code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from collections import Counter
from timeit import timeit
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = "" , ):
"""simple docstring"""
return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = "" ):
"""simple docstring"""
if len(_UpperCamelCase ) == 0:
return True
lowercase_ : Any = input_str.replace(" " , "" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
lowercase_ : Dict = {}
for character in lower_case_input_str:
lowercase_ : Tuple = character_freq_dict.get(_UpperCamelCase , 0 ) + 1
lowercase_ : str = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = "" ):
"""simple docstring"""
print("\nFor string = " , _UpperCamelCase , ":" )
print(
"> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_UpperCamelCase ) , "\ttime =" , timeit(
"z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , )
print(
"> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_UpperCamelCase ) , "\ttime =" , timeit(
"z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , )
if __name__ == "__main__":
UpperCamelCase__ = input(
'Enter string to determine if it can be rearranged as a palindrome or not: '
).strip()
benchmark(check_str)
UpperCamelCase__ = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
| 620 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Union[str, Any] =["""image_processor"""]
a : Dict ="""SamImageProcessor"""
def __init__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.image_processor
__lowerCAmelCase = -10
__lowerCAmelCase = self.image_processor.size["""longest_edge"""]
def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
# pop arguments that are not used in the foward but used nevertheless
__lowerCAmelCase = encoding_image_processor["""original_sizes"""]
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor
__lowerCAmelCase = original_sizes.numpy()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points(
input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = self._normalize_and_convert(
__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,)
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",):
'''simple docstring'''
if input_points is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_labels is not None:
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE )
for box in input_boxes
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE )
for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = max([point.shape[0] for point in input_points] )
__lowerCAmelCase = []
for i, point in enumerate(__SCREAMING_SNAKE_CASE ):
if point.shape[0] != expected_nb_points:
__lowerCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 )
__lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] )
processed_input_points.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = processed_input_points
return input_points, input_labels
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = original_size
__lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE )
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,2,2 )
__lowerCAmelCase = coords[..., 0] * (new_w / old_w)
__lowerCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,4 )
return coords
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,):
'''simple docstring'''
if input_points is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor
__lowerCAmelCase = input_points.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input points must be a list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points]
else:
__lowerCAmelCase = None
if input_labels is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_labels.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input labels must be a list of list integers.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels]
else:
__lowerCAmelCase = None
if input_boxes is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes]
else:
__lowerCAmelCase = None
return input_points, input_labels, input_boxes
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) )
def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
| 689 | 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCAmelCase_ : Any = logging.get_logger(__name__)
if is_vision_available():
import PIL
class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
__magic_name__ : str = ["""pixel_values"""]
def __init__( self : int , lowercase__ : List[Any] = True , lowercase__ : List[str] = None , lowercase__ : Union[str, Any] = PILImageResampling.BICUBIC , lowercase__ : Any = True , lowercase__ : Optional[int] = None , lowercase__ : Any = True , lowercase__ : Any = 1 / 255 , lowercase__ : Union[str, Any] = True , lowercase__ : Union[str, Any] = None , lowercase__ : Union[str, Any] = None , lowercase__ : List[Any] = True , **lowercase__ : Union[str, Any] , ):
'''simple docstring'''
super().__init__(**__SCREAMING_SNAKE_CASE )
a_ : Dict = size if size is not None else {"""shortest_edge""": 224}
a_ : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE )
a_ : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
a_ : Optional[int] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE , param_name="""crop_size""" )
a_ : int = do_resize
a_ : List[str] = size
a_ : List[str] = resample
a_ : Tuple = do_center_crop
a_ : str = crop_size
a_ : Union[str, Any] = do_rescale
a_ : Union[str, Any] = rescale_factor
a_ : Union[str, Any] = do_normalize
a_ : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
a_ : Optional[int] = image_std if image_std is not None else OPENAI_CLIP_STD
a_ : List[Any] = do_convert_rgb
def lowercase_ ( self : List[str] , lowercase__ : Optional[int] , lowercase__ : Tuple , lowercase__ : int = PILImageResampling.BICUBIC , lowercase__ : int = None , **lowercase__ : List[Any] , ):
'''simple docstring'''
a_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE )
if "shortest_edge" not in size:
raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
a_ : Any = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size["""shortest_edge"""] , default_to_square=__SCREAMING_SNAKE_CASE )
return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowercase_ ( self : int , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : str = None , **lowercase__ : Optional[int] , ):
'''simple docstring'''
a_ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" )
return center_crop(__SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowercase_ ( self : Any , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : List[Any] = None , **lowercase__ : Union[str, Any] , ):
'''simple docstring'''
return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowercase_ ( self : Dict , lowercase__ : List[Any] , lowercase__ : str , lowercase__ : Union[str, Any] , lowercase__ : Dict = None , **lowercase__ : Optional[int] , ):
'''simple docstring'''
return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowercase_ ( self : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Dict = None , lowercase__ : Union[str, Any] = None , lowercase__ : str = None , lowercase__ : Tuple = None , lowercase__ : List[str] = None , lowercase__ : Tuple = None , lowercase__ : Optional[int] = None , lowercase__ : Optional[Any] = None , lowercase__ : Union[str, Any] = None , lowercase__ : Optional[Any] = None , lowercase__ : Any = None , lowercase__ : str = None , lowercase__ : Any = ChannelDimension.FIRST , **lowercase__ : List[Any] , ):
'''simple docstring'''
a_ : Tuple = do_resize if do_resize is not None else self.do_resize
a_ : List[str] = size if size is not None else self.size
a_ : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""size""" , default_to_square=__SCREAMING_SNAKE_CASE )
a_ : Any = resample if resample is not None else self.resample
a_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop
a_ : Optional[Any] = crop_size if crop_size is not None else self.crop_size
a_ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" , default_to_square=__SCREAMING_SNAKE_CASE )
a_ : int = do_rescale if do_rescale is not None else self.do_rescale
a_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
a_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
a_ : int = image_mean if image_mean is not None else self.image_mean
a_ : Optional[int] = image_std if image_std is not None else self.image_std
a_ : Any = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
a_ : Tuple = make_list_of_images(__SCREAMING_SNAKE_CASE )
if not valid_images(__SCREAMING_SNAKE_CASE ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
a_ : Any = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images]
# All transformations expect numpy arrays.
a_ : Dict = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
a_ : List[str] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images]
if do_center_crop:
a_ : str = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images]
if do_rescale:
a_ : Any = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
a_ : int = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images]
a_ : List[str] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images]
a_ : str = {"""pixel_values""": images}
return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
| 442 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_a : int = logging.getLogger(__name__)
@dataclass
class _UpperCAmelCase :
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
a : int =field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} )
a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} )
def lowerCamelCase__ ( self ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__lowerCAmelCase = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__lowerCAmelCase = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a : str =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _lowerCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(lowercase )
datasets.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__lowerCAmelCase = data_args.train_file.split(""".""" )[-1]
__lowerCAmelCase = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__lowerCAmelCase = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names
__lowerCAmelCase = len(lowercase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__lowerCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , )
__lowerCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__lowerCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__lowerCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1}
__lowerCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowercase ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowercase ):
__lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__lowerCAmelCase = examples["""statement"""]
__lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase )
__lowerCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__lowerCAmelCase = raw_datasets.map(
lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__lowerCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__lowerCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__lowerCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowercase ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase ):
__lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__lowerCAmelCase = default_data_collator
elif training_args.fpaa:
__lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 )
else:
__lowerCAmelCase = None
# Initialize our Trainer
__lowerCAmelCase = Trainer(
model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , )
# Training
if training_args.do_train:
__lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase )
__lowerCAmelCase = train_result.metrics
__lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase )
)
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowercase )
trainer.save_metrics("""train""" , lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase )
__lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase )
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.log_metrics("""eval""" , lowercase )
trainer.save_metrics("""eval""" , lowercase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__lowerCAmelCase = predict_dataset.remove_columns("""label""" )
__lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
__lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(lowercase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowercase ):
__lowerCAmelCase = label_list[item]
writer.write(f'{index}\t{item}\n' )
__lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase )
else:
trainer.create_model_card(**lowercase )
def _lowerCAmelCase ( lowercase ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 689 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class UpperCAmelCase ( unittest.TestCase ):
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Any:
'''simple docstring'''
snake_case : List[str] = tempfile.mkdtemp()
# fmt: off
snake_case : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
snake_case : Tuple = {
"do_resize": True,
"size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
snake_case : Union[str, Any] = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : int , **snake_case__ : str ) -> Any:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : Tuple , **snake_case__ : Any ) -> List[Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case : Tuple = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
snake_case : Dict = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]:
'''simple docstring'''
snake_case : Optional[int] = self.get_tokenizer()
snake_case : Optional[Any] = self.get_image_processor()
snake_case : List[str] = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
snake_case : Any = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Tuple:
'''simple docstring'''
snake_case : List[Any] = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
snake_case : Union[str, Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
snake_case : str = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 )
snake_case : int = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : str ) -> List[str]:
'''simple docstring'''
snake_case : Optional[int] = self.get_image_processor()
snake_case : Optional[Any] = self.get_tokenizer()
snake_case : Dict = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case : int = self.prepare_image_inputs()
snake_case : Union[str, Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="np" )
snake_case : str = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Dict:
'''simple docstring'''
snake_case : List[Any] = self.get_image_processor()
snake_case : Union[str, Any] = self.get_tokenizer()
snake_case : int = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case : Union[str, Any] = "lower newer"
snake_case : List[str] = processor(text=__SCREAMING_SNAKE_CASE )
snake_case : Dict = tokenizer(__SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]:
'''simple docstring'''
snake_case : Optional[Any] = self.get_image_processor()
snake_case : str = self.get_tokenizer()
snake_case : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case : str = "lower newer"
snake_case : str = self.prepare_image_inputs()
snake_case : Dict = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
processor()
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Dict:
'''simple docstring'''
snake_case : Union[str, Any] = self.get_image_processor()
snake_case : Dict = self.get_tokenizer()
snake_case : str = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
snake_case : Dict = processor.batch_decode(__SCREAMING_SNAKE_CASE )
snake_case : Dict = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : int ) -> Any:
'''simple docstring'''
snake_case : int = self.get_image_processor()
snake_case : Tuple = self.get_tokenizer()
snake_case : int = VisionTextDualEncoderProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case : List[Any] = "lower newer"
snake_case : Tuple = self.prepare_image_inputs()
snake_case : Union[str, Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 204 |
'''simple docstring'''
import os
import sys
import unittest
_a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = find_backend(""" if not is_torch_available():""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCAmelCase = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""",objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" )
__lowerCAmelCase = create_dummy_object("""function""","""'torch'""" )
self.assertEqual(
__SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__lowerCAmelCase = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
__lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
__lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
| 689 | 0 |
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def __snake_case ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
lowercase = StableDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
lowercase = load_file(__magic_name__ )
lowercase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
lowercase = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" )
lowercase = pipeline.text_encoder
else:
lowercase = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" )
lowercase = pipeline.unet
# find the target layer
lowercase = layer_infos.pop(0 )
while len(__magic_name__ ) > -1:
try:
lowercase = curr_layer.__getattr__(__magic_name__ )
if len(__magic_name__ ) > 0:
lowercase = layer_infos.pop(0 )
elif len(__magic_name__ ) == 0:
break
except Exception:
if len(__magic_name__ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
lowercase = layer_infos.pop(0 )
lowercase = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down" , "lora_up" ) )
pair_keys.append(__magic_name__ )
else:
pair_keys.append(__magic_name__ )
pair_keys.append(key.replace("lora_up" , "lora_down" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
lowercase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
lowercase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ ).unsqueeze(2 ).unsqueeze(3 )
else:
lowercase = state_dict[pair_keys[0]].to(torch.floataa )
lowercase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(__magic_name__ , __magic_name__ )
# update visited list
for item in pair_keys:
visited.append(__magic_name__ )
return pipeline
if __name__ == "__main__":
_snake_case : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
)
parser.add_argument(
"--lora_prefix_text_encoder",
default="lora_te",
type=str,
help="The prefix of text encoder weight in safetensors",
)
parser.add_argument("--alpha", default=0.7_5, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
parser.add_argument(
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
)
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
_snake_case : Optional[int] = parser.parse_args()
_snake_case : Dict = args.base_model_path
_snake_case : Optional[Any] = args.checkpoint_path
_snake_case : Union[str, Any] = args.dump_path
_snake_case : Optional[int] = args.lora_prefix_unet
_snake_case : int = args.lora_prefix_text_encoder
_snake_case : str = args.alpha
_snake_case : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_snake_case : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 441 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase ) -> tuple[int, int]:
try:
__lowerCAmelCase = float(lowercase )
except ValueError:
raise ValueError("""Please enter a valid number""" )
__lowerCAmelCase = decimal - int(lowercase )
if fractional_part == 0:
return int(lowercase ), 1
else:
__lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] )
__lowerCAmelCase = int(decimal * (10**number_of_frac_digits) )
__lowerCAmelCase = 10**number_of_frac_digits
__lowerCAmelCase , __lowerCAmelCase = denominator, numerator
while True:
__lowerCAmelCase = dividend % divisor
if remainder == 0:
break
__lowerCAmelCase , __lowerCAmelCase = divisor, remainder
__lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor
return int(lowercase ), int(lowercase )
if __name__ == "__main__":
print(f'{decimal_to_fraction(2) = }')
print(f'{decimal_to_fraction(89.0) = }')
print(f'{decimal_to_fraction("67") = }')
print(f'{decimal_to_fraction("45.0") = }')
print(f'{decimal_to_fraction(1.5) = }')
print(f'{decimal_to_fraction("6.25") = }')
print(f'{decimal_to_fraction("78td") = }')
| 689 | 0 |
'''simple docstring'''
import numpy as np
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
a_ = (0, 0)
a_ = None
a_ = 0
a_ = 0
a_ = 0
def __eq__( self , UpperCamelCase__ ):
"""simple docstring"""
return self.position == cell.position
def _a ( self ):
"""simple docstring"""
print(self.position )
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self , UpperCamelCase__=(5, 5) ):
"""simple docstring"""
a_ = np.zeros(__SCREAMING_SNAKE_CASE )
a_ = world_size[0]
a_ = world_size[1]
def _a ( self ):
"""simple docstring"""
print(self.w )
def _a ( self , UpperCamelCase__ ):
"""simple docstring"""
a_ = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
a_ = cell.position[0]
a_ = cell.position[1]
a_ = []
for n in neughbour_cord:
a_ = current_x + n[0]
a_ = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
a_ = Cell()
a_ = (x, y)
a_ = cell
neighbours.append(__SCREAMING_SNAKE_CASE )
return neighbours
def __UpperCamelCase ( lowercase_ : Any , lowercase_ : int , lowercase_ : Optional[Any] ):
"""simple docstring"""
a_ = []
a_ = []
_open.append(lowercase_ )
while _open:
a_ = np.argmin([n.f for n in _open] )
a_ = _open[min_f]
_closed.append(_open.pop(lowercase_ ) )
if current == goal:
break
for n in world.get_neigbours(lowercase_ ):
for c in _closed:
if c == n:
continue
a_ = current.g + 1
a_ , a_ = n.position
a_ , a_ = goal.position
a_ = (ya - ya) ** 2 + (xa - xa) ** 2
a_ = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(lowercase_ )
a_ = []
while current.parent is not None:
path.append(current.position )
a_ = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
__lowerCAmelCase = Gridworld()
# Start position and goal
__lowerCAmelCase = Cell()
__lowerCAmelCase = (0, 0)
__lowerCAmelCase = Cell()
__lowerCAmelCase = (4, 4)
print(f"""path from {start.position} to {goal.position}""")
__lowerCAmelCase = astar(world, start, goal)
# Just for visual reasons.
for i in s:
__lowerCAmelCase = 1
print(world.w)
| 536 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a : Dict = _symbol_database.Default()
_a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
_a : str = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a : str = None
_a : Union[str, Any] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a : Optional[int] = 4_5
_a : List[Any] = 1_5_8_1
_a : str = 1_5_1_7
_a : Optional[Any] = 1_5_7_0
_a : List[str] = 1_5_8_4
_a : List[Any] = 1_7_9_3
_a : Union[str, Any] = 1_7_9_5
_a : Tuple = 1_9_1_6
_a : List[Any] = 1_8_6_4
_a : Any = 1_9_0_5
_a : Optional[Any] = 1_9_1_9
_a : Optional[int] = 2_4_2_9
_a : Tuple = 2_2_0_8
_a : Optional[Any] = 2_4_1_8
_a : List[Any] = 2_3_2_3
_a : str = 2_4_0_7
# @@protoc_insertion_point(module_scope)
| 689 | 0 |
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return (gray > 127) & (gray <= 255)
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = np.zeros_like(_UpperCamelCase )
__lowerCAmelCase = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
__lowerCAmelCase = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
__lowerCAmelCase = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
__lowerCAmelCase = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
A : Any = Path(__file__).resolve().parent / """image_data""" / """lena.jpg"""
A : Optional[int] = np.array(Image.open(lena_path))
# kernel to be applied
A : Dict = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
A : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
A : List[Any] = Image.fromarray(output).convert("RGB")
pil_img.save("result_dilation.png")
| 636 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : torch.FloatTensor
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = torch.nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
# down
__lowerCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_down_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# out
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = 2 * out_channels if double_z else out_channels
__lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = x
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""","""1.11.0""" ):
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
__lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
__lowerCAmelCase = in_channels if norm_type == """spatial""" else None
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# up
__lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = reversed_block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_up_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,)
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = output_channel
# out
if norm_type == "spatial":
__lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
__lowerCAmelCase = z
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""","""1.11.0""" ):
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = n_e
__lowerCAmelCase = vq_embed_dim
__lowerCAmelCase = beta
__lowerCAmelCase = legacy
__lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e )
__lowerCAmelCase = remap
if self.remap is not None:
self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) )
__lowerCAmelCase = self.used.shape[0]
__lowerCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__lowerCAmelCase = self.re_embed
__lowerCAmelCase = self.re_embed + 1
print(
f'Remapping {self.n_e} indices to {self.re_embed} indices. '
f'Using {self.unknown_index} for unknown indices.' )
else:
__lowerCAmelCase = n_e
__lowerCAmelCase = sane_index_shape
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
__lowerCAmelCase = match.argmax(-1 )
__lowerCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device )
else:
__lowerCAmelCase = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
__lowerCAmelCase = 0 # simply set to zero
__lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = z.permute(0,2,3,1 ).contiguous()
__lowerCAmelCase = z.view(-1,self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 )
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
__lowerCAmelCase = None
__lowerCAmelCase = None
# compute loss for embedding
if not self.legacy:
__lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__lowerCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
if self.remap is not None:
__lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten
if self.sane_index_shape:
__lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if self.remap is not None:
__lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
__lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
return z_q
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = parameters
__lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 )
__lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 )
__lowerCAmelCase = deterministic
__lowerCAmelCase = torch.exp(0.5 * self.logvar )
__lowerCAmelCase = torch.exp(self.logvar )
if self.deterministic:
__lowerCAmelCase = __lowerCAmelCase = torch.zeros_like(
self.mean,device=self.parameters.device,dtype=self.parameters.dtype )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ):
'''simple docstring'''
__lowerCAmelCase = randn_tensor(
self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype )
__lowerCAmelCase = self.mean + self.std * sample
return x
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean,2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,dim=[1, 2, 3],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
__lowerCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self.mean
| 689 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = """▁"""
__snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
__snake_case = {
"""vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""},
"""tokenizer_file""": {
"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json"""
},
}
__snake_case = {
"""google/pegasus-xsum""": 512,
}
class _lowerCAmelCase ( lowerCAmelCase_ ):
__UpperCAmelCase : str = VOCAB_FILES_NAMES
__UpperCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCAmelCase : Union[str, Any] = PegasusTokenizer
__UpperCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""]
def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__="<pad>" , UpperCamelCase__="</s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<mask_2>" , UpperCamelCase__="<mask_1>" , UpperCamelCase__=None , UpperCamelCase__=103 , **UpperCamelCase__ , ) -> Dict:
'''simple docstring'''
snake_case : List[Any] = offset
if additional_special_tokens is not None:
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise TypeError(
F'additional_special_tokens should be of type {type(__SCREAMING_SNAKE_CASE )}, but is'
F' {type(__SCREAMING_SNAKE_CASE )}' )
snake_case : List[str] = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
F'<unk_{i}>' for i in range(len(__SCREAMING_SNAKE_CASE ) , self.offset - 1 )
]
if len(set(__SCREAMING_SNAKE_CASE ) ) != len(__SCREAMING_SNAKE_CASE ):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' )
snake_case : Any = additional_special_tokens_extended
else:
snake_case : Union[str, Any] = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [F'<unk_{i}>' for i in range(2 , self.offset )]
super().__init__(
__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , mask_token_sent=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
snake_case : Dict = vocab_file
snake_case : Optional[Any] = False if not self.vocab_file else True
def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
snake_case : Union[str, Any] = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' )
return [1 if x in all_special_ids else 0 for x in seq]
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> Dict:
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(__SCREAMING_SNAKE_CASE )
elif token_ids_a is None:
return self._special_token_mask(__SCREAMING_SNAKE_CASE ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Dict:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
snake_case : List[str] = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 178 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_a : Optional[int] = logging.get_logger(__name__)
_a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} )
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
a : int =field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : int =field(
default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , )
a : int =field(
default=64 , metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} , )
a : int =field(
default=30 , metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
a : float =field(
default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=0 , metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} , )
a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} )
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Optional[Any] ="""train"""
a : Optional[int] ="""dev"""
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : SquadDataTrainingArguments
a : List[SquadFeatures]
a : Split
a : bool
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",):
'''simple docstring'''
__lowerCAmelCase = args
__lowerCAmelCase = is_language_sensitive
__lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
try:
__lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
__lowerCAmelCase = mode
# Load data features from cache or dataset file
__lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
__lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
__lowerCAmelCase = time.time()
__lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__lowerCAmelCase = self.old_features["""features"""]
__lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
__lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
__lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
__lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = self.features[i]
__lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float )
__lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float )
__lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 689 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
A__ = None
A__ = logging.get_logger(__name__)
A__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
A__ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""",
},
}
A__ = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
A__ = """▁"""
class a ( lowerCAmelCase_ ):
__lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES
__lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCAmelCase : str = AlbertTokenizer
def __init__( self :Dict ,__lowercase :Dict=None ,__lowercase :Any=None ,__lowercase :List[str]=True ,__lowercase :Optional[Any]=True ,__lowercase :List[Any]=False ,__lowercase :Any="[CLS]" ,__lowercase :Any="[SEP]" ,__lowercase :Dict="<unk>" ,__lowercase :str="[SEP]" ,__lowercase :Dict="<pad>" ,__lowercase :Dict="[CLS]" ,__lowercase :Optional[Any]="[MASK]" ,**__lowercase :List[Any] ,):
snake_case__ : Any = (
AddedToken(__SCREAMING_SNAKE_CASE ,lstrip=__SCREAMING_SNAKE_CASE ,rstrip=__SCREAMING_SNAKE_CASE ,normalized=__SCREAMING_SNAKE_CASE )
if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
else mask_token
)
super().__init__(
__SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,do_lower_case=__SCREAMING_SNAKE_CASE ,remove_space=__SCREAMING_SNAKE_CASE ,keep_accents=__SCREAMING_SNAKE_CASE ,bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,)
snake_case__ : int = do_lower_case
snake_case__ : Dict = remove_space
snake_case__ : Any = keep_accents
snake_case__ : Optional[Any] = vocab_file
snake_case__ : Union[str, Any] = False if not self.vocab_file else True
def __lowerCamelCase ( self :List[str] ,__lowercase :Any ,__lowercase :str = None ):
snake_case__ : Any = [self.sep_token_id]
snake_case__ : int = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __lowerCamelCase ( self :Optional[int] ,__lowercase :Any ,__lowercase :Dict = None ):
snake_case__ : Optional[int] = [self.sep_token_id]
snake_case__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __lowerCamelCase ( self :Optional[int] ,__lowercase :Union[str, Any] ,__lowercase :int = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
snake_case__ : Union[str, Any] = os.path.join(
__SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file ,__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 252 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
# vision encoder
if "img_encoder.pos_embed" in name:
__lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
__lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
__lowerCAmelCase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
__lowerCAmelCase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
__lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
__lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
__lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__lowerCAmelCase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__lowerCAmelCase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
__lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
__lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Dict:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
__lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase = int(key_split[3] )
__lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[
dim : dim * 2, :
]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
else:
__lowerCAmelCase = rename_key(lowercase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
__lowerCAmelCase = val.squeeze_()
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]:
__lowerCAmelCase = GroupViTConfig()
__lowerCAmelCase = GroupViTModel(lowercase ).eval()
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
__lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0)
# verify result
__lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" )
with torch.no_grad():
__lowerCAmelCase = model(**lowercase )
if model_name == "groupvit-gcc-yfcc":
__lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
__lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 )
processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
print("""Successfully saved processor and model to""" , lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowercase , organization="""nielsr""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : int = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
_a : List[str] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_a: int = logging.get_logger(__name__)
_a: Optional[int] = {
"""EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __UpperCamelCase ( lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE__ = """gptj"""
SCREAMING_SNAKE_CASE__ = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Any , lowerCAmelCase : Dict=50_400 , lowerCAmelCase : str=2_048 , lowerCAmelCase : Dict=4_096 , lowerCAmelCase : Any=28 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : Optional[Any]=64 , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]="gelu_new" , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Optional[Any]=1e-5 , lowerCAmelCase : int=0.02 , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[Any]=50_256 , lowerCAmelCase : Union[str, Any]=50_256 , lowerCAmelCase : List[str]=False , **lowerCAmelCase : str , ):
'''simple docstring'''
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = n_positions
UpperCAmelCase_ = n_embd
UpperCAmelCase_ = n_layer
UpperCAmelCase_ = n_head
UpperCAmelCase_ = n_inner
UpperCAmelCase_ = rotary_dim
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = resid_pdrop
UpperCAmelCase_ = embd_pdrop
UpperCAmelCase_ = attn_pdrop
UpperCAmelCase_ = layer_norm_epsilon
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = bos_token_id
UpperCAmelCase_ = eos_token_id
super().__init__(
bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , tie_word_embeddings=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class __UpperCamelCase ( lowerCAmelCase_ ):
def __init__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] = "default" , lowerCAmelCase : List[Any] = None , lowerCAmelCase : str = False , ):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE , task=__SCREAMING_SNAKE_CASE , patching_specs=__SCREAMING_SNAKE_CASE , use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config , "pad_token_id" , __SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
UpperCAmelCase_ = 0
@property
def __A ( self : Tuple ):
'''simple docstring'''
UpperCAmelCase_ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE , direction="inputs" )
UpperCAmelCase_ = {0: "batch", 1: "past_sequence + sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return common_inputs
@property
def __A ( self : Union[str, Any] ):
'''simple docstring'''
return self._config.n_layer
@property
def __A ( self : Union[str, Any] ):
'''simple docstring'''
return self._config.n_head
def __A ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : List[Any] = -1 , lowerCAmelCase : List[Any] = -1 , lowerCAmelCase : List[str] = False , lowerCAmelCase : Tuple = None , ):
'''simple docstring'''
UpperCAmelCase_ = super(__SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE , seq_length=__SCREAMING_SNAKE_CASE , is_pair=__SCREAMING_SNAKE_CASE , framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
UpperCAmelCase_ = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
UpperCAmelCase_ , UpperCAmelCase_ = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
UpperCAmelCase_ = seqlen + 2
UpperCAmelCase_ = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
UpperCAmelCase_ = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
UpperCAmelCase_ = common_inputs["attention_mask"]
if self.use_past:
UpperCAmelCase_ = ordered_inputs["attention_mask"].dtype
UpperCAmelCase_ = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def __A ( self : Dict ):
'''simple docstring'''
return 13 | 162 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_a : Tuple = logging.get_logger(__name__)
_a : Optional[int] = ["""model.decoder.embed_positions.weights"""]
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
if "emb" in name:
__lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
__lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
__lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
__lowerCAmelCase = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
__lowerCAmelCase = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
__lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
__lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
__lowerCAmelCase = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]:
__lowerCAmelCase = list(state_dict.keys() )
__lowerCAmelCase = {}
for key in keys:
__lowerCAmelCase = state_dict.pop(lowercase )
__lowerCAmelCase = rename_keys(lowercase )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCAmelCase = val[:hidden_size, :]
__lowerCAmelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCAmelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCAmelCase = val
else:
__lowerCAmelCase = val
return state_dict, enc_dec_proj_state_dict
def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
__lowerCAmelCase = 1024
__lowerCAmelCase = 24
__lowerCAmelCase = 16
elif checkpoint == "medium":
__lowerCAmelCase = 1536
__lowerCAmelCase = 48
__lowerCAmelCase = 24
elif checkpoint == "large":
__lowerCAmelCase = 2048
__lowerCAmelCase = 48
__lowerCAmelCase = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
__lowerCAmelCase = MusicgenDecoderConfig(
hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , )
return config
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]:
__lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase )
__lowerCAmelCase = decoder_config_from_checkpoint(lowercase )
__lowerCAmelCase = fairseq_model.lm.state_dict()
__lowerCAmelCase , __lowerCAmelCase = rename_state_dict(
lowercase , hidden_size=decoder_config.hidden_size )
__lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" )
__lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
__lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase )
if len(lowercase ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
__lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase )
# check we can do a forward pass
__lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCAmelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
__lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" )
__lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
__lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase )
# set the appropriate bos/pad token ids
__lowerCAmelCase = 2048
__lowerCAmelCase = 2048
# set other default generation config params
__lowerCAmelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCAmelCase = True
__lowerCAmelCase = 3.0
if pytorch_dump_folder is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase )
processor.push_to_hub(lowercase )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
_a : List[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
_UpperCamelCase = logging.get_logger(__name__)
def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__A : int = set()
__A : int = []
def parse_line(SCREAMING_SNAKE_CASE ):
for line in fp:
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__A : Any = line.decode("UTF-8" )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(" " ):
