*lowercase__ ) def __UpperCAmelCase (lowercase__ ,lowercase__=() ,lowercase__=2 ) -> Optional[int]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowercase__ ,master_addr="127.0.01" ,master_port="29500" ,accelerate_mixed_precision="no" ,accelerate_debug_rdv_file=tmp_file.name ,accelerate_use_cpu="yes" ,): a_ = PrepareForLaunch(lowercase__ ,debug=lowercase__ ) start_processes(lowercase__ ,args=lowercase__ ,nprocs=lowercase__ ,start_method="fork" )
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase__ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase (lowercase__ = 10001 ) -> int: '''simple docstring''' try: a_ = int(lowercase__ ) except (TypeError, ValueError): raise TypeError("Parameter nth must be int or castable to int." ) from None if nth <= 0: raise ValueError("Parameter nth must be greater than or equal to one." ) a_ = [] a_ = 2 while len(lowercase__ ) < nth: if is_prime(lowercase__ ): primes.append(lowercase__ ) num += 1 else: num += 1 return primes[len(lowercase__ ) - 1] if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import os import jsonlines import numpy as np from tqdm import tqdm a_ = 2_048 a_ = 4_096 a_ = 42 a_ = os.environ.pop('PROCESS_TRAIN', 'false') a_ = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def __UpperCAmelCase (lowercase__ ) -> Dict: '''simple docstring''' def choose_first(lowercase__ ,lowercase__=False ): assert isinstance(lowercase__ ,lowercase__ ) if len(lowercase__ ) == 1: a_ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: a_ = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a a_ = {"id": example["id"]} a_ = example["annotations"] a_ = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: a_ = ["yes"] if 1 in yes_no_answer else ["no"] a_ = a_ = [] a_ = a_ = [] a_ = ["<cls>"] else: a_ = ["short"] a_ = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available a_ = ["long"] a_ = choose_first(annotation["long_answer"] ,is_long_answer=lowercase__ ) a_ = [] answer.update(lowercase__ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: a_ = True else: a_ = False a_ = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k] ,lowercase__ ) for k in cols ): raise ValueError("Issue in ID" ,example["id"] ) return answer def __UpperCAmelCase (lowercase__ ,lowercase__=False ) -> List[str]: '''simple docstring''' a_ = _get_single_answer(lowercase__ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element a_ = example["document"]["tokens"] a_ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples a_ = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 a_ = example["document"]["tokens"] a_ = answer["start_token"] a_ = answer["end_token"] a_ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 a_ = " ".join(context[start_token:end_token] ) # checking above code if assertion: a_ = doc["is_html"][answer["start_token"] : answer["end_token"]] a_ = doc["token"][answer["start_token"] : answer["end_token"]] a_ = " ".join([old[i] for i in range(len(lowercase__ ) ) if not is_html[i]] ) if new != old: print("ID:" ,example["id"] ) print("New:" ,lowercase__ ,end="\n" ) print("Old:" ,lowercase__ ,end="\n\n" ) return { "context": " ".join(lowercase__ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__=2048 ,lowercase__=4096 ,lowercase__=True ) -> List[str]: '''simple docstring''' a_ = get_context_and_ans(lowercase__ ,assertion=lowercase__ ) a_ = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } a_ = tokenizer(example["question"]["text"] ,out["context"] ).input_ids a_ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element a_ = [] a_ = [] a_ = input_ids[:q_len] a_ = range(lowercase__ ,len(lowercase__ ) ,max_length - doc_stride ) for i in doc_start_indices: a_ = i + max_length - q_len a_ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(lowercase__ ), "end_token": [-100] * len(lowercase__ ), "category": category, }, } a_ = out["context"].split() a_ = splitted_context[answer["end_token"]] a_ = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ) ,add_special_tokens=lowercase__ ,).input_ids ) a_ = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ) ,add_special_tokens=lowercase__ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token a_ = len(tokenizer(lowercase__ ,add_special_tokens=lowercase__ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 a_ = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive a_ = answer["start_token"] a_ = answer["end_token"] if assertion: a_ = tokenizer.decode(lowercase__ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:" ,answer["span"] ) print("NEW:" ,lowercase__ ,end="\n\n" ) if len(lowercase__ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } a_ = input_ids[:q_len] a_ = range(lowercase__ ,len(lowercase__ ) ,max_length - doc_stride ) a_ = [] a_ = [] a_ = [] a_ = [] # null, yes, no, long, short for i in doc_start_indices: a_ = i + max_length - q_len a_ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: a_ = start_token - i + q_len a_ = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: a_ = -100 a_ = -100 answers_category.append("null" ) a_ = inputs[-1][start_token : end_token + 1] answers_start_token.append(lowercase__ ) answers_end_token.append(lowercase__ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:" ,example["id"] ) print("New:" ,tokenizer.decode(lowercase__ ) ) print("Old:" ,tokenizer.decode(lowercase__ ) ,end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__=2048 ,lowercase__=4096 ,lowercase__=False ) -> Optional[int]: '''simple docstring''' a_ = get_strided_contexts_and_ans( lowercase__ ,lowercase__ ,doc_stride=lowercase__ ,max_length=lowercase__ ,assertion=lowercase__ ,) return example def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' with jsonlines.open(lowercase__ ,"a" ) as writer: for example in tqdm(lowercase__ ,total=len(lowercase__ ) ,desc="Saving samples ... " ): a_ = example["labels"] for ids, start, end, cat in zip( example["input_ids"] ,labels["start_token"] ,labels["end_token"] ,labels["category"] ,): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer a_ = load_dataset('natural_questions') a_ = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') a_ = data['train' if PROCESS_TRAIN == 'true' else 'validation'] a_ = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } a_ = data.map(prepare_inputs, fn_kwargs=fn_kwargs) a_ = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) a_ = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
685
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
'''simple docstring''' from heapq import heappop, heappush import numpy as np def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,) -> tuple[float | int, list[tuple[int, int]]]: '''simple docstring''' a_ , a_ = grid.shape a_ = [-1, 1, 0, 0] a_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] a_ , a_ = [(0, source)], set() a_ = np.full((rows, cols) ,np.inf ) a_ = 0 a_ = np.empty((rows, cols) ,dtype=lowercase__ ) a_ = None while queue: ((a_) , (a_)) = heappop(lowercase__ ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: a_ = [] while (x, y) != source: path.append((x, y) ) a_ , a_ = predecessors[x, y] path.append(lowercase__ ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(lowercase__ ) ): a_ , a_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: a_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(lowercase__ ,(dist + 1, (nx, ny)) ) a_ = dist + 1 a_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
685
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =DiTPipeline _UpperCAmelCase =CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCAmelCase =PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCAmelCase =CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCAmelCase =False def _lowerCAmelCase ( self: Any) ->int: '''simple docstring''' torch.manual_seed(0) a_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=a , activation_fn="gelu-approximate" , num_embeds_ada_norm=10_00 , norm_type="ada_norm_zero" , norm_elementwise_affine=a , ) a_ = AutoencoderKL() a_ = DDIMScheduler() a_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _lowerCAmelCase ( self: Any , a: Any , a: str=0) ->str: '''simple docstring''' if str(a).startswith("mps"): a_ = torch.manual_seed(a) else: a_ = torch.Generator(device=a).manual_seed(a) a_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' a_ = "cpu" a_ = self.get_dummy_components() a_ = self.pipeline_class(**a) pipe.to(a) pipe.set_progress_bar_config(disable=a) a_ = self.get_dummy_inputs(a) a_ = pipe(**a).images a_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3)) a_ = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457]) a_ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(a , 1e-3) def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=a , expected_max_diff=1e-3) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: List[str]) ->List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self: str) ->str: '''simple docstring''' a_ = torch.manual_seed(0) a_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256") pipe.to("cuda") a_ = ["vase", "umbrella", "white shark", "white wolf"] a_ = pipe.get_label_ids(a) a_ = pipe(a , generator=a , num_inference_steps=40 , output_type="np").images for word, image in zip(a , a): a_ = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""") assert np.abs((expected_image - image).max()) < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[Any]: '''simple docstring''' a_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512") a_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.to("cuda") a_ = ["vase", "umbrella"] a_ = pipe.get_label_ids(a) a_ = torch.manual_seed(0) a_ = pipe(a , generator=a , num_inference_steps=25 , output_type="np").images for word, image in zip(a , a): a_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"""/dit/{word}_512.npy""") assert np.abs((expected_image - image).max()) < 1e-1