# process a single warning and move it to `selected_warnings`.
if len(SCREAMING_SNAKE_CASE ) > 0:
__A : List[str] = "\n".join(SCREAMING_SNAKE_CASE )
# Only keep the warnings specified in `targets`
if any(f": {x}: " in warning for x in targets ):
selected_warnings.add(SCREAMING_SNAKE_CASE )
buffer.clear()
continue
else:
__A : Optional[int] = line.strip()
buffer.append(SCREAMING_SNAKE_CASE )
if from_gh:
for filename in os.listdir(SCREAMING_SNAKE_CASE ):
__A : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
# read the file
if filename != "warnings.txt":
continue
with open(SCREAMING_SNAKE_CASE ) as fp:
parse_line(SCREAMING_SNAKE_CASE )
else:
try:
with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE ):
# read the file
if filename != "warnings.txt":
continue
with z.open(SCREAMING_SNAKE_CASE ) as fp:
parse_line(SCREAMING_SNAKE_CASE )
except Exception:
logger.warning(
f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." )
return selected_warnings
def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__A : int = set()
__A : List[str] = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith(".zip" ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
return selected_warnings
if __name__ == "__main__":
def _lowercase (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return values.split("," )
_UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
# optional parameters
parser.add_argument(
"""--targets""",
default="""DeprecationWarning,UserWarning,FutureWarning""",
type=list_str,
help="""Comma-separated list of target warning(s) which we want to extract.""",
)
parser.add_argument(
"""--from_gh""",
action="""store_true""",
help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""",
)
_UpperCamelCase = parser.parse_args()
_UpperCamelCase = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
_UpperCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("""=""" * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
_UpperCamelCase = extract_warnings(args.output_dir, args.targets)
_UpperCamelCase = sorted(selected_warnings)
with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 111 |
'''simple docstring'''
from collections import deque
def _lowerCAmelCase ( lowercase ) -> Dict:
__lowerCAmelCase = len(lowercase )
__lowerCAmelCase = deque()
__lowerCAmelCase = [False for _ in range(lowercase )]
__lowerCAmelCase = [-1 for _ in range(lowercase )]
__lowerCAmelCase = index_of[:]
def strong_connect(lowercase , lowercase , lowercase ):
__lowerCAmelCase = index # the number when this node is seen
__lowerCAmelCase = index # lowest rank node reachable from here
index += 1
stack.append(lowercase )
__lowerCAmelCase = True
for w in g[v]:
if index_of[w] == -1:
__lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase )
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
__lowerCAmelCase = []
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
while w != v:
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
components.append(lowercase )
return index
__lowerCAmelCase = []
for v in range(lowercase ):
if index_of[v] == -1:
strong_connect(lowercase , 0 , lowercase )
return components
def _lowerCAmelCase ( lowercase , lowercase ) -> str:
__lowerCAmelCase = [[] for _ in range(lowercase )]
for u, v in edges:
g[u].append(lowercase )
return g
if __name__ == "__main__":
# Test
_a : Any = 7
_a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_a : Optional[Any] = [(u, v) for u, v in zip(source, target)]
_a : Optional[int] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 689 | 0 |
'''simple docstring'''
from math import isqrt, loga
def __UpperCAmelCase (lowercase__ ) -> list[int]:
'''simple docstring'''
a_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,lowercase__ ,lowercase__ ):
a_ = False
return [i for i in range(2 ,lowercase__ ) if is_prime[i]]
def __UpperCAmelCase (lowercase__ = 800800 ,lowercase__ = 800800 ) -> int:
'''simple docstring'''
a_ = degree * loga(lowercase__ )
a_ = int(lowercase__ )
a_ = calculate_prime_numbers(lowercase__ )
a_ = 0
a_ = 0
a_ = len(lowercase__ ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'{solution() = }')
| 685 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _lowerCAmelCase ( ) -> Union[str, Any]:
__lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" )
__lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" )
# Register commands
EnvironmentCommand.register_subcommand(lowercase )
# Let's go
__lowerCAmelCase = parser.parse_args()
if not hasattr(lowercase , """func""" ):
parser.print_help()
exit(1 )
# Run
__lowerCAmelCase = args.func(lowercase )
service.run()
if __name__ == "__main__":
main()
| 689 | 0 |
'''simple docstring'''
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
lowercase_ : List[Any] = "__test_patch_submodule_mock__"
with patch_submodule(_test_patching , "os.path.join" , _UpperCamelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
assert _test_patching.open is open
lowercase_ : str = "__test_patch_submodule_builtin_mock__"
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , "open" , _UpperCamelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowercase_ : List[str] = "__test_patch_submodule_missing_mock__"
with patch_submodule(_test_patching , "pandas.read_csv" , _UpperCamelCase ):
pass
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowercase_ : Any = "__test_patch_submodule_missing_builtin_mock__"
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , "len" , _UpperCamelCase ) is None
with patch_submodule(_test_patching , "len" , _UpperCamelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowercase_ : Optional[int] = "__test_patch_submodule_start_and_stop_mock__"
lowercase_ : Optional[int] = patch_submodule(_test_patching , "open" , _UpperCamelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
lowercase_ : List[str] = "__test_patch_submodule_successive_join__"
lowercase_ : List[str] = "__test_patch_submodule_successive_dirname__"
lowercase_ : Any = "__test_patch_submodule_successive_rename__"
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , "os.path.join" , _UpperCamelCase ):
with patch_submodule(_test_patching , "os.rename" , _UpperCamelCase ):
with patch_submodule(_test_patching , "os.path.dirname" , _UpperCamelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , "os.rename" , _UpperCamelCase ):
with patch_submodule(_test_patching , "os.path.join" , _UpperCamelCase ):
with patch_submodule(_test_patching , "os.path.dirname" , _UpperCamelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowercase_ : Dict = "__test_patch_submodule_doesnt_exist_mock__"
with patch_submodule(_test_patching , "__module_that_doesn_exist__.__attribute_that_doesn_exist__" , _UpperCamelCase ):
pass
with patch_submodule(_test_patching , "os.__attribute_that_doesn_exist__" , _UpperCamelCase ):
pass
| 620 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_a : List[Any] = logging.get_logger(__name__)
_a : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
_a : Any = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
for attribute in key.split(""".""" ):
__lowerCAmelCase = getattr(lowercase , lowercase )
if weight_type is not None:
__lowerCAmelCase = getattr(lowercase , lowercase ).shape
else:
__lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowerCAmelCase = value
elif weight_type == "weight_g":
__lowerCAmelCase = value
elif weight_type == "weight_v":
__lowerCAmelCase = value
elif weight_type == "bias":
__lowerCAmelCase = value
else:
__lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
__lowerCAmelCase = []
__lowerCAmelCase = fairseq_model.state_dict()
__lowerCAmelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , )
__lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
__lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
__lowerCAmelCase = True
if "*" in mapped_key:
__lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2]
__lowerCAmelCase = mapped_key.replace("""*""" , lowercase )
if "weight_g" in name:
__lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
__lowerCAmelCase = """weight_v"""
elif "bias" in name:
__lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCAmelCase = """weight"""
else:
__lowerCAmelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
__lowerCAmelCase = name.split(""".""" )
__lowerCAmelCase = int(items[0] )
__lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict:
if config_path is not None:
__lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase )
else:
__lowerCAmelCase = UniSpeechSatConfig()
__lowerCAmelCase = """"""
if is_finetuned:
__lowerCAmelCase = UniSpeechSatForCTC(lowercase )
else:
__lowerCAmelCase = UniSpeechSatForPreTraining(lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
__lowerCAmelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_a : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
_a : Union[str, Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 689 | 0 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
a_ : Tuple = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b"
a_ : List[Any] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b"
a_ : List[str] = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 442 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
_a : str = """
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
"""
_a : Dict = """
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{'spearmanr': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results['spearmanr'])
-0.7
>>> print(round(results['spearmanr_pvalue'], 2))
0.19
"""
_a : List[str] = r"""\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 689 | 0 |
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCamelCase ( ):
snake_case : str = ArgumentParser("Accelerate CLI tool" , usage="accelerate <command> [<args>]" , allow_abbrev=__lowerCamelCase )
snake_case : List[Any] = parser.add_subparsers(help="accelerate command helpers" )
# Register commands
get_config_parser(subparsers=__lowerCamelCase )
env_command_parser(subparsers=__lowerCamelCase )
launch_command_parser(subparsers=__lowerCamelCase )
tpu_command_parser(subparsers=__lowerCamelCase )
test_command_parser(subparsers=__lowerCamelCase )
# Let's go
snake_case : Dict = parser.parse_args()
if not hasattr(__lowerCamelCase , "func" ):
parser.print_help()
exit(1 )
# Run
args.func(__lowerCamelCase )
if __name__ == "__main__":
main()
| 204 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ):
a : List[str] =["""onnx"""]
def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(self,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
| 689 | 0 |
import sys
_snake_case : Any = (
"""73167176531330624919225119674426574742355349194934"""
"""96983520312774506326239578318016984801869478851843"""
"""85861560789112949495459501737958331952853208805511"""
"""12540698747158523863050715693290963295227443043557"""
"""66896648950445244523161731856403098711121722383113"""
"""62229893423380308135336276614282806444486645238749"""
"""30358907296290491560440772390713810515859307960866"""
"""70172427121883998797908792274921901699720888093776"""
"""65727333001053367881220235421809751254540594752243"""
"""52584907711670556013604839586446706324415722155397"""
"""53697817977846174064955149290862569321978468622482"""
"""83972241375657056057490261407972968652414535100474"""
"""82166370484403199890008895243450658541227588666881"""
"""16427171479924442928230863465674813919123162824586"""
"""17866458359124566529476545682848912883142607690042"""
"""24219022671055626321111109370544217506941658960408"""
"""07198403850962455444362981230987879927244284909188"""
"""84580156166097919133875499200524063689912560717606"""
"""05886116467109405077541002256983155200055935729725"""
"""71636269561882670428252483600823257530420752963450"""
)
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = 1
for digit in s:
product *= int(__magic_name__ )
return product
def __snake_case ( __magic_name__ = N ):
'''simple docstring'''
lowercase = -sys.maxsize - 1
lowercase = n[:13]
lowercase = 13
while cur_index < len(__magic_name__ ) - 13:
if int(n[cur_index] ) >= int(substr[0] ):
lowercase = substr[1:] + n[cur_index]
cur_index += 1
else:
lowercase = max(__magic_name__ , str_eval(__magic_name__ ) )
lowercase = n[cur_index : cur_index + 13]
cur_index += 13
return largest_product
if __name__ == "__main__":
print(F"{solution() = }")
| 441 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_a : int = logging.get_logger(__name__)
_a : Optional[int] = {
"""EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : List[str] ="""gptj"""
a : Optional[int] ={
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = vocab_size
__lowerCAmelCase = n_positions
__lowerCAmelCase = n_embd
__lowerCAmelCase = n_layer
__lowerCAmelCase = n_head
__lowerCAmelCase = n_inner
__lowerCAmelCase = rotary_dim
__lowerCAmelCase = activation_function
__lowerCAmelCase = resid_pdrop
__lowerCAmelCase = embd_pdrop
__lowerCAmelCase = attn_pdrop
__lowerCAmelCase = layer_norm_epsilon
__lowerCAmelCase = initializer_range
__lowerCAmelCase = use_cache
__lowerCAmelCase = bos_token_id
__lowerCAmelCase = eos_token_id
super().__init__(
bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
__lowerCAmelCase = 0
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" )
__lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_head
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,):
'''simple docstring'''
__lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
__lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__lowerCAmelCase = seqlen + 2
__lowerCAmelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCAmelCase = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
__lowerCAmelCase = common_inputs["""attention_mask"""]
if self.use_past:
__lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype
__lowerCAmelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 )
return ordered_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return 13
| 689 | 0 |
'''simple docstring'''
from collections import deque
def __UpperCamelCase ( lowercase_ : Any ):
"""simple docstring"""
a_ = len(lowercase_ )
a_ = deque()
a_ = [False for _ in range(lowercase_ )]
a_ = [-1 for _ in range(lowercase_ )]
a_ = index_of[:]
def strong_connect(lowercase_ : int , lowercase_ : Any , lowercase_ : str ):
a_ = index # the number when this node is seen
a_ = index # lowest rank node reachable from here
index += 1
stack.append(lowercase_ )
a_ = True
for w in g[v]:
if index_of[w] == -1:
a_ = strong_connect(lowercase_ , lowercase_ , lowercase_ )
a_ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
a_ = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
a_ = []
a_ = stack.pop()
a_ = False
component.append(lowercase_ )
while w != v:
a_ = stack.pop()
a_ = False
component.append(lowercase_ )
components.append(lowercase_ )
return index
a_ = []
for v in range(lowercase_ ):
if index_of[v] == -1:
strong_connect(lowercase_ , 0 , lowercase_ )
return components
def __UpperCamelCase ( lowercase_ : str , lowercase_ : Dict ):
"""simple docstring"""
a_ = [[] for _ in range(lowercase_ )]
for u, v in edges:
g[u].append(lowercase_ )
return g
if __name__ == "__main__":
# Test
__lowerCAmelCase = 7
__lowerCAmelCase = [0, 0, 1, 2, 3, 3, 4, 4, 6]
__lowerCAmelCase = [1, 3, 2, 0, 1, 4, 5, 6, 5]
__lowerCAmelCase = [(u, v) for u, v in zip(source, target)]
__lowerCAmelCase = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 536 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int:
__lowerCAmelCase = set()
__lowerCAmelCase = int((limit - 24) ** (1 / 2) )
__lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) )
for primea in primes:
__lowerCAmelCase = primea * primea
for primea in primes:
__lowerCAmelCase = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
__lowerCAmelCase = primea * primea * primea * primea
__lowerCAmelCase = square + cube + tetr
if total >= limit:
break
ret.add(lowercase )
return len(lowercase )
if __name__ == "__main__":
print(f'{solution() = }')
| 689 | 0 |
"""simple docstring"""
import copy
import random
from transformers import CLIPTokenizer
class _UpperCamelCase ( lowerCAmelCase_ ):
'''simple docstring'''
def __init__( self , *__a , **__a ):
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = {}
def snake_case ( self , __a , *__a , **__a ):
__lowerCAmelCase = super().add_tokens(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer." )
def snake_case ( self , __a , *__a , __a=1 , **__a ):
__lowerCAmelCase = []
if num_vec_per_token == 1:
self.try_adding_tokens(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
output.append(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = []
for i in range(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = placeholder_token + f"_{i}"
self.try_adding_tokens(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
output.append(__SCREAMING_SNAKE_CASE )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
f"The tokenizer already has placeholder token {token} that can get confused with"
f" {placeholder_token}keep placeholder tokens independent" )
__lowerCAmelCase = output
def snake_case ( self , __a , __a=False , __a=1.0 ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = []
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=__SCREAMING_SNAKE_CASE ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
__lowerCAmelCase = self.token_map[placeholder_token]
__lowerCAmelCase = tokens[: 1 + int(len(__SCREAMING_SNAKE_CASE ) * prop_tokens_to_load )]
if vector_shuffle:
__lowerCAmelCase = copy.copy(__SCREAMING_SNAKE_CASE )
random.shuffle(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = text.replace(__SCREAMING_SNAKE_CASE , " ".join(__SCREAMING_SNAKE_CASE ) )
return text
def __call__( self , __a , *__a , __a=False , __a=1.0 , **__a ):
return super().__call__(
self.replace_placeholder_tokens_in_text(
__SCREAMING_SNAKE_CASE , vector_shuffle=__SCREAMING_SNAKE_CASE , prop_tokens_to_load=__SCREAMING_SNAKE_CASE ) , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
def snake_case ( self , __a , *__a , __a=False , __a=1.0 , **__a ):
return super().encode(
self.replace_placeholder_tokens_in_text(
__SCREAMING_SNAKE_CASE , vector_shuffle=__SCREAMING_SNAKE_CASE , prop_tokens_to_load=__SCREAMING_SNAKE_CASE ) , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
| 636 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ):
a : Optional[int] =TextToVideoSDPipeline
a : Optional[int] =TEXT_TO_IMAGE_PARAMS
a : Any =TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
a : Union[str, Any] =frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,)
__lowerCAmelCase = DDIMScheduler(
beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,)
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,)
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,)
__lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ):
'''simple docstring'''
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = """np"""
__lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames
__lowerCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
__lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",)
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 689 | 0 |
"""simple docstring"""
def __lowerCAmelCase ( lowercase : str , lowercase : int ) -> list[int]:
"""simple docstring"""
snake_case : str = int(lowercase )
# Initialize Result
snake_case : Dict = []
# Traverse through all denomination
for denomination in reversed(lowercase ):
# Find denominations
while int(lowercase ) >= int(lowercase ):
total_value -= int(lowercase )
answer.append(lowercase ) # Append the "answers" array
return answer
# Driver Code
if __name__ == "__main__":
__snake_case = []
__snake_case = """0"""
if (
input("""Do you want to enter your denominations ? (yY/n): """).strip().lower()
== "y"
):
__snake_case = int(input("""Enter the number of denominations you want to add: """).strip())
for i in range(0, n):
denominations.append(int(input(F'''Denomination {i}: ''').strip()))
__snake_case = input("""Enter the change you want to make in Indian Currency: """).strip()
else:
# All denominations of Indian Currency if user does not enter
__snake_case = [1, 2, 5, 10, 20, 50, 100, 500, 2000]
__snake_case = input("""Enter the change you want to make: """).strip()
if int(value) == 0 or int(value) < 0:
print("""The total value cannot be zero or negative.""")
else:
print(F'''Following is minimal change for {value}: ''')
__snake_case = find_minimum_change(denominations, value)
# Print result
for i in range(len(answer)):
print(answer[i], end=""" """)
| 178 |
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def _lowerCAmelCase ( lowercase ) -> Optional[int]:
if not is_accelerate_available():
return method
__lowerCAmelCase = version.parse(accelerate.__version__ ).base_version
if version.parse(lowercase ) < version.parse("""0.17.0""" ):
return method
def wrapper(self , *lowercase , **lowercase ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *lowercase , **lowercase )
return wrapper
| 689 | 0 |
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class a ( lowerCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : Optional[int] = TextToVideoSDPipeline
__lowerCAmelCase : Optional[int] = TEXT_TO_IMAGE_PARAMS
__lowerCAmelCase : Any = TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
__lowerCAmelCase : Union[str, Any] = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def __lowerCamelCase ( self :Union[str, Any] ):
torch.manual_seed(0 )
snake_case__ : str = UNetaDConditionModel(
block_out_channels=(3_2, 6_4, 6_4, 6_4) ,layers_per_block=2 ,sample_size=3_2 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=3_2 ,attention_head_dim=4 ,)
snake_case__ : Optional[Any] = DDIMScheduler(
beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=__SCREAMING_SNAKE_CASE ,set_alpha_to_one=__SCREAMING_SNAKE_CASE ,)
torch.manual_seed(0 )
snake_case__ : Union[str, Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_2_8 ,)
torch.manual_seed(0 )
snake_case__ : int = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=3_2 ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,hidden_act='''gelu''' ,projection_dim=5_1_2 ,)
snake_case__ : str = CLIPTextModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
snake_case__ : Dict = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def __lowerCamelCase ( self :Tuple ,__lowercase :str ,__lowercase :str=0 ):
if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ):
snake_case__ : str = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Dict = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def __lowerCamelCase ( self :Any ):
snake_case__ : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
snake_case__ : str = self.get_dummy_components()
snake_case__ : str = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : str = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
snake_case__ : int = '''np'''
snake_case__ : str = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames
snake_case__ : str = frames[0][-3:, -3:, -1]
assert frames[0].shape == (6_4, 6_4, 3)
snake_case__ : str = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def __lowerCamelCase ( self :List[Any] ):
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE ,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def __lowerCamelCase ( self :Union[str, Any] ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE ,expected_max_diff=1e-2 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def __lowerCamelCase ( self :Any ):
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def __lowerCamelCase ( self :Optional[Any] ):
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def __lowerCamelCase ( self :List[Any] ):
pass
def __lowerCamelCase ( self :List[Any] ):
return super().test_progress_bar()
@slow
@skip_mps
class a ( unittest.TestCase ):
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' )
snake_case__ : List[Any] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
snake_case__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
snake_case__ : Tuple = pipe.to('''cuda''' )
snake_case__ : Dict = '''Spiderman is surfing'''
snake_case__ : Optional[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case__ : Dict = pipe(__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=2_5 ,output_type='''pt''' ).frames
snake_case__ : Tuple = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ : Optional[int] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' )
snake_case__ : List[str] = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' )
snake_case__ : Union[str, Any] = pipe.to('''cuda''' )
snake_case__ : Optional[Any] = '''Spiderman is surfing'''
snake_case__ : Dict = torch.Generator(device='''cpu''' ).manual_seed(0 )
snake_case__ : str = pipe(__SCREAMING_SNAKE_CASE ,generator=__SCREAMING_SNAKE_CASE ,num_inference_steps=2 ,output_type='''pt''' ).frames
snake_case__ : List[str] = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 252 |
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
# load base model
__lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
__lowerCAmelCase = load_file(lowercase )
__lowerCAmelCase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.text_encoder
else:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.unet
# find the target layer
__lowerCAmelCase = layer_infos.pop(0 )
while len(lowercase ) > -1:
try:
__lowerCAmelCase = curr_layer.__getattr__(lowercase )
if len(lowercase ) > 0:
__lowerCAmelCase = layer_infos.pop(0 )
elif len(lowercase ) == 0:
break
except Exception:
if len(lowercase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
__lowerCAmelCase = layer_infos.pop(0 )
__lowerCAmelCase = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(lowercase )
else:
pair_keys.append(lowercase )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
__lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 )
else:
__lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase )
# update visited list
for item in pair_keys:
visited.append(lowercase )
return pipeline
if __name__ == "__main__":
_a : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_a : Optional[int] = parser.parse_args()
_a : Dict = args.base_model_path
_a : Optional[Any] = args.checkpoint_path
_a : Union[str, Any] = args.dump_path
_a : Optional[int] = args.lora_prefix_unet
_a : int = args.lora_prefix_text_encoder
_a : str = args.alpha
_a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_a : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 689 | 0 |
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def __lowerCAmelCase ( A ):
if not is_accelerate_available():
return method
UpperCAmelCase_ = version.parse(accelerate.__version__ ).base_version
if version.parse(A ) < version.parse("0.17.0" ):
return method
def wrapper(self , *A , **A ):
if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ):
self._hf_hook.pre_forward(self )
return method(self , *A , **A )
return wrapper | 162 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def _lowerCAmelCase ( lowercase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def _lowerCAmelCase ( lowercase = "" ) -> bool:
if len(lowercase ) == 0:
return True
__lowerCAmelCase = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
__lowerCAmelCase = {}
for character in lower_case_input_str:
__lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1
__lowerCAmelCase = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def _lowerCAmelCase ( lowercase = "" ) -> None:
print("""\nFor string = """ , lowercase , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
_a : int = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
_a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 689 | 0 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
_UpperCamelCase = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""")
_UpperCamelCase = get_tests_dir("""fixtures/vocab.json""")
_UpperCamelCase = get_tests_dir("""fixtures""")
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : Optional[Any] = 0
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : List[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : Optional[int] = WavaVecaConfig()
__A : Union[str, Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" )
# save in new folder
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__A : Union[str, Any] = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
copyfile(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , "vocab.json" ) )
__A : Optional[int] = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : Union[str, Any] = WavaVecaFeatureExtractor()
__A : int = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" )
__A : Dict = WavaVecaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
# drop `processor_class` in tokenizer
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "r" ) as f:
__A : str = json.load(__SCREAMING_SNAKE_CASE )
config_dict.pop("processor_class" )
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "w" ) as f:
f.write(json.dumps(__SCREAMING_SNAKE_CASE ) )
__A : Optional[int] = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : List[Any] = WavaVecaFeatureExtractor()
__A : Optional[Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" )
__A : Any = WavaVecaProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# save in new folder
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
# drop `processor_class` in feature extractor
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "r" ) as f:
__A : List[Any] = json.load(__SCREAMING_SNAKE_CASE )
config_dict.pop("processor_class" )
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "w" ) as f:
f.write(json.dumps(__SCREAMING_SNAKE_CASE ) )
__A : Optional[Any] = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
__A : Union[str, Any] = WavaVecaConfig(processor_class="Wav2Vec2Processor" )
model_config.save_pretrained(__SCREAMING_SNAKE_CASE )
# copy relevant files
copyfile(__SCREAMING_SNAKE_CASE , os.path.join(__SCREAMING_SNAKE_CASE , "vocab.json" ) )
# create emtpy sample processor
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , "w" ) as f:
f.write("{}" )
__A : List[str] = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__A : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
__A : Dict = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE )
__A : Tuple = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
__A : Union[str, Any] = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" )
__A : Optional[Any] = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" )
# Test we can also load the slow version
__A : Dict = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE )
__A : Optional[Any] = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" )
else:
self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
try:
AutoConfig.register("custom" , __SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
AutoTokenizer.register(__SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE )
AutoProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
AutoProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Now that the config is registered, it can be used as any other config with the auto-API
__A : str = CustomFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
__A : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , "vocab.txt" )
with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__A : Tuple = CustomTokenizer(__SCREAMING_SNAKE_CASE )
__A : List[str] = CustomProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
__A : str = AutoProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self ):
'''simple docstring'''
class __magic_name__ ( lowerCAmelCase_ ):
"""simple docstring"""
lowerCamelCase__ = False
class __magic_name__ ( lowerCAmelCase_ ):
"""simple docstring"""
lowerCamelCase__ = False
class __magic_name__ ( lowerCAmelCase_ ):
"""simple docstring"""
lowerCamelCase__ = """AutoFeatureExtractor"""
lowerCamelCase__ = """AutoTokenizer"""
lowerCamelCase__ = False
try:
AutoConfig.register("custom" , __SCREAMING_SNAKE_CASE )
AutoFeatureExtractor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
AutoTokenizer.register(__SCREAMING_SNAKE_CASE , slow_tokenizer_class=__SCREAMING_SNAKE_CASE )
AutoProcessor.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If remote code is not set, the default is to use local classes.
__A : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
__A : Tuple = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
__A : Optional[int] = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor" , trust_remote_code=__SCREAMING_SNAKE_CASE )
self.assertEqual(processor.__class__.__name__ , "NewProcessor" )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" )
self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" )
@is_staging_test
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
lowerCamelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
@classmethod
def lowerCAmelCase__ ( cls ):
'''simple docstring'''
__A : List[str] = TOKEN
HfFolder.save_token(__SCREAMING_SNAKE_CASE )
@classmethod
def lowerCAmelCase__ ( cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id="test-processor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-processor" )
except HTTPError:
pass
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : Union[str, Any] = WavaVecaProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__SCREAMING_SNAKE_CASE , "test-processor" ) , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token )
__A : List[Any] = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , __SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : List[Any] = WavaVecaProcessor.from_pretrained(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(__SCREAMING_SNAKE_CASE , "test-processor-org" ) , push_to_hub=__SCREAMING_SNAKE_CASE , use_auth_token=self._token , organization="valid_org" , )
__A : str = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(__SCREAMING_SNAKE_CASE , getattr(new_processor.feature_extractor , __SCREAMING_SNAKE_CASE ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
__A : List[Any] = CustomFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
__A : Any = os.path.join(__SCREAMING_SNAKE_CASE , "vocab.txt" )
with open(__SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__A : Optional[Any] = CustomTokenizer(__SCREAMING_SNAKE_CASE )
__A : Any = CustomProcessor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f"{USER}/test-dynamic-processor" , token=self._token )
__A : str = Repository(__SCREAMING_SNAKE_CASE , clone_from=f"{USER}/test-dynamic-processor" , token=self._token )
processor.save_pretrained(__SCREAMING_SNAKE_CASE )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
"AutoProcessor": "custom_processing.CustomProcessor",
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(__SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) ) as f:
__A : Tuple = json.load(__SCREAMING_SNAKE_CASE )
self.assertDictEqual(
tokenizer_config["auto_map"] , {
"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
"AutoProcessor": "custom_processing.CustomProcessor",
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , "custom_feature_extraction.py" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , "custom_tokenization.py" ) ) )
self.assertTrue(os.path.isfile(os.path.join(__SCREAMING_SNAKE_CASE , "custom_processing.py" ) ) )
repo.push_to_hub()
__A : Tuple = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor" , trust_remote_code=__SCREAMING_SNAKE_CASE )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
| 111 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _lowerCAmelCase ( lowercase ) -> List[Any]:
__lowerCAmelCase = VideoMAEConfig()
set_architecture_configs(lowercase , lowercase )
if "finetuned" not in model_name:
__lowerCAmelCase = False
if "finetuned" in model_name:
__lowerCAmelCase = """huggingface/label-files"""
if "kinetics" in model_name:
__lowerCAmelCase = 400
__lowerCAmelCase = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
__lowerCAmelCase = 174
__lowerCAmelCase = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
__lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) )
__lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase ( lowercase , lowercase ) -> Any:
if "small" in model_name:
__lowerCAmelCase = 384
__lowerCAmelCase = 1536
__lowerCAmelCase = 12
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 3
__lowerCAmelCase = 192
__lowerCAmelCase = 768
elif "large" in model_name:
__lowerCAmelCase = 1024
__lowerCAmelCase = 4096
__lowerCAmelCase = 24
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 512
__lowerCAmelCase = 2048
elif "huge" in model_name:
__lowerCAmelCase = 1280
__lowerCAmelCase = 5120
__lowerCAmelCase = 32
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 640
__lowerCAmelCase = 2560
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def _lowerCAmelCase ( lowercase ) -> List[str]:
if "encoder." in name:
__lowerCAmelCase = name.replace("""encoder.""" , """""" )
if "cls_token" in name:
__lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
__lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" )
if "decoder.blocks" in name:
__lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
__lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" )
if "attn.proj" in name:
__lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "bias" not in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.self""" )
if "attn" in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.attention""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
__lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
__lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
__lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""head""" , """classifier""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if key.startswith("""encoder.""" ):
__lowerCAmelCase = key.replace("""encoder.""" , """""" )
if "qkv" in key:
__lowerCAmelCase = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
__lowerCAmelCase = config.decoder_hidden_size
__lowerCAmelCase = int(key_split[2] )
__lowerCAmelCase = """decoder.decoder_layers."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = config.hidden_size
__lowerCAmelCase = int(key_split[1] )
__lowerCAmelCase = """videomae.encoder.layer."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__lowerCAmelCase = np.load(lowercase )
return list(lowercase )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = get_videomae_config(lowercase )
if "finetuned" in model_name:
__lowerCAmelCase = VideoMAEForVideoClassification(lowercase )
else:
__lowerCAmelCase = VideoMAEForPreTraining(lowercase )
# download original checkpoint, hosted on Google Drive
__lowerCAmelCase = """pytorch_model.bin"""
gdown.cached_download(lowercase , lowercase , quiet=lowercase )
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )
if "model" in files:
__lowerCAmelCase = files["""model"""]
else:
__lowerCAmelCase = files["""module"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
model.load_state_dict(lowercase )
model.eval()
# verify model on basic input
__lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
__lowerCAmelCase = prepare_video()
__lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" )
if "finetuned" not in model_name:
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
__lowerCAmelCase = torch.load(lowercase )
__lowerCAmelCase = model(**lowercase )
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] )
elif model_name == "videomae-small-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] )
elif model_name == "videomae-base":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] )
elif model_name == "videomae-base-short":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] )
# we verified the loss both for normalized and unnormalized targets for this one
__lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] )
elif model_name == "videomae-large":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] )
elif model_name == "videomae-large-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] )
elif model_name == "videomae-huge-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] )
elif model_name == "videomae-base-short-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] )
elif model_name == "videomae-base-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] )
elif model_name == "videomae-base-short-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] )
elif model_name == "videomae-base-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] )
elif model_name == "videomae-base-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 )
else:
print("""Logits:""" , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
__lowerCAmelCase = outputs.loss
assert torch.allclose(lowercase , lowercase , atol=1e-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""",
type=str,
help=(
"""URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"""
""" download link."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/Users/nielsrogge/Documents/VideoMAE/Test""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""")
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_a : int = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
import re
import subprocess
import sys
a_ = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8')
a_ = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode('utf-8').split()
a_ = """|""".join(sys.argv[1:])
a_ = re.compile(rF'^({joined_dirs}).*?\.py$')
a_ = [x for x in modified_files if regex.match(x)]
print(' '.join(relevant_modified_files), end='')
| 685 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_a : Tuple = """\
"""
_a : Tuple = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
_a : Optional[Any] = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__lowerCAmelCase = """cuda"""
else:
__lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
__lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__SCREAMING_SNAKE_CASE ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__lowerCAmelCase = model.config.max_length - 1
else:
__lowerCAmelCase = model.config.max_length
__lowerCAmelCase = tokenizer(
__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = encodings["""input_ids"""]
__lowerCAmelCase = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__lowerCAmelCase = []
__lowerCAmelCase = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ):
__lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = encoded_texts[start_index:end_index]
__lowerCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
__lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 )
__lowerCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 )
__lowerCAmelCase = encoded_batch
with torch.no_grad():
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits
__lowerCAmelCase = out_logits[..., :-1, :].contiguous()
__lowerCAmelCase = labels[..., 1:].contiguous()
__lowerCAmelCase = attn_mask[..., 1:].contiguous()
__lowerCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
| 689 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class _UpperCAmelCase :
def __init__( self : List[Any] , a : str , ):
'''simple docstring'''
lowercase_ : Any = parent
lowercase_ : str = 1_3
lowercase_ : Union[str, Any] = 7
lowercase_ : List[str] = True
lowercase_ : Dict = True
lowercase_ : List[Any] = True
lowercase_ : Optional[Any] = True
lowercase_ : Optional[int] = True
lowercase_ : str = False
lowercase_ : Tuple = False
lowercase_ : Any = False
lowercase_ : Union[str, Any] = 2
lowercase_ : Dict = 9_9
lowercase_ : Optional[Any] = 0
lowercase_ : Tuple = 3_2
lowercase_ : str = 2
lowercase_ : Any = 4
lowercase_ : Union[str, Any] = 0.1
lowercase_ : int = 0.1
lowercase_ : Any = 5_1_2
lowercase_ : Union[str, Any] = 1_6
lowercase_ : int = 2
lowercase_ : Dict = 0.02
lowercase_ : List[str] = 3
lowercase_ : Tuple = 4
lowercase_ : Optional[int] = "last"
lowercase_ : Union[str, Any] = True
lowercase_ : Optional[Any] = None
lowercase_ : Union[str, Any] = 0
def lowerCAmelCase__ ( self : Tuple ):
'''simple docstring'''
lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
lowercase_ : Optional[int] = None
if self.use_input_lengths:
lowercase_ : Optional[int] = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
lowercase_ : Optional[Any] = None
if self.use_token_type_ids:
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
lowercase_ : str = None
lowercase_ : Optional[Any] = None
lowercase_ : str = None
if self.use_labels:
lowercase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase_ : Any = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
lowercase_ : Any = ids_tensor([self.batch_size] , self.num_choices )
lowercase_ : List[str] = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCAmelCase__ ( self : Dict , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Union[str, Any] , a : Any , a : Optional[int] , a : Any , a : Optional[Any] , a : str , ):
'''simple docstring'''
lowercase_ : Optional[Any] = TFFlaubertModel(config=__SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = [input_ids, input_mask]
lowercase_ : List[str] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self : int , a : Dict , a : Any , a : List[Any] , a : Dict , a : Optional[Any] , a : str , a : List[str] , a : int , a : Tuple , ):
'''simple docstring'''
lowercase_ : Optional[Any] = TFFlaubertWithLMHeadModel(__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids}
lowercase_ : List[str] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase__ ( self : Optional[int] , a : int , a : Tuple , a : Any , a : int , a : str , a : List[str] , a : Optional[Any] , a : List[str] , a : Dict , ):
'''simple docstring'''
lowercase_ : str = TFFlaubertForQuestionAnsweringSimple(__SCREAMING_SNAKE_CASE )
lowercase_ : Any = {"input_ids": input_ids, "lengths": input_lengths}
lowercase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase__ ( self : List[Any] , a : Union[str, Any] , a : Optional[Any] , a : Union[str, Any] , a : int , a : Tuple , a : Any , a : Optional[int] , a : Optional[Any] , a : Any , ):
'''simple docstring'''
lowercase_ : List[str] = TFFlaubertForSequenceClassification(__SCREAMING_SNAKE_CASE )
lowercase_ : Dict = {"input_ids": input_ids, "lengths": input_lengths}
lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase__ ( self : Any , a : Union[str, Any] , a : Dict , a : List[str] , a : int , a : Optional[int] , a : Tuple , a : Optional[Any] , a : str , a : Optional[int] , ):
'''simple docstring'''
lowercase_ : Any = self.num_labels
lowercase_ : int = TFFlaubertForTokenClassification(config=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
lowercase_ : int = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase__ ( self : Optional[Any] , a : Optional[Any] , a : str , a : List[Any] , a : Any , a : Union[str, Any] , a : Union[str, Any] , a : str , a : Tuple , a : Optional[int] , ):
'''simple docstring'''
lowercase_ : List[Any] = self.num_choices
lowercase_ : Tuple = TFFlaubertForMultipleChoice(config=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
lowercase_ : List[str] = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
lowercase_ : int = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
lowercase_ : str = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase__ ( self : Tuple ):
'''simple docstring'''
lowercase_ : Tuple = self.prepare_config_and_inputs()
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : List[str] = config_and_inputs
lowercase_ : List[str] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"langs": token_type_ids,
"lengths": input_lengths,
}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
__lowerCamelCase: List[Any] = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
__lowerCamelCase: Union[str, Any] = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__lowerCamelCase: Optional[int] = (
{
"""feature-extraction""": TFFlaubertModel,
"""fill-mask""": TFFlaubertWithLMHeadModel,
"""question-answering""": TFFlaubertForQuestionAnsweringSimple,
"""text-classification""": TFFlaubertForSequenceClassification,
"""token-classification""": TFFlaubertForTokenClassification,
"""zero-shot""": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowerCamelCase: Dict = False
__lowerCamelCase: str = False
def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict , a : List[str] , a : Tuple , a : Dict , a : Dict ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("Fast" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCAmelCase__ ( self : Tuple ):
'''simple docstring'''
lowercase_ : List[str] = TFFlaubertModelTester(self )
lowercase_ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , emb_dim=3_7 )
def lowerCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self : List[str] ):
'''simple docstring'''
lowercase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
lowercase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__SCREAMING_SNAKE_CASE )
@slow
def lowerCAmelCase__ ( self : Any ):
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ : Union[str, Any] = TFFlaubertModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@require_tf
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def lowerCAmelCase__ ( self : Dict ):
'''simple docstring'''
lowercase_ : Tuple = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" )
lowercase_ : str = tf.convert_to_tensor(
[[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )[0]
lowercase_ : List[str] = tf.TensorShape((1, 8, 5_1_2) )
self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
lowercase_ : int = tf.convert_to_tensor(
[
[
[-1.876_8773, -1.56_6555, 0.2707_2418],
[-1.692_0038, -0.587_3505, 1.932_9599],
[-2.956_3985, -1.699_3835, 1.797_2052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 620 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Union[str, Any] =["""image_processor"""]
a : Dict ="""SamImageProcessor"""
def __init__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.image_processor
__lowerCAmelCase = -10
__lowerCAmelCase = self.image_processor.size["""longest_edge"""]
def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
# pop arguments that are not used in the foward but used nevertheless
__lowerCAmelCase = encoding_image_processor["""original_sizes"""]
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor
__lowerCAmelCase = original_sizes.numpy()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points(
input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = self._normalize_and_convert(
__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,)
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",):
'''simple docstring'''
if input_points is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_labels is not None:
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE )
for box in input_boxes
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE )
for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = max([point.shape[0] for point in input_points] )
__lowerCAmelCase = []
for i, point in enumerate(__SCREAMING_SNAKE_CASE ):
if point.shape[0] != expected_nb_points:
__lowerCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 )
__lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] )
processed_input_points.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = processed_input_points
return input_points, input_labels
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = original_size
__lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE )
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,2,2 )
__lowerCAmelCase = coords[..., 0] * (new_w / old_w)
__lowerCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,4 )
return coords
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,):
'''simple docstring'''
if input_points is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor
__lowerCAmelCase = input_points.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input points must be a list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points]
else:
__lowerCAmelCase = None
if input_labels is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_labels.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input labels must be a list of list integers.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels]
else:
__lowerCAmelCase = None
if input_boxes is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes]
else:
__lowerCAmelCase = None
return input_points, input_labels, input_boxes
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) )
def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
| 689 | 0 |
'''simple docstring'''
import numpy as np
def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : List[str] ):
"""simple docstring"""
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 442 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_a : int = logging.getLogger(__name__)
@dataclass
class _UpperCAmelCase :
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
a : int =field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} )
a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} )
def lowerCamelCase__ ( self ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__lowerCAmelCase = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__lowerCAmelCase = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a : str =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _lowerCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(lowercase )
datasets.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__lowerCAmelCase = data_args.train_file.split(""".""" )[-1]
__lowerCAmelCase = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__lowerCAmelCase = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names
__lowerCAmelCase = len(lowercase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__lowerCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , )
__lowerCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__lowerCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__lowerCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1}
__lowerCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowercase ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowercase ):
__lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__lowerCAmelCase = examples["""statement"""]
__lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase )
__lowerCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__lowerCAmelCase = raw_datasets.map(
lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__lowerCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__lowerCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__lowerCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowercase ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase ):
__lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__lowerCAmelCase = default_data_collator
elif training_args.fpaa:
__lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 )
else:
__lowerCAmelCase = None
# Initialize our Trainer
__lowerCAmelCase = Trainer(
model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , )
# Training
if training_args.do_train:
__lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase )
__lowerCAmelCase = train_result.metrics
__lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase )
)
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowercase )
trainer.save_metrics("""train""" , lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase )
__lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase )
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.log_metrics("""eval""" , lowercase )
trainer.save_metrics("""eval""" , lowercase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__lowerCAmelCase = predict_dataset.remove_columns("""label""" )
__lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
__lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(lowercase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowercase ):
__lowerCAmelCase = label_list[item]
writer.write(f'{index}\t{item}\n' )
__lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase )
else:
trainer.create_model_card(**lowercase )
def _lowerCAmelCase ( lowercase ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 689 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
"""facebook/xlm-roberta-xl""": """https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json""",
"""facebook/xlm-roberta-xxl""": """https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json""",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class UpperCAmelCase ( lowerCAmelCase_ ):
A__ : Any = """xlm-roberta-xl"""
def __init__(self : List[Any] , snake_case__ : Tuple=25_08_80 , snake_case__ : Dict=25_60 , snake_case__ : int=36 , snake_case__ : str=32 , snake_case__ : str=1_02_40 , snake_case__ : int="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Dict=5_14 , snake_case__ : str=1 , snake_case__ : Optional[int]=0.02 , snake_case__ : Optional[int]=1e-05 , snake_case__ : Optional[int]=1 , snake_case__ : str=0 , snake_case__ : List[str]=2 , snake_case__ : Tuple="absolute" , snake_case__ : Any=True , snake_case__ : List[str]=None , **snake_case__ : List[str] , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case : Optional[int] = vocab_size
snake_case : int = hidden_size
snake_case : List[str] = num_hidden_layers
snake_case : List[Any] = num_attention_heads
snake_case : Any = hidden_act
snake_case : List[Any] = intermediate_size
snake_case : List[str] = hidden_dropout_prob
snake_case : Dict = attention_probs_dropout_prob
snake_case : Tuple = max_position_embeddings
snake_case : Any = type_vocab_size
snake_case : List[Any] = initializer_range
snake_case : Optional[Any] = layer_norm_eps
snake_case : Any = position_embedding_type
snake_case : List[Any] = use_cache
snake_case : Dict = classifier_dropout
class UpperCAmelCase ( lowerCAmelCase_ ):
@property
def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]:
'''simple docstring'''
if self.task == "multiple-choice":
snake_case : List[str] = {0: "batch", 1: "choice", 2: "sequence"}
else:
snake_case : Tuple = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 204 |
'''simple docstring'''
import os
import sys
import unittest
_a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = find_backend(""" if not is_torch_available():""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCAmelCase = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""",objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" )
__lowerCAmelCase = create_dummy_object("""function""","""'torch'""" )
self.assertEqual(
__SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__lowerCAmelCase = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
__lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
__lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
| 689 | 0 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
_snake_case : str = {
# 1536-bit
5: {
"""prime""": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"""generator""": 2,
},
# 2048-bit
14: {
"""prime""": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"""generator""": 2,
},
# 3072-bit
15: {
"""prime""": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"""generator""": 2,
},
# 4096-bit
16: {
"""prime""": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"""generator""": 2,
},
# 6144-bit
17: {
"""prime""": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"""generator""": 2,
},
# 8192-bit
18: {
"""prime""": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"""generator""": 2,
},
}
class UpperCamelCase_ :
'''simple docstring'''
def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] = 14 ) ->Dict:
if group not in primes:
raise ValueError("Unsupported Group" )
lowercase = primes[group]["prime"]
lowercase = primes[group]["generator"]
lowercase = int(hexlify(urandom(32 ) ) , base=16 )
def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->str:
return hex(self.__private_key )[2:]
def SCREAMING_SNAKE_CASE( self :int ) ->Tuple:
lowercase = pow(self.generator , self.__private_key , self.prime )
return hex(__SCREAMING_SNAKE_CASE )[2:]
def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :Dict ) ->Union[str, Any]:
return (
2 <= key <= self.prime - 2
and pow(__SCREAMING_SNAKE_CASE , (self.prime - 1) // 2 , self.prime ) == 1
)
def SCREAMING_SNAKE_CASE( self :str , lowerCAmelCase__ :Union[str, Any] ) ->Dict:
lowercase = int(__SCREAMING_SNAKE_CASE , base=16 )
if not self.is_valid_public_key(__SCREAMING_SNAKE_CASE ):
raise ValueError("Invalid public key" )
lowercase = pow(__SCREAMING_SNAKE_CASE , self.__private_key , self.prime )
return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest()
@staticmethod
def SCREAMING_SNAKE_CASE( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any] ) ->Any:
return (
2 <= remote_public_key_str <= prime - 2
and pow(__SCREAMING_SNAKE_CASE , (prime - 1) // 2 , __SCREAMING_SNAKE_CASE ) == 1
)
@staticmethod
def SCREAMING_SNAKE_CASE( lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] = 14 ) ->int:
lowercase = int(__SCREAMING_SNAKE_CASE , base=16 )
lowercase = int(__SCREAMING_SNAKE_CASE , base=16 )
lowercase = primes[group]["prime"]
if not DiffieHellman.is_valid_public_key_static(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise ValueError("Invalid public key" )
lowercase = pow(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 441 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase ) -> tuple[int, int]:
try:
__lowerCAmelCase = float(lowercase )
except ValueError:
raise ValueError("""Please enter a valid number""" )
__lowerCAmelCase = decimal - int(lowercase )
if fractional_part == 0:
return int(lowercase ), 1
else:
__lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] )
__lowerCAmelCase = int(decimal * (10**number_of_frac_digits) )
__lowerCAmelCase = 10**number_of_frac_digits
__lowerCAmelCase , __lowerCAmelCase = denominator, numerator
while True:
__lowerCAmelCase = dividend % divisor
if remainder == 0:
break
__lowerCAmelCase , __lowerCAmelCase = divisor, remainder
__lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor
return int(lowercase ), int(lowercase )
if __name__ == "__main__":
print(f'{decimal_to_fraction(2) = }')
print(f'{decimal_to_fraction(89.0) = }')
print(f'{decimal_to_fraction("67") = }')
print(f'{decimal_to_fraction("45.0") = }')
print(f'{decimal_to_fraction(1.5) = }')
print(f'{decimal_to_fraction("6.25") = }')
print(f'{decimal_to_fraction("78td") = }')
| 689 | 0 |
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def __UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : str ):
"""simple docstring"""
if (ksize % 2) == 0:
a_ = ksize + 1
a_ = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(lowercase_ ):
for x in range(lowercase_ ):
# distance from center
a_ = x - ksize // 2
a_ = y - ksize // 2
# degree to radiant
a_ = theta / 180 * np.pi
a_ = np.cos(_theta )
a_ = np.sin(_theta )
# get kernel x
a_ = cos_theta * px + sin_theta * py
# get kernel y
a_ = -sin_theta * px + cos_theta * py
# fill kernel
a_ = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
__lowerCAmelCase = imread("../image_data/lena.jpg")
# turn image in gray scale value
__lowerCAmelCase = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
__lowerCAmelCase = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 1_20, 1_50]:
__lowerCAmelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
__lowerCAmelCase = out / out.max() * 2_55
__lowerCAmelCase = out.astype(np.uinta)
imshow("Original", gray)
imshow("Gabor filter with 20x20 mask and 6 directions", out)
waitKey(0)
| 536 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a : Dict = _symbol_database.Default()
_a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
_a : str = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a : str = None
_a : Union[str, Any] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a : Optional[int] = 4_5
_a : List[Any] = 1_5_8_1
_a : str = 1_5_1_7
_a : Optional[Any] = 1_5_7_0
_a : List[str] = 1_5_8_4
_a : List[Any] = 1_7_9_3
_a : Union[str, Any] = 1_7_9_5
_a : Tuple = 1_9_1_6
_a : List[Any] = 1_8_6_4
_a : Any = 1_9_0_5
_a : Optional[Any] = 1_9_1_9
_a : Optional[int] = 2_4_2_9
_a : Tuple = 2_2_0_8
_a : Optional[Any] = 2_4_1_8
_a : List[Any] = 2_3_2_3
_a : str = 2_4_0_7
# @@protoc_insertion_point(module_scope)
| 689 | 0 |
"""simple docstring"""
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
return int((input_a, input_a).count(0 ) != 0 )
def _lowerCamelCase ( ):
'''simple docstring'''
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 636 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : torch.FloatTensor
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = torch.nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
# down
__lowerCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_down_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# out
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = 2 * out_channels if double_z else out_channels
__lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = x
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""","""1.11.0""" ):
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
__lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
__lowerCAmelCase = in_channels if norm_type == """spatial""" else None
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# up
__lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = reversed_block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_up_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,)
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = output_channel
# out
if norm_type == "spatial":
__lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
__lowerCAmelCase = z
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""","""1.11.0""" ):
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = n_e
__lowerCAmelCase = vq_embed_dim
__lowerCAmelCase = beta
__lowerCAmelCase = legacy
__lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e )
__lowerCAmelCase = remap
if self.remap is not None:
self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) )
__lowerCAmelCase = self.used.shape[0]
__lowerCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__lowerCAmelCase = self.re_embed
__lowerCAmelCase = self.re_embed + 1
print(
f'Remapping {self.n_e} indices to {self.re_embed} indices. '
f'Using {self.unknown_index} for unknown indices.' )
else:
__lowerCAmelCase = n_e
__lowerCAmelCase = sane_index_shape
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
__lowerCAmelCase = match.argmax(-1 )
__lowerCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device )
else:
__lowerCAmelCase = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
__lowerCAmelCase = 0 # simply set to zero
__lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = z.permute(0,2,3,1 ).contiguous()
__lowerCAmelCase = z.view(-1,self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 )
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
__lowerCAmelCase = None
__lowerCAmelCase = None
# compute loss for embedding
if not self.legacy:
__lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__lowerCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
if self.remap is not None:
__lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten
if self.sane_index_shape:
__lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if self.remap is not None:
__lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
__lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
return z_q
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = parameters
__lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 )
__lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 )
__lowerCAmelCase = deterministic
__lowerCAmelCase = torch.exp(0.5 * self.logvar )
__lowerCAmelCase = torch.exp(self.logvar )
if self.deterministic:
__lowerCAmelCase = __lowerCAmelCase = torch.zeros_like(
self.mean,device=self.parameters.device,dtype=self.parameters.dtype )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ):
'''simple docstring'''
__lowerCAmelCase = randn_tensor(
self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype )
__lowerCAmelCase = self.mean + self.std * sample
return x
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean,2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,dim=[1, 2, 3],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
__lowerCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self.mean
| 689 | 0 |
"""simple docstring"""
def __lowerCAmelCase ( lowercase : Optional[int] ) -> str:
"""simple docstring"""
snake_case : Optional[int] = len(lowercase )
for i in range(length - 1 ):
snake_case : Tuple = i
for k in range(i + 1 , lowercase ):
if collection[k] < collection[least]:
snake_case : Dict = k
if least != i:
snake_case ,snake_case : str = (collection[i], collection[least])
return collection
if __name__ == "__main__":
__snake_case = input("""Enter numbers separated by a comma:\n""").strip()
__snake_case = [int(item) for item in user_input.split(""",""")]
print(selection_sort(unsorted))
| 178 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_a : Optional[int] = logging.get_logger(__name__)
_a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} )
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
a : int =field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : int =field(
default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , )
a : int =field(
default=64 , metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} , )
a : int =field(
default=30 , metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
a : float =field(
default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=0 , metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} , )
a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} )
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Optional[Any] ="""train"""
a : Optional[int] ="""dev"""
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : SquadDataTrainingArguments
a : List[SquadFeatures]
a : Split
a : bool
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",):
'''simple docstring'''
__lowerCAmelCase = args
__lowerCAmelCase = is_language_sensitive
__lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
try:
__lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
__lowerCAmelCase = mode
# Load data features from cache or dataset file
__lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
__lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
__lowerCAmelCase = time.time()
__lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__lowerCAmelCase = self.old_features["""features"""]
__lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
__lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
__lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
__lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = self.features[i]
__lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float )
__lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float )
__lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 689 | 0 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
A__ = """true"""
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=82 , __lowerCAmelCase=16 ) -> List[Any]:
"""simple docstring"""
set_seed(42 )
snake_case__ : Optional[int] = RegressionModel()
snake_case__ : int = deepcopy(__lowerCAmelCase )
snake_case__ : Union[str, Any] = RegressionDataset(length=__lowerCAmelCase )
snake_case__ : List[Any] = DataLoader(__lowerCAmelCase , batch_size=__lowerCAmelCase )
model.to(accelerator.device )
snake_case__ , snake_case__ : Tuple = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
return model, ddp_model, dataloader
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[int]:
"""simple docstring"""
snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' )
snake_case__ : str = load_dataset('''glue''' , '''mrpc''' , split='''validation''' )
def tokenize_function(__lowerCAmelCase ):
snake_case__ : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase )
return outputs
with accelerator.main_process_first():
snake_case__ : List[str] = dataset.map(
__lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
snake_case__ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCAmelCase ):
if use_longest:
return tokenizer.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' )
return tokenizer.pad(__lowerCAmelCase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=16 )
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
"""simple docstring"""
snake_case__ : str = Accelerator(dispatch_batches=__lowerCAmelCase , split_batches=__lowerCAmelCase )
snake_case__ : Any = get_dataloader(__lowerCAmelCase , not dispatch_batches )
snake_case__ : List[str] = AutoModelForSequenceClassification.from_pretrained(
'''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowerCAmelCase )
snake_case__ , snake_case__ : Dict = accelerator.prepare(__lowerCAmelCase , __lowerCAmelCase )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
"""simple docstring"""
snake_case__ : Union[str, Any] = []
for batch in dataloader:
snake_case__ , snake_case__ : int = batch.values()
with torch.no_grad():
snake_case__ : Tuple = model(__lowerCAmelCase )
snake_case__ , snake_case__ : List[str] = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
snake_case__ , snake_case__ : List[str] = [], []
for logit, targ in logits_and_targets:
logits.append(__lowerCAmelCase )
targs.append(__lowerCAmelCase )
snake_case__ , snake_case__ : Any = torch.cat(__lowerCAmelCase ), torch.cat(__lowerCAmelCase )
return logits, targs
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase=82 , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=16 ) -> List[str]:
"""simple docstring"""
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = get_basic_setup(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
snake_case__ , snake_case__ : List[Any] = generate_predictions(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
assert (
len(__lowerCAmelCase ) == num_samples
), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowerCAmelCase )}"""
def _lowerCAmelCase ( __lowerCAmelCase = False , __lowerCAmelCase = False ) -> int:
"""simple docstring"""
snake_case__ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' )
snake_case__ , snake_case__ : int = get_mrpc_setup(__lowerCAmelCase , __lowerCAmelCase )
# First do baseline
snake_case__ , snake_case__ , snake_case__ : Any = setup['''no''']
model.to(__lowerCAmelCase )
model.eval()
for batch in dataloader:
batch.to(__lowerCAmelCase )
with torch.inference_mode():
snake_case__ : Optional[Any] = model(**__lowerCAmelCase )
snake_case__ : Union[str, Any] = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=__lowerCAmelCase , references=batch['''labels'''] )
snake_case__ : Any = metric.compute()
# Then do distributed
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = setup['''ddp''']
model.eval()
for batch in dataloader:
with torch.inference_mode():
snake_case__ : Optional[Any] = model(**__lowerCAmelCase )
snake_case__ : Optional[int] = outputs.logits.argmax(dim=-1 )
snake_case__ : Optional[int] = batch['''labels''']
snake_case__ , snake_case__ : int = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=__lowerCAmelCase , references=__lowerCAmelCase )
snake_case__ : Union[str, Any] = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"""
def _lowerCAmelCase ( ) -> str:
"""simple docstring"""
snake_case__ : Union[str, Any] = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print('''**Testing gather_for_metrics**''' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" )
test_mrpc(__lowerCAmelCase , __lowerCAmelCase )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test torch metrics**''' )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
snake_case__ : List[Any] = Accelerator(split_batches=__lowerCAmelCase , dispatch_batches=__lowerCAmelCase )
if accelerator.is_local_main_process:
print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" )
test_torch_metrics(__lowerCAmelCase , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print('''**Test last batch is not dropped when perfectly divisible**''' )
snake_case__ : Union[str, Any] = Accelerator()
test_torch_metrics(__lowerCAmelCase , 512 )
accelerator.state._reset_state()
def _lowerCAmelCase ( __lowerCAmelCase ) -> str:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 252 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
# vision encoder
if "img_encoder.pos_embed" in name:
__lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
__lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
__lowerCAmelCase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
__lowerCAmelCase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
__lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
__lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
__lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__lowerCAmelCase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__lowerCAmelCase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
__lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
__lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Dict:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
__lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase = int(key_split[3] )
__lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[
dim : dim * 2, :