685
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' with open(lowercase__ ) as metadata_file: a_ = json.load(lowercase__ ) a_ = LukeConfig(use_entity_aware_attention=lowercase__ ,**metadata["model_config"] ) # Load in the weights from the checkpoint_path a_ = torch.load(lowercase__ ,map_location="cpu" )["module"] # Load the entity vocab file a_ = load_original_entity_vocab(lowercase__ ) # add an entry for [MASK2] a_ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 a_ = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks a_ = AddedToken("<ent>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) a_ = AddedToken("<ent2>" ,lstrip=lowercase__ ,rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"r" ) as f: a_ = json.load(lowercase__ ) a_ = "MLukeTokenizer" with open(os.path.join(lowercase__ ,"tokenizer_config.json" ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) with open(os.path.join(lowercase__ ,MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) ,"w" ) as f: json.dump(lowercase__ ,lowercase__ ) a_ = MLukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens a_ = tokenizer.convert_tokens_to_ids(["@"] )[0] a_ = tokenizer.convert_tokens_to_ids(["#"] )[0] a_ = state_dict["embeddings.word_embeddings.weight"] a_ = word_emb[ent_init_index].unsqueeze(0 ) a_ = word_emb[enta_init_index].unsqueeze(0 ) a_ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: a_ = state_dict[bias_name] a_ = decoder_bias[ent_init_index].unsqueeze(0 ) a_ = decoder_bias[enta_init_index].unsqueeze(0 ) a_ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: a_ = F"""encoder.layer.{layer_index}.attention.self.""" a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] a_ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks a_ = state_dict["entity_embeddings.entity_embeddings.weight"] a_ = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' a_ = state_dict["entity_predictions.bias"] a_ = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 ) a_ = torch.cat([entity_prediction_bias, entity_mask_bias] ) a_ = LukeForMaskedLM(config=lowercase__ ).eval() state_dict.pop("entity_predictions.decoder.weight" ) state_dict.pop("lm_head.decoder.weight" ) state_dict.pop("lm_head.decoder.bias" ) a_ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )): a_ = state_dict[key] else: a_ = state_dict[key] a_ , a_ = model.load_state_dict(lowercase__ ,strict=lowercase__ ) if set(lowercase__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(lowercase__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs a_ = MLukeTokenizer.from_pretrained(lowercase__ ,task="entity_classification" ) a_ = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." a_ = (0, 9) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 33, 768) ) a_ = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base a_ = torch.Size((1, 1, 768) ) a_ = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,lowercase__ ,atol=1e-4 ): raise ValueError # Verify masked word/entity prediction a_ = MLukeTokenizer.from_pretrained(lowercase__ ) a_ = "Tokyo is the capital of <mask>." a_ = (24, 30) a_ = tokenizer(lowercase__ ,entity_spans=[span] ,return_tensors="pt" ) a_ = model(**lowercase__ ) a_ = encoding["input_ids"][0].tolist() a_ = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) ) a_ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase__ ) a_ = outputs.entity_logits[0][0].argmax().item() a_ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __UpperCAmelCase (lowercase__ ) -> Any: '''simple docstring''' a_ = ["[MASK]", "[PAD]", "[UNK]"] a_ = [json.loads(lowercase__ ) for line in open(lowercase__ )] a_ = {} for entry in data: a_ = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: a_ = entity_id break a_ = F"""{language}:{entity_name}""" a_ = entity_id return new_mapping if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) a_ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
685
1
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =CLIPTokenizer _UpperCAmelCase =CLIPTokenizerFast _UpperCAmelCase =True _UpperCAmelCase ={} _UpperCAmelCase =False def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' super().setUp() # fmt: off a_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a_ = dict(zip(a , range(len(a)))) a_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a_ = {"unk_token": "<unk>"} a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as fp: fp.write(json.dumps(a) + "\n") with open(self.merges_file , "w" , encoding="utf-8") as fp: fp.write("\n".join(a)) def _lowerCAmelCase ( self: Dict , **a: Optional[int]) ->str: '''simple docstring''' kwargs.update(self.special_tokens_map) return CLIPTokenizer.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' kwargs.update(self.special_tokens_map) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: Dict , a: List[Any]) ->Tuple: '''simple docstring''' a_ = "lower newer" a_ = "lower newer" return input_text, output_text def _lowerCAmelCase ( self: Tuple) ->int: '''simple docstring''' a_ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a_ = "lower newer" a_ = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a_ = tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokens + [tokenizer.unk_token] a_ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , a) @require_ftfy def _lowerCAmelCase ( self: List[str]) ->str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): a_ = self.tokenizer_class.from_pretrained(a , **a) a_ = self.rust_tokenizer_class.from_pretrained(a , **a) a_ = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a_ = tokenizer_s.tokenize(a) a_ = tokenizer_r.tokenize(a) self.assertListEqual(a , a) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a_ = "xa\u0303y" + " " + "x\xe3y" a_ = tokenizer_s.tokenize(a) a_ = tokenizer_r.tokenize(a) self.assertListEqual(a , a) # Test that the tokenization is identical on unicode of space type a_ = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a_ = tokenizer_s.tokenize(a) a_ = tokenizer_r.tokenize(a) self.assertListEqual(a , a) # Test that the tokenization is identical on unicode of line break type a_ = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a_ = tokenizer_s.tokenize(a) a_ = tokenizer_r.tokenize(a) self.assertListEqual(a , a) def _lowerCAmelCase ( self: int) ->List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): a_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a_ = f"""{text_of_1_token} {text_of_1_token}""" a_ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) a_ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a) self.assertEqual(encoding.offset_mapping[0] , (0, len(a))) self.assertEqual( encoding.offset_mapping[1] , (len(a) + 1, len(a) + 1 + len(a)) , ) a_ = f""" {text}""" a_ = self.rust_tokenizer_class.from_pretrained( a , use_fast=a , ) a_ = tokenizer_r(a , return_offsets_mapping=a , add_special_tokens=a) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(a))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(a) + 1, 1 + len(a) + 1 + len(a)) , ) def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer") self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format.")) @require_ftfy def _lowerCAmelCase ( self: Optional[Any]) ->List[str]: '''simple docstring''' super().test_tokenization_python_rust_equals() def _lowerCAmelCase ( self: Union[str, Any]) ->List[str]: '''simple docstring''' pass
685
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): _UpperCAmelCase =LxmertTokenizer _UpperCAmelCase =LxmertTokenizerFast _UpperCAmelCase =True _UpperCAmelCase =True def _lowerCAmelCase ( self: Dict) ->int: '''simple docstring''' super().setUp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _lowerCAmelCase ( self: Optional[Any] , a: Dict) ->Optional[Any]: '''simple docstring''' a_ = "UNwant\u00E9d,running" a_ = "unwanted, running" return input_text, output_text def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = self.tokenizer_class(self.vocab_file) a_ = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(a , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [7, 4, 5, 10, 8, 9]) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' if not self.test_rust_tokenizer: return a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = "I was born in 92000, and this is falsé." a_ = tokenizer.tokenize(a) a_ = rust_tokenizer.tokenize(a) self.assertListEqual(a , a) a_ = tokenizer.encode(a , add_special_tokens=a) a_ = rust_tokenizer.encode(a , add_special_tokens=a) self.assertListEqual(a , a) a_ = self.get_rust_tokenizer() a_ = tokenizer.encode(a) a_ = rust_tokenizer.encode(a) self.assertListEqual(a , a)
685
1
'''simple docstring''' from scipy.stats import pearsonr import datasets a_ = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _lowerCAmelCase ( self: Optional[Any]) ->List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float"), "references": datasets.Value("float"), }) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def _lowerCAmelCase ( self: Optional[int] , a: List[str] , a: List[Any] , a: Optional[Any]=False) ->List[Any]: '''simple docstring''' if return_pvalue: a_ = pearsonr(a , a) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a , a)[0])}
685
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
685
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = tempfile.mkdtemp() a_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] a_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) a_ = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.4814_5466, 0.457_8275, 0.4082_1073], "image_std": [0.2686_2954, 0.2613_0258, 0.2757_7711], "do_convert_rgb": True, } a_ = os.path.join(self.tmpdirname , a) with open(self.image_processor_file , "w" , encoding="utf-8") as fp: json.dump(a , a) def _lowerCAmelCase ( self: Optional[int] , **a: List[str]) ->Dict: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: List[Any] , **a: List[str]) ->List[Any]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: Any , **a: Tuple) ->Dict: '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **a) def _lowerCAmelCase ( self: Dict) ->Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta)] a_ = [Image.fromarray(np.moveaxis(a , 0 , -1)) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self: Any) ->Union[str, Any]: '''simple docstring''' a_ = self.get_tokenizer() a_ = self.get_rust_tokenizer() a_ = self.get_image_processor() a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) processor_slow.save_pretrained(self.tmpdirname) a_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=a) a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) processor_fast.save_pretrained(self.tmpdirname) a_ = ChineseCLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , a) self.assertIsInstance(processor_fast.tokenizer , a) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , a) self.assertIsInstance(processor_fast.image_processor , a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) a_ = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)") a_ = self.get_image_processor(do_normalize=a) a_ = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=a) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , a) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , a) def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) a_ = self.prepare_image_inputs() a_ = image_processor(a , return_tensors="np") a_ = processor(images=a , return_tensors="np") for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def _lowerCAmelCase ( self: Tuple) ->Tuple: '''simple docstring''' a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) a_ = "Alexandra,T-shirt的价格是15便士。" a_ = processor(text=a) a_ = tokenizer(a) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) a_ = "Alexandra,T-shirt的价格是15便士。" a_ = self.prepare_image_inputs() a_ = processor(text=a , images=a) self.assertListEqual(list(inputs.keys()) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"]) # test if it raises when no input is passed with pytest.raises(a): processor() def _lowerCAmelCase ( self: Dict) ->Optional[Any]: '''simple docstring''' a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) a_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ = processor.batch_decode(a) a_ = tokenizer.batch_decode(a) self.assertListEqual(a , a) def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' a_ = self.get_image_processor() a_ = self.get_tokenizer() a_ = ChineseCLIPProcessor(tokenizer=a , image_processor=a) a_ = "Alexandra,T-shirt的价格是15便士。" a_ = self.prepare_image_inputs() a_ = processor(text=a , images=a) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
685
'''simple docstring''' import re def __UpperCAmelCase (lowercase__ ) -> bool: '''simple docstring''' a_ = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase__ ,lowercase__ ) ) if __name__ == "__main__": a_ = '0094702343221' print(is_sri_lankan_phone_number(phone))
685
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys a_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') a_ = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode('utf-8').split() a_ = '|'.join(sys.argv[1:]) a_ = re.compile(rF'^({joined_dirs}).*?\.py$') a_ = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
685
'''simple docstring''' import argparse import os import re a_ = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings a_ = re.compile(r'\s*\(\s*"(\S[^"]+)"') def __UpperCAmelCase (lowercase__ ,lowercase__ = False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.read() a_ = content.split("\n" ) a_ = [] a_ = 0 while line_idx < len(lowercase__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: a_ = len(re.search(r"^(\s*)\S" ,lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 a_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": a_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers a_ = sorted(lowercase__ ,key=lambda lowercase__ : _re_identifier.search(lowercase__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(lowercase__ ,"w" ,encoding="utf-8" ) as f: f.write("\n".join(lowercase__ ) ) elif "\n".join(lowercase__ ) != content: return True def __UpperCAmelCase (lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = [os.path.join(lowercase__ ,lowercase__ ) for f in os.listdir(lowercase__ ) if f.endswith(".py" )] a_ = [sort_auto_mapping(lowercase__ ,overwrite=lowercase__ ) for fname in fnames] if not overwrite and any(lowercase__ ): a_ = [f for f, d in zip(lowercase__ ,lowercase__ ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(lowercase__ )}. Run `make style` to fix""" " this." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') a_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
685
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''levit''' def __init__( self: List[str] , a: int=2_24 , a: Optional[int]=3 , a: str=3 , a: List[Any]=2 , a: Optional[int]=1 , a: Any=16 , a: Optional[int]=[1_28, 2_56, 3_84] , a: Tuple=[4, 8, 12] , a: Dict=[4, 4, 4] , a: str=[16, 16, 16] , a: Dict=0 , a: Optional[int]=[2, 2, 2] , a: Union[str, Any]=[2, 2, 2] , a: Union[str, Any]=0.02 , **a: List[Any] , ) ->Any: '''simple docstring''' super().__init__(**a) a_ = image_size a_ = num_channels a_ = kernel_size a_ = stride a_ = padding a_ = hidden_sizes a_ = num_attention_heads a_ = depths a_ = key_dim a_ = drop_path_rate a_ = patch_size a_ = attention_ratio a_ = mlp_ratio a_ = initializer_range a_ = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =version.parse('''1.11''' ) @property def _lowerCAmelCase ( self: Tuple) ->Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def _lowerCAmelCase ( self: List[str]) ->float: '''simple docstring''' return 1e-4
685
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ ): _UpperCAmelCase ='''pixel_values''' _UpperCAmelCase =False _UpperCAmelCase =TimmBackboneConfig def __init__( self: Union[str, Any] , a: Union[str, Any] , **a: Tuple) ->Optional[Any]: '''simple docstring''' requires_backends(self , "timm") super().__init__(a) a_ = config if config.backbone is None: raise ValueError("backbone is not set in the config. Please set it to a timm model name.") if config.backbone not in timm.list_models(): raise ValueError(f"""backbone {config.backbone} is not supported by timm.""") if hasattr(a , "out_features") and config.out_features is not None: raise ValueError("out_features is not supported by TimmBackbone. Please use out_indices instead.") a_ = getattr(a , "use_pretrained_backbone" , a) if pretrained is None: raise ValueError("use_pretrained_backbone is not set in the config. Please set it to True or False.") # We just take the final layer by default. This matches the default for the transformers models. a_ = config.out_indices if getattr(a , "out_indices" , a) is not None else (-1,) a_ = timm.create_model( config.backbone , pretrained=a , features_only=config.features_only , in_chans=config.num_channels , out_indices=a , **a , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a_ = self._backbone.return_layers a_ = {layer["module"]: str(a) for i, layer in enumerate(self._backbone.feature_info.info)} super()._init_backbone(a) @classmethod def _lowerCAmelCase ( cls: Tuple , a: Optional[Any] , *a: Optional[Any] , **a: str) ->List[Any]: '''simple docstring''' requires_backends(cls , ["vision", "timm"]) from ...models.timm_backbone import TimmBackboneConfig a_ = kwargs.pop("config" , TimmBackboneConfig()) a_ = kwargs.pop("use_timm_backbone" , a) if not use_timm: raise ValueError("use_timm_backbone must be True for timm backbones") a_ = kwargs.pop("num_channels" , config.num_channels) a_ = kwargs.pop("features_only" , config.features_only) a_ = kwargs.pop("use_pretrained_backbone" , config.use_pretrained_backbone) a_ = kwargs.pop("out_indices" , config.out_indices) a_ = TimmBackboneConfig( backbone=a , num_channels=a , features_only=a , use_pretrained_backbone=a , out_indices=a , ) return super()._from_config(a , **a) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' pass def _lowerCAmelCase ( self: Tuple , a: List[Any] , a: Any=None , a: Dict=None , a: Optional[int]=None , **a: int) ->Union[BackboneOutput, Tuple[Tensor, ...]]: '''simple docstring''' a_ = return_dict if return_dict is not None else self.config.use_return_dict a_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("Cannot output attentions for timm backbones at the moment") if output_hidden_states: # We modify the return layers to include all the stages of the backbone a_ = self._all_layers a_ = self._backbone(a , **a) a_ = self._return_layers a_ = tuple(hidden_states[i] for i in self.out_indices) else: a_ = self._backbone(a , **a) a_ = None a_ = tuple(a) a_ = tuple(a) if hidden_states is not None else None if not return_dict: a_ = (feature_maps,) if output_hidden_states: a_ = output + (hidden_states,) return output return BackboneOutput(feature_maps=a , hidden_states=a , attentions=a)
685
1
'''simple docstring''' a_ = 8.314_462 # Unit - J mol-1 K-1 def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> float: '''simple docstring''' if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
685