]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
else:
__lowerCAmelCase = rename_key(lowercase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
__lowerCAmelCase = val.squeeze_()
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]:
__lowerCAmelCase = GroupViTConfig()
__lowerCAmelCase = GroupViTModel(lowercase ).eval()
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
__lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0)
# verify result
__lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" )
with torch.no_grad():
__lowerCAmelCase = model(**lowercase )
if model_name == "groupvit-gcc-yfcc":
__lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
__lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 )
processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
print("""Successfully saved processor and model to""" , lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowercase , organization="""nielsr""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : int = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
_a : List[str] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
import string
import numpy
def __lowerCAmelCase ( A , A ):
return b if a == 0 else greatest_common_divisor(b % a , A )
class __UpperCamelCase :
SCREAMING_SNAKE_CASE__ = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
SCREAMING_SNAKE_CASE__ = numpy.vectorize(lambda lowercase : x % 36 )
SCREAMING_SNAKE_CASE__ = numpy.vectorize(lowerCAmelCase_ )
def __init__( self : Dict , lowerCAmelCase : Tuple ):
'''simple docstring'''
UpperCAmelCase_ = self.modulus(__SCREAMING_SNAKE_CASE ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
UpperCAmelCase_ = encrypt_key.shape[0]
def __A ( self : Dict , lowerCAmelCase : Any ):
'''simple docstring'''
return self.key_string.index(__SCREAMING_SNAKE_CASE )
def __A ( self : int , lowerCAmelCase : Union[str, Any] ):
'''simple docstring'''
return self.key_string[round(__SCREAMING_SNAKE_CASE )]
def __A ( self : Dict ):
'''simple docstring'''
UpperCAmelCase_ = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
UpperCAmelCase_ = det % len(self.key_string )
UpperCAmelCase_ = len(self.key_string )
if greatest_common_divisor(__SCREAMING_SNAKE_CASE , len(self.key_string ) ) != 1:
UpperCAmelCase_ = (
F"determinant modular {req_l} of encryption key({det}) "
F"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(__SCREAMING_SNAKE_CASE )
def __A ( self : str , lowerCAmelCase : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase_ = [char for char in text.upper() if char in self.key_string]
UpperCAmelCase_ = chars[-1]
while len(__SCREAMING_SNAKE_CASE ) % self.break_key != 0:
chars.append(__SCREAMING_SNAKE_CASE )
return "".join(__SCREAMING_SNAKE_CASE )
def __A ( self : List[str] , lowerCAmelCase : int ):
'''simple docstring'''
UpperCAmelCase_ = self.process_text(text.upper() )
UpperCAmelCase_ = ""
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - self.break_key + 1 , self.break_key ):
UpperCAmelCase_ = text[i : i + self.break_key]
UpperCAmelCase_ = [self.replace_letters(__SCREAMING_SNAKE_CASE ) for char in batch]
UpperCAmelCase_ = numpy.array([vec] ).T
UpperCAmelCase_ = self.modulus(self.encrypt_key.dot(__SCREAMING_SNAKE_CASE ) ).T.tolist()[
0
]
UpperCAmelCase_ = "".join(
self.replace_digits(__SCREAMING_SNAKE_CASE ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def __A ( self : int ):
'''simple docstring'''
UpperCAmelCase_ = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
UpperCAmelCase_ = det % len(self.key_string )
UpperCAmelCase_ = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
UpperCAmelCase_ = i
break
UpperCAmelCase_ = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(__SCREAMING_SNAKE_CASE ) )
def __A ( self : Union[str, Any] , lowerCAmelCase : List[Any] ):
'''simple docstring'''
UpperCAmelCase_ = self.make_decrypt_key()
UpperCAmelCase_ = self.process_text(text.upper() )
UpperCAmelCase_ = ""
for i in range(0 , len(__SCREAMING_SNAKE_CASE ) - self.break_key + 1 , self.break_key ):
UpperCAmelCase_ = text[i : i + self.break_key]
UpperCAmelCase_ = [self.replace_letters(__SCREAMING_SNAKE_CASE ) for char in batch]
UpperCAmelCase_ = numpy.array([vec] ).T
UpperCAmelCase_ = self.modulus(decrypt_key.dot(__SCREAMING_SNAKE_CASE ) ).T.tolist()[0]
UpperCAmelCase_ = "".join(
self.replace_digits(__SCREAMING_SNAKE_CASE ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def __lowerCAmelCase ( ):
UpperCAmelCase_ = int(input("Enter the order of the encryption key: " ) )
UpperCAmelCase_ = []
print("Enter each row of the encryption key with space separated integers" )
for _ in range(A ):
UpperCAmelCase_ = [int(A ) for x in input().split()]
hill_matrix.append(A )
UpperCAmelCase_ = HillCipher(numpy.array(A ) )
print("Would you like to encrypt or decrypt some text? (1 or 2)" )
UpperCAmelCase_ = input("\n1. Encrypt\n2. Decrypt\n" )
if option == "1":
UpperCAmelCase_ = input("What text would you like to encrypt?: " )
print("Your encrypted text is:" )
print(hc.encrypt(A ) )
elif option == "2":
UpperCAmelCase_ = input("What text would you like to decrypt?: " )
print("Your decrypted text is:" )
print(hc.decrypt(A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 162 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_a : Tuple = logging.get_logger(__name__)
_a : Optional[int] = ["""model.decoder.embed_positions.weights"""]
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
if "emb" in name:
__lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
__lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
__lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
__lowerCAmelCase = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
__lowerCAmelCase = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
__lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
__lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
__lowerCAmelCase = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]:
__lowerCAmelCase = list(state_dict.keys() )
__lowerCAmelCase = {}
for key in keys:
__lowerCAmelCase = state_dict.pop(lowercase )
__lowerCAmelCase = rename_keys(lowercase )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCAmelCase = val[:hidden_size, :]
__lowerCAmelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCAmelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCAmelCase = val
else:
__lowerCAmelCase = val
return state_dict, enc_dec_proj_state_dict
def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
__lowerCAmelCase = 1024
__lowerCAmelCase = 24
__lowerCAmelCase = 16
elif checkpoint == "medium":
__lowerCAmelCase = 1536
__lowerCAmelCase = 48
__lowerCAmelCase = 24
elif checkpoint == "large":
__lowerCAmelCase = 2048
__lowerCAmelCase = 48
__lowerCAmelCase = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
__lowerCAmelCase = MusicgenDecoderConfig(
hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , )
return config
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]:
__lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase )
__lowerCAmelCase = decoder_config_from_checkpoint(lowercase )
__lowerCAmelCase = fairseq_model.lm.state_dict()
__lowerCAmelCase , __lowerCAmelCase = rename_state_dict(
lowercase , hidden_size=decoder_config.hidden_size )
__lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" )
__lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
__lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase )
if len(lowercase ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
__lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase )
# check we can do a forward pass
__lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCAmelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
__lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" )
__lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
__lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase )
# set the appropriate bos/pad token ids
__lowerCAmelCase = 2048
__lowerCAmelCase = 2048
# set other default generation config params
__lowerCAmelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCAmelCase = True
__lowerCAmelCase = 3.0
if pytorch_dump_folder is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase )
processor.push_to_hub(lowercase )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
_a : List[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def _lowercase (SCREAMING_SNAKE_CASE = True , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if not is_tqdm_available():
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`." )
__A : Optional[int] = False
if main_process_only:
__A : Any = PartialState().local_process_index == 0
return _tqdm(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , disable=SCREAMING_SNAKE_CASE )
| 111 |
'''simple docstring'''
from collections import deque
def _lowerCAmelCase ( lowercase ) -> Dict:
__lowerCAmelCase = len(lowercase )
__lowerCAmelCase = deque()
__lowerCAmelCase = [False for _ in range(lowercase )]
__lowerCAmelCase = [-1 for _ in range(lowercase )]
__lowerCAmelCase = index_of[:]
def strong_connect(lowercase , lowercase , lowercase ):
__lowerCAmelCase = index # the number when this node is seen
__lowerCAmelCase = index # lowest rank node reachable from here
index += 1
stack.append(lowercase )
__lowerCAmelCase = True
for w in g[v]:
if index_of[w] == -1:
__lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase )
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
__lowerCAmelCase = []
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
while w != v:
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
components.append(lowercase )
return index
__lowerCAmelCase = []
for v in range(lowercase ):
if index_of[v] == -1:
strong_connect(lowercase , 0 , lowercase )
return components
def _lowerCAmelCase ( lowercase , lowercase ) -> str:
__lowerCAmelCase = [[] for _ in range(lowercase )]
for u, v in edges:
g[u].append(lowercase )
return g
if __name__ == "__main__":
# Test
_a : Any = 7
_a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_a : Optional[Any] = [(u, v) for u, v in zip(source, target)]
_a : Optional[int] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 689 | 0 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class SCREAMING_SNAKE_CASE__ ( metaclass=lowerCAmelCase_ ):
_UpperCAmelCase =["""onnx"""]
def __init__( self: Any , *a: int , **a: Union[str, Any]) ->Dict:
'''simple docstring'''
requires_backends(self , ["onnx"])
@classmethod
def _lowerCAmelCase ( cls: Optional[Any] , *a: Tuple , **a: List[str]) ->str:
'''simple docstring'''
requires_backends(cls , ["onnx"])
@classmethod
def _lowerCAmelCase ( cls: Tuple , *a: List[Any] , **a: str) ->str:
'''simple docstring'''
requires_backends(cls , ["onnx"])
| 685 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _lowerCAmelCase ( ) -> Union[str, Any]:
__lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" )
__lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" )
# Register commands
EnvironmentCommand.register_subcommand(lowercase )
# Let's go
__lowerCAmelCase = parser.parse_args()
if not hasattr(lowercase , """func""" ):
parser.print_help()
exit(1 )
# Run
__lowerCAmelCase = args.func(lowercase )
service.run()
if __name__ == "__main__":
main()
| 689 | 0 |
'''simple docstring'''
import argparse
import os
import re
import tensorflow as tf
import torch
from transformers import BertConfig, BertModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase__ = logging.get_logger(__name__)
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
lowercase_ : str = os.path.abspath(_UpperCamelCase )
logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" )
# Load weights from TF model
lowercase_ : Optional[int] = tf.train.list_variables(_UpperCamelCase )
lowercase_ : str = []
lowercase_ : List[Any] = []
lowercase_ : List[Any] = []
for full_name, shape in init_vars:
# logger.info(f"Loading TF weight {name} with shape {shape}")
lowercase_ : Union[str, Any] = full_name.split("/" )
if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]:
logger.info(F"""Skipping non-model layer {full_name}""" )
continue
if "optimizer" in full_name:
logger.info(F"""Skipping optimization layer {full_name}""" )
continue
if name[0] == "model":
# ignore initial 'model'
lowercase_ : Tuple = name[1:]
# figure out how many levels deep the name is
lowercase_ : int = 0
for _name in name:
if _name.startswith("layer_with_weights" ):
depth += 1
else:
break
layer_depth.append(_UpperCamelCase )
# read data
lowercase_ : Any = tf.train.load_variable(_UpperCamelCase , _UpperCamelCase )
names.append("/".join(_UpperCamelCase ) )
arrays.append(_UpperCamelCase )
logger.info(F"""Read a total of {len(_UpperCamelCase ):,} layers""" )
# Sanity check
if len(set(_UpperCamelCase ) ) != 1:
raise ValueError(F"""Found layer names with different depths (layer depth {list(set(_UpperCamelCase ) )})""" )
lowercase_ : Tuple = list(set(_UpperCamelCase ) )[0]
if layer_depth != 1:
raise ValueError(
"The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP"
" heads." )
# convert layers
logger.info("Converting weights..." )
for full_name, array in zip(_UpperCamelCase , _UpperCamelCase ):
lowercase_ : str = full_name.split("/" )
lowercase_ : int = model
lowercase_ : int = []
for i, m_name in enumerate(_UpperCamelCase ):
if m_name == ".ATTRIBUTES":
# variable names end with .ATTRIBUTES/VARIABLE_VALUE
break
if m_name.startswith("layer_with_weights" ):
lowercase_ : List[str] = int(m_name.split("-" )[-1] )
if layer_num <= 2:
# embedding layers
# layer_num 0: word_embeddings
# layer_num 1: position_embeddings
# layer_num 2: token_type_embeddings
continue
elif layer_num == 3:
# embedding LayerNorm
trace.extend(["embeddings", "LayerNorm"] )
lowercase_ : int = getattr(_UpperCamelCase , "embeddings" )
lowercase_ : Optional[Any] = getattr(_UpperCamelCase , "LayerNorm" )
elif layer_num > 3 and layer_num < config.num_hidden_layers + 4:
# encoder layers
trace.extend(["encoder", "layer", str(layer_num - 4 )] )
lowercase_ : Tuple = getattr(_UpperCamelCase , "encoder" )
lowercase_ : Union[str, Any] = getattr(_UpperCamelCase , "layer" )
lowercase_ : Union[str, Any] = pointer[layer_num - 4]
elif layer_num == config.num_hidden_layers + 4:
# pooler layer
trace.extend(["pooler", "dense"] )
lowercase_ : Dict = getattr(_UpperCamelCase , "pooler" )
lowercase_ : List[str] = getattr(_UpperCamelCase , "dense" )
elif m_name == "embeddings":
trace.append("embeddings" )
lowercase_ : Any = getattr(_UpperCamelCase , "embeddings" )
if layer_num == 0:
trace.append("word_embeddings" )
lowercase_ : Union[str, Any] = getattr(_UpperCamelCase , "word_embeddings" )
elif layer_num == 1:
trace.append("position_embeddings" )
lowercase_ : str = getattr(_UpperCamelCase , "position_embeddings" )
elif layer_num == 2:
trace.append("token_type_embeddings" )
lowercase_ : Union[str, Any] = getattr(_UpperCamelCase , "token_type_embeddings" )
else:
raise ValueError(F"""Unknown embedding layer with name {full_name}""" )
trace.append("weight" )
lowercase_ : int = getattr(_UpperCamelCase , "weight" )
elif m_name == "_attention_layer":
# self-attention layer
trace.extend(["attention", "self"] )
lowercase_ : List[str] = getattr(_UpperCamelCase , "attention" )
lowercase_ : Tuple = getattr(_UpperCamelCase , "self" )
elif m_name == "_attention_layer_norm":
# output attention norm
trace.extend(["attention", "output", "LayerNorm"] )
lowercase_ : List[Any] = getattr(_UpperCamelCase , "attention" )
lowercase_ : List[str] = getattr(_UpperCamelCase , "output" )
lowercase_ : Union[str, Any] = getattr(_UpperCamelCase , "LayerNorm" )
elif m_name == "_attention_output_dense":
# output attention dense
trace.extend(["attention", "output", "dense"] )
lowercase_ : int = getattr(_UpperCamelCase , "attention" )
lowercase_ : List[str] = getattr(_UpperCamelCase , "output" )
lowercase_ : Tuple = getattr(_UpperCamelCase , "dense" )
elif m_name == "_output_dense":
# output dense
trace.extend(["output", "dense"] )
lowercase_ : Dict = getattr(_UpperCamelCase , "output" )
lowercase_ : Tuple = getattr(_UpperCamelCase , "dense" )
elif m_name == "_output_layer_norm":
# output dense
trace.extend(["output", "LayerNorm"] )
lowercase_ : Any = getattr(_UpperCamelCase , "output" )
lowercase_ : Any = getattr(_UpperCamelCase , "LayerNorm" )
elif m_name == "_key_dense":
# attention key
trace.append("key" )
lowercase_ : str = getattr(_UpperCamelCase , "key" )
elif m_name == "_query_dense":
# attention query
trace.append("query" )
lowercase_ : str = getattr(_UpperCamelCase , "query" )
elif m_name == "_value_dense":
# attention value
trace.append("value" )
lowercase_ : List[Any] = getattr(_UpperCamelCase , "value" )
elif m_name == "_intermediate_dense":
# attention intermediate dense
trace.extend(["intermediate", "dense"] )
lowercase_ : Dict = getattr(_UpperCamelCase , "intermediate" )
lowercase_ : List[Any] = getattr(_UpperCamelCase , "dense" )
elif m_name == "_output_layer_norm":
# output layer norm
trace.append("output" )
lowercase_ : str = getattr(_UpperCamelCase , "output" )
# weights & biases
elif m_name in ["bias", "beta"]:
trace.append("bias" )
lowercase_ : Union[str, Any] = getattr(_UpperCamelCase , "bias" )
elif m_name in ["kernel", "gamma"]:
trace.append("weight" )
lowercase_ : Tuple = getattr(_UpperCamelCase , "weight" )
else:
logger.warning(F"""Ignored {m_name}""" )
# for certain layers reshape is necessary
lowercase_ : Optional[int] = ".".join(_UpperCamelCase )
if re.match(R"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , _UpperCamelCase ) or re.match(
R"(\S+)\.attention\.output\.dense\.weight" , _UpperCamelCase ):
lowercase_ : List[Any] = array.reshape(pointer.data.shape )
if "kernel" in full_name:
lowercase_ : Dict = array.transpose()
if pointer.shape == array.shape:
lowercase_ : Any = torch.from_numpy(_UpperCamelCase )
else:
raise ValueError(
F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:"""
F""" {array.shape}""" )
logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" )
return model
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
logger.info(F"""Loading model based on config from {config_path}...""" )
lowercase_ : Union[str, Any] = BertConfig.from_json_file(_UpperCamelCase )
lowercase_ : List[Any] = BertModel(_UpperCamelCase )
# Load weights from checkpoint
logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" )
load_tfa_weights_in_bert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
# Save pytorch-model
logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" )
torch.save(model.state_dict() , _UpperCamelCase )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.'
)
parser.add_argument(
'--bert_config_file',
type=str,
required=True,
help='The config json file corresponding to the BERT model. This specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path',
type=str,
required=True,
help='Path to the output PyTorch model (must include filename).',
)
UpperCamelCase__ = parser.parse_args()
convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 620 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_a : List[Any] = logging.get_logger(__name__)
_a : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
_a : Any = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
for attribute in key.split(""".""" ):
__lowerCAmelCase = getattr(lowercase , lowercase )
if weight_type is not None:
__lowerCAmelCase = getattr(lowercase , lowercase ).shape
else:
__lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowerCAmelCase = value
elif weight_type == "weight_g":
__lowerCAmelCase = value
elif weight_type == "weight_v":
__lowerCAmelCase = value
elif weight_type == "bias":
__lowerCAmelCase = value
else:
__lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
__lowerCAmelCase = []
__lowerCAmelCase = fairseq_model.state_dict()
__lowerCAmelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , )
__lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
__lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
__lowerCAmelCase = True
if "*" in mapped_key:
__lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2]
__lowerCAmelCase = mapped_key.replace("""*""" , lowercase )
if "weight_g" in name:
__lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
__lowerCAmelCase = """weight_v"""
elif "bias" in name:
__lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCAmelCase = """weight"""
else:
__lowerCAmelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
__lowerCAmelCase = name.split(""".""" )
__lowerCAmelCase = int(items[0] )
__lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict:
if config_path is not None:
__lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase )
else:
__lowerCAmelCase = UniSpeechSatConfig()
__lowerCAmelCase = """"""
if is_finetuned:
__lowerCAmelCase = UniSpeechSatForCTC(lowercase )
else:
__lowerCAmelCase = UniSpeechSatForPreTraining(lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
__lowerCAmelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_a : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
_a : Union[str, Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 689 | 0 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
lowerCAmelCase_ : Tuple = """\
"""
lowerCAmelCase_ : Tuple = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
lowerCAmelCase_ : Optional[Any] = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE ( datasets.Metric ):
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def lowercase_ ( self : Union[str, Any] , lowercase__ : int , lowercase__ : Optional[Any] , lowercase__ : Tuple = 16 , lowercase__ : Union[str, Any] = True , lowercase__ : List[str]=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
a_ : Dict = """cuda"""
else:
a_ : List[str] = """cuda""" if torch.cuda.is_available() else """cpu"""
a_ : List[Any] = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
a_ : Optional[Any] = model.to(__SCREAMING_SNAKE_CASE )
a_ : int = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
a_ : Tuple = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__SCREAMING_SNAKE_CASE ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
a_ : List[str] = model.config.max_length - 1
else:
a_ : Any = model.config.max_length
a_ : Union[str, Any] = tokenizer(
__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_attention_mask=__SCREAMING_SNAKE_CASE , ).to(__SCREAMING_SNAKE_CASE )
a_ : Tuple = encodings["""input_ids"""]
a_ : int = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
a_ : List[str] = []
a_ : List[Any] = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ):
a_ : Union[str, Any] = min(start_index + batch_size , len(__SCREAMING_SNAKE_CASE ) )
a_ : str = encoded_texts[start_index:end_index]
a_ : Optional[Any] = attn_masks[start_index:end_index]
if add_start_token:
a_ : Optional[int] = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE )
a_ : int = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
a_ : Dict = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 )
a_ : Optional[Any] = encoded_batch
with torch.no_grad():
a_ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).logits
a_ : Union[str, Any] = out_logits[..., :-1, :].contiguous()
a_ : Union[str, Any] = labels[..., 1:].contiguous()
a_ : Any = attn_mask[..., 1:].contiguous()
a_ : List[Any] = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , __SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
| 442 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
_a : str = """
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
"""
_a : Dict = """
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{'spearmanr': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results['spearmanr'])
-0.7
>>> print(round(results['spearmanr_pvalue'], 2))
0.19
"""
_a : List[str] = r"""\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 689 | 0 |
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ):
return int((input_a, input_a).count(0 ) == 0 )
def UpperCamelCase ( ):
assert and_gate(0 , 0 ) == 0
assert and_gate(0 , 1 ) == 0
assert and_gate(1 , 0 ) == 0
assert and_gate(1 , 1 ) == 1
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))
| 204 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ):
a : List[str] =["""onnx"""]
def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(self,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
| 689 | 0 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
_snake_case : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name
def __snake_case ( __magic_name__ ):
'''simple docstring'''
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead" , __magic_name__ , )
if isinstance(__magic_name__ , torch.Tensor ):
return image
elif isinstance(__magic_name__ , PIL.Image.Image ):
lowercase = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowercase , lowercase = image[0].size
lowercase , lowercase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowercase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
lowercase = np.concatenate(__magic_name__ , axis=0 )
lowercase = np.array(__magic_name__ ).astype(np.floataa ) / 255.0
lowercase = image.transpose(0 , 3 , 1 , 2 )
lowercase = 2.0 * image - 1.0
lowercase = torch.from_numpy(__magic_name__ )
elif isinstance(image[0] , torch.Tensor ):
lowercase = torch.cat(__magic_name__ , dim=0 )
return image
def __snake_case ( __magic_name__ ):
'''simple docstring'''
if isinstance(__magic_name__ , torch.Tensor ):
return mask
elif isinstance(__magic_name__ , PIL.Image.Image ):
lowercase = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowercase , lowercase = mask[0].size
lowercase , lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
lowercase = [np.array(m.convert("L" ).resize((w, h) , resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask]
lowercase = np.concatenate(__magic_name__ , axis=0 )
lowercase = mask.astype(np.floataa ) / 255.0
lowercase = 0
lowercase = 1
lowercase = torch.from_numpy(__magic_name__ )
elif isinstance(mask[0] , torch.Tensor ):
lowercase = torch.cat(__magic_name__ , dim=0 )
return mask
class UpperCamelCase_ ( lowerCAmelCase_ ):
'''simple docstring'''
UpperCamelCase : UNetaDModel
UpperCamelCase : RePaintScheduler
def __init__( self :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) ->List[str]:
super().__init__()
self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] = 250 , lowerCAmelCase__ :int = 0.0 , lowerCAmelCase__ :List[Any] = 10 , lowerCAmelCase__ :int = 10 , lowerCAmelCase__ :Union[str, Any] = None , lowerCAmelCase__ :int = "pil" , lowerCAmelCase__ :Dict = True , ) ->Union[str, Any]:
lowercase = image
lowercase = _preprocess_image(__SCREAMING_SNAKE_CASE )
lowercase = original_image.to(device=self.device , dtype=self.unet.dtype )
lowercase = _preprocess_mask(__SCREAMING_SNAKE_CASE )
lowercase = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowercase = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowercase = original_image.shape
lowercase = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.device )
lowercase = eta
lowercase = self.scheduler.timesteps[0] + 1
lowercase = generator[0] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowercase = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample
# compute previous image: x_t -> x_t-1
lowercase = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowercase = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase = t
lowercase = (image / 2 + 0.5).clamp(0 , 1 )
lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowercase = self.numpy_to_pil(__SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
| 441 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_a : int = logging.get_logger(__name__)
_a : Optional[int] = {
"""EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : List[str] ="""gptj"""
a : Optional[int] ={
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = vocab_size
__lowerCAmelCase = n_positions
__lowerCAmelCase = n_embd
__lowerCAmelCase = n_layer
__lowerCAmelCase = n_head
__lowerCAmelCase = n_inner
__lowerCAmelCase = rotary_dim
__lowerCAmelCase = activation_function
__lowerCAmelCase = resid_pdrop
__lowerCAmelCase = embd_pdrop
__lowerCAmelCase = attn_pdrop
__lowerCAmelCase = layer_norm_epsilon
__lowerCAmelCase = initializer_range
__lowerCAmelCase = use_cache
__lowerCAmelCase = bos_token_id
__lowerCAmelCase = eos_token_id
super().__init__(
bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
__lowerCAmelCase = 0
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" )
__lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_head
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,):
'''simple docstring'''
__lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
__lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__lowerCAmelCase = seqlen + 2
__lowerCAmelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCAmelCase = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
__lowerCAmelCase = common_inputs["""attention_mask"""]
if self.use_past:
__lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype
__lowerCAmelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 )
return ordered_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return 13
| 689 | 0 |
'''simple docstring'''
from __future__ import annotations
def __UpperCamelCase ( lowercase_ : int ):
"""simple docstring"""
create_state_space_tree(lowercase_ , [] , 0 , [0 for i in range(len(lowercase_ ) )] )
def __UpperCamelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : List[str] , ):
"""simple docstring"""
if index == len(lowercase_ ):
print(lowercase_ )
return
for i in range(len(lowercase_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
a_ = True
create_state_space_tree(lowercase_ , lowercase_ , index + 1 , lowercase_ )
current_sequence.pop()
a_ = False
__lowerCAmelCase = [3, 1, 2, 4]
generate_all_permutations(sequence)
__lowerCAmelCase = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 536 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int:
__lowerCAmelCase = set()
__lowerCAmelCase = int((limit - 24) ** (1 / 2) )
__lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) )
for primea in primes:
__lowerCAmelCase = primea * primea
for primea in primes:
__lowerCAmelCase = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
__lowerCAmelCase = primea * primea * primea * primea
__lowerCAmelCase = square + cube + tetr
if total >= limit:
break
ret.add(lowercase )
return len(lowercase )
if __name__ == "__main__":
print(f'{solution() = }')
| 689 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : Union[str, Any] = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 636 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ):
a : Optional[int] =TextToVideoSDPipeline
a : Optional[int] =TEXT_TO_IMAGE_PARAMS
a : Any =TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
a : Union[str, Any] =frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,)
__lowerCAmelCase = DDIMScheduler(
beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,)
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,)
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,)
__lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ):
'''simple docstring'''
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = """np"""
__lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames
__lowerCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
__lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",)
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 689 | 0 |
"""simple docstring"""
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"kwargs, expected" , [
({"num_shards": 0, "max_num_jobs": 1}, []),
({"num_shards": 10, "max_num_jobs": 1}, [range(10 )]),
({"num_shards": 10, "max_num_jobs": 10}, [range(lowercase , i + 1 ) for i in range(10 )]),
({"num_shards": 1, "max_num_jobs": 10}, [range(1 )]),
({"num_shards": 10, "max_num_jobs": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({"num_shards": 3, "max_num_jobs": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def __lowerCAmelCase ( lowercase : int , lowercase : Dict ) -> Optional[int]:
"""simple docstring"""
snake_case : Tuple = _distribute_shards(**lowercase )
assert out == expected
@pytest.mark.parametrize(
"gen_kwargs, max_num_jobs, expected" , [
({"foo": 0}, 10, [{"foo": 0}]),
({"shards": [0, 1, 2, 3]}, 1, [{"shards": [0, 1, 2, 3]}]),
({"shards": [0, 1, 2, 3]}, 4, [{"shards": [0]}, {"shards": [1]}, {"shards": [2]}, {"shards": [3]}]),
({"shards": [0, 1]}, 4, [{"shards": [0]}, {"shards": [1]}]),
({"shards": [0, 1, 2, 3]}, 2, [{"shards": [0, 1]}, {"shards": [2, 3]}]),
] , )
def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Tuple , lowercase : Any ) -> Dict:
"""simple docstring"""
snake_case : List[Any] = _split_gen_kwargs(lowercase , lowercase )
assert out == expected
@pytest.mark.parametrize(
"gen_kwargs, expected" , [
({"foo": 0}, 1),
({"shards": [0]}, 1),
({"shards": [0, 1, 2, 3]}, 4),
({"shards": [0, 1, 2, 3], "foo": 0}, 4),
({"shards": [0, 1, 2, 3], "other": (0, 1)}, 4),
({"shards": [0, 1, 2, 3], "shards2": [0, 1]}, RuntimeError),
] , )
def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> int:
"""simple docstring"""
if expected is RuntimeError:
with pytest.raises(lowercase ):
_number_of_shards_in_gen_kwargs(lowercase )
else:
snake_case : Union[str, Any] = _number_of_shards_in_gen_kwargs(lowercase )
assert out == expected
| 178 |
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def _lowerCAmelCase ( lowercase ) -> Optional[int]:
if not is_accelerate_available():
return method
__lowerCAmelCase = version.parse(accelerate.__version__ ).base_version
if version.parse(lowercase ) < version.parse("""0.17.0""" ):
return method
def wrapper(self , *lowercase , **lowercase ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *lowercase , **lowercase )
return wrapper
| 689 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A__ = {
"""configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = ["""MobileViTFeatureExtractor"""]
A__ = ["""MobileViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"""MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MobileViTForImageClassification""",
"""MobileViTForSemanticSegmentation""",
"""MobileViTModel""",
"""MobileViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"""TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFMobileViTForImageClassification""",
"""TFMobileViTForSemanticSegmentation""",
"""TFMobileViTModel""",
"""TFMobileViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 252 |
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
# load base model
__lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
__lowerCAmelCase = load_file(lowercase )
__lowerCAmelCase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.text_encoder
else:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.unet
# find the target layer
__lowerCAmelCase = layer_infos.pop(0 )
while len(lowercase ) > -1:
try:
__lowerCAmelCase = curr_layer.__getattr__(lowercase )
if len(lowercase ) > 0:
__lowerCAmelCase = layer_infos.pop(0 )
elif len(lowercase ) == 0:
break
except Exception:
if len(lowercase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
__lowerCAmelCase = layer_infos.pop(0 )
__lowerCAmelCase = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(lowercase )
else:
pair_keys.append(lowercase )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
__lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 )
else:
__lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase )
# update visited list
for item in pair_keys:
visited.append(lowercase )
return pipeline
if __name__ == "__main__":
_a : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_a : Optional[int] = parser.parse_args()
_a : Dict = args.base_model_path
_a : Optional[Any] = args.checkpoint_path
_a : Union[str, Any] = args.dump_path
_a : Optional[int] = args.lora_prefix_unet
_a : int = args.lora_prefix_text_encoder
_a : str = args.alpha
_a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_a : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 689 | 0 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
_a: List[str] = 10
def __lowerCAmelCase ( A , A , A , A ):
for i in range(A , A ):
if array[i] == target:
return i
return -1
def __lowerCAmelCase ( A , A ):
UpperCAmelCase_ = 0
UpperCAmelCase_ = len(A )
while left <= right:
if right - left < precision:
return lin_search(A , A , A , A )
UpperCAmelCase_ = (left + right) // 3 + 1
UpperCAmelCase_ = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
UpperCAmelCase_ = one_third - 1
elif array[two_third] < target:
UpperCAmelCase_ = two_third + 1
else:
UpperCAmelCase_ = one_third + 1
UpperCAmelCase_ = two_third - 1
else:
return -1
def __lowerCAmelCase ( A , A , A , A ):
if left < right:
if right - left < precision:
return lin_search(A , A , A , A )
UpperCAmelCase_ = (left + right) // 3 + 1
UpperCAmelCase_ = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(A , one_third - 1 , A , A )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , A , A , A )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , A , A )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
_a: Union[str, Any] = input("""Enter numbers separated by comma:\n""").strip()
_a: Union[str, Any] = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
_a: str = int(input("""Enter the number to be found in the list:\n""").strip())
_a: str = ite_ternary_search(collection, target)
_a: int = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'Iterative search: {target} found at positions: {resulta}')
print(F'Recursive search: {target} found at positions: {resulta}')
else:
print("""Not found""") | 162 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def _lowerCAmelCase ( lowercase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def _lowerCAmelCase ( lowercase = "" ) -> bool:
if len(lowercase ) == 0:
return True
__lowerCAmelCase = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
__lowerCAmelCase = {}
for character in lower_case_input_str:
__lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1
__lowerCAmelCase = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def _lowerCAmelCase ( lowercase = "" ) -> None:
print("""\nFor string = """ , lowercase , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
_a : int = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
_a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 689 | 0 |
'''simple docstring'''
from graphs.minimum_spanning_tree_kruskal import kruskal
def _lowercase ():
'''simple docstring'''
__A : str = 9
__A : List[str] = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
__A : Any = kruskal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__A : Any = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE )
| 111 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _lowerCAmelCase ( lowercase ) -> List[Any]:
__lowerCAmelCase = VideoMAEConfig()
set_architecture_configs(lowercase , lowercase )
if "finetuned" not in model_name:
__lowerCAmelCase = False
if "finetuned" in model_name:
__lowerCAmelCase = """huggingface/label-files"""
if "kinetics" in model_name:
__lowerCAmelCase = 400
__lowerCAmelCase = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
__lowerCAmelCase = 174
__lowerCAmelCase = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
__lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) )
__lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase ( lowercase , lowercase ) -> Any:
if "small" in model_name:
__lowerCAmelCase = 384
__lowerCAmelCase = 1536
__lowerCAmelCase = 12
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 3
__lowerCAmelCase = 192
__lowerCAmelCase = 768
elif "large" in model_name:
__lowerCAmelCase = 1024
__lowerCAmelCase = 4096
__lowerCAmelCase = 24
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 512
__lowerCAmelCase = 2048
elif "huge" in model_name:
__lowerCAmelCase = 1280
__lowerCAmelCase = 5120
__lowerCAmelCase = 32
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 640
__lowerCAmelCase = 2560
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def _lowerCAmelCase ( lowercase ) -> List[str]:
if "encoder." in name:
__lowerCAmelCase = name.replace("""encoder.""" , """""" )
if "cls_token" in name:
__lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
__lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" )
if "decoder.blocks" in name:
__lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
__lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" )
if "attn.proj" in name:
__lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "bias" not in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.self""" )
if "attn" in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.attention""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
__lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
__lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
__lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""head""" , """classifier""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if key.startswith("""encoder.""" ):
__lowerCAmelCase = key.replace("""encoder.""" , """""" )
if "qkv" in key:
__lowerCAmelCase = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
__lowerCAmelCase = config.decoder_hidden_size
__lowerCAmelCase = int(key_split[2] )
__lowerCAmelCase = """decoder.decoder_layers."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = config.hidden_size
__lowerCAmelCase = int(key_split[1] )
__lowerCAmelCase = """videomae.encoder.layer."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__lowerCAmelCase = np.load(lowercase )
return list(lowercase )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = get_videomae_config(lowercase )
if "finetuned" in model_name:
__lowerCAmelCase = VideoMAEForVideoClassification(lowercase )
else:
__lowerCAmelCase = VideoMAEForPreTraining(lowercase )
# download original checkpoint, hosted on Google Drive
__lowerCAmelCase = """pytorch_model.bin"""
gdown.cached_download(lowercase , lowercase , quiet=lowercase )
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )
if "model" in files:
__lowerCAmelCase = files["""model"""]
else:
__lowerCAmelCase = files["""module"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
model.load_state_dict(lowercase )
model.eval()
# verify model on basic input
__lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
__lowerCAmelCase = prepare_video()
__lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" )
if "finetuned" not in model_name:
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
__lowerCAmelCase = torch.load(lowercase )
__lowerCAmelCase = model(**lowercase )
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] )
elif model_name == "videomae-small-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] )
elif model_name == "videomae-base":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] )
elif model_name == "videomae-base-short":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] )
# we verified the loss both for normalized and unnormalized targets for this one
__lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] )
elif model_name == "videomae-large":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] )
elif model_name == "videomae-large-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] )
elif model_name == "videomae-huge-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] )
elif model_name == "videomae-base-short-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] )
elif model_name == "videomae-base-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] )
elif model_name == "videomae-base-short-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] )
elif model_name == "videomae-base-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] )
elif model_name == "videomae-base-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 )
else:
print("""Logits:""" , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
__lowerCAmelCase = outputs.loss
assert torch.allclose(lowercase , lowercase , atol=1e-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""",
type=str,
help=(
"""URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"""
""" download link."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/Users/nielsrogge/Documents/VideoMAE/Test""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""")
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_a : int = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
import datasets
a_ = """\
@InProceedings{conneau2018xnli,
author = \"Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin\",
title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",
booktitle = \"Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing\",
year = \"2018\",
publisher = \"Association for Computational Linguistics\",
location = \"Brussels, Belgium\",
}
"""
a_ = """\
XNLI is a subset of a few thousand examples from MNLI which has been translated
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
to predict textual entailment (does sentence A imply/contradict/neither sentence
B) and is a classification task (given two sentences, predict one of three
labels).