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self: Tuple , a: Union[str, Any] , a: str=13 , a: Dict=7 , a: Any=True , a: List[Any]=True , a: Optional[Any]=True , a: List[str]=True , a: List[Any]=99 , a: Tuple=32 , a: Optional[int]=5 , a: Union[str, Any]=4 , a: Dict=37 , a: Optional[int]="gelu" , a: Union[str, Any]=0.1 , a: List[Any]=0.1 , a: str=5_12 , a: Dict=16 , a: Tuple=2 , a: Union[str, Any]=0.02 , a: Union[str, Any]=3 , a: Tuple=4 , a: Dict=None , ) ->Tuple: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = scope def _lowerCAmelCase ( self: Optional[Any]) ->List[Any]: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self: Any) ->Tuple: '''simple docstring''' return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self: Tuple , a: Optional[Any] , a: str , a: str , a: Dict , a: Union[str, Any] , a: int , a: Optional[int]) ->List[str]: '''simple docstring''' a_ = NystromformerModel(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a) a_ = model(a , token_type_ids=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: Optional[Any] , a: Union[str, Any] , a: Dict , a: int , a: int , a: int) ->str: '''simple docstring''' a_ = NystromformerForMaskedLM(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: List[Any] , a: Any , a: Optional[Any] , a: Optional[Any] , a: str , a: Optional[int] , a: Tuple , a: Optional[Any]) ->Dict: '''simple docstring''' a_ = NystromformerForQuestionAnswering(config=a) model.to(a) model.eval() a_ = model( a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: str , a: int , a: Optional[int] , a: List[str] , a: Any , a: Dict , a: Union[str, Any] , a: Union[str, Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.num_labels a_ = NystromformerForSequenceClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCAmelCase ( self: int , a: str , a: Optional[Any] , a: List[str] , a: str , a: List[str] , a: Any , a: Tuple) ->Optional[Any]: '''simple docstring''' a_ = self.num_labels a_ = NystromformerForTokenClassification(config=a) model.to(a) model.eval() a_ = model(a , attention_mask=a , token_type_ids=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Tuple , a: Union[str, Any] , a: Optional[Any] , a: Optional[Any] , a: int , a: str , a: Union[str, Any] , a: int) ->List[str]: '''simple docstring''' a_ = self.num_choices a_ = NystromformerForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: str) ->int: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': NystromformerModel, '''fill-mask''': NystromformerForMaskedLM, '''question-answering''': NystromformerForQuestionAnswering, '''text-classification''': NystromformerForSequenceClassification, '''token-classification''': NystromformerForTokenClassification, '''zero-shot''': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase =False _UpperCAmelCase =False def _lowerCAmelCase ( self: Tuple) ->Any: '''simple docstring''' a_ = NystromformerModelTester(self) a_ = ConfigTester(self , config_class=a , hidden_size=37) def _lowerCAmelCase ( self: Dict) ->List[str]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def _lowerCAmelCase ( self: List[str]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*a) def _lowerCAmelCase ( self: Dict) ->List[str]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a) def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a) def _lowerCAmelCase ( self: Union[str, Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a) @slow def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = NystromformerModel.from_pretrained(a) self.assertIsNotNone(a) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: Dict) ->Optional[Any]: '''simple docstring''' a_ = NystromformerModel.from_pretrained("uw-madison/nystromformer-512") a_ = torch.tensor([[0, 1, 2, 3, 4, 5]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 6, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4)) @slow def _lowerCAmelCase ( self: Optional[Any]) ->int: '''simple docstring''' a_ = "the [MASK] of Belgium is Brussels" a_ = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512") a_ = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512") a_ = tokenizer(a , return_tensors="pt") with torch.no_grad(): a_ = model(encoding.input_ids).logits a_ = token_logits[:, 2, :].argmax(-1)[0] self.assertEqual(tokenizer.decode(a) , "capital")
685
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase () -> Optional[Any]: '''simple docstring''' a_ = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } a_ = Dataset.from_dict(lowercase__ ) return dataset class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[int]: '''simple docstring''' a_ = get_dataset() a_ = make_duplicate_clusters(a , 0.85) self.assertEqual(len(duplicate_clusters[0]) , 2) def _lowerCAmelCase ( self: Any) ->Dict: '''simple docstring''' a_ = get_dataset() a_ , a_ = deduplicate_dataset(a) self.assertEqual(len(a) , 2) print(a) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a)
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(lowercase__ ,int(b / 2 ) ) * actual_power(lowercase__ ,int(b / 2 ) ) else: return a * actual_power(lowercase__ ,int(b / 2 ) ) * actual_power(lowercase__ ,int(b / 2 ) ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(lowercase__ ,lowercase__ ) return actual_power(lowercase__ ,lowercase__ ) if __name__ == "__main__": print(power(-2, -3))
685
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
1
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self: Tuple , a: int , ) ->List[str]: '''simple docstring''' a_ = parent a_ = 13 a_ = 7 a_ = 30 a_ = self.seq_length + self.mem_len a_ = 15 a_ = True a_ = True a_ = 99 a_ = [10, 50, 80] a_ = 32 a_ = 32 a_ = 4 a_ = 8 a_ = 1_28 a_ = 2 a_ = 2 a_ = None a_ = 1 a_ = 0 a_ = 3 a_ = self.vocab_size - 1 a_ = 0.01 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' random.seed(self.seed) tf.random.set_seed(self.seed) def _lowerCAmelCase ( self: Optional[Any] , a: str , a: Tuple , a: Union[str, Any] , a: Union[str, Any]) ->str: '''simple docstring''' a_ = TFTransfoXLModel(a) a_ , a_ = model(a).to_tuple() a_ = {"input_ids": input_ids_a, "mems": mems_a} a_ , a_ = model(a).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCAmelCase ( self: Tuple , a: str , a: Optional[Any] , a: str , a: Optional[int]) ->List[Any]: '''simple docstring''' a_ = TFTransfoXLLMHeadModel(a) a_ , a_ = model(a).to_tuple() a_ = {"input_ids": input_ids_a, "labels": lm_labels} a_ , a_ = model(a).to_tuple() a_ , a_ = model([input_ids_a, mems_a]).to_tuple() a_ = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} a_ , a_ = model(a).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCAmelCase ( self: str , a: int , a: Union[str, Any] , a: Union[str, Any] , a: List[Any]) ->Tuple: '''simple docstring''' a_ = TFTransfoXLForSequenceClassification(a) a_ = model(a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def _lowerCAmelCase ( self: List[Any]) ->str: '''simple docstring''' a_ = self.prepare_config_and_inputs() ((a_) , (a_) , (a_) , (a_)) = config_and_inputs a_ = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCAmelCase =() if is_tf_available() else () _UpperCAmelCase =( { '''feature-extraction''': TFTransfoXLModel, '''text-classification''': TFTransfoXLForSequenceClassification, '''text-generation''': TFTransfoXLLMHeadModel, '''zero-shot''': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCAmelCase =False _UpperCAmelCase =False _UpperCAmelCase =False _UpperCAmelCase =False def _lowerCAmelCase ( self: List[Any] , a: List[str] , a: Dict , a: List[Any] , a: int , a: List[str]) ->int: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = TFTransfoXLModelTester(self) a_ = ConfigTester(self , config_class=a , d_embed=37) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: str) ->str: '''simple docstring''' self.model_tester.set_seed() a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a) def _lowerCAmelCase ( self: Tuple) ->Optional[int]: '''simple docstring''' self.model_tester.set_seed() a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a) def _lowerCAmelCase ( self: Tuple) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a) def _lowerCAmelCase ( self: List[Any]) ->Union[str, Any]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() a_ = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a_ = model_class(a) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: a_ = model.get_output_embeddings() assert isinstance(a , tf.keras.layers.Layer) a_ = model.get_bias() assert name is None else: a_ = model.get_output_embeddings() assert x is None a_ = model.get_bias() assert name is None def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' pass @slow def _lowerCAmelCase ( self: str) ->Union[str, Any]: '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = TFTransfoXLModel.from_pretrained(a) self.assertIsNotNone(a) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.") def _lowerCAmelCase ( self: Dict) ->str: '''simple docstring''' pass @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @unittest.skip("Skip test until #12651 is resolved.") @slow def _lowerCAmelCase ( self: int) ->Union[str, Any]: '''simple docstring''' a_ = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103") # fmt: off a_ = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a_ = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a_ = model.generate(a , max_length=2_00 , do_sample=a) self.assertListEqual(output_ids[0].numpy().tolist() , a)
685
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow a_ = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Any , a: Path , a: Union[str, None] = None , a: Union[List[str], None] = None , a: Union[str, List[str], None] = None , a: bool = True , ) ->Optional[Any]: '''simple docstring''' a_ = [file for file in os.listdir(a) if os.path.isfile(os.path.join(a , a))] if identifier is not None: a_ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(a , a): for n_ in n_identifier: a_ = [file for file in files if n_ not in file] else: a_ = [file for file in files if n_identifier not in file] a_ = ignore_files or [] ignore_files.append("__init__.py") a_ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , a) if only_modules: a_ = file.split(".")[0] try: a_ = getattr(a , a) a_ = doctest.DocTestSuite(a) a_ = unittest.TextTestRunner().run(a) self.assertIs(len(result.failures) , 0) except AttributeError: logger.info(f"""{module_identifier} is not a module.""") else: a_ = doctest.testfile(str(".." / directory / file) , optionflags=doctest.ELLIPSIS) self.assertIs(result.failed , 0) def _lowerCAmelCase ( self: Dict) ->Tuple: '''simple docstring''' a_ = Path("src/transformers") a_ = "modeling" a_ = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(a , identifier=a , ignore_files=a) def _lowerCAmelCase ( self: int) ->Dict: '''simple docstring''' a_ = Path("src/transformers") a_ = "tokenization" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = Path("src/transformers") a_ = "configuration" self.analyze_directory(a , identifier=a) def _lowerCAmelCase ( self: Union[str, Any]) ->Any: '''simple docstring''' a_ = Path("src/transformers") a_ = ["configuration", "modeling", "tokenization"] self.analyze_directory(a , n_identifier=a) def _lowerCAmelCase ( self: Optional[int]) ->Tuple: '''simple docstring''' a_ = Path("docs/source") a_ = ["favicon.ico"] self.analyze_directory(a , ignore_files=a , only_modules=a)