"""
a_ = """
Computes XNLI score which is just simple accuracy.
Args:
predictions: Predicted labels.
references: Ground truth labels.
Returns:
'accuracy': accuracy
Examples:
>>> predictions = [0, 1]
>>> references = [0, 1]
>>> xnli_metric = datasets.load_metric(\"xnli\")
>>> results = xnli_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
"""
def __UpperCAmelCase (lowercase__ ,lowercase__ ) -> Tuple:
'''simple docstring'''
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def _lowerCAmelCase ( self: int) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32"),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32"),
}) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def _lowerCAmelCase ( self: List[Any] , a: str , a: str) ->Optional[Any]:
'''simple docstring'''
return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)}
| 685 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_a : Tuple = """\
"""
_a : Tuple = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
_a : Optional[Any] = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__lowerCAmelCase = """cuda"""
else:
__lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
__lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__SCREAMING_SNAKE_CASE ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__lowerCAmelCase = model.config.max_length - 1
else:
__lowerCAmelCase = model.config.max_length
__lowerCAmelCase = tokenizer(
__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = encodings["""input_ids"""]
__lowerCAmelCase = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__lowerCAmelCase = []
__lowerCAmelCase = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ):
__lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = encoded_texts[start_index:end_index]
__lowerCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
__lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 )
__lowerCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 )
__lowerCAmelCase = encoded_batch
with torch.no_grad():
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits
__lowerCAmelCase = out_logits[..., :-1, :].contiguous()
__lowerCAmelCase = labels[..., 1:].contiguous()
__lowerCAmelCase = attn_mask[..., 1:].contiguous()
__lowerCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
| 689 | 0 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 10**12 ):
"""simple docstring"""
lowercase_ : List[str] = 1
lowercase_ : List[Any] = 0
lowercase_ : List[str] = 1
lowercase_ : Dict = 1
while numerator <= 2 * min_total - 1:
prev_numerator += 2 * numerator
numerator += 2 * prev_numerator
prev_denominator += 2 * denominator
denominator += 2 * prev_denominator
return (denominator + 1) // 2
if __name__ == "__main__":
print(f"""{solution() = }""")
| 620 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Union[str, Any] =["""image_processor"""]
a : Dict ="""SamImageProcessor"""
def __init__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.image_processor
__lowerCAmelCase = -10
__lowerCAmelCase = self.image_processor.size["""longest_edge"""]
def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
# pop arguments that are not used in the foward but used nevertheless
__lowerCAmelCase = encoding_image_processor["""original_sizes"""]
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor
__lowerCAmelCase = original_sizes.numpy()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points(
input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = self._normalize_and_convert(
__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,)
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",):
'''simple docstring'''
if input_points is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_labels is not None:
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE )
for box in input_boxes
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE )
for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = max([point.shape[0] for point in input_points] )
__lowerCAmelCase = []
for i, point in enumerate(__SCREAMING_SNAKE_CASE ):
if point.shape[0] != expected_nb_points:
__lowerCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 )
__lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] )
processed_input_points.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = processed_input_points
return input_points, input_labels
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = original_size
__lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE )
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,2,2 )
__lowerCAmelCase = coords[..., 0] * (new_w / old_w)
__lowerCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,4 )
return coords
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,):
'''simple docstring'''
if input_points is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor
__lowerCAmelCase = input_points.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input points must be a list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points]
else:
__lowerCAmelCase = None
if input_labels is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_labels.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input labels must be a list of list integers.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels]
else:
__lowerCAmelCase = None
if input_boxes is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes]
else:
__lowerCAmelCase = None
return input_points, input_labels, input_boxes
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) )
def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
| 689 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
class SCREAMING_SNAKE_CASE :
def __init__( self : Optional[int] , lowercase__ : Tuple ):
'''simple docstring'''
a_ : str = size
# approximate the overall size of segment tree with given value
a_ : List[Any] = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
a_ : int = [0 for i in range(0 , 4 * size )]
a_ : int = [0 for i in range(0 , 4 * size )] # flag for lazy update
def lowercase_ ( self : Tuple , lowercase__ : List[Any] ):
'''simple docstring'''
return idx * 2
def lowercase_ ( self : str , lowercase__ : Tuple ):
'''simple docstring'''
return idx * 2 + 1
def lowercase_ ( self : Tuple , lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : str , lowercase__ : Union[str, Any] ):
'''simple docstring'''
if left_element == right_element:
a_ : str = a[left_element - 1]
else:
a_ : Tuple = (left_element + right_element) // 2
self.build(self.left(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.build(self.right(__SCREAMING_SNAKE_CASE ) , mid + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : Any = max(
self.segment_tree[self.left(__SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(__SCREAMING_SNAKE_CASE )] )
def lowercase_ ( self : str , lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : Any , lowercase__ : Dict , lowercase__ : Union[str, Any] , lowercase__ : Dict ):
'''simple docstring'''
if self.flag[idx] is True:
a_ : Optional[int] = self.lazy[idx]
a_ : Union[str, Any] = False
if left_element != right_element:
a_ : int = self.lazy[idx]
a_ : List[str] = self.lazy[idx]
a_ : List[Any] = True
a_ : List[Any] = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
a_ : str = val
if left_element != right_element:
a_ : Tuple = val
a_ : str = val
a_ : Optional[Any] = True
a_ : Union[str, Any] = True
return True
a_ : Tuple = (left_element + right_element) // 2
self.update(self.left(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.update(self.right(__SCREAMING_SNAKE_CASE ) , mid + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : str = max(
self.segment_tree[self.left(__SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(__SCREAMING_SNAKE_CASE )] )
return True
def lowercase_ ( self : Dict , lowercase__ : List[str] , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : List[str] ):
'''simple docstring'''
if self.flag[idx] is True:
a_ : Any = self.lazy[idx]
a_ : Dict = False
if left_element != right_element:
a_ : List[str] = self.lazy[idx]
a_ : str = self.lazy[idx]
a_ : Tuple = True
a_ : Tuple = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
a_ : Any = (left_element + right_element) // 2
a_ : str = self.query(self.left(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
a_ : Any = self.query(self.right(__SCREAMING_SNAKE_CASE ) , mid + 1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return max(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __str__( self : Dict ):
'''simple docstring'''
return str([self.query(1 , 1 , self.size , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
lowerCAmelCase_ : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
lowerCAmelCase_ : Dict = 15
lowerCAmelCase_ : Optional[Any] = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt)
| 442 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_a : int = logging.getLogger(__name__)
@dataclass
class _UpperCAmelCase :
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
a : int =field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} )
a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} )
def lowerCamelCase__ ( self ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__lowerCAmelCase = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__lowerCAmelCase = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a : str =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _lowerCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(lowercase )
datasets.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__lowerCAmelCase = data_args.train_file.split(""".""" )[-1]
__lowerCAmelCase = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__lowerCAmelCase = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names
__lowerCAmelCase = len(lowercase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__lowerCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , )
__lowerCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__lowerCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__lowerCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1}
__lowerCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowercase ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowercase ):
__lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__lowerCAmelCase = examples["""statement"""]
__lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase )
__lowerCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__lowerCAmelCase = raw_datasets.map(
lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__lowerCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__lowerCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__lowerCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowercase ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase ):
__lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__lowerCAmelCase = default_data_collator
elif training_args.fpaa:
__lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 )
else:
__lowerCAmelCase = None
# Initialize our Trainer
__lowerCAmelCase = Trainer(
model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , )
# Training
if training_args.do_train:
__lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase )
__lowerCAmelCase = train_result.metrics
__lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase )
)
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowercase )
trainer.save_metrics("""train""" , lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase )
__lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase )
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.log_metrics("""eval""" , lowercase )
trainer.save_metrics("""eval""" , lowercase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__lowerCAmelCase = predict_dataset.remove_columns("""label""" )
__lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
__lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(lowercase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowercase ):
__lowerCAmelCase = label_list[item]
writer.write(f'{index}\t{item}\n' )
__lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase )
else:
trainer.create_model_card(**lowercase )
def _lowerCAmelCase ( lowercase ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 689 | 0 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCamelCase = logging.get_logger(__name__)
__lowerCamelCase = {
"""nvidia/segformer-b0-finetuned-ade-512-512""": (
"""https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"""
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class UpperCAmelCase ( lowerCAmelCase_ ):
A__ : List[str] = """segformer"""
def __init__(self : str , snake_case__ : str=3 , snake_case__ : int=4 , snake_case__ : Optional[int]=[2, 2, 2, 2] , snake_case__ : List[str]=[8, 4, 2, 1] , snake_case__ : int=[32, 64, 1_60, 2_56] , snake_case__ : Dict=[7, 3, 3, 3] , snake_case__ : List[str]=[4, 2, 2, 2] , snake_case__ : int=[1, 2, 5, 8] , snake_case__ : Optional[Any]=[4, 4, 4, 4] , snake_case__ : str="gelu" , snake_case__ : str=0.0 , snake_case__ : Any=0.0 , snake_case__ : int=0.1 , snake_case__ : List[Any]=0.02 , snake_case__ : int=0.1 , snake_case__ : Dict=1e-6 , snake_case__ : str=2_56 , snake_case__ : Optional[Any]=2_55 , **snake_case__ : str , ) -> List[Any]:
'''simple docstring'''
super().__init__(**__SCREAMING_SNAKE_CASE )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"
" removed, as the behaviour will default to that of reshape_last_stage = True." , __SCREAMING_SNAKE_CASE , )
snake_case : Optional[Any] = num_channels
snake_case : Optional[Any] = num_encoder_blocks
snake_case : Union[str, Any] = depths
snake_case : Optional[int] = sr_ratios
snake_case : Union[str, Any] = hidden_sizes
snake_case : List[str] = patch_sizes
snake_case : Dict = strides
snake_case : str = mlp_ratios
snake_case : Tuple = num_attention_heads
snake_case : Dict = hidden_act
snake_case : List[str] = hidden_dropout_prob
snake_case : List[Any] = attention_probs_dropout_prob
snake_case : List[Any] = classifier_dropout_prob
snake_case : Union[str, Any] = initializer_range
snake_case : str = drop_path_rate
snake_case : Optional[Any] = layer_norm_eps
snake_case : Any = decoder_hidden_size
snake_case : Any = kwargs.get("reshape_last_stage" , __SCREAMING_SNAKE_CASE )
snake_case : Optional[Any] = semantic_loss_ignore_index
class UpperCAmelCase ( lowerCAmelCase_ ):
A__ : List[Any] = version.parse("1.11" )
@property
def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Any:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _SCREAMING_SNAKE_CASE (self : int ) -> int:
'''simple docstring'''
return 1e-4
@property
def _SCREAMING_SNAKE_CASE (self : Any ) -> List[str]:
'''simple docstring'''
return 12
| 204 |
'''simple docstring'''
import os
import sys
import unittest
_a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = find_backend(""" if not is_torch_available():""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCAmelCase = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""",objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" )
__lowerCAmelCase = create_dummy_object("""function""","""'torch'""" )
self.assertEqual(
__SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__lowerCAmelCase = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
__lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
__lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
| 689 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_snake_case : str = logging.get_logger(__name__)
_snake_case : List[str] = """▁"""
_snake_case : List[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""}
_snake_case : List[str] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
}
}
_snake_case : Dict = {
"""facebook/mbart-large-en-ro""": 10_24,
"""facebook/mbart-large-cc25""": 10_24,
}
# fmt: off
_snake_case : Optional[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class UpperCamelCase_ ( lowerCAmelCase_ ):
'''simple docstring'''
UpperCamelCase : List[Any] = VOCAB_FILES_NAMES
UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase : Dict = ["""input_ids""", """attention_mask"""]
UpperCamelCase : List[int] = []
UpperCamelCase : List[int] = []
def __init__( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any]="<s>" , lowerCAmelCase__ :Union[str, Any]="</s>" , lowerCAmelCase__ :Optional[int]="</s>" , lowerCAmelCase__ :Optional[Any]="<s>" , lowerCAmelCase__ :List[str]="<unk>" , lowerCAmelCase__ :List[Any]="<pad>" , lowerCAmelCase__ :str="<mask>" , lowerCAmelCase__ :int=None , lowerCAmelCase__ :str=None , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[int]=None , **lowerCAmelCase__ :str , ) ->Optional[Any]:
lowercase = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token
lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) )
lowercase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowercase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowercase = 1
lowercase = len(self.sp_model )
lowercase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE )
}
lowercase = {v: k for k, v in self.lang_code_to_id.items()}
lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
lowercase = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
lowercase = src_lang if src_lang is not None else "en_XX"
lowercase = self.lang_code_to_id[self._src_lang]
lowercase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self :Optional[int] ) ->Tuple:
lowercase = self.__dict__.copy()
lowercase = None
lowercase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self :List[Any] , lowerCAmelCase__ :Union[str, Any] ) ->Optional[int]:
lowercase = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowercase = {}
lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def SCREAMING_SNAKE_CASE( self :Union[str, Any] ) ->Optional[Any]:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Union[str, Any]:
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE( self :Optional[int] , lowerCAmelCase__ :Union[str, Any] ) ->List[Any]:
lowercase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE( self :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] = None , lowerCAmelCase__ :Union[str, Any] = False ) ->Any:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
lowercase = [1] * len(self.prefix_tokens )
lowercase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones
return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones
def SCREAMING_SNAKE_CASE( self :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int = None ) ->str:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE( self :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] = None ) ->List[str]:
lowercase = [self.sep_token_id]
lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE( self :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] , **lowerCAmelCase__ :Union[str, Any] ) ->int:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
lowercase = src_lang
lowercase = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
lowercase = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
lowercase = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE( self :int ) ->Any:
lowercase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE( self :Any , lowerCAmelCase__ :List[str] ) ->str:
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE( self :Dict , lowerCAmelCase__ :List[str] ) ->Any:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowercase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE( self :List[str] , lowerCAmelCase__ :Union[str, Any] ) ->Optional[Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE( self :int , lowerCAmelCase__ :Dict ) ->List[str]:
lowercase = "".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , " " ).strip()
return out_string
def SCREAMING_SNAKE_CASE( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] = None ) ->str:
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , "wb" ) as fi:
lowercase = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE( self :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int] = "en_XX" , lowerCAmelCase__ :str = None , lowerCAmelCase__ :List[Any] = "ro_RO" , **lowerCAmelCase__ :int , ) ->Optional[Any]:
lowercase = src_lang
lowercase = tgt_lang
return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE( self :Optional[Any] ) ->List[Any]:
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE( self :List[Any] ) ->Dict:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE( self :int , lowerCAmelCase__ :str ) ->Any:
lowercase = self.lang_code_to_id[src_lang]
lowercase = []
lowercase = [self.eos_token_id, self.cur_lang_code]
def SCREAMING_SNAKE_CASE( self :Tuple , lowerCAmelCase__ :List[Any] ) ->Tuple:
lowercase = self.lang_code_to_id[lang]
lowercase = []
lowercase = [self.eos_token_id, self.cur_lang_code]
| 441 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase ) -> tuple[int, int]:
try:
__lowerCAmelCase = float(lowercase )
except ValueError:
raise ValueError("""Please enter a valid number""" )
__lowerCAmelCase = decimal - int(lowercase )
if fractional_part == 0:
return int(lowercase ), 1
else:
__lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] )
__lowerCAmelCase = int(decimal * (10**number_of_frac_digits) )
__lowerCAmelCase = 10**number_of_frac_digits
__lowerCAmelCase , __lowerCAmelCase = denominator, numerator
while True:
__lowerCAmelCase = dividend % divisor
if remainder == 0:
break
__lowerCAmelCase , __lowerCAmelCase = divisor, remainder
__lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor
return int(lowercase ), int(lowercase )
if __name__ == "__main__":
print(f'{decimal_to_fraction(2) = }')
print(f'{decimal_to_fraction(89.0) = }')
print(f'{decimal_to_fraction("67") = }')
print(f'{decimal_to_fraction("45.0") = }')
print(f'{decimal_to_fraction(1.5) = }')
print(f'{decimal_to_fraction("6.25") = }')
print(f'{decimal_to_fraction("78td") = }')
| 689 | 0 |
'''simple docstring'''
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
__lowerCAmelCase = 4
__lowerCAmelCase = 3
class __SCREAMING_SNAKE_CASE (lowerCAmelCase_ ):
"""simple docstring"""
pass
def __UpperCamelCase ( lowercase_ : List[Any] ):
"""simple docstring"""
for shard in shards:
for i in range(lowercase_ ):
yield {"i": i, "shard": shard}
def __UpperCamelCase ( ):
"""simple docstring"""
a_ = int(os.environ['RANK'] )
a_ = int(os.environ['WORLD_SIZE'] )
a_ = ArgumentParser()
parser.add_argument('--streaming' , type=lowercase_ )
parser.add_argument('--local_rank' , type=lowercase_ )
parser.add_argument('--num_workers' , type=lowercase_ , default=0 )
a_ = parser.parse_args()
a_ = args.streaming
a_ = args.num_workers
a_ = {'shards': [F'shard_{shard_idx}' for shard_idx in range(lowercase_ )]}
a_ = IterableDataset.from_generator(lowercase_ , gen_kwargs=lowercase_ )
if not streaming:
a_ = Dataset.from_list(list(lowercase_ ) )
a_ = split_dataset_by_node(lowercase_ , rank=lowercase_ , world_size=lowercase_ )
a_ = torch.utils.data.DataLoader(lowercase_ , num_workers=lowercase_ )
a_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD
a_ = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
a_ = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' )
if __name__ == "__main__":
main()
| 536 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a : Dict = _symbol_database.Default()
_a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
_a : str = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a : str = None
_a : Union[str, Any] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a : Optional[int] = 4_5
_a : List[Any] = 1_5_8_1
_a : str = 1_5_1_7
_a : Optional[Any] = 1_5_7_0
_a : List[str] = 1_5_8_4
_a : List[Any] = 1_7_9_3
_a : Union[str, Any] = 1_7_9_5
_a : Tuple = 1_9_1_6
_a : List[Any] = 1_8_6_4
_a : Any = 1_9_0_5
_a : Optional[Any] = 1_9_1_9
_a : Optional[int] = 2_4_2_9
_a : Tuple = 2_2_0_8
_a : Optional[Any] = 2_4_1_8
_a : List[Any] = 2_3_2_3
_a : str = 2_4_0_7
# @@protoc_insertion_point(module_scope)
| 689 | 0 |
"""simple docstring"""
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = []
for data in source_data:
for i, el in enumerate(_UpperCamelCase ):
if len(_UpperCamelCase ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(_UpperCamelCase ) )
return data_lists
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = []
for dlist, weight in zip(_UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase = min(_UpperCamelCase )
__lowerCAmelCase = max(_UpperCamelCase )
__lowerCAmelCase = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
__lowerCAmelCase = f"Invalid weight of {weight:f} provided"
raise ValueError(_UpperCamelCase )
score_lists.append(_UpperCamelCase )
return score_lists
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(_UpperCamelCase ):
__lowerCAmelCase = final_scores[j] + ele
return final_scores
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = get_data(_UpperCamelCase )
__lowerCAmelCase = calculate_each_score(_UpperCamelCase , _UpperCamelCase )
__lowerCAmelCase = generate_final_scores(_UpperCamelCase )
# append scores to source data
for i, ele in enumerate(_UpperCamelCase ):
source_data[i].append(_UpperCamelCase )
return source_data
| 636 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : torch.FloatTensor
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = torch.nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
# down
__lowerCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_down_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# out
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = 2 * out_channels if double_z else out_channels
__lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = x
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""","""1.11.0""" ):
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
__lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
__lowerCAmelCase = in_channels if norm_type == """spatial""" else None
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# up
__lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = reversed_block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_up_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,)
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = output_channel
# out
if norm_type == "spatial":
__lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
__lowerCAmelCase = z
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""","""1.11.0""" ):
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = n_e
__lowerCAmelCase = vq_embed_dim
__lowerCAmelCase = beta
__lowerCAmelCase = legacy
__lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e )
__lowerCAmelCase = remap
if self.remap is not None:
self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) )
__lowerCAmelCase = self.used.shape[0]
__lowerCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__lowerCAmelCase = self.re_embed
__lowerCAmelCase = self.re_embed + 1
print(
f'Remapping {self.n_e} indices to {self.re_embed} indices. '
f'Using {self.unknown_index} for unknown indices.' )
else:
__lowerCAmelCase = n_e
__lowerCAmelCase = sane_index_shape
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
__lowerCAmelCase = match.argmax(-1 )
__lowerCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device )
else:
__lowerCAmelCase = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
__lowerCAmelCase = 0 # simply set to zero
__lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = z.permute(0,2,3,1 ).contiguous()
__lowerCAmelCase = z.view(-1,self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 )
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
__lowerCAmelCase = None
__lowerCAmelCase = None
# compute loss for embedding
if not self.legacy:
__lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__lowerCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
if self.remap is not None:
__lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten
if self.sane_index_shape:
__lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if self.remap is not None:
__lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
__lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
return z_q
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = parameters
__lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 )
__lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 )
__lowerCAmelCase = deterministic
__lowerCAmelCase = torch.exp(0.5 * self.logvar )
__lowerCAmelCase = torch.exp(self.logvar )
if self.deterministic:
__lowerCAmelCase = __lowerCAmelCase = torch.zeros_like(
self.mean,device=self.parameters.device,dtype=self.parameters.dtype )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ):
'''simple docstring'''
__lowerCAmelCase = randn_tensor(
self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype )
__lowerCAmelCase = self.mean + self.std * sample
return x
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean,2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,dim=[1, 2, 3],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
__lowerCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self.mean
| 689 | 0 |
"""simple docstring"""
import torch
from torch import nn
from transformers import CLIPPreTrainedModel, CLIPVisionModel
from ...models.attention import BasicTransformerBlock
from ...utils import logging
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class _lowerCAmelCase ( lowerCAmelCase_ ):
def __init__( self , UpperCamelCase__ , UpperCamelCase__=768 ) -> Any:
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE )
snake_case : Any = proj_size
snake_case : Any = CLIPVisionModel(__SCREAMING_SNAKE_CASE )
snake_case : Union[str, Any] = PaintByExampleMapper(__SCREAMING_SNAKE_CASE )
snake_case : List[Any] = nn.LayerNorm(config.hidden_size )
snake_case : Any = nn.Linear(config.hidden_size , self.proj_size )
# uncondition for scaling
snake_case : Union[str, Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) )
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict:
'''simple docstring'''
snake_case : List[Any] = self.model(pixel_values=__SCREAMING_SNAKE_CASE )
snake_case : Any = clip_output.pooler_output
snake_case : Union[str, Any] = self.mapper(latent_states[:, None] )
snake_case : List[Any] = self.final_layer_norm(__SCREAMING_SNAKE_CASE )
snake_case : Optional[Any] = self.proj_out(__SCREAMING_SNAKE_CASE )
if return_uncond_vector:
return latent_states, self.uncond_vector
return latent_states
class _lowerCAmelCase ( nn.Module ):
def __init__( self , UpperCamelCase__ ) -> int:
'''simple docstring'''
super().__init__()
snake_case : Optional[Any] = (config.num_hidden_layers + 1) // 5
snake_case : Any = config.hidden_size
snake_case : Dict = 1
snake_case : Dict = nn.ModuleList(
[
BasicTransformerBlock(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , activation_fn="gelu" , attention_bias=__SCREAMING_SNAKE_CASE )
for _ in range(__SCREAMING_SNAKE_CASE )
] )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[int]:
'''simple docstring'''
for block in self.blocks:
snake_case : List[Any] = block(__SCREAMING_SNAKE_CASE )
return hidden_states
| 178 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_a : Optional[int] = logging.get_logger(__name__)
_a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} )
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
a : int =field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : int =field(
default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , )
a : int =field(
default=64 , metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} , )
a : int =field(
default=30 , metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
a : float =field(
default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=0 , metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} , )
a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} )
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Optional[Any] ="""train"""
a : Optional[int] ="""dev"""
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : SquadDataTrainingArguments
a : List[SquadFeatures]
a : Split
a : bool
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",):
'''simple docstring'''
__lowerCAmelCase = args
__lowerCAmelCase = is_language_sensitive
__lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
try:
__lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
__lowerCAmelCase = mode
# Load data features from cache or dataset file
__lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
__lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
__lowerCAmelCase = time.time()
__lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__lowerCAmelCase = self.old_features["""features"""]
__lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
__lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
__lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
__lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = self.features[i]
__lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float )
__lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float )
__lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 689 | 0 |
def _lowerCAmelCase ( __lowerCAmelCase ) -> int:
"""simple docstring"""
snake_case__ : List[Any] = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def _lowerCAmelCase ( __lowerCAmelCase ) -> int:
"""simple docstring"""
snake_case__ : Union[str, Any] = 0
while number > 0:
snake_case__ : Any = number % 10
sum_of_digits += last_digit
snake_case__ : List[Any] = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def _lowerCAmelCase ( __lowerCAmelCase = 100 ) -> int:
"""simple docstring"""
snake_case__ : Dict = factorial(__lowerCAmelCase )
snake_case__ : Optional[Any] = split_and_add(__lowerCAmelCase )
return result
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 252 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
# vision encoder
if "img_encoder.pos_embed" in name:
__lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
__lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
__lowerCAmelCase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
__lowerCAmelCase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
__lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
__lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
__lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__lowerCAmelCase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__lowerCAmelCase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
__lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
__lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Dict:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
__lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase = int(key_split[3] )
__lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[
dim : dim * 2, :
]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
else:
__lowerCAmelCase = rename_key(lowercase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
__lowerCAmelCase = val.squeeze_()
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]:
__lowerCAmelCase = GroupViTConfig()
__lowerCAmelCase = GroupViTModel(lowercase ).eval()
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
__lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0)
# verify result
__lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" )
with torch.no_grad():
__lowerCAmelCase = model(**lowercase )
if model_name == "groupvit-gcc-yfcc":
__lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
__lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 )
processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
print("""Successfully saved processor and model to""" , lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowercase , organization="""nielsr""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : int = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
_a : List[str] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True)
os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True)
os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True)
def __lowerCAmelCase ( A ):
if hor == 128:
UpperCAmelCase_ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
UpperCAmelCase_ = (32, 128, 256)
UpperCAmelCase_ = ("UpResnetBlock1D", "UpResnetBlock1D")
elif hor == 32:
UpperCAmelCase_ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
UpperCAmelCase_ = (32, 64, 128, 256)
UpperCAmelCase_ = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D")
UpperCAmelCase_ = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
UpperCAmelCase_ = model.state_dict()
UpperCAmelCase_ = {
"down_block_types": down_block_types,
"block_out_channels": block_out_channels,
"up_block_types": up_block_types,
"layers_per_block": 1,
"use_timestep_embedding": True,
"out_block_type": "OutConv1DBlock",
"norm_num_groups": 8,
"downsample_each_block": False,
"in_channels": 14,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"flip_sin_to_cos": False,
"freq_shift": 1,
"sample_size": 65536,
"mid_block_type": "MidResTemporalBlock1D",
"act_fn": "mish",
}
UpperCAmelCase_ = UNetaDModel(**A )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
UpperCAmelCase_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
UpperCAmelCase_ = state_dict.pop(A )
hf_value_function.load_state_dict(A )
torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , "w" ) as f:
json.dump(A , A )
def __lowerCAmelCase ( ):
UpperCAmelCase_ = {
"in_channels": 14,
"down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
"up_block_types": (),
"out_block_type": "ValueFunction",
"mid_block_type": "ValueFunctionMidBlock1D",
"block_out_channels": (32, 64, 128, 256),
"layers_per_block": 1,
"downsample_each_block": True,
"sample_size": 65536,
"out_channels": 14,
"extra_in_channels": 0,
"time_embedding_type": "positional",
"use_timestep_embedding": True,
"flip_sin_to_cos": False,
"freq_shift": 1,
"norm_num_groups": 8,
"act_fn": "mish",
}
UpperCAmelCase_ = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" )
UpperCAmelCase_ = model
UpperCAmelCase_ = UNetaDModel(**A )
print(F"length of state dict: {len(state_dict.keys() )}" )
print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
UpperCAmelCase_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
UpperCAmelCase_ = state_dict.pop(A )
hf_value_function.load_state_dict(A )
torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" )
with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f:
json.dump(A , A )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function() | 162 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_a : Tuple = logging.get_logger(__name__)
_a : Optional[int] = ["""model.decoder.embed_positions.weights"""]
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
if "emb" in name:
__lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
__lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
__lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
__lowerCAmelCase = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
__lowerCAmelCase = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
__lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
__lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
__lowerCAmelCase = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]:
__lowerCAmelCase = list(state_dict.keys() )
__lowerCAmelCase = {}
for key in keys:
__lowerCAmelCase = state_dict.pop(lowercase )
__lowerCAmelCase = rename_keys(lowercase )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCAmelCase = val[:hidden_size, :]
__lowerCAmelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCAmelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCAmelCase = val
else:
__lowerCAmelCase = val
return state_dict, enc_dec_proj_state_dict
def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
__lowerCAmelCase = 1024
__lowerCAmelCase = 24
__lowerCAmelCase = 16
elif checkpoint == "medium":
__lowerCAmelCase = 1536
__lowerCAmelCase = 48
__lowerCAmelCase = 24
elif checkpoint == "large":
__lowerCAmelCase = 2048
__lowerCAmelCase = 48
__lowerCAmelCase = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
__lowerCAmelCase = MusicgenDecoderConfig(
hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , )
return config
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]:
__lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase )
__lowerCAmelCase = decoder_config_from_checkpoint(lowercase )
__lowerCAmelCase = fairseq_model.lm.state_dict()
__lowerCAmelCase , __lowerCAmelCase = rename_state_dict(
lowercase , hidden_size=decoder_config.hidden_size )
__lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" )
__lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
__lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase )
if len(lowercase ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
__lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase )
# check we can do a forward pass
__lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCAmelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
__lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" )
__lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
__lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase )
# set the appropriate bos/pad token ids
__lowerCAmelCase = 2048
__lowerCAmelCase = 2048
# set other default generation config params
__lowerCAmelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCAmelCase = True
__lowerCAmelCase = 3.0
if pytorch_dump_folder is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase )
processor.push_to_hub(lowercase )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
_a : List[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
from cva import destroyAllWindows, imread, imshow, waitKey
def _lowercase (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__A ,__A : str = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
__A : str = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
_UpperCamelCase = imread("""image_data/lena.jpg""", 1)
# convert to its negative
_UpperCamelCase = convert_to_negative(img)
# show result image
imshow("""negative of original image""", img)
waitKey(0)
destroyAllWindows()
| 111 |
'''simple docstring'''
from collections import deque
def _lowerCAmelCase ( lowercase ) -> Dict:
__lowerCAmelCase = len(lowercase )
__lowerCAmelCase = deque()
__lowerCAmelCase = [False for _ in range(lowercase )]
__lowerCAmelCase = [-1 for _ in range(lowercase )]
__lowerCAmelCase = index_of[:]
def strong_connect(lowercase , lowercase , lowercase ):
__lowerCAmelCase = index # the number when this node is seen
__lowerCAmelCase = index # lowest rank node reachable from here
index += 1
stack.append(lowercase )
__lowerCAmelCase = True
for w in g[v]:
if index_of[w] == -1:
__lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase )
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
__lowerCAmelCase = []
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
while w != v:
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
components.append(lowercase )
return index
__lowerCAmelCase = []
for v in range(lowercase ):
if index_of[v] == -1:
strong_connect(lowercase , 0 , lowercase )
return components
def _lowerCAmelCase ( lowercase , lowercase ) -> str:
__lowerCAmelCase = [[] for _ in range(lowercase )]
for u, v in edges:
g[u].append(lowercase )
return g
if __name__ == "__main__":
# Test
_a : Any = 7
_a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_a : Optional[Any] = [(u, v) for u, v in zip(source, target)]
_a : Optional[int] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 689 | 0 |
'''simple docstring'''
from math import factorial
def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> float:
'''simple docstring'''
if successes > trials:
raise ValueError("successes must be lower or equal to trials" )
if trials < 0 or successes < 0:
raise ValueError("the function is defined for non-negative integers" )
if not isinstance(lowercase__ ,lowercase__ ) or not isinstance(lowercase__ ,lowercase__ ):
raise ValueError("the function is defined for non-negative integers" )
if not 0 < prob < 1:
raise ValueError("prob has to be in range of 1 - 0" )
a_ = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
a_ = float(factorial(lowercase__ ) )
coefficient /= factorial(lowercase__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('Probability of 2 successes out of 4 trails')
print('with probability of 0.75 is:', end=' ')
print(binomial_distribution(2, 4, 0.75))
| 685 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _lowerCAmelCase ( ) -> Union[str, Any]:
__lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" )
__lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" )
# Register commands
EnvironmentCommand.register_subcommand(lowercase )
# Let's go
__lowerCAmelCase = parser.parse_args()
if not hasattr(lowercase , """func""" ):
parser.print_help()
exit(1 )
# Run
__lowerCAmelCase = args.func(lowercase )
service.run()
if __name__ == "__main__":
main()
| 689 | 0 |
'''simple docstring'''
import os
from argparse import ArgumentParser, Namespace
from ..data import SingleSentenceClassificationProcessor as Processor
from ..pipelines import TextClassificationPipeline
from ..utils import is_tf_available, is_torch_available, logging
from . import BaseTransformersCLICommand
if not is_tf_available() and not is_torch_available():
raise RuntimeError('At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training')
# TF training parameters
UpperCamelCase__ = False
UpperCamelCase__ = False
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
return TrainCommand(_UpperCamelCase )
class _UpperCAmelCase ( lowerCAmelCase_ ):
@staticmethod
def lowerCAmelCase__ ( a : List[str] ):
'''simple docstring'''
lowercase_ : str = parser.add_parser("train" , help="CLI tool to train a model on a task." )
train_parser.add_argument(
"--train_data" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , )
train_parser.add_argument(
"--column_label" , type=__SCREAMING_SNAKE_CASE , default=0 , help="Column of the dataset csv file with example labels." )
train_parser.add_argument(
"--column_text" , type=__SCREAMING_SNAKE_CASE , default=1 , help="Column of the dataset csv file with example texts." )
train_parser.add_argument(
"--column_id" , type=__SCREAMING_SNAKE_CASE , default=2 , help="Column of the dataset csv file with example ids." )
train_parser.add_argument(
"--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." )
train_parser.add_argument("--validation_data" , type=__SCREAMING_SNAKE_CASE , default="" , help="path to validation dataset." )
train_parser.add_argument(
"--validation_split" , type=__SCREAMING_SNAKE_CASE , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , )
train_parser.add_argument("--output" , type=__SCREAMING_SNAKE_CASE , default="./" , help="path to saved the trained model." )
train_parser.add_argument(
"--task" , type=__SCREAMING_SNAKE_CASE , default="text_classification" , help="Task to train the model on." )
train_parser.add_argument(
"--model" , type=__SCREAMING_SNAKE_CASE , default="bert-base-uncased" , help="Model's name or path to stored model." )
train_parser.add_argument("--train_batch_size" , type=__SCREAMING_SNAKE_CASE , default=3_2 , help="Batch size for training." )
train_parser.add_argument("--valid_batch_size" , type=__SCREAMING_SNAKE_CASE , default=6_4 , help="Batch size for validation." )
train_parser.add_argument("--learning_rate" , type=__SCREAMING_SNAKE_CASE , default=3e-5 , help="Learning rate." )
train_parser.add_argument("--adam_epsilon" , type=__SCREAMING_SNAKE_CASE , default=1e-08 , help="Epsilon for Adam optimizer." )
train_parser.set_defaults(func=__SCREAMING_SNAKE_CASE )
def __init__( self : Optional[int] , a : Union[str, Any] ):
'''simple docstring'''
lowercase_ : Union[str, Any] = logging.get_logger("transformers-cli/training" )
lowercase_ : Any = "tf" if is_tf_available() else "torch"
os.makedirs(args.output , exist_ok=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = args.output
lowercase_ : Any = args.column_label
lowercase_ : Dict = args.column_text
lowercase_ : Optional[int] = args.column_id
self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" )
if args.task == "text_classification":
lowercase_ : List[Any] = TextClassificationPipeline.from_pretrained(args.model )
elif args.task == "token_classification":
raise NotImplementedError
elif args.task == "question_answering":
raise NotImplementedError
self.logger.info(f"""Loading dataset from {args.train_data}""" )
lowercase_ : Dict = Processor.create_from_csv(
args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
lowercase_ : List[Any] = None
if args.validation_data:
self.logger.info(f"""Loading validation dataset from {args.validation_data}""" )
lowercase_ : Optional[int] = Processor.create_from_csv(
args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , )
lowercase_ : Union[str, Any] = args.validation_split
lowercase_ : Dict = args.train_batch_size
lowercase_ : Dict = args.valid_batch_size
lowercase_ : Optional[Any] = args.learning_rate
lowercase_ : Dict = args.adam_epsilon
def lowerCAmelCase__ ( self : Tuple ):
'''simple docstring'''
if self.framework == "tf":
return self.run_tf()
return self.run_torch()
def lowerCAmelCase__ ( self : Dict ):
'''simple docstring'''
raise NotImplementedError
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
self.pipeline.fit(
self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , )
# Save trained pipeline
self.pipeline.save_pretrained(self.output )
| 620 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_a : List[Any] = logging.get_logger(__name__)
_a : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
_a : Any = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
for attribute in key.split(""".""" ):
__lowerCAmelCase = getattr(lowercase , lowercase )
if weight_type is not None:
__lowerCAmelCase = getattr(lowercase , lowercase ).shape
else:
__lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowerCAmelCase = value
elif weight_type == "weight_g":
__lowerCAmelCase = value
elif weight_type == "weight_v":
__lowerCAmelCase = value
elif weight_type == "bias":
__lowerCAmelCase = value
else:
__lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
__lowerCAmelCase = []
__lowerCAmelCase = fairseq_model.state_dict()
__lowerCAmelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , )
__lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
__lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
__lowerCAmelCase = True
if "*" in mapped_key:
__lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2]
__lowerCAmelCase = mapped_key.replace("""*""" , lowercase )
if "weight_g" in name:
__lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
__lowerCAmelCase = """weight_v"""
elif "bias" in name:
__lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCAmelCase = """weight"""
else:
__lowerCAmelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
__lowerCAmelCase = name.split(""".""" )
__lowerCAmelCase = int(items[0] )
__lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict:
if config_path is not None:
__lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase )
else:
__lowerCAmelCase = UniSpeechSatConfig()
__lowerCAmelCase = """"""
if is_finetuned:
__lowerCAmelCase = UniSpeechSatForCTC(lowercase )
else:
__lowerCAmelCase = UniSpeechSatForPreTraining(lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
__lowerCAmelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_a : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
_a : Union[str, Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 689 | 0 |
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
def __lt__( self : Union[str, Any] , lowercase__ : int ):
'''simple docstring'''
return self[-1] < other[-1]
def __eq__( self : int , lowercase__ : Optional[int] ):
'''simple docstring'''
return self[-1] == other[-1]
def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
a_ : Any = []
# sort into stacks
for element in collection:
a_ : Optional[int] = Stack([element] )
a_ : List[Any] = bisect_left(UpperCamelCase__ , UpperCamelCase__ )
if i != len(UpperCamelCase__ ):
stacks[i].append(UpperCamelCase__ )
else:
stacks.append(UpperCamelCase__ )
# use a heap-based merge to merge stack efficiently
a_ : Tuple = merge(*(reversed(UpperCamelCase__ ) for stack in stacks) )
return collection
if __name__ == "__main__":
lowerCAmelCase_ : Any = input('Enter numbers separated by a comma:\n').strip()
lowerCAmelCase_ : Optional[Any] = [int(item) for item in user_input.split(',')]
print(patience_sort(unsorted))
| 442 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
_a : str = """
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
"""
_a : Dict = """
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{'spearmanr': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results['spearmanr'])
-0.7
>>> print(round(results['spearmanr_pvalue'], 2))
0.19
"""
_a : List[str] = r"""\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 689 | 0 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCamelCase = """
Examples:
```py
>>> import torch
>>> import numpy as np
>>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline
>>> from transformers import pipeline
>>> from diffusers.utils import load_image
>>> def make_hint(image, depth_estimator):
... image = depth_estimator(image)[\"depth\"]
... image = np.array(image)
... image = image[:, :, None]
... image = np.concatenate([image, image, image], axis=2)
... detected_map = torch.from_numpy(image).float() / 255.0
... hint = detected_map.permute(2, 0, 1)
... return hint
>>> depth_estimator = pipeline(\"depth-estimation\")
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16
... )
>>> pipe_prior = pipe_prior.to(\"cuda\")
>>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(
... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16
... )
>>> pipe = pipe.to(\"cuda\")
>>> img = load_image(
... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"
... \"/kandinsky/cat.png\"
... ).resize((768, 768))
>>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")
>>> prompt = \"A robot, 4k photo\"
>>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"
>>> generator = torch.Generator(device=\"cuda\").manual_seed(43)
>>> image_emb, zero_image_emb = pipe_prior(
... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator
... ).to_tuple()
>>> images = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... hint=hint,
... num_inference_steps=50,
... generator=generator,
... height=768,
... width=768,
... ).images
>>> images[0].save(\"robot_cat.png\")
```
"""
def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : int=8 ):
snake_case : Dict = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
snake_case : int = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class UpperCAmelCase ( lowerCAmelCase_ ):
def __init__(self : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , movq=__SCREAMING_SNAKE_CASE , )
snake_case : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Any ) -> Optional[int]:
'''simple docstring'''
if latents is None:
snake_case : str = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
snake_case : int = latents.to(__SCREAMING_SNAKE_CASE )
snake_case : Dict = latents * scheduler.init_noise_sigma
return latents
def _SCREAMING_SNAKE_CASE (self : str , snake_case__ : Optional[int]=0 ) -> Any:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
snake_case : Tuple = torch.device(f"""cuda:{gpu_id}""" )
snake_case : Optional[int] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _SCREAMING_SNAKE_CASE (self : List[str] , snake_case__ : int=0 ) -> Any:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." )
snake_case : List[Any] = torch.device(f"""cuda:{gpu_id}""" )
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=__SCREAMING_SNAKE_CASE )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
snake_case : Any = None
for cpu_offloaded_model in [self.unet, self.movq]:
snake_case , snake_case : int = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prev_module_hook=__SCREAMING_SNAKE_CASE )
# We'll offload the last model manually.
snake_case : Optional[Any] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if not hasattr(self.unet , "_hf_hook" ):
return self.device
for module in self.unet.modules():
if (
hasattr(__SCREAMING_SNAKE_CASE , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__SCREAMING_SNAKE_CASE )
def __call__(self : Tuple , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : str , snake_case__ : str = 5_12 , snake_case__ : List[Any] = 5_12 , snake_case__ : List[str] = 1_00 , snake_case__ : List[Any] = 4.0 , snake_case__ : List[Any] = 1 , snake_case__ : List[Any] = None , snake_case__ : Any = None , snake_case__ : Any = "pil" , snake_case__ : Tuple = True , ) -> Tuple:
'''simple docstring'''
snake_case : Optional[Any] = self._execution_device
snake_case : List[Any] = guidance_scale > 1.0
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case : Union[str, Any] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
snake_case : Tuple = image_embeds.shape[0] * num_images_per_prompt
if do_classifier_free_guidance:
snake_case : Dict = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
snake_case : Optional[int] = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
snake_case : List[str] = hint.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 )
snake_case : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__SCREAMING_SNAKE_CASE )
snake_case : Any = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__SCREAMING_SNAKE_CASE )
self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE )
snake_case : Tuple = self.scheduler.timesteps
snake_case : Optional[int] = self.movq.config.latent_channels
snake_case , snake_case : Union[str, Any] = downscale_height_and_width(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.movq_scale_factor )
# create initial latent
snake_case : str = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler , )
for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ):
# expand the latents if we are doing classifier free guidance
snake_case : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
snake_case : Optional[int] = {"image_embeds": image_embeds, "hint": hint}
snake_case : List[Any] = self.unet(
sample=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , added_cond_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0]
if do_classifier_free_guidance:
snake_case , snake_case : List[Any] = noise_pred.split(latents.shape[1] , dim=1 )
snake_case , snake_case : Any = noise_pred.chunk(2 )
snake_case , snake_case : str = variance_pred.chunk(2 )
snake_case : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
snake_case : int = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , "variance_type" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
snake_case , snake_case : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
snake_case : List[str] = self.scheduler.step(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , )[0]
# post-processing
snake_case : Tuple = self.movq.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE )["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" )
if output_type in ["np", "pil"]:
snake_case : Any = image * 0.5 + 0.5
snake_case : Any = image.clamp(0 , 1 )
snake_case : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
snake_case : Optional[int] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
| 204 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ):
a : List[str] =["""onnx"""]
def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(self,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
| 689 | 0 |
def __snake_case ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
lowercase = 0
lowercase = len(__magic_name__ ) - 1
while left <= right:
# avoid divided by 0 during interpolation
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
lowercase = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(__magic_name__ ):
return None
lowercase = sorted_collection[point]
if current_item == item:
return point
else:
if point < left:
lowercase = left
lowercase = point
elif point > right:
lowercase = right
lowercase = point
else:
if item < current_item:
lowercase = point - 1
else:
lowercase = point + 1
return None
def __snake_case ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
if sorted_collection[left] == sorted_collection[right]:
if sorted_collection[left] == item:
return left
else:
return None
lowercase = left + ((item - sorted_collection[left]) * (right - left)) // (
sorted_collection[right] - sorted_collection[left]
)
# out of range check
if point < 0 or point >= len(__magic_name__ ):
return None
if sorted_collection[point] == item:
return point
elif point < left:
return interpolation_search_by_recursion(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
elif point > right:
return interpolation_search_by_recursion(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
__magic_name__ , __magic_name__ , __magic_name__ , point - 1 )
else:
return interpolation_search_by_recursion(
__magic_name__ , __magic_name__ , point + 1 , __magic_name__ )
def __snake_case ( __magic_name__ ):
'''simple docstring'''
if collection != sorted(__magic_name__ ):
raise ValueError("Collection must be ascending sorted" )
return True
if __name__ == "__main__":
import sys
_snake_case : Dict = 0
if debug == 1:
_snake_case : Optional[Any] = [10, 30, 40, 45, 50, 66, 77, 93]
try:
__assert_sorted(collection)
except ValueError:
sys.exit("Sequence must be ascending sorted to apply interpolation search")
_snake_case : str = 67
_snake_case : Optional[int] = interpolation_search(collection, target)
if result is not None:
print(F"{target} found at positions: {result}")
else:
print("Not found")
| 441 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_a : int = logging.get_logger(__name__)
_a : Optional[int] = {
"""EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : List[str] ="""gptj"""
a : Optional[int] ={
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = vocab_size
__lowerCAmelCase = n_positions
__lowerCAmelCase = n_embd
__lowerCAmelCase = n_layer
__lowerCAmelCase = n_head
__lowerCAmelCase = n_inner
__lowerCAmelCase = rotary_dim
__lowerCAmelCase = activation_function
__lowerCAmelCase = resid_pdrop
__lowerCAmelCase = embd_pdrop
__lowerCAmelCase = attn_pdrop
__lowerCAmelCase = layer_norm_epsilon
__lowerCAmelCase = initializer_range
__lowerCAmelCase = use_cache
__lowerCAmelCase = bos_token_id
__lowerCAmelCase = eos_token_id
super().__init__(
bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
__lowerCAmelCase = 0
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" )
__lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_head
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,):
'''simple docstring'''
__lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
__lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__lowerCAmelCase = seqlen + 2
__lowerCAmelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCAmelCase = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
__lowerCAmelCase = common_inputs["""attention_mask"""]
if self.use_past:
__lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype
__lowerCAmelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 )
return ordered_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return 13
| 689 | 0 |
'''simple docstring'''
import os
import sys
import unittest
__lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
__lowerCAmelCase = os.path.join(git_repo_path, "src", "transformers")
__lowerCAmelCase = """
{0} = None
"""
__lowerCAmelCase = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
"""
__lowerCAmelCase = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
class __SCREAMING_SNAKE_CASE (unittest.TestCase ):
"""simple docstring"""
def _a ( self ):
"""simple docstring"""
a_ = find_backend(' _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")' )
self.assertIsNone(__SCREAMING_SNAKE_CASE )
a_ = find_backend(' if not is_tokenizers_available():' )
self.assertEqual(__SCREAMING_SNAKE_CASE , 'tokenizers' )
a_ = find_backend(' if not is_tensorflow_text_available():' )
self.assertEqual(__SCREAMING_SNAKE_CASE , 'tensorflow_text' )
a_ = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' )
self.assertEqual(__SCREAMING_SNAKE_CASE , 'sentencepiece_and_tokenizers' )
a_ = find_backend(
' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' )
self.assertEqual(__SCREAMING_SNAKE_CASE , 'sentencepiece_and_tensorflow_text' )
a_ = find_backend(
' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' )
self.assertEqual(__SCREAMING_SNAKE_CASE , 'sentencepiece_and_tokenizers_and_vision' )
def _a ( self ):
"""simple docstring"""
a_ = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch' , __SCREAMING_SNAKE_CASE )
self.assertIn('tensorflow_text' , __SCREAMING_SNAKE_CASE )
self.assertIn('sentencepiece_and_tokenizers' , __SCREAMING_SNAKE_CASE )
# Likewise, we can't assert on the exact content of a key
self.assertIn('BertModel' , objects['torch'] )
self.assertIn('TFBertModel' , objects['tf'] )
self.assertIn('FlaxBertModel' , objects['flax'] )
self.assertIn('BertModel' , objects['torch'] )
self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] )
self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] )
def _a ( self ):
"""simple docstring"""
a_ = create_dummy_object('CONSTANT' , '\'torch\'' )
self.assertEqual(__SCREAMING_SNAKE_CASE , '\nCONSTANT = None\n' )
a_ = create_dummy_object('function' , '\'torch\'' )
self.assertEqual(
__SCREAMING_SNAKE_CASE , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
a_ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n'
a_ = create_dummy_object('FakeClass' , '\'torch\'' )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _a ( self ):
"""simple docstring"""
a_ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n'
a_ = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'] , __SCREAMING_SNAKE_CASE )
| 536 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int:
__lowerCAmelCase = set()
__lowerCAmelCase = int((limit - 24) ** (1 / 2) )
__lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) )
for primea in primes:
__lowerCAmelCase = primea * primea
for primea in primes:
__lowerCAmelCase = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
__lowerCAmelCase = primea * primea * primea * primea
__lowerCAmelCase = square + cube + tetr
if total >= limit:
break
ret.add(lowercase )
return len(lowercase )
if __name__ == "__main__":
print(f'{solution() = }')
| 689 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class _UpperCamelCase :
'''simple docstring'''
__UpperCAmelCase : Optional[int] =BlenderbotSmallConfig
__UpperCAmelCase : Optional[int] ={}
__UpperCAmelCase : Optional[int] ="""gelu"""
def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=False , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a=0.1 , __a=0.1 , __a=20 , __a=2 , __a=1 , __a=0 , ):
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = eos_token_id
__lowerCAmelCase = pad_token_id
__lowerCAmelCase = bos_token_id
def snake_case ( self ):
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowerCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowerCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowerCAmelCase = prepare_blenderbot_small_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def snake_case ( self , __a , __a ):
__lowerCAmelCase = TFBlenderbotSmallModel(config=__SCREAMING_SNAKE_CASE ).get_decoder()
__lowerCAmelCase = inputs_dict["input_ids"]
__lowerCAmelCase = input_ids[:1, :]
__lowerCAmelCase = inputs_dict["attention_mask"][:1, :]
__lowerCAmelCase = inputs_dict["head_mask"]
__lowerCAmelCase = 1
# first forward pass
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase , __lowerCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowerCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__lowerCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
__lowerCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0]
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__lowerCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
__lowerCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-3 )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ):
'''simple docstring'''
if attention_mask is None:
__lowerCAmelCase = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__lowerCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__lowerCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowerCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _UpperCamelCase ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] =(
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
__UpperCAmelCase : Optional[Any] =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
__UpperCAmelCase : Optional[int] =(
{
"""conversational""": TFBlenderbotSmallForConditionalGeneration,
"""feature-extraction""": TFBlenderbotSmallModel,
"""summarization""": TFBlenderbotSmallForConditionalGeneration,
"""text2text-generation""": TFBlenderbotSmallForConditionalGeneration,
"""translation""": TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
__UpperCAmelCase : Tuple =True
__UpperCAmelCase : Union[str, Any] =False
__UpperCAmelCase : List[str] =False
def snake_case ( self ):
__lowerCAmelCase = TFBlenderbotSmallModelTester(self )
__lowerCAmelCase = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def snake_case ( self ):
self.config_tester.run_common_tests()
def snake_case ( self ):
__lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
@require_tokenizers
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any =[
"""Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """
""" i'm going to throw up.\nand why is that?"""
]
__UpperCAmelCase : Dict ="""facebook/blenderbot_small-90M"""
@cached_property
def snake_case ( self ):
return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" )
@cached_property
def snake_case ( self ):
__lowerCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def snake_case ( self ):
__lowerCAmelCase = self.tokenizer(self.src_text , return_tensors="tf" )
__lowerCAmelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__SCREAMING_SNAKE_CASE , )
__lowerCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 636 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ):
a : Optional[int] =TextToVideoSDPipeline
a : Optional[int] =TEXT_TO_IMAGE_PARAMS
a : Any =TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
a : Union[str, Any] =frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,)
__lowerCAmelCase = DDIMScheduler(
beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,)
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,)
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,)
__lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ):
'''simple docstring'''
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = """np"""
__lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames
__lowerCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
__lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",)
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 689 | 0 |
"""simple docstring"""
def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[str] ) -> int:
"""simple docstring"""
def count_of_possible_combinations(lowercase : Optional[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(lowercase )
def __lowerCAmelCase ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Tuple ) -> int:
"""simple docstring"""
def count_of_possible_combinations_with_dp_array(
lowercase : List[str] , lowercase : Optional[Any] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
snake_case : Optional[Any] = sum(
count_of_possible_combinations_with_dp_array(target - item , lowercase )
for item in array )
snake_case : str = answer
return answer
snake_case : List[Any] = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(lowercase , lowercase )
def __lowerCAmelCase ( lowercase : Tuple , lowercase : str , lowercase : Any ) -> int:
"""simple docstring"""
snake_case : Optional[Any] = [0] * (target + 1)
snake_case : int = 1
for i in range(1 , target + 1 ):
for j in range(lowercase ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = 3
__snake_case = 5
__snake_case = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 178 |
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def _lowerCAmelCase ( lowercase ) -> Optional[int]:
if not is_accelerate_available():
return method
__lowerCAmelCase = version.parse(accelerate.__version__ ).base_version
if version.parse(lowercase ) < version.parse("""0.17.0""" ):
return method
def wrapper(self , *lowercase , **lowercase ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *lowercase , **lowercase )
return wrapper
| 689 | 0 |
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class a ( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ):
def __init__( self :Optional[int] ,__lowercase :Any=None ,**__lowercase :Optional[Any] ):
super().__init__(features=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def __lowerCamelCase ( self :List[Any] ,__lowercase :Optional[int] ):
import torch
if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) and column:
if all(
isinstance(__SCREAMING_SNAKE_CASE ,torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(__SCREAMING_SNAKE_CASE )
return column
def __lowerCamelCase ( self :List[Any] ,__lowercase :Dict ):
import torch
if isinstance(__SCREAMING_SNAKE_CASE ,(str, bytes, type(__SCREAMING_SNAKE_CASE )) ):
return value
elif isinstance(__SCREAMING_SNAKE_CASE ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ):
return value.tolist()
snake_case__ : Any = {}
if isinstance(__SCREAMING_SNAKE_CASE ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ):
snake_case__ : Dict = {'''dtype''': torch.intaa}
elif isinstance(__SCREAMING_SNAKE_CASE ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ):
snake_case__ : Tuple = {'''dtype''': torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__SCREAMING_SNAKE_CASE ,PIL.Image.Image ):
snake_case__ : Optional[Any] = np.asarray(__SCREAMING_SNAKE_CASE )
return torch.tensor(__SCREAMING_SNAKE_CASE ,**{**default_dtype, **self.torch_tensor_kwargs} )
def __lowerCamelCase ( self :Tuple ,__lowercase :Any ):