685
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a_ = 'src/diffusers' a_ = '.' # This is to make sure the diffusers module imported is the one in the repo. a_ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) a_ = spec.loader.load_module() def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' return line.startswith(lowercase__ ) or len(lowercase__ ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" ,lowercase__ ) is not None def __UpperCAmelCase (lowercase__ ) -> Union[str, Any]: '''simple docstring''' a_ = object_name.split("." ) a_ = 0 # First let's find the module where our object lives. a_ = parts[i] while i < len(lowercase__ ) and not os.path.isfile(os.path.join(lowercase__ ,F"""{module}.py""" ) ): i += 1 if i < len(lowercase__ ): a_ = os.path.join(lowercase__ ,parts[i] ) if i >= len(lowercase__ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(lowercase__ ,F"""{module}.py""" ) ,"r" ,encoding="utf-8" ,newline="\n" ) as f: a_ = f.readlines() # Now let's find the class / func in the code! a_ = "" a_ = 0 for name in parts[i + 1 :]: while ( line_index < len(lowercase__ ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" ,lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowercase__ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). a_ = line_index while line_index < len(lowercase__ ) and _should_continue(lines[line_index] ,lowercase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] return "".join(lowercase__ ) a_ = re.compile(r'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') a_ = re.compile(r'^\s*(\S+)->(\S+)(\s+.*|$)') a_ = re.compile(r'<FILL\s+[^>]*>') def __UpperCAmelCase (lowercase__ ) -> str: '''simple docstring''' a_ = code.split("\n" ) a_ = 0 while idx < len(lowercase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(lowercase__ ): return re.search(r"^(\s*)\S" ,lines[idx] ).groups()[0] return "" def __UpperCAmelCase (lowercase__ ) -> str: '''simple docstring''' a_ = len(get_indent(lowercase__ ) ) > 0 if has_indent: a_ = F"""class Bla:\n{code}""" a_ = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ,preview=lowercase__ ) a_ = black.format_str(lowercase__ ,mode=lowercase__ ) a_ , a_ = style_docstrings_in_code(lowercase__ ) return result[len("class Bla:\n" ) :] if has_indent else result def __UpperCAmelCase (lowercase__ ,lowercase__=False ) -> List[Any]: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ,newline="\n" ) as f: a_ = f.readlines() a_ = [] a_ = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowercase__ ): a_ = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. a_ , a_ , a_ = search.groups() a_ = find_code_in_diffusers(lowercase__ ) a_ = get_indent(lowercase__ ) a_ = line_index + 1 if indent == theoretical_indent else line_index + 2 a_ = theoretical_indent a_ = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. a_ = True while line_index < len(lowercase__ ) and should_continue: line_index += 1 if line_index >= len(lowercase__ ): break a_ = lines[line_index] a_ = _should_continue(lowercase__ ,lowercase__ ) and re.search(F"""^{indent}# End copy""" ,lowercase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 a_ = lines[start_index:line_index] a_ = "".join(lowercase__ ) # Remove any nested `Copied from` comments to avoid circular copies a_ = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(lowercase__ ) is None] a_ = "\n".join(lowercase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(lowercase__ ) > 0: a_ = replace_pattern.replace("with" ,"" ).split("," ) a_ = [_re_replace_pattern.search(lowercase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue a_ , a_ , a_ = pattern.groups() a_ = re.sub(lowercase__ ,lowercase__ ,lowercase__ ) if option.strip() == "all-casing": a_ = re.sub(obja.lower() ,obja.lower() ,lowercase__ ) a_ = re.sub(obja.upper() ,obja.upper() ,lowercase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line a_ = blackify(lines[start_index - 1] + theoretical_code ) a_ = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: a_ = lines[:start_index] + [theoretical_code] + lines[line_index:] a_ = start_index + 1 if overwrite and len(lowercase__ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(lowercase__ ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lowercase__ ) return diffs def __UpperCAmelCase (lowercase__ = False ) -> str: '''simple docstring''' a_ = glob.glob(os.path.join(lowercase__ ,"**/*.py" ) ,recursive=lowercase__ ) a_ = [] for filename in all_files: a_ = is_copy_consistent(lowercase__ ,lowercase__ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(lowercase__ ) > 0: a_ = "\n".join(lowercase__ ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ = parser.parse_args() check_copies(args.fix_and_overwrite)
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed a_ = 'true' def __UpperCAmelCase (lowercase__ ,lowercase__=82 ,lowercase__=16 ) -> Dict: '''simple docstring''' set_seed(42 ) a_ = RegressionModel() a_ = deepcopy(lowercase__ ) a_ = RegressionDataset(length=lowercase__ ) a_ = DataLoader(lowercase__ ,batch_size=lowercase__ ) model.to(accelerator.device ) a_ , a_ = accelerator.prepare(lowercase__ ,lowercase__ ) return model, ddp_model, dataloader def __UpperCAmelCase (lowercase__ ,lowercase__=False ) -> int: '''simple docstring''' a_ = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) a_ = load_dataset("glue" ,"mrpc" ,split="validation" ) def tokenize_function(lowercase__ ): a_ = tokenizer(examples["sentence1"] ,examples["sentence2"] ,truncation=lowercase__ ,max_length=lowercase__ ) return outputs with accelerator.main_process_first(): a_ = dataset.map( lowercase__ ,batched=lowercase__ ,remove_columns=["idx", "sentence1", "sentence2"] ,) a_ = tokenized_datasets.rename_column("label" ,"labels" ) def collate_fn(lowercase__ ): if use_longest: return tokenizer.pad(lowercase__ ,padding="longest" ,return_tensors="pt" ) return tokenizer.pad(lowercase__ ,padding="max_length" ,max_length=128 ,return_tensors="pt" ) return DataLoader(lowercase__ ,shuffle=lowercase__ ,collate_fn=lowercase__ ,batch_size=16 ) def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Union[str, Any]: '''simple docstring''' a_ = Accelerator(dispatch_batches=lowercase__ ,split_batches=lowercase__ ) a_ = get_dataloader(lowercase__ ,not dispatch_batches ) a_ = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" ,return_dict=lowercase__ ) a_ , a_ = accelerator.prepare(lowercase__ ,lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> int: '''simple docstring''' a_ = [] for batch in dataloader: a_ , a_ = batch.values() with torch.no_grad(): a_ = model(lowercase__ ) a_ , a_ = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) a_ , a_ = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) a_ , a_ = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def __UpperCAmelCase (lowercase__ ,lowercase__=82 ,lowercase__=False ,lowercase__=False ,lowercase__=16 ) -> int: '''simple docstring''' a_ , a_ , a_ = get_basic_setup(lowercase__ ,lowercase__ ,lowercase__ ) a_ , a_ = generate_predictions(lowercase__ ,lowercase__ ,lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}""" def __UpperCAmelCase (lowercase__ = False ,lowercase__ = False ) -> Optional[int]: '''simple docstring''' a_ = evaluate.load("glue" ,"mrpc" ) a_ , a_ = get_mrpc_setup(lowercase__ ,lowercase__ ) # First do baseline a_ , a_ , a_ = setup["no"] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): a_ = model(**lowercase__ ) a_ = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ ,references=batch["labels"] ) a_ = metric.compute() # Then do distributed a_ , a_ , a_ = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): a_ = model(**lowercase__ ) a_ = outputs.logits.argmax(dim=-1 ) a_ = batch["labels"] a_ , a_ = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ ,references=lowercase__ ) a_ = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] ,distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __UpperCAmelCase () -> Dict: '''simple docstring''' a_ = Accelerator(split_batches=lowercase__ ,dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(lowercase__ ,lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: a_ = Accelerator(split_batches=lowercase__ ,dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(lowercase__ ,99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) a_ = Accelerator() test_torch_metrics(lowercase__ ,512 ) accelerator.state._reset_state() def __UpperCAmelCase (lowercase__ ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
685