import torch
# support for torch, tf, jax etc.
if hasattr(__SCREAMING_SNAKE_CASE ,'''__array__''' ) and not isinstance(__SCREAMING_SNAKE_CASE ,torch.Tensor ):
snake_case__ : List[str] = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__SCREAMING_SNAKE_CASE ,np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] )
elif isinstance(__SCREAMING_SNAKE_CASE ,(list, tuple) ):
return self._consolidate([self.recursive_tensorize(__SCREAMING_SNAKE_CASE ) for substruct in data_struct] )
return self._tensorize(__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :Tuple ,__lowercase :str ):
return map_nested(self._recursive_tensorize ,__SCREAMING_SNAKE_CASE ,map_list=__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :List[Any] ,__lowercase :Any ):
snake_case__ : Dict = self.numpy_arrow_extractor().extract_row(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.python_features_decoder.decode_row(__SCREAMING_SNAKE_CASE )
return self.recursive_tensorize(__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[Any] ):
snake_case__ : str = self.numpy_arrow_extractor().extract_column(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.python_features_decoder.decode_column(__SCREAMING_SNAKE_CASE ,pa_table.column_names[0] )
snake_case__ : int = self.recursive_tensorize(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = self._consolidate(__SCREAMING_SNAKE_CASE )
return column
def __lowerCamelCase ( self :List[Any] ,__lowercase :List[str] ):
snake_case__ : List[str] = self.numpy_arrow_extractor().extract_batch(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = self.python_features_decoder.decode_batch(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = self.recursive_tensorize(__SCREAMING_SNAKE_CASE )
for column_name in batch:
snake_case__ : Tuple = self._consolidate(batch[column_name] )
return batch
| 252 |
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
# load base model
__lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
__lowerCAmelCase = load_file(lowercase )
__lowerCAmelCase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.text_encoder
else:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.unet
# find the target layer
__lowerCAmelCase = layer_infos.pop(0 )
while len(lowercase ) > -1:
try:
__lowerCAmelCase = curr_layer.__getattr__(lowercase )
if len(lowercase ) > 0:
__lowerCAmelCase = layer_infos.pop(0 )
elif len(lowercase ) == 0:
break
except Exception:
if len(lowercase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
__lowerCAmelCase = layer_infos.pop(0 )
__lowerCAmelCase = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(lowercase )
else:
pair_keys.append(lowercase )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
__lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 )
else:
__lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase )
# update visited list
for item in pair_keys:
visited.append(lowercase )
return pipeline
if __name__ == "__main__":
_a : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_a : Optional[int] = parser.parse_args()
_a : Dict = args.base_model_path
_a : Optional[Any] = args.checkpoint_path
_a : Union[str, Any] = args.dump_path
_a : Optional[int] = args.lora_prefix_unet
_a : int = args.lora_prefix_text_encoder
_a : str = args.alpha
_a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_a : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 689 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a: Optional[int] = {
"""configuration_blip_2""": [
"""BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Blip2Config""",
"""Blip2QFormerConfig""",
"""Blip2VisionConfig""",
],
"""processing_blip_2""": ["""Blip2Processor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a: Optional[int] = [
"""BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Blip2Model""",
"""Blip2QFormerModel""",
"""Blip2PreTrainedModel""",
"""Blip2ForConditionalGeneration""",
"""Blip2VisionModel""",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
_a: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 162 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def _lowerCAmelCase ( lowercase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def _lowerCAmelCase ( lowercase = "" ) -> bool:
if len(lowercase ) == 0:
return True
__lowerCAmelCase = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
__lowerCAmelCase = {}
for character in lower_case_input_str:
__lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1
__lowerCAmelCase = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def _lowerCAmelCase ( lowercase = "" ) -> None:
print("""\nFor string = """ , lowercase , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
_a : int = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
_a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 689 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {"""vocab_file""": """spm_char.model"""}
_UpperCamelCase = {
"""vocab_file""": {
"""microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""",
"""microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""",
"""microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""",
}
}
_UpperCamelCase = {
"""microsoft/speecht5_asr""": 1024,
"""microsoft/speecht5_tts""": 1024,
"""microsoft/speecht5_vc""": 1024,
}
class __magic_name__ ( lowerCAmelCase_ ):
"""simple docstring"""
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["""input_ids""", """attention_mask"""]
def __init__( self , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase = None , **lowerCamelCase , ):
'''simple docstring'''
__A : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
__A : int = vocab_file
__A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return self.sp_model.get_piece_size()
def lowerCAmelCase__ ( self ):
'''simple docstring'''
__A : List[Any] = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
__A : Any = self.__dict__.copy()
__A : Optional[int] = None
return state
def __setstate__( self , lowerCamelCase ):
'''simple docstring'''
__A : Optional[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__A : List[str] = {}
__A : int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase__ ( self , lowerCamelCase ):
'''simple docstring'''
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self , lowerCamelCase ):
'''simple docstring'''
return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self , lowerCamelCase ):
'''simple docstring'''
__A : Optional[int] = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE )
return token
def lowerCAmelCase__ ( self , lowerCamelCase ):
'''simple docstring'''
__A : Tuple = []
__A : Dict = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token
__A : int = []
else:
current_sub_tokens.append(__SCREAMING_SNAKE_CASE )
out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE )
return out_string.strip()
def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase=None ):
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
__A : str = [1]
if token_ids_a is None:
return ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones
return ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones
def lowerCAmelCase__ ( self , lowerCamelCase , lowerCamelCase = None ):
'''simple docstring'''
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
__A : List[str] = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , "wb" ) as fi:
__A : Any = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 111 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _lowerCAmelCase ( lowercase ) -> List[Any]:
__lowerCAmelCase = VideoMAEConfig()
set_architecture_configs(lowercase , lowercase )
if "finetuned" not in model_name:
__lowerCAmelCase = False
if "finetuned" in model_name:
__lowerCAmelCase = """huggingface/label-files"""
if "kinetics" in model_name:
__lowerCAmelCase = 400
__lowerCAmelCase = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
__lowerCAmelCase = 174
__lowerCAmelCase = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
__lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) )
__lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase ( lowercase , lowercase ) -> Any:
if "small" in model_name:
__lowerCAmelCase = 384
__lowerCAmelCase = 1536
__lowerCAmelCase = 12
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 3
__lowerCAmelCase = 192
__lowerCAmelCase = 768
elif "large" in model_name:
__lowerCAmelCase = 1024
__lowerCAmelCase = 4096
__lowerCAmelCase = 24
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 512
__lowerCAmelCase = 2048
elif "huge" in model_name:
__lowerCAmelCase = 1280
__lowerCAmelCase = 5120
__lowerCAmelCase = 32
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 640
__lowerCAmelCase = 2560
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def _lowerCAmelCase ( lowercase ) -> List[str]:
if "encoder." in name:
__lowerCAmelCase = name.replace("""encoder.""" , """""" )
if "cls_token" in name:
__lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
__lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" )
if "decoder.blocks" in name:
__lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
__lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" )
if "attn.proj" in name:
__lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "bias" not in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.self""" )
if "attn" in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.attention""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
__lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
__lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
__lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""head""" , """classifier""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if key.startswith("""encoder.""" ):
__lowerCAmelCase = key.replace("""encoder.""" , """""" )
if "qkv" in key:
__lowerCAmelCase = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
__lowerCAmelCase = config.decoder_hidden_size
__lowerCAmelCase = int(key_split[2] )
__lowerCAmelCase = """decoder.decoder_layers."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = config.hidden_size
__lowerCAmelCase = int(key_split[1] )
__lowerCAmelCase = """videomae.encoder.layer."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__lowerCAmelCase = np.load(lowercase )
return list(lowercase )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = get_videomae_config(lowercase )
if "finetuned" in model_name:
__lowerCAmelCase = VideoMAEForVideoClassification(lowercase )
else:
__lowerCAmelCase = VideoMAEForPreTraining(lowercase )
# download original checkpoint, hosted on Google Drive
__lowerCAmelCase = """pytorch_model.bin"""
gdown.cached_download(lowercase , lowercase , quiet=lowercase )
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )
if "model" in files:
__lowerCAmelCase = files["""model"""]
else:
__lowerCAmelCase = files["""module"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
model.load_state_dict(lowercase )
model.eval()
# verify model on basic input
__lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
__lowerCAmelCase = prepare_video()
__lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" )
if "finetuned" not in model_name:
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
__lowerCAmelCase = torch.load(lowercase )
__lowerCAmelCase = model(**lowercase )
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] )
elif model_name == "videomae-small-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] )
elif model_name == "videomae-base":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] )
elif model_name == "videomae-base-short":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] )
# we verified the loss both for normalized and unnormalized targets for this one
__lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] )
elif model_name == "videomae-large":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] )
elif model_name == "videomae-large-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] )
elif model_name == "videomae-huge-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] )
elif model_name == "videomae-base-short-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] )
elif model_name == "videomae-base-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] )
elif model_name == "videomae-base-short-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] )
elif model_name == "videomae-base-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] )
elif model_name == "videomae-base-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 )
else:
print("""Logits:""" , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
__lowerCAmelCase = outputs.loss
assert torch.allclose(lowercase , lowercase , atol=1e-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""",
type=str,
help=(
"""URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"""
""" download link."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/Users/nielsrogge/Documents/VideoMAE/Test""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""")
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_a : int = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
a_ = _symbol_database.Default()
a_ = _descriptor_pool.Default().AddSerializedFile(
B'\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
a_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
a_ = None
a_ = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
a_ = 45
a_ = 1_581
a_ = 1_517
a_ = 1_570
a_ = 1_584
a_ = 1_793
a_ = 1_795
a_ = 1_916
a_ = 1_864
a_ = 1_905
a_ = 1_919
a_ = 2_429
a_ = 2_208
a_ = 2_418
a_ = 2_323
a_ = 2_407
# @@protoc_insertion_point(module_scope)
| 685 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_a : Tuple = """\
"""
_a : Tuple = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
_a : Optional[Any] = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__lowerCAmelCase = """cuda"""
else:
__lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
__lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__SCREAMING_SNAKE_CASE ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__lowerCAmelCase = model.config.max_length - 1
else:
__lowerCAmelCase = model.config.max_length
__lowerCAmelCase = tokenizer(
__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = encodings["""input_ids"""]
__lowerCAmelCase = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__lowerCAmelCase = []
__lowerCAmelCase = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ):
__lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = encoded_texts[start_index:end_index]
__lowerCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
__lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 )
__lowerCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 )
__lowerCAmelCase = encoded_batch
with torch.no_grad():
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits
__lowerCAmelCase = out_logits[..., :-1, :].contiguous()
__lowerCAmelCase = labels[..., 1:].contiguous()
__lowerCAmelCase = attn_mask[..., 1:].contiguous()
__lowerCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
| 689 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCAmelCase__ ( self : int ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase_ : int = UNetaDModel(
sample_size=(3_2, 6_4) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return model
@property
def lowerCAmelCase__ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase_ : int = UNetaDConditionModel(
sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=1_0 , )
return model
@property
def lowerCAmelCase__ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
lowercase_ : Tuple = AutoencoderKL(
sample_size=(1_2_8, 6_4) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , )
lowercase_ : int = UNetaDModel(
sample_size=(6_4, 3_2) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_2_8, 1_2_8) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return vqvae, unet
@slow
def lowerCAmelCase__ ( self : Any ):
'''simple docstring'''
lowercase_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator
lowercase_ : Tuple = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
lowercase_ : List[Any] = DDPMScheduler()
lowercase_ : Union[str, Any] = AudioDiffusionPipeline(vqvae=__SCREAMING_SNAKE_CASE , unet=self.dummy_unet , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(4_2 )
lowercase_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 )
lowercase_ : Tuple = output.audios[0]
lowercase_ : Optional[Any] = output.images[0]
lowercase_ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(4_2 )
lowercase_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , steps=4 , return_dict=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
lowercase_ : Tuple = np.frombuffer(image.tobytes() , dtype="uint8" )[:1_0]
lowercase_ : Optional[int] = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:1_0]
lowercase_ : Optional[Any] = np.array([6_9, 2_5_5, 2_5_5, 2_5_5, 0, 0, 7_7, 1_8_1, 1_2, 1_2_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
lowercase_ : Tuple = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
lowercase_ : List[str] = DDIMScheduler()
lowercase_ : str = self.dummy_vqvae_and_unet
lowercase_ : Optional[int] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
np.random.seed(0 )
lowercase_ : Any = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
lowercase_ : Union[str, Any] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(4_2 )
lowercase_ : int = pipe(raw_audio=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , start_step=5 , steps=1_0 )
lowercase_ : str = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
lowercase_ : Optional[Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:1_0]
lowercase_ : Union[str, Any] = np.array([1_2_0, 1_1_7, 1_1_0, 1_0_9, 1_3_8, 1_6_7, 1_3_8, 1_4_8, 1_3_2, 1_2_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
lowercase_ : Tuple = self.dummy_unet_condition
lowercase_ : List[Any] = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=__SCREAMING_SNAKE_CASE , mel=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
np.random.seed(0 )
lowercase_ : List[str] = torch.rand((1, 1, 1_0) )
lowercase_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = output.images[0]
lowercase_ : Union[str, Any] = np.frombuffer(image.tobytes() , dtype="uint8" )[:1_0]
lowercase_ : Union[str, Any] = np.array([1_0_7, 1_0_3, 1_2_0, 1_2_7, 1_4_2, 1_2_2, 1_1_3, 1_2_2, 9_7, 1_1_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self : List[str] ):
'''simple docstring'''
lowercase_ : Tuple = torch_device
lowercase_ : List[Any] = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" )
lowercase_ : Any = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(4_2 )
lowercase_ : Tuple = pipe(generator=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = output.audios[0]
lowercase_ : Optional[int] = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
lowercase_ : Optional[int] = np.frombuffer(image.tobytes() , dtype="uint8" )[:1_0]
lowercase_ : str = np.array([1_5_1, 1_6_7, 1_5_4, 1_4_4, 1_2_2, 1_3_4, 1_2_1, 1_0_5, 7_0, 2_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
| 620 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Union[str, Any] =["""image_processor"""]
a : Dict ="""SamImageProcessor"""
def __init__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.image_processor
__lowerCAmelCase = -10
__lowerCAmelCase = self.image_processor.size["""longest_edge"""]
def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
# pop arguments that are not used in the foward but used nevertheless
__lowerCAmelCase = encoding_image_processor["""original_sizes"""]
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor
__lowerCAmelCase = original_sizes.numpy()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points(
input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = self._normalize_and_convert(
__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,)
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",):
'''simple docstring'''
if input_points is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_labels is not None:
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE )
for box in input_boxes
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE )
for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = max([point.shape[0] for point in input_points] )
__lowerCAmelCase = []
for i, point in enumerate(__SCREAMING_SNAKE_CASE ):
if point.shape[0] != expected_nb_points:
__lowerCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 )
__lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] )
processed_input_points.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = processed_input_points
return input_points, input_labels
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = original_size
__lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE )
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,2,2 )
__lowerCAmelCase = coords[..., 0] * (new_w / old_w)
__lowerCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,4 )
return coords
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,):
'''simple docstring'''
if input_points is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor
__lowerCAmelCase = input_points.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input points must be a list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points]
else:
__lowerCAmelCase = None
if input_labels is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_labels.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input labels must be a list of list integers.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels]
else:
__lowerCAmelCase = None
if input_boxes is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes]
else:
__lowerCAmelCase = None
return input_points, input_labels, input_boxes
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) )
def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
| 689 | 0 |
'''simple docstring'''
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ):
__magic_name__ : Union[str, Any] = BertJapaneseTokenizer
__magic_name__ : Optional[Any] = False
__magic_name__ : str = True
def lowercase_ ( self : Optional[Any] ):
'''simple docstring'''
super().setUp()
a_ : List[Any] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""こんにちは""",
"""こん""",
"""にちは""",
"""ばんは""",
"""##こん""",
"""##にちは""",
"""##ばんは""",
"""世界""",
"""##世界""",
"""、""",
"""##、""",
"""。""",
"""##。""",
]
a_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowercase_ ( self : Optional[int] , lowercase__ : Dict ):
'''simple docstring'''
a_ : Union[str, Any] = """こんにちは、世界。 \nこんばんは、世界。"""
a_ : Optional[int] = """こんにちは 、 世界 。 こんばんは 、 世界 。"""
return input_text, output_text
def lowercase_ ( self : str , lowercase__ : Any ):
'''simple docstring'''
a_ , a_ : List[Any] = self.get_input_output_texts(__SCREAMING_SNAKE_CASE )
a_ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
a_ : List[str] = tokenizer.decode(__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )
return text, ids
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass # TODO add if relevant
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
pass # TODO add if relevant
def lowercase_ ( self : Tuple ):
'''simple docstring'''
pass # TODO add if relevant
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
a_ : Optional[int] = self.tokenizer_class(self.vocab_file )
a_ : Dict = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
def lowercase_ ( self : Optional[Any] ):
'''simple docstring'''
a_ : Optional[int] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
a_ : List[str] = """こんにちは、世界。\nこんばんは、世界。"""
a_ : List[Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
a_ : Any = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__SCREAMING_SNAKE_CASE , """wb""" ) as handle:
pickle.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , """rb""" ) as handle:
a_ : Tuple = pickle.load(__SCREAMING_SNAKE_CASE )
a_ : Tuple = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : List[Any] = MecabTokenizer(mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase_ ( self : str ):
'''simple docstring'''
try:
a_ : Union[str, Any] = MecabTokenizer(mecab_dic="""unidic_lite""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
try:
a_ : str = MecabTokenizer(mecab_dic="""unidic""" )
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : Union[str, Any] = MecabTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
try:
a_ : Optional[int] = MecabTokenizer(
do_lower_case=__SCREAMING_SNAKE_CASE , normalize_text=__SCREAMING_SNAKE_CASE , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" )
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
a_ : Dict = MecabTokenizer(normalize_text=__SCREAMING_SNAKE_CASE , mecab_dic="""ipadic""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , )
@require_sudachi
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = """こんにちは、世界。\nこんばんは、世界。"""
a_ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
a_ : Optional[int] = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__SCREAMING_SNAKE_CASE , """wb""" ) as handle:
pickle.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , """rb""" ) as handle:
a_ : Union[str, Any] = pickle.load(__SCREAMING_SNAKE_CASE )
a_ : int = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@require_sudachi
def lowercase_ ( self : Any ):
'''simple docstring'''
a_ : Dict = SudachiTokenizer(sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
a_ : List[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] )
@require_sudachi
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
a_ : Any = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] )
@require_sudachi
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
a_ : Any = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" )
self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] )
@require_sudachi
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : Dict = SudachiTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , )
@require_sudachi
def lowercase_ ( self : str ):
'''simple docstring'''
a_ : Tuple = SudachiTokenizer(normalize_text=__SCREAMING_SNAKE_CASE , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , )
@require_sudachi
def lowercase_ ( self : Union[str, Any] ):
'''simple docstring'''
a_ : Dict = SudachiTokenizer(trim_whitespace=__SCREAMING_SNAKE_CASE , sudachi_dict_type="""core""" )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , )
@require_jumanpp
def lowercase_ ( self : Dict ):
'''simple docstring'''
a_ : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = """こんにちは、世界。\nこんばんは、世界。"""
a_ : str = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] )
a_ : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""" )
with open(__SCREAMING_SNAKE_CASE , """wb""" ) as handle:
pickle.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , """rb""" ) as handle:
a_ : str = pickle.load(__SCREAMING_SNAKE_CASE )
a_ : Tuple = tokenizer_new.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@require_jumanpp
def lowercase_ ( self : Dict ):
'''simple docstring'''
a_ : List[Any] = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def lowercase_ ( self : int ):
'''simple docstring'''
a_ : List[Any] = JumanppTokenizer(do_lower_case=__SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def lowercase_ ( self : List[str] ):
'''simple docstring'''
a_ : Union[str, Any] = JumanppTokenizer(normalize_text=__SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , )
@require_jumanpp
def lowercase_ ( self : Optional[int] ):
'''simple docstring'''
a_ : Any = JumanppTokenizer(trim_whitespace=__SCREAMING_SNAKE_CASE )
self.assertListEqual(
tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , )
@require_jumanpp
def lowercase_ ( self : int ):
'''simple docstring'''
a_ : str = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , )
def lowercase_ ( self : Optional[int] ):
'''simple docstring'''
a_ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""]
a_ : Dict = {}
for i, token in enumerate(__SCREAMING_SNAKE_CASE ):
a_ : Union[str, Any] = i
a_ : str = WordpieceTokenizer(vocab=__SCREAMING_SNAKE_CASE , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] )
self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] )
def lowercase_ ( self : Any ):
'''simple docstring'''
a_ : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" )
a_ : Dict = tokenizer.subword_tokenizer
a_ : Tuple = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] )
a_ : int = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] )
def lowercase_ ( self : Tuple ):
'''simple docstring'''
a_ : List[Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" )
a_ : str = tokenizer.encode("""ありがとう。""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
a_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , unittest.TestCase ):
__magic_name__ : Tuple = BertJapaneseTokenizer
__magic_name__ : List[Any] = False
def lowercase_ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
a_ : List[str] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
a_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def lowercase_ ( self : Union[str, Any] , **lowercase__ : Optional[int] ):
'''simple docstring'''
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **__SCREAMING_SNAKE_CASE )
def lowercase_ ( self : Union[str, Any] , lowercase__ : str ):
'''simple docstring'''
a_ : int = """こんにちは、世界。 \nこんばんは、世界。"""
a_ : List[str] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"""
return input_text, output_text
def lowercase_ ( self : Dict ):
'''simple docstring'''
pass # TODO add if relevant
def lowercase_ ( self : Any ):
'''simple docstring'''
pass # TODO add if relevant
def lowercase_ ( self : Tuple ):
'''simple docstring'''
pass # TODO add if relevant
def lowercase_ ( self : int ):
'''simple docstring'''
a_ : Any = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" )
a_ : Dict = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
a_ : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""]
a_ : List[str] = {}
for i, token in enumerate(__SCREAMING_SNAKE_CASE ):
a_ : Any = i
a_ : Optional[int] = CharacterTokenizer(vocab=__SCREAMING_SNAKE_CASE , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] )
self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] )
def lowercase_ ( self : List[str] ):
'''simple docstring'''
a_ : Dict = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" )
a_ : Any = tokenizer.encode("""ありがとう。""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
a_ : Any = tokenizer.encode("""どういたしまして。""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
a_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
a_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_a + [3]
@custom_tokenizers
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def lowercase_ ( self : Optional[Any] ):
'''simple docstring'''
a_ : Optional[int] = """cl-tohoku/bert-base-japanese"""
a_ : str = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def lowercase_ ( self : Optional[Any] ):
'''simple docstring'''
a_ : int = """cl-tohoku/bert-base-japanese"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
a_ : List[str] = """bert-base-cased"""
with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm:
BertJapaneseTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertTrue(
cm.records[0].message.startswith(
"""The tokenizer class you load from this checkpoint is not the same type as the class this function"""
""" is called from.""" ) )
| 442 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_a : int = logging.getLogger(__name__)
@dataclass
class _UpperCAmelCase :
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
a : int =field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} )
a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} )
def lowerCamelCase__ ( self ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__lowerCAmelCase = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__lowerCAmelCase = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a : str =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _lowerCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(lowercase )
datasets.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__lowerCAmelCase = data_args.train_file.split(""".""" )[-1]
__lowerCAmelCase = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__lowerCAmelCase = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names
__lowerCAmelCase = len(lowercase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__lowerCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , )
__lowerCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__lowerCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__lowerCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1}
__lowerCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowercase ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowercase ):
__lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__lowerCAmelCase = examples["""statement"""]
__lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase )
__lowerCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__lowerCAmelCase = raw_datasets.map(
lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__lowerCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__lowerCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__lowerCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowercase ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase ):
__lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__lowerCAmelCase = default_data_collator
elif training_args.fpaa:
__lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 )
else:
__lowerCAmelCase = None
# Initialize our Trainer
__lowerCAmelCase = Trainer(
model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , )
# Training
if training_args.do_train:
__lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase )
__lowerCAmelCase = train_result.metrics
__lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase )
)
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowercase )
trainer.save_metrics("""train""" , lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase )
__lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase )
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.log_metrics("""eval""" , lowercase )
trainer.save_metrics("""eval""" , lowercase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__lowerCAmelCase = predict_dataset.remove_columns("""label""" )
__lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
__lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(lowercase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowercase ):
__lowerCAmelCase = label_list[item]
writer.write(f'{index}\t{item}\n' )
__lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase )
else:
trainer.create_model_card(**lowercase )
def _lowerCAmelCase ( lowercase ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 689 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__lowerCamelCase = {
"""configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""ConvNextFeatureExtractor"""]
__lowerCamelCase = ["""ConvNextImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvNextForImageClassification""",
"""ConvNextModel""",
"""ConvNextPreTrainedModel""",
"""ConvNextBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""TFConvNextForImageClassification""",
"""TFConvNextModel""",
"""TFConvNextPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 204 |
'''simple docstring'''
import os
import sys
import unittest
_a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = find_backend(""" if not is_torch_available():""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCAmelCase = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""",objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" )
__lowerCAmelCase = create_dummy_object("""function""","""'torch'""" )
self.assertEqual(
__SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__lowerCAmelCase = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
__lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
__lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
| 689 | 0 |
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = []
lowercase = set({"(", "[", "{"} )
lowercase = set({")", "]", "}"} )
lowercase = {"{": "}", "[": "]", "(": ")"}
for i in range(len(__magic_name__ ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(__magic_name__ ) == 0 or (len(__magic_name__ ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(__magic_name__ ) == 0
def __snake_case ( ):
'''simple docstring'''
lowercase = input("Enter sequence of brackets: " )
if is_balanced(__magic_name__ ):
print(__magic_name__ , "is balanced" )
else:
print(__magic_name__ , "is not balanced" )
if __name__ == "__main__":
main()
| 441 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase ) -> tuple[int, int]:
try:
__lowerCAmelCase = float(lowercase )
except ValueError:
raise ValueError("""Please enter a valid number""" )
__lowerCAmelCase = decimal - int(lowercase )
if fractional_part == 0:
return int(lowercase ), 1
else:
__lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] )
__lowerCAmelCase = int(decimal * (10**number_of_frac_digits) )
__lowerCAmelCase = 10**number_of_frac_digits
__lowerCAmelCase , __lowerCAmelCase = denominator, numerator
while True:
__lowerCAmelCase = dividend % divisor
if remainder == 0:
break
__lowerCAmelCase , __lowerCAmelCase = divisor, remainder
__lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor
return int(lowercase ), int(lowercase )
if __name__ == "__main__":
print(f'{decimal_to_fraction(2) = }')
print(f'{decimal_to_fraction(89.0) = }')
print(f'{decimal_to_fraction("67") = }')
print(f'{decimal_to_fraction("45.0") = }')
print(f'{decimal_to_fraction(1.5) = }')
print(f'{decimal_to_fraction("6.25") = }')
print(f'{decimal_to_fraction("78td") = }')
| 689 | 0 |
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class __SCREAMING_SNAKE_CASE (nn.Module ):
"""simple docstring"""
def __init__( self , UpperCamelCase__ = 16 , UpperCamelCase__ = 88 , UpperCamelCase__ = None , UpperCamelCase__ = 1 , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 32 , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = "geglu" , UpperCamelCase__ = None , ):
"""simple docstring"""
super().__init__()
a_ = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , num_layers=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , norm_num_groups=__SCREAMING_SNAKE_CASE , cross_attention_dim=__SCREAMING_SNAKE_CASE , attention_bias=__SCREAMING_SNAKE_CASE , sample_size=__SCREAMING_SNAKE_CASE , num_vector_embeds=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , num_embeds_ada_norm=__SCREAMING_SNAKE_CASE , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
a_ = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
a_ = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
a_ = [1, 0]
def _a ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = True , ):
"""simple docstring"""
a_ = hidden_states
a_ = []
a_ = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
a_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
a_ = self.transformer_index_for_condition[i]
a_ = self.transformers[transformer_index](
__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , cross_attention_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
a_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
a_ = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__SCREAMING_SNAKE_CASE )
| 536 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a : Dict = _symbol_database.Default()
_a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
_a : str = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a : str = None
_a : Union[str, Any] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a : Optional[int] = 4_5
_a : List[Any] = 1_5_8_1
_a : str = 1_5_1_7
_a : Optional[Any] = 1_5_7_0
_a : List[str] = 1_5_8_4
_a : List[Any] = 1_7_9_3
_a : Union[str, Any] = 1_7_9_5
_a : Tuple = 1_9_1_6
_a : List[Any] = 1_8_6_4
_a : Any = 1_9_0_5
_a : Optional[Any] = 1_9_1_9
_a : Optional[int] = 2_4_2_9
_a : Tuple = 2_2_0_8
_a : Optional[Any] = 2_4_1_8
_a : List[Any] = 2_3_2_3
_a : str = 2_4_0_7
# @@protoc_insertion_point(module_scope)
| 689 | 0 |
"""simple docstring"""
def _lowerCamelCase ( _UpperCamelCase = 6008_5147_5143 ):
'''simple docstring'''
try:
__lowerCAmelCase = int(_UpperCamelCase )
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int." )
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one." )
__lowerCAmelCase = 2
__lowerCAmelCase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
__lowerCAmelCase = i
while n % i == 0:
__lowerCAmelCase = n // i
i += 1
return int(_UpperCamelCase )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 636 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : torch.FloatTensor
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = torch.nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
# down
__lowerCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_down_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# out
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = 2 * out_channels if double_z else out_channels
__lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = x
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""","""1.11.0""" ):
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
__lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
__lowerCAmelCase = in_channels if norm_type == """spatial""" else None
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# up
__lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = reversed_block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_up_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,)
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = output_channel
# out
if norm_type == "spatial":
__lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
__lowerCAmelCase = z
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""","""1.11.0""" ):
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = n_e
__lowerCAmelCase = vq_embed_dim
__lowerCAmelCase = beta
__lowerCAmelCase = legacy
__lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e )
__lowerCAmelCase = remap
if self.remap is not None:
self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) )
__lowerCAmelCase = self.used.shape[0]
__lowerCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__lowerCAmelCase = self.re_embed
__lowerCAmelCase = self.re_embed + 1
print(
f'Remapping {self.n_e} indices to {self.re_embed} indices. '
f'Using {self.unknown_index} for unknown indices.' )
else:
__lowerCAmelCase = n_e
__lowerCAmelCase = sane_index_shape
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
__lowerCAmelCase = match.argmax(-1 )
__lowerCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device )
else:
__lowerCAmelCase = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
__lowerCAmelCase = 0 # simply set to zero
__lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = z.permute(0,2,3,1 ).contiguous()
__lowerCAmelCase = z.view(-1,self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 )
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
__lowerCAmelCase = None
__lowerCAmelCase = None
# compute loss for embedding
if not self.legacy:
__lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__lowerCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
if self.remap is not None:
__lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten
if self.sane_index_shape:
__lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if self.remap is not None:
__lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
__lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
return z_q
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = parameters
__lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 )
__lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 )
__lowerCAmelCase = deterministic
__lowerCAmelCase = torch.exp(0.5 * self.logvar )
__lowerCAmelCase = torch.exp(self.logvar )
if self.deterministic:
__lowerCAmelCase = __lowerCAmelCase = torch.zeros_like(
self.mean,device=self.parameters.device,dtype=self.parameters.dtype )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ):
'''simple docstring'''
__lowerCAmelCase = randn_tensor(
self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype )
__lowerCAmelCase = self.mean + self.std * sample
return x
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean,2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,dim=[1, 2, 3],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
__lowerCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self.mean
| 689 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections import namedtuple
from dataclasses import dataclass
@dataclass
class _lowerCAmelCase :
__UpperCAmelCase : int
__UpperCAmelCase : TreeNode | None = None
__UpperCAmelCase : TreeNode | None = None
__snake_case = namedtuple("""CoinsDistribResult""", """moves excess""")
def __lowerCAmelCase ( lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if root is None:
return 0
# Validation
def count_nodes(lowercase : int ) -> int:
if node is None:
return 0
return count_nodes(node.left ) + count_nodes(node.right ) + 1
def count_coins(lowercase : str ) -> int:
if node is None:
return 0
return count_coins(node.left ) + count_coins(node.right ) + node.data
if count_nodes(lowercase ) != count_coins(lowercase ):
raise ValueError("The nodes number should be same as the number of coins" )
# Main calculation
def get_distrib(lowercase : Any ) -> CoinsDistribResult:
if node is None:
return CoinsDistribResult(0 , 1 )
snake_case ,snake_case : Optional[Any] = get_distrib(node.left )
snake_case ,snake_case : Dict = get_distrib(node.right )
snake_case : Optional[Any] = 1 - left_distrib_excess
snake_case : Dict = 1 - right_distrib_excess
snake_case : Optional[Any] = (
left_distrib_moves
+ right_distrib_moves
+ abs(lowercase )
+ abs(lowercase )
)
snake_case : int = node.data - coins_to_left - coins_to_right
return CoinsDistribResult(lowercase , lowercase )
return get_distrib(lowercase )[0]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 178 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_a : Optional[int] = logging.get_logger(__name__)
_a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} )
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
a : int =field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : int =field(
default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , )
a : int =field(
default=64 , metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} , )
a : int =field(
default=30 , metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
a : float =field(
default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=0 , metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} , )
a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} )
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Optional[Any] ="""train"""
a : Optional[int] ="""dev"""
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : SquadDataTrainingArguments
a : List[SquadFeatures]
a : Split
a : bool
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",):
'''simple docstring'''
__lowerCAmelCase = args
__lowerCAmelCase = is_language_sensitive
__lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
try:
__lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
__lowerCAmelCase = mode
# Load data features from cache or dataset file
__lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
__lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
__lowerCAmelCase = time.time()
__lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__lowerCAmelCase = self.old_features["""features"""]
__lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
__lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
__lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
__lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = self.features[i]
__lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float )
__lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float )
__lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 689 | 0 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .tokenization_wavaveca import WavaVecaCTCTokenizer
class a ( lowerCAmelCase_ ):
__lowerCAmelCase : List[Any] = """Wav2Vec2FeatureExtractor"""
__lowerCAmelCase : int = """AutoTokenizer"""
def __init__( self :int ,__lowercase :Optional[int] ,__lowercase :Any ):
super().__init__(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = self.feature_extractor
snake_case__ : Any = False
@classmethod
def __lowerCamelCase ( cls :Union[str, Any] ,__lowercase :Optional[Any] ,**__lowercase :List[str] ):
try:
return super().from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
except OSError:
warnings.warn(
F"""Loading a tokenizer inside {cls.__name__} from a config that does not"""
''' include a `tokenizer_class` attribute is deprecated and will be '''
'''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`'''
''' attribute to either your `config.json` or `tokenizer_config.json` '''
'''file to suppress this warning: ''' ,__SCREAMING_SNAKE_CASE ,)
snake_case__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
snake_case__ : int = WavaVecaCTCTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
return cls(feature_extractor=__SCREAMING_SNAKE_CASE ,tokenizer=__SCREAMING_SNAKE_CASE )
def __call__( self :List[Any] ,*__lowercase :List[str] ,**__lowercase :Optional[int] ):
if self._in_target_context_manager:
return self.current_processor(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
snake_case__ : str = kwargs.pop('''raw_speech''' )
else:
snake_case__ : Optional[int] = kwargs.pop('''audio''' ,__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = kwargs.pop('''sampling_rate''' ,__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = kwargs.pop('''text''' ,__SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > 0:
snake_case__ : int = args[0]
snake_case__ : str = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
snake_case__ : str = self.feature_extractor(__SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE ,sampling_rate=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
if text is not None:
snake_case__ : Tuple = self.tokenizer(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case__ : int = encodings['''input_ids''']
return inputs
def __lowerCamelCase ( self :Union[str, Any] ,*__lowercase :List[str] ,**__lowercase :Optional[Any] ):
if self._in_target_context_manager:
return self.current_processor.pad(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
snake_case__ : str = kwargs.pop('''input_features''' ,__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = kwargs.pop('''labels''' ,__SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > 0:
snake_case__ : Optional[int] = args[0]
snake_case__ : Dict = args[1:]
if input_features is not None:
snake_case__ : int = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
if labels is not None:
snake_case__ : Optional[Any] = self.tokenizer.pad(__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
snake_case__ : Optional[Any] = labels['''input_ids''']
return input_features
def __lowerCamelCase ( self :Dict ,*__lowercase :List[str] ,**__lowercase :Optional[int] ):
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :Optional[int] ,*__lowercase :Optional[int] ,**__lowercase :int ):
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE )
@contextmanager
def __lowerCamelCase ( self :Optional[Any] ):
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
snake_case__ : Optional[int] = True
snake_case__ : Optional[Any] = self.tokenizer
yield
snake_case__ : Optional[int] = self.feature_extractor
snake_case__ : Any = False
| 252 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
# vision encoder
if "img_encoder.pos_embed" in name:
__lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
__lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
__lowerCAmelCase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
__lowerCAmelCase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
__lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
__lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
__lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__lowerCAmelCase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__lowerCAmelCase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
__lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
__lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Dict:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
__lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase = int(key_split[3] )
__lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[
dim : dim * 2, :
]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
else:
__lowerCAmelCase = rename_key(lowercase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
__lowerCAmelCase = val.squeeze_()
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]:
__lowerCAmelCase = GroupViTConfig()
__lowerCAmelCase = GroupViTModel(lowercase ).eval()
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
__lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0)
# verify result
__lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" )
with torch.no_grad():
__lowerCAmelCase = model(**lowercase )
if model_name == "groupvit-gcc-yfcc":
__lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
__lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 )
processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
print("""Successfully saved processor and model to""" , lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowercase , organization="""nielsr""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : int = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
_a : List[str] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
_a: List[Any] = 6_5521
def __lowerCAmelCase ( A ):
UpperCAmelCase_ = 1
UpperCAmelCase_ = 0
for plain_chr in plain_text:
UpperCAmelCase_ = (a + ord(A )) % MOD_ADLER
UpperCAmelCase_ = (b + a) % MOD_ADLER
return (b << 16) | a | 162 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_a : Tuple = logging.get_logger(__name__)
_a : Optional[int] = ["""model.decoder.embed_positions.weights"""]
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
if "emb" in name:
__lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
__lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
__lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
__lowerCAmelCase = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
__lowerCAmelCase = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
__lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
__lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
__lowerCAmelCase = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]:
__lowerCAmelCase = list(state_dict.keys() )
__lowerCAmelCase = {}
for key in keys:
__lowerCAmelCase = state_dict.pop(lowercase )
__lowerCAmelCase = rename_keys(lowercase )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCAmelCase = val[:hidden_size, :]
__lowerCAmelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCAmelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCAmelCase = val
else:
__lowerCAmelCase = val
return state_dict, enc_dec_proj_state_dict
def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
__lowerCAmelCase = 1024
__lowerCAmelCase = 24
__lowerCAmelCase = 16
elif checkpoint == "medium":
__lowerCAmelCase = 1536
__lowerCAmelCase = 48
__lowerCAmelCase = 24
elif checkpoint == "large":
__lowerCAmelCase = 2048
__lowerCAmelCase = 48
__lowerCAmelCase = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
__lowerCAmelCase = MusicgenDecoderConfig(
hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , )
return config
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]:
__lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase )
__lowerCAmelCase = decoder_config_from_checkpoint(lowercase )
__lowerCAmelCase = fairseq_model.lm.state_dict()
__lowerCAmelCase , __lowerCAmelCase = rename_state_dict(
lowercase , hidden_size=decoder_config.hidden_size )
__lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" )
__lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
__lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase )
if len(lowercase ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
__lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase )
# check we can do a forward pass
__lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCAmelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
__lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" )
__lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
__lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase )
# set the appropriate bos/pad token ids
__lowerCAmelCase = 2048
__lowerCAmelCase = 2048
# set other default generation config params
__lowerCAmelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCAmelCase = True
__lowerCAmelCase = 3.0
if pytorch_dump_folder is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase )
processor.push_to_hub(lowercase )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
_a : List[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
from collections import defaultdict
from math import ceil, sqrt
def _lowercase (SCREAMING_SNAKE_CASE = 100_0000 , SCREAMING_SNAKE_CASE = 10 ):
'''simple docstring'''
__A : Dict = defaultdict(SCREAMING_SNAKE_CASE )
for outer_width in range(3 , (t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
__A : Dict = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 )
else:
__A : Tuple = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(SCREAMING_SNAKE_CASE , outer_width - 1 , 2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 111 |
'''simple docstring'''
from collections import deque
def _lowerCAmelCase ( lowercase ) -> Dict:
__lowerCAmelCase = len(lowercase )
__lowerCAmelCase = deque()
__lowerCAmelCase = [False for _ in range(lowercase )]
__lowerCAmelCase = [-1 for _ in range(lowercase )]
__lowerCAmelCase = index_of[:]
def strong_connect(lowercase , lowercase , lowercase ):
__lowerCAmelCase = index # the number when this node is seen
__lowerCAmelCase = index # lowest rank node reachable from here
index += 1
stack.append(lowercase )
__lowerCAmelCase = True
for w in g[v]:
if index_of[w] == -1:
__lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase )
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
__lowerCAmelCase = []
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
while w != v:
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
components.append(lowercase )
return index
__lowerCAmelCase = []
for v in range(lowercase ):
if index_of[v] == -1:
strong_connect(lowercase , 0 , lowercase )
return components
def _lowerCAmelCase ( lowercase , lowercase ) -> str:
__lowerCAmelCase = [[] for _ in range(lowercase )]
for u, v in edges:
g[u].append(lowercase )
return g
if __name__ == "__main__":
# Test
_a : Any = 7
_a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_a : Optional[Any] = [(u, v) for u, v in zip(source, target)]
_a : Optional[int] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 689 | 0 |
'''simple docstring'''
def __UpperCAmelCase (lowercase__ ) -> int:
'''simple docstring'''
a_ = len(lowercase__ )
a_ = len(matrix[0] )
a_ = min(lowercase__ ,lowercase__ )
for row in range(lowercase__ ):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 ,lowercase__ ):
a_ = matrix[col][row] / matrix[row][row]
for i in range(lowercase__ ,lowercase__ ):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
a_ = True
for i in range(row + 1 ,lowercase__ ):
if matrix[i][row] != 0:
a_ , a_ = matrix[i], matrix[row]
a_ = False
break
if reduce:
rank -= 1
for i in range(lowercase__ ):
a_ = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 685 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _lowerCAmelCase ( ) -> Union[str, Any]:
__lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" )
__lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" )
# Register commands
EnvironmentCommand.register_subcommand(lowercase )
# Let's go
__lowerCAmelCase = parser.parse_args()
if not hasattr(lowercase , """func""" ):
parser.print_help()
exit(1 )
# Run
__lowerCAmelCase = args.func(lowercase )
service.run()
if __name__ == "__main__":
main()
| 689 | 0 |
'''simple docstring'''
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase__ = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ):
__lowerCamelCase: Union[str, Any] = DebertaVaTokenizer
__lowerCamelCase: Optional[Any] = DebertaVaTokenizerFast
__lowerCamelCase: Optional[int] = True
__lowerCamelCase: Optional[int] = True
def lowerCAmelCase__ ( self : List[str] ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase_ : Optional[Any] = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , unk_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase__ ( self : Any , a : Tuple ):
'''simple docstring'''
lowercase_ : List[str] = "this is a test"
lowercase_ : List[Any] = "this is a test"
return input_text, output_text
def lowerCAmelCase__ ( self : Dict ):
'''simple docstring'''
lowercase_ : Union[str, Any] = "<pad>"
lowercase_ : List[Any] = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase_ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "[PAD]" )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 3_0_0_0_1 )
def lowerCAmelCase__ ( self : Any ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 )
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
lowercase_ : Dict = " \tHeLLo!how \n Are yoU? "
lowercase_ : Any = ["▁hello", "!", "how", "▁are", "▁you", "?"]