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =(PNDMScheduler,) _UpperCAmelCase =(('''num_inference_steps''', 50),) def _lowerCAmelCase ( self: int , **a: Optional[int]) ->Any: '''simple docstring''' a_ = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a) return config def _lowerCAmelCase ( self: Any , a: Tuple=0 , **a: Any) ->Any: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) new_scheduler.set_timesteps(a) # copy over dummy past residuals a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: str) ->Any: '''simple docstring''' pass def _lowerCAmelCase ( self: Union[str, Any] , a: str=0 , **a: Union[str, Any]) ->Tuple: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) a_ = self.dummy_sample a_ = 0.1 * sample a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # copy over dummy past residuals (must be after setting timesteps) a_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a) a_ = scheduler_class.from_pretrained(a) # copy over dummy past residuals new_scheduler.set_timesteps(a) # copy over dummy past residual (must be after setting timesteps) a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , a , a , **a).prev_sample a_ = new_scheduler.step_prk(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" a_ = scheduler.step_plms(a , a , a , **a).prev_sample a_ = new_scheduler.step_plms(a , a , a , **a).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _lowerCAmelCase ( self: Dict , **a: int) ->Any: '''simple docstring''' a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(**a) a_ = scheduler_class(**a) a_ = 10 a_ = self.dummy_model() a_ = self.dummy_sample_deter scheduler.set_timesteps(a) for i, t in enumerate(scheduler.prk_timesteps): a_ = model(a , a) a_ = scheduler.step_prk(a , a , a).prev_sample for i, t in enumerate(scheduler.plms_timesteps): a_ = model(a , a) a_ = scheduler.step_plms(a , a , a).prev_sample return sample def _lowerCAmelCase ( self: int) ->int: '''simple docstring''' a_ = dict(self.forward_default_kwargs) a_ = kwargs.pop("num_inference_steps" , a) for scheduler_class in self.scheduler_classes: a_ = self.get_scheduler_config() a_ = scheduler_class(**a) a_ = self.dummy_sample a_ = 0.1 * sample if num_inference_steps is not None and hasattr(a , "set_timesteps"): scheduler.set_timesteps(a) elif num_inference_steps is not None and not hasattr(a , "set_timesteps"): a_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] a_ = dummy_past_residuals[:] a_ = scheduler.step_prk(a , 0 , a , **a).prev_sample a_ = scheduler.step_prk(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) a_ = scheduler.step_plms(a , 0 , a , **a).prev_sample a_ = scheduler.step_plms(a , 1 , a , **a).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _lowerCAmelCase ( self: Dict) ->List[Any]: '''simple docstring''' for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a) a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config(steps_offset=1) a_ = scheduler_class(**a) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1]) , ) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=a , beta_end=a) def _lowerCAmelCase ( self: int) ->Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a) def _lowerCAmelCase ( self: Optional[int]) ->List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a) def _lowerCAmelCase ( self: Tuple) ->Optional[Any]: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=a) def _lowerCAmelCase ( self: str) ->List[str]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00]): self.check_over_forward(num_inference_steps=a) def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = 27 for scheduler_class in self.scheduler_classes: a_ = self.dummy_sample a_ = 0.1 * sample a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.set_timesteps(a) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): a_ = scheduler.step_prk(a , a , a).prev_sample def _lowerCAmelCase ( self: Optional[Any]) ->Dict: '''simple docstring''' with self.assertRaises(a): a_ = self.scheduler_classes[0] a_ = self.get_scheduler_config() a_ = scheduler_class(**a) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _lowerCAmelCase ( self: Optional[int]) ->Union[str, Any]: '''simple docstring''' a_ = self.full_loop() a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def _lowerCAmelCase ( self: Optional[int]) ->int: '''simple docstring''' a_ = self.full_loop(prediction_type="v_prediction") a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 67.3986) < 1e-2 assert abs(result_mean.item() - 0.0878) < 1e-3 def _lowerCAmelCase ( self: int) ->Optional[Any]: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def _lowerCAmelCase ( self: List[str]) ->Any: '''simple docstring''' a_ = self.full_loop(set_alpha_to_one=a , beta_start=0.01) a_ = torch.sum(torch.abs(a)) a_ = torch.mean(torch.abs(a)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3
685
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCAmelCase () -> int: '''simple docstring''' a_ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" a_ = Image.open(requests.get(lowercase__ ,stream=lowercase__ ).raw ).convert("RGB" ) return image def __UpperCAmelCase (lowercase__ ) -> Union[str, Any]: '''simple docstring''' a_ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = dct.pop(lowercase__ ) a_ = val def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a_ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) a_ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict a_ = torch.cat((q_bias, torch.zeros_like(lowercase__ ,requires_grad=lowercase__ ), v_bias) ) a_ = qkv_bias def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = 364 if "coco" in model_name else 224 a_ = BlipaVisionConfig(image_size=lowercase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: a_ = OPTConfig.from_pretrained("facebook/opt-2.7b" ,eos_token_id=lowercase__ ).to_dict() elif "opt-6.7b" in model_name: a_ = OPTConfig.from_pretrained("facebook/opt-6.7b" ,eos_token_id=lowercase__ ).to_dict() elif "t5-xl" in model_name: a_ = TaConfig.from_pretrained("google/flan-t5-xl" ,dense_act_fn="gelu" ,bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a_ = TaConfig.from_pretrained("google/flan-t5-xxl" ,dense_act_fn="gelu" ,bos_token_id=1 ).to_dict() a_ = BlipaConfig(vision_config=lowercase__ ,text_config=lowercase__ ) return config, image_size @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__=None ,lowercase__=False ) -> Tuple: '''simple docstring''' a_ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) a_ = tokenizer("\n" ,add_special_tokens=lowercase__ ).input_ids[0] a_ , a_ = get_blipa_config(lowercase__ ,eos_token_id=lowercase__ ) a_ = BlipaForConditionalGeneration(lowercase__ ).eval() a_ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } a_ , a_ = model_name_to_original[model_name] # load original model print("Loading original model..." ) a_ = "cuda" if torch.cuda.is_available() else "cpu" a_ , a_ , a_ = load_model_and_preprocess( name=lowercase__ ,model_type=lowercase__ ,is_eval=lowercase__ ,device=lowercase__ ) original_model.eval() print("Done!" ) # update state dict keys a_ = original_model.state_dict() a_ = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ ,lowercase__ ,lowercase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a_ = state_dict.pop(lowercase__ ) if key.startswith("Qformer.bert" ): a_ = key.replace("Qformer.bert" ,"qformer" ) if "attention.self" in key: a_ = key.replace("self" ,"attention" ) if "opt_proj" in key: a_ = key.replace("opt_proj" ,"language_projection" ) if "t5_proj" in key: a_ = key.replace("t5_proj" ,"language_projection" ) if key.startswith("opt" ): a_ = key.replace("opt" ,"language" ) if key.startswith("t5" ): a_ = key.replace("t5" ,"language" ) a_ = val # read in qv biases read_in_q_v_bias(lowercase__ ,lowercase__ ) a_ , a_ = hf_model.load_state_dict(lowercase__ ,strict=lowercase__ ) assert len(lowercase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] a_ = load_demo_image() a_ = vis_processors["eval"](lowercase__ ).unsqueeze(0 ).to(lowercase__ ) a_ = tokenizer(["\n"] ,return_tensors="pt" ).input_ids.to(lowercase__ ) # create processor a_ = BlipImageProcessor( size={"height": image_size, "width": image_size} ,image_mean=lowercase__ ,image_std=lowercase__ ) a_ = BlipaProcessor(image_processor=lowercase__ ,tokenizer=lowercase__ ) a_ = processor(images=lowercase__ ,return_tensors="pt" ).pixel_values.to(lowercase__ ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase__ ,lowercase__ ) original_model.to(lowercase__ ) hf_model.to(lowercase__ ) with torch.no_grad(): if "opt" in model_name: a_ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits a_ = hf_model(lowercase__ ,lowercase__ ).logits else: a_ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits a_ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id ,-100 ) a_ = hf_model(lowercase__ ,lowercase__ ,labels=lowercase__ ).logits assert original_logits.shape == logits.shape print("First values of original logits:" ,original_logits[0, :3, :3] ) print("First values of HF logits:" ,logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": a_ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] ,device=lowercase__ ) assert torch.allclose(logits[0, :3, :3] ,lowercase__ ,atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": a_ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] ,device=lowercase__ ) else: # cast to same type a_ = logits.dtype assert torch.allclose(original_logits.to(lowercase__ ) ,lowercase__ ,atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) a_ = "" a_ = tokenizer(lowercase__ ,return_tensors="pt" ).input_ids.to(lowercase__ ) a_ = original_model.generate({"image": original_pixel_values} ) a_ = hf_model.generate( lowercase__ ,lowercase__ ,do_sample=lowercase__ ,num_beams=5 ,max_length=30 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.0 ,length_penalty=1.0 ,temperature=1 ,) print("Original generation:" ,lowercase__ ) a_ = input_ids.shape[1] a_ = processor.batch_decode(outputs[:, prompt_length:] ,skip_special_tokens=lowercase__ ) a_ = [text.strip() for text in output_text] print("HF generation:" ,lowercase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": a_ = argparse.ArgumentParser() a_ = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
685
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def _lowerCAmelCase ( self: Optional[int]) ->Dict: '''simple docstring''' super().tearDown() gc.collect() def _lowerCAmelCase ( self: str) ->Optional[int]: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "bird" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png") a_ = pipe.prepare_image_inputs([canny_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def _lowerCAmelCase ( self: Union[str, Any]) ->str: '''simple docstring''' a_ , a_ = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose" , from_pt=a , dtype=jnp.bfloataa) a_ , a_ = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , controlnet=a , from_pt=a , dtype=jnp.bfloataa) a_ = controlnet_params a_ = "Chef in the kitchen" a_ = jax.device_count() a_ = pipe.prepare_text_inputs([prompts] * num_samples) a_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png") a_ = pipe.prepare_image_inputs([pose_image] * num_samples) a_ = jax.random.PRNGKey(0) a_ = jax.random.split(a , jax.device_count()) a_ = replicate(a) a_ = shard(a) a_ = shard(a) a_ = pipe( prompt_ids=a , image=a , params=a , prng_seed=a , num_inference_steps=50 , jit=a , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) a_ = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) a_ = images[0, 2_53:2_56, 2_53:2_56, -1] a_ = jnp.asarray(jax.device_get(image_slice.flatten())) a_ = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]]) print(f"""output_slice: {output_slice}""") assert jnp.abs(output_slice - expected_slice).max() < 1e-2
685
1
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 100 ) -> int: '''simple docstring''' a_ = n * (n + 1) * (2 * n + 1) / 6 a_ = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
685
'''simple docstring''' def __UpperCAmelCase (lowercase__ = 1000 ) -> int: '''simple docstring''' return sum(e for e in range(3 ,lowercase__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'{solution() = }')
685
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor a_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , *a: str , **a: Tuple) ->None: '''simple docstring''' warnings.warn( "The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DonutImageProcessor instead." , a , ) super().__init__(*a , **a)
685
'''simple docstring''' import math def __UpperCAmelCase (lowercase__ ) -> list: '''simple docstring''' a_ = [True] * n a_ = False a_ = False a_ = True for i in range(3 ,int(n**0.5 + 1 ) ,2 ): a_ = i * 2 while index < n: a_ = False a_ = index + i a_ = [2] for i in range(3 ,lowercase__ ,2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def __UpperCAmelCase (lowercase__ = 999966663333 ) -> int: '''simple docstring''' a_ = math.floor(math.sqrt(lowercase__ ) ) + 100 a_ = prime_sieve(lowercase__ ) a_ = 0 a_ = 0 a_ = primes[prime_index] while (last_prime**2) <= limit: a_ = primes[prime_index + 1] a_ = last_prime**2 a_ = next_prime**2 # Get numbers divisible by lps(current) a_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) a_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps a_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair a_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
685
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Any: '''simple docstring''' a_ = UniSpeechSatForSequenceClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["projector.weight"] a_ = downstream_dict["projector.bias"] a_ = downstream_dict["model.post_net.linear.weight"] a_ = downstream_dict["model.post_net.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Dict: '''simple docstring''' a_ = UniSpeechSatForAudioFrameClassification.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["model.linear.weight"] a_ = downstream_dict["model.linear.bias"] return model def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> Optional[Any]: '''simple docstring''' a_ = UniSpeechSatForXVector.from_pretrained(lowercase__ ,config=lowercase__ ) a_ = downstream_dict["connector.weight"] a_ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): a_ = downstream_dict[ F"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] a_ = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] a_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] a_ = downstream_dict["objective.W"] return model @torch.no_grad() def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> List[str]: '''simple docstring''' a_ = torch.load(lowercase__ ,map_location="cpu" ) a_ = checkpoint["Downstream"] a_ = UniSpeechSatConfig.from_pretrained(lowercase__ ) a_ = WavaVecaFeatureExtractor.from_pretrained( lowercase__ ,return_attention_mask=lowercase__ ,do_normalize=lowercase__ ) a_ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): a_ = convert_classification(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForAudioFrameClassification" ): a_ = convert_diarization(lowercase__ ,lowercase__ ,lowercase__ ) elif arch.endswith("ForXVector" ): a_ = convert_xvector(lowercase__ ,lowercase__ ,lowercase__ ) else: raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: a_ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(lowercase__ ) hf_model.save_pretrained(lowercase__ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
685
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def __UpperCAmelCase () -> Generator[int, None, None]: '''simple docstring''' a_ = {} a_ = 2 while True: a_ = factor_map.pop(lowercase__ ,lowercase__ ) if factor: a_ = factor + prime while x in factor_map: x += factor a_ = factor else: a_ = prime yield prime prime += 1 def __UpperCAmelCase (lowercase__ = 1e10 ) -> int: '''simple docstring''' a_ = sieve() a_ = 1 while True: a_ = next(lowercase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowercase__ ) n += 2 if __name__ == "__main__": print(solution())
685
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
685
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> tuple: '''simple docstring''' a_ = namedtuple("result" ,"name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" ,power / current ) elif current == 0: return result("current" ,power / voltage ) elif power == 0: return result("power" ,float(round(abs(voltage * current ) ,2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} a_ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } a_ = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple: '''simple docstring''' with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = json.loads(f.read() ) a_ = collections.OrderedDict() a_ = collections.OrderedDict() a_ = collections.OrderedDict() with open(lowercase__ ,"r" ,encoding="utf-8" ) as f: a_ = f.readlines() a_ = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowercase__ ): a_ = b a_ = idx for wd in b: a_ = idx return vocab, raw_vocab, ids_to_tokens, emoji class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase =VOCAB_FILES_NAMES _UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase =['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , a: Union[str, Any] , a: Optional[int] , a: List[str]="<|endoftext|>" , a: Union[str, Any]="<|endoftext|>" , a: Dict="<|startoftext|>" , a: Dict="<|endoftext|>" , a: Union[str, Any]=False , **a: Optional[int] , ) ->str: '''simple docstring''' super().__init__( unk_token=a , pad_token=a , bos_token=a , eos_token=a , do_clean_text=a , **a , ) if not os.path.isfile(a): raise ValueError( f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") if not os.path.isfile(a): raise ValueError( f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`") a_ = do_clean_text a_ , a_ , a_ , a_ = load_vocab_and_emoji(a , a) a_ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]: '''simple docstring''' return len(self.raw_vocab) def _lowerCAmelCase ( self: Dict) ->Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder) def _lowerCAmelCase ( self: Union[str, Any] , a: Any) ->Dict: '''simple docstring''' return self.subword_tokenizer.tokenize(a , clean=self.do_clean_text) def _lowerCAmelCase ( self: int , a: List[Any]) ->Union[str, Any]: '''simple docstring''' return self.vocab.get(a , self.vocab.get(self.unk_token)) def _lowerCAmelCase ( self: Optional[Any] , a: Optional[int]) ->str: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(a) def _lowerCAmelCase ( self: Optional[int] , a: Any) ->str: '''simple docstring''' a_ = "".join(a).strip() return out_string def _lowerCAmelCase ( self: Any , a: "Conversation") ->List[int]: '''simple docstring''' a_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id]) if len(a) > self.model_max_length: a_ = input_ids[-self.model_max_length :] return input_ids def _lowerCAmelCase ( self: int , a: str , a: Optional[str] = None) ->Tuple[str]: '''simple docstring''' a_ = 0 if os.path.isdir(a): a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) a_ = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]) else: a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) a_ = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(a , "w" , encoding="utf-8") as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!") a_ = token_index writer.write(",".join(a) + "\n") index += 1 with open(a , "w" , encoding="utf-8") as writer: json.dump(self.emoji , a) return vocab_file, emoji_file class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[str] , a: Any , a: Union[str, Any] , a: Any) ->List[Any]: '''simple docstring''' a_ = vocab # same as swe a_ = ids_to_tokens # same as bpe a_ = emoji a_ = np.max([len(a) for w in self.vocab.keys()]) a_ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)") a_ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*") a_ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}") a_ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*") a_ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*") a_ = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" a_ = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" a_ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks}) def __len__( self: Dict) ->Any: '''simple docstring''' return len(self.ids_to_tokens) def _lowerCAmelCase ( self: Union[str, Any] , a: Tuple) ->Any: '''simple docstring''' a_ = self.content_repattera.sub("<URL>" , a) a_ = self.content_repattera.sub("<EMAIL>" , a) a_ = self.content_repattera.sub("<TEL>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<DATE>" , a) a_ = self.content_repattera.sub("<PRICE>" , a) a_ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: a_ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>") return content def _lowerCAmelCase ( self: Any , a: int , a: Optional[int]=False) ->List[str]: '''simple docstring''' a_ = text.replace(" " , "<SP>") a_ = text.replace(" " , "<SP>") a_ = text.replace("\r\n" , "<BR>") a_ = text.replace("\n" , "<BR>") a_ = text.replace("\r" , "<BR>") a_ = text.replace("\t" , "<TAB>") a_ = text.replace("—" , "ー") a_ = text.replace("−" , "ー") for k, v in self.emoji["emoji"].items(): if k in text: a_ = text.replace(a , a) if clean: a_ = self.clean_text(a) def check_simbol(a: Dict): a_ = x.encode() if len(a) == 1 and len(a) == 2: a_ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(a: str): a_ = x.encode() if len(a) == 1 and len(a) == 3: a_ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False a_ = 0 a_ = [] while pos < len(a): a_ = min(len(a) , pos + self.maxlen + 1) if text[pos] == "<" else pos + 3 a_ = [] # (token_id, token, pos) for e in range(a , a , -1): a_ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(a) > 2: a_ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(a) > 0: # the smallest token_id is adopted a_ , a_ , a_ = sorted(a , key=lambda a: x[0])[0] result.append(a) a_ = e else: a_ = pos + 1 a_ = text[pos:end] if check_simbol(a): result.append("<KIGOU>") elif checkuae(a): result.append("<U2000U2BFF>") else: for i in wd.encode("utf-8"): result.append("<|byte%d|>" % i) a_ = end return result def _lowerCAmelCase ( self: int , a: List[Any] , a: Any="\n") ->str: '''simple docstring''' a_ = [] a_ = [] a_ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word]) elif word == "<SP>": words.append(" ") elif word == "<BR>": words.append(a) elif word == "<TAB>": words.append("\t") elif word == "<BLOCK>": words.append("▀") elif word == "<KIGOU>": words.append("ǀ") elif word == "<U2000U2BFF>": words.append("‖") else: words.append(a) if len(a) > 0: words.append(bytearray(a).decode("utf-8" , errors="replace")) a_ = "".join(a) return text
685
1
'''simple docstring''' import cmath import math def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) -> complex: '''simple docstring''' a_ = math.radians(lowercase__ ) a_ = math.radians(lowercase__ ) # Convert voltage and current to rectangular form a_ = cmath.rect(lowercase__ ,lowercase__ ) a_ = cmath.rect(lowercase__ ,lowercase__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
685
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( lowercase_ ): def __init__( self: List[Any] , a: Optional[Any] , a: Dict=13 , a: List[str]=7 , a: Optional[Any]=True , a: int=True , a: Any=True , a: Optional[int]=True , a: int=True , a: Dict=False , a: Union[str, Any]=False , a: Dict=False , a: List[str]=2 , a: Union[str, Any]=99 , a: List[Any]=0 , a: Optional[int]=32 , a: List[str]=5 , a: int=4 , a: List[Any]=0.1 , a: Optional[int]=0.1 , a: Optional[int]=5_12 , a: str=12 , a: Dict=2 , a: Any=0.02 , a: Optional[int]=3 , a: str=4 , a: Optional[int]="last" , a: Tuple=None , a: Any=None , ) ->int: '''simple docstring''' a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_lengths a_ = use_token_type_ids a_ = use_labels a_ = gelu_activation a_ = sinusoidal_embeddings a_ = causal a_ = asm a_ = n_langs a_ = vocab_size a_ = n_special a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = summary_type a_ = use_proj a_ = scope def _lowerCAmelCase ( self: Tuple) ->Dict: '''simple docstring''' a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = random_attention_mask([self.batch_size, self.seq_length]) a_ = None if self.use_input_lengths: a_ = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , 2).float() a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCAmelCase ( self: List[Any]) ->Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: List[Any] , a: List[Any] , a: Optional[int] , a: int , a: str , a: Any , a: str , a: List[Any] , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModel(config=a) model.to(a) model.eval() a_ = model(a , lengths=a , langs=a) a_ = model(a , langs=a) a_ = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _lowerCAmelCase ( self: Optional[int] , a: Optional[Any] , a: Dict , a: Union[str, Any] , a: Dict , a: Optional[Any] , a: Any , a: Tuple , a: str , a: List[str] , ) ->Dict: '''simple docstring''' a_ = FlaubertWithLMHeadModel(a) model.to(a) model.eval() a_ = model(a , token_type_ids=a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _lowerCAmelCase ( self: Optional[int] , a: Tuple , a: Optional[Any] , a: List[Any] , a: List[str] , a: List[str] , a: List[str] , a: Optional[Any] , a: str , a: Union[str, Any] , ) ->str: '''simple docstring''' a_ = FlaubertForQuestionAnsweringSimple(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , start_positions=a , end_positions=a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Optional[Any] , a: Any , a: Dict , a: Any , a: Optional[int] , a: Optional[Any] , a: Union[str, Any] , ) ->int: '''simple docstring''' a_ = FlaubertForQuestionAnswering(a) model.to(a) model.eval() a_ = model(a) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , p_mask=a , ) a_ = model( a , start_positions=a , end_positions=a , cls_index=a , is_impossible=a , ) ((a_) , ) = result_with_labels.to_tuple() a_ = model(a , start_positions=a , end_positions=a) ((a_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def _lowerCAmelCase ( self: Union[str, Any] , a: List[str] , a: Tuple , a: Union[str, Any] , a: Any , a: Tuple , a: Union[str, Any] , a: int , a: int , a: Dict , ) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertForSequenceClassification(a) model.to(a) model.eval() a_ = model(a) a_ = model(a , labels=a) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _lowerCAmelCase ( self: str , a: List[str] , a: Dict , a: Tuple , a: Optional[Any] , a: Any , a: Any , a: str , a: str , a: Optional[Any] , ) ->List[Any]: '''simple docstring''' a_ = self.num_labels a_ = FlaubertForTokenClassification(a) model.to(a) model.eval() a_ = model(a , attention_mask=a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _lowerCAmelCase ( self: Dict , a: Tuple , a: List[Any] , a: Dict , a: Optional[Any] , a: Optional[Any] , a: Optional[Any] , a: Union[str, Any] , a: List[str] , a: Tuple , ) ->Dict: '''simple docstring''' a_ = self.num_choices a_ = FlaubertForMultipleChoice(config=a) model.to(a) model.eval() a_ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() a_ = model( a , attention_mask=a , token_type_ids=a , labels=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def _lowerCAmelCase ( self: Any) ->List[Any]: '''simple docstring''' a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase_ , lowercase_ , unittest.TestCase ): _UpperCAmelCase =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _UpperCAmelCase =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Any , a: List[str] , a: Union[str, Any] , a: int) ->int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast") ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCAmelCase ( self: str , a: Optional[Any] , a: List[Any] , a: Tuple=False) ->List[Any]: '''simple docstring''' a_ = super()._prepare_for_class(a , a , return_labels=a) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) a_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def _lowerCAmelCase ( self: Dict) ->Union[str, Any]: '''simple docstring''' a_ = FlaubertModelTester(self) a_ = ConfigTester(self , config_class=a , emb_dim=37) def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowerCAmelCase ( self: List[str]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a) def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a) def _lowerCAmelCase ( self: Optional[int]) ->Optional[Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a) def _lowerCAmelCase ( self: Any) ->Optional[int]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Tuple: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a) def _lowerCAmelCase ( self: Optional[Any]) ->Union[str, Any]: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a) def _lowerCAmelCase ( self: List[Any]) ->Dict: '''simple docstring''' a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a) @slow def _lowerCAmelCase ( self: Any) ->Any: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = FlaubertModel.from_pretrained(a) self.assertIsNotNone(a) @slow @require_torch_gpu def _lowerCAmelCase ( self: int) ->Optional[int]: '''simple docstring''' a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return a_ = True a_ = model_class(config=a) a_ = self._prepare_for_class(a , a) a_ = torch.jit.trace( a , (inputs_dict["input_ids"].to("cpu"), inputs_dict["attention_mask"].to("cpu"))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a , os.path.join(a , "traced_model.pt")) a_ = torch.jit.load(os.path.join(a , "traced_model.pt") , map_location=a) loaded(inputs_dict["input_ids"].to(a) , inputs_dict["attention_mask"].to(a)) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _lowerCAmelCase ( self: List[Any]) ->Optional[int]: '''simple docstring''' a_ = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased") a_ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) with torch.no_grad(): a_ = model(a)[0] a_ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , a) a_ = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , a , atol=1e-4))
685
1