# fmt: on
lowercase_ : Union[str, Any] = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : str = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def lowerCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def lowerCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCAmelCase__ ( self : Dict ):
'''simple docstring'''
lowercase_ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowercase_ : int = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
lowercase_ : int = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Dict = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase_ : Any = "I was born in 92000, and this is falsé."
lowercase_ : Tuple = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
lowercase_ : int = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Any = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase_ : List[str] = "I was born in 92000, and this is falsé."
lowercase_ : List[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
lowercase_ : List[str] = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Any = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
lowercase_ : List[str] = "I was born in 92000, and this is falsé."
lowercase_ : List[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
lowercase_ : Optional[int] = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[int] ):
'''simple docstring'''
lowercase_ : int = " \tHeLLo!how \n Are yoU? "
lowercase_ : List[str] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"]
# fmt: on
lowercase_ : int = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : int = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , split_by_punct=__SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : str ):
'''simple docstring'''
lowercase_ : Optional[int] = self.get_tokenizer()
lowercase_ : str = self.get_rust_tokenizer()
lowercase_ : List[str] = "I was born in 92000, and this is falsé."
lowercase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
lowercase_ : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
lowercase_ : str = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = self.get_rust_tokenizer()
lowercase_ : List[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE )
lowercase_ : int = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase_ : Dict = "This is a test"
lowercase_ : Dict = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9]
lowercase_ : Tuple = ["▁", "T", "his", "▁is", "▁a", "▁test"]
lowercase_ : Union[str, Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"]
lowercase_ : Union[str, Any] = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
lowercase_ : int = DebertaVaTokenizerFast(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : int = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[int] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Dict = rust_tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# fmt: off
lowercase_ : List[str] = "I was born in 92000, and this is falsé."
lowercase_ : Tuple = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9]
lowercase_ : Optional[int] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ]
lowercase_ : Tuple = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
lowercase_ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : List[str] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Union[str, Any] = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Optional[Any] = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = rust_tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( self : Tuple ):
'''simple docstring'''
lowercase_ : Optional[Any] = DebertaVaTokenizer(__SCREAMING_SNAKE_CASE )
lowercase_ : str = tokenizer.encode("sequence builders" )
lowercase_ : Union[str, Any] = tokenizer.encode("multi-sequence build" )
lowercase_ : int = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
lowercase_ : str = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __SCREAMING_SNAKE_CASE )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __SCREAMING_SNAKE_CASE , )
@slow
def lowerCAmelCase__ ( self : Optional[Any] ):
'''simple docstring'''
lowercase_ : List[Any] = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
| 620 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_a : List[Any] = logging.get_logger(__name__)
_a : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
_a : Any = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
for attribute in key.split(""".""" ):
__lowerCAmelCase = getattr(lowercase , lowercase )
if weight_type is not None:
__lowerCAmelCase = getattr(lowercase , lowercase ).shape
else:
__lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowerCAmelCase = value
elif weight_type == "weight_g":
__lowerCAmelCase = value
elif weight_type == "weight_v":
__lowerCAmelCase = value
elif weight_type == "bias":
__lowerCAmelCase = value
else:
__lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
__lowerCAmelCase = []
__lowerCAmelCase = fairseq_model.state_dict()
__lowerCAmelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , )
__lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
__lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
__lowerCAmelCase = True
if "*" in mapped_key:
__lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2]
__lowerCAmelCase = mapped_key.replace("""*""" , lowercase )
if "weight_g" in name:
__lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
__lowerCAmelCase = """weight_v"""
elif "bias" in name:
__lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCAmelCase = """weight"""
else:
__lowerCAmelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
__lowerCAmelCase = name.split(""".""" )
__lowerCAmelCase = int(items[0] )
__lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict:
if config_path is not None:
__lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase )
else:
__lowerCAmelCase = UniSpeechSatConfig()
__lowerCAmelCase = """"""
if is_finetuned:
__lowerCAmelCase = UniSpeechSatForCTC(lowercase )
else:
__lowerCAmelCase = UniSpeechSatForPreTraining(lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
__lowerCAmelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_a : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
_a : Union[str, Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 689 | 0 |
'''simple docstring'''
from collections import deque
from .hash_table import HashTable
class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
def __init__( self : str , *lowercase__ : Dict , **lowercase__ : int ):
'''simple docstring'''
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowercase_ ( self : str , lowercase__ : Optional[Any] , lowercase__ : Any ):
'''simple docstring'''
a_ : Optional[int] = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__SCREAMING_SNAKE_CASE )
a_ : Optional[int] = self.values[key]
def lowercase_ ( self : str ):
'''simple docstring'''
return (
sum(self.charge_factor - len(__SCREAMING_SNAKE_CASE ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def lowercase_ ( self : Optional[Any] , lowercase__ : List[Any] , lowercase__ : int=None ):
'''simple docstring'''
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__SCREAMING_SNAKE_CASE ) == 0
):
return key
return super()._collision_resolution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 442 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
_a : str = """
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
"""
_a : Dict = """
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{'spearmanr': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric(\"spearmanr\")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results['spearmanr'])
-0.7
>>> print(round(results['spearmanr_pvalue'], 2))
0.19
"""
_a : List[str] = r"""\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ),reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = spearmanr(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 689 | 0 |
def UpperCamelCase ( __lowerCamelCase : Tuple , __lowerCamelCase : int ):
snake_case : List[str] = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
snake_case : str = n - k
# Calculate C(n,k)
for i in range(__lowerCamelCase ):
result *= n - i
result //= i + 1
return result
def UpperCamelCase ( __lowerCamelCase : int ):
return binomial_coefficient(2 * node_count , __lowerCamelCase ) // (node_count + 1)
def UpperCamelCase ( __lowerCamelCase : Tuple ):
if n < 0:
raise ValueError("factorial() not defined for negative values" )
snake_case : str = 1
for i in range(1 , n + 1 ):
result *= i
return result
def UpperCamelCase ( __lowerCamelCase : int ):
return catalan_number(__lowerCamelCase ) * factorial(__lowerCamelCase )
if __name__ == "__main__":
__lowerCamelCase = int(input("""Enter the number of nodes: """).strip() or 0)
if node_count <= 0:
raise ValueError("""We need some nodes to work with.""")
print(
F'Given {node_count} nodes, there are {binary_tree_count(node_count)} '
F'binary trees and {catalan_number(node_count)} binary search trees.'
)
| 204 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=lowerCAmelCase_ ):
a : List[str] =["""onnx"""]
def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(self,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
@classmethod
def lowerCamelCase__ ( cls,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
requires_backends(cls,["""onnx"""] )
| 689 | 0 |
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE( self :str ) ->str:
torch.manual_seed(0 )
lowercase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , )
return model
def SCREAMING_SNAKE_CASE( self :Tuple ) ->str:
lowercase = self.dummy_uncond_unet
lowercase = ScoreSdeVeScheduler()
lowercase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
sde_ve.to(__SCREAMING_SNAKE_CASE )
sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowercase = torch.manual_seed(0 )
lowercase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__SCREAMING_SNAKE_CASE ).images
lowercase = torch.manual_seed(0 )
lowercase = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE )[
0
]
lowercase = image[0, -3:, -3:, -1]
lowercase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE( self :int ) ->Tuple:
lowercase = "google/ncsnpp-church-256"
lowercase = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
lowercase = ScoreSdeVeScheduler.from_pretrained(__SCREAMING_SNAKE_CASE )
lowercase = ScoreSdeVePipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
sde_ve.to(__SCREAMING_SNAKE_CASE )
sde_ve.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowercase = torch.manual_seed(0 )
lowercase = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=__SCREAMING_SNAKE_CASE ).images
lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
lowercase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 441 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
_a : int = logging.get_logger(__name__)
_a : Optional[int] = {
"""EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""",
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : List[str] ="""gptj"""
a : Optional[int] ={
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self,__SCREAMING_SNAKE_CASE=5_04_00,__SCREAMING_SNAKE_CASE=20_48,__SCREAMING_SNAKE_CASE=40_96,__SCREAMING_SNAKE_CASE=28,__SCREAMING_SNAKE_CASE=16,__SCREAMING_SNAKE_CASE=64,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="gelu_new",__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=0.0,__SCREAMING_SNAKE_CASE=1e-5,__SCREAMING_SNAKE_CASE=0.02,__SCREAMING_SNAKE_CASE=True,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=5_02_56,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = vocab_size
__lowerCAmelCase = n_positions
__lowerCAmelCase = n_embd
__lowerCAmelCase = n_layer
__lowerCAmelCase = n_head
__lowerCAmelCase = n_inner
__lowerCAmelCase = rotary_dim
__lowerCAmelCase = activation_function
__lowerCAmelCase = resid_pdrop
__lowerCAmelCase = embd_pdrop
__lowerCAmelCase = attn_pdrop
__lowerCAmelCase = layer_norm_epsilon
__lowerCAmelCase = initializer_range
__lowerCAmelCase = use_cache
__lowerCAmelCase = bos_token_id
__lowerCAmelCase = eos_token_id
super().__init__(
bos_token_id=__SCREAMING_SNAKE_CASE,eos_token_id=__SCREAMING_SNAKE_CASE,tie_word_embeddings=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "default",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False,):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE,task=__SCREAMING_SNAKE_CASE,patching_specs=__SCREAMING_SNAKE_CASE,use_past=__SCREAMING_SNAKE_CASE )
if not getattr(self._config,"""pad_token_id""",__SCREAMING_SNAKE_CASE ):
# TODO: how to do that better?
__lowerCAmelCase = 0
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(__SCREAMING_SNAKE_CASE,direction="""inputs""" )
__lowerCAmelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__lowerCAmelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_layer
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self._config.n_head
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = -1,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,):
'''simple docstring'''
__lowerCAmelCase = super(__SCREAMING_SNAKE_CASE,self ).generate_dummy_inputs(
__SCREAMING_SNAKE_CASE,batch_size=__SCREAMING_SNAKE_CASE,seq_length=__SCREAMING_SNAKE_CASE,is_pair=__SCREAMING_SNAKE_CASE,framework=__SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
__lowerCAmelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCAmelCase , __lowerCAmelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__lowerCAmelCase = seqlen + 2
__lowerCAmelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCAmelCase = [
(torch.zeros(__SCREAMING_SNAKE_CASE ), torch.zeros(__SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
__lowerCAmelCase = common_inputs["""attention_mask"""]
if self.use_past:
__lowerCAmelCase = ordered_inputs["""attention_mask"""].dtype
__lowerCAmelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,dtype=__SCREAMING_SNAKE_CASE )],dim=1 )
return ordered_inputs
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
return 13
| 689 | 0 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = ["""model.decoder.embed_positions.weights"""]
def __UpperCamelCase ( lowercase_ : Optional[int] ):
"""simple docstring"""
if "emb" in name:
a_ = name.replace('emb' , 'model.decoder.embed_tokens' )
if "transformer" in name:
a_ = name.replace('transformer' , 'model.decoder' )
if "cross_attention" in name:
a_ = name.replace('cross_attention' , 'encoder_attn' )
if "linear1" in name:
a_ = name.replace('linear1' , 'fc1' )
if "linear2" in name:
a_ = name.replace('linear2' , 'fc2' )
if "norm1" in name:
a_ = name.replace('norm1' , 'self_attn_layer_norm' )
if "norm_cross" in name:
a_ = name.replace('norm_cross' , 'encoder_attn_layer_norm' )
if "norm2" in name:
a_ = name.replace('norm2' , 'final_layer_norm' )
if "out_norm" in name:
a_ = name.replace('out_norm' , 'model.decoder.layer_norm' )
if "linears" in name:
a_ = name.replace('linears' , 'lm_heads' )
if "condition_provider.conditioners.description.output_proj" in name:
a_ = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' )
return name
def __UpperCamelCase ( lowercase_ : Tuple , lowercase_ : List[Any] ):
"""simple docstring"""
a_ = list(state_dict.keys() )
a_ = {}
for key in keys:
a_ = state_dict.pop(lowercase_ )
a_ = rename_keys(lowercase_ )
if "in_proj_weight" in key:
# split fused qkv proj
a_ = val[:hidden_size, :]
a_ = val[hidden_size : 2 * hidden_size, :]
a_ = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
a_ = val
else:
a_ = val
return state_dict, enc_dec_proj_state_dict
def __UpperCamelCase ( lowercase_ : Any ):
"""simple docstring"""
if checkpoint == "small":
# default config values
a_ = 1_024
a_ = 24
a_ = 16
elif checkpoint == "medium":
a_ = 1_536
a_ = 48
a_ = 24
elif checkpoint == "large":
a_ = 2_048
a_ = 48
a_ = 32
else:
raise ValueError(F'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
a_ = MusicgenDecoderConfig(
hidden_size=lowercase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase_ , num_attention_heads=lowercase_ , )
return config
@torch.no_grad()
def __UpperCamelCase ( lowercase_ : Any , lowercase_ : List[Any]=None , lowercase_ : str=None , lowercase_ : int="cpu" ):
"""simple docstring"""
a_ = MusicGen.get_pretrained(lowercase_ , device=lowercase_ )
a_ = decoder_config_from_checkpoint(lowercase_ )
a_ = fairseq_model.lm.state_dict()
a_ , a_ = rename_state_dict(
lowercase_ , hidden_size=decoder_config.hidden_size )
a_ = TaEncoderModel.from_pretrained('t5-base' )
a_ = EncodecModel.from_pretrained('facebook/encodec_32khz' )
a_ = MusicgenForCausalLM(lowercase_ ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
a_ , a_ = decoder.load_state_dict(lowercase_ , strict=lowercase_ )
for key in missing_keys.copy():
if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase_ )
if len(lowercase_ ) > 0:
raise ValueError(F'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase_ ) > 0:
raise ValueError(F'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
a_ = MusicgenForConditionalGeneration(text_encoder=lowercase_ , audio_encoder=lowercase_ , decoder=lowercase_ )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase_ )
# check we can do a forward pass
a_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
a_ = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
a_ = model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ).logits
if logits.shape != (8, 1, 2_048):
raise ValueError('Incorrect shape for logits' )
# now construct the processor
a_ = AutoTokenizer.from_pretrained('t5-base' )
a_ = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' )
a_ = MusicgenProcessor(feature_extractor=lowercase_ , tokenizer=lowercase_ )
# set the appropriate bos/pad token ids
a_ = 2_048
a_ = 2_048
# set other default generation config params
a_ = int(30 * audio_encoder.config.frame_rate )
a_ = True
a_ = 3.0
if pytorch_dump_folder is not None:
Path(lowercase_ ).mkdir(exist_ok=lowercase_ )
logger.info(F'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase_ )
processor.save_pretrained(lowercase_ )
if repo_id:
logger.info(F'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase_ )
processor.push_to_hub(lowercase_ )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
__lowerCAmelCase = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 536 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase = 5000_0000 ) -> int:
__lowerCAmelCase = set()
__lowerCAmelCase = int((limit - 24) ** (1 / 2) )
__lowerCAmelCase = set(range(3 , prime_square_limit + 1 , 2 ) )
primes.add(2 )
for p in range(3 , prime_square_limit + 1 , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , prime_square_limit + 1 , lowercase ) ) )
for primea in primes:
__lowerCAmelCase = primea * primea
for primea in primes:
__lowerCAmelCase = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
__lowerCAmelCase = primea * primea * primea * primea
__lowerCAmelCase = square + cube + tetr
if total >= limit:
break
ret.add(lowercase )
return len(lowercase )
if __name__ == "__main__":
print(f'{solution() = }')
| 689 | 0 |
"""simple docstring"""
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 636 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
TextToVideoSDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ):
a : Optional[int] =TextToVideoSDPipeline
a : Optional[int] =TEXT_TO_IMAGE_PARAMS
a : Any =TEXT_TO_IMAGE_BATCH_PARAMS
# No `output_type`.
a : Union[str, Any] =frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64),layers_per_block=2,sample_size=32,in_channels=4,out_channels=4,down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D"""),up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D"""),cross_attention_dim=32,attention_head_dim=4,)
__lowerCAmelCase = DDIMScheduler(
beta_start=0.0_0085,beta_end=0.012,beta_schedule="""scaled_linear""",clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,)
torch.manual_seed(0 )
__lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64],in_channels=3,out_channels=3,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],latent_channels=4,sample_size=1_28,)
torch.manual_seed(0 )
__lowerCAmelCase = CLIPTextConfig(
bos_token_id=0,eos_token_id=2,hidden_size=32,intermediate_size=37,layer_norm_eps=1e-05,num_attention_heads=4,num_hidden_layers=5,pad_token_id=1,vocab_size=10_00,hidden_act="""gelu""",projection_dim=5_12,)
__lowerCAmelCase = CLIPTextModel(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
__lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ):
'''simple docstring'''
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
__lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
__lowerCAmelCase = self.get_dummy_components()
__lowerCAmelCase = TextToVideoSDPipeline(**__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sd_pipe.to(__SCREAMING_SNAKE_CASE )
sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = """np"""
__lowerCAmelCase = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames
__lowerCAmelCase = frames[0][-3:, -3:, -1]
assert frames[0].shape == (64, 64, 3)
__lowerCAmelCase = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=3e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available(),reason="""XFormers attention is only available with CUDA and `xformers` installed""",)
def lowerCamelCase__ ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE,expected_max_diff=1e-2 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
pass
def lowerCamelCase__ ( self ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=25,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" )
__lowerCAmelCase = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" )
__lowerCAmelCase = pipe.to("""cuda""" )
__lowerCAmelCase = """Spiderman is surfing"""
__lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 )
__lowerCAmelCase = pipe(__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=2,output_type="""pt""" ).frames
__lowerCAmelCase = video_frames.cpu().numpy()
assert np.abs(expected_video - video ).mean() < 5e-2
| 689 | 0 |
"""simple docstring"""
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
__snake_case = logging.get_logger(__name__)
class _lowerCAmelCase :
__UpperCAmelCase : str
__UpperCAmelCase : str = None
@staticmethod
def lowerCamelCase ( ) -> str:
'''simple docstring'''
raise NotImplementedError
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError
def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]:
'''simple docstring'''
raise NotImplementedError
def lowerCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
if not self.is_available():
raise RuntimeError(
F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.' )
@classmethod
def lowerCamelCase ( cls ) -> List[Any]:
'''simple docstring'''
return F'`pip install {cls.pip_package or cls.name}`'
class _lowerCAmelCase ( lowerCAmelCase_ ):
__UpperCAmelCase : Optional[Any] = """optuna"""
@staticmethod
def lowerCamelCase ( ) -> List[str]:
'''simple docstring'''
return is_optuna_available()
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Any:
'''simple docstring'''
return run_hp_search_optuna(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Tuple:
'''simple docstring'''
return default_hp_space_optuna(__SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( lowerCAmelCase_ ):
__UpperCAmelCase : List[str] = """ray"""
__UpperCAmelCase : List[str] = """'ray[tune]'"""
@staticmethod
def lowerCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
return is_ray_available()
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> str:
'''simple docstring'''
return run_hp_search_ray(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[int]:
'''simple docstring'''
return default_hp_space_ray(__SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( lowerCAmelCase_ ):
__UpperCAmelCase : Optional[int] = """sigopt"""
@staticmethod
def lowerCamelCase ( ) -> Optional[int]:
'''simple docstring'''
return is_sigopt_available()
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> int:
'''simple docstring'''
return run_hp_search_sigopt(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]:
'''simple docstring'''
return default_hp_space_sigopt(__SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( lowerCAmelCase_ ):
__UpperCAmelCase : Dict = """wandb"""
@staticmethod
def lowerCamelCase ( ) -> str:
'''simple docstring'''
return is_wandb_available()
def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Any:
'''simple docstring'''
return run_hp_search_wandb(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def lowerCamelCase ( self , UpperCamelCase__ ) -> str:
'''simple docstring'''
return default_hp_space_wandb(__SCREAMING_SNAKE_CASE )
__snake_case = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def __lowerCAmelCase ( ) -> str:
"""simple docstring"""
snake_case : List[str] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(lowercase ) > 0:
snake_case : Optional[Any] = available_backends[0].name
if len(lowercase ) > 1:
logger.info(
F'{len(lowercase )} hyperparameter search backends available. Using {name} as the default.' )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
F' - To install {backend.name} run {backend.pip_install()}'
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 178 |
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def _lowerCAmelCase ( lowercase ) -> Optional[int]:
if not is_accelerate_available():
return method
__lowerCAmelCase = version.parse(accelerate.__version__ ).base_version
if version.parse(lowercase ) < version.parse("""0.17.0""" ):
return method
def wrapper(self , *lowercase , **lowercase ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *lowercase , **lowercase )
return wrapper
| 689 | 0 |
def _lowerCAmelCase ( __lowerCAmelCase = 1000000 ) -> int:
"""simple docstring"""
snake_case__ : str = set(range(3 , __lowerCAmelCase , 2 ) )
primes.add(2 )
for p in range(3 , __lowerCAmelCase , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , __lowerCAmelCase , __lowerCAmelCase ) ) )
snake_case__ : Optional[Any] = [float(__lowerCAmelCase ) for n in range(limit + 1 )]
for p in primes:
for n in range(__lowerCAmelCase , limit + 1 , __lowerCAmelCase ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 252 |
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]:
# load base model
__lowerCAmelCase = StableDiffusionPipeline.from_pretrained(lowercase , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
__lowerCAmelCase = load_file(lowercase )
__lowerCAmelCase = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.text_encoder
else:
__lowerCAmelCase = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" )
__lowerCAmelCase = pipeline.unet
# find the target layer
__lowerCAmelCase = layer_infos.pop(0 )
while len(lowercase ) > -1:
try:
__lowerCAmelCase = curr_layer.__getattr__(lowercase )
if len(lowercase ) > 0:
__lowerCAmelCase = layer_infos.pop(0 )
elif len(lowercase ) == 0:
break
except Exception:
if len(lowercase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
__lowerCAmelCase = layer_infos.pop(0 )
__lowerCAmelCase = []
if "lora_down" in key:
pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) )
pair_keys.append(lowercase )
else:
pair_keys.append(lowercase )
pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
__lowerCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase ).unsqueeze(2 ).unsqueeze(3 )
else:
__lowerCAmelCase = state_dict[pair_keys[0]].to(torch.floataa )
__lowerCAmelCase = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(lowercase , lowercase )
# update visited list
for item in pair_keys:
visited.append(lowercase )
return pipeline
if __name__ == "__main__":
_a : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.75, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
_a : Optional[int] = parser.parse_args()
_a : Dict = args.base_model_path
_a : Optional[Any] = args.checkpoint_path
_a : Union[str, Any] = args.dump_path
_a : Optional[int] = args.lora_prefix_unet
_a : int = args.lora_prefix_text_encoder
_a : str = args.alpha
_a : Any = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
_a : Tuple = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 689 | 0 |
def __lowerCAmelCase ( A ):
UpperCAmelCase_ = int(A )
if n_element < 1:
UpperCAmelCase_ = ValueError("a should be a positive number" )
raise my_error
UpperCAmelCase_ = [1]
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = (0, 0, 0)
UpperCAmelCase_ = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
_a: Optional[Any] = input("""Enter the last number (nth term) of the Hamming Number Series: """)
print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""")
_a: int = hamming(int(n))
print("""-----------------------------------------------------""")
print(F'The list with nth numbers is: {hamming_numbers}')
print("""-----------------------------------------------------""") | 162 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def _lowerCAmelCase ( lowercase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(""" """ , """""" ).lower() ).values() ) < 2
def _lowerCAmelCase ( lowercase = "" ) -> bool:
if len(lowercase ) == 0:
return True
__lowerCAmelCase = input_str.replace(""" """ , """""" ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
__lowerCAmelCase = {}
for character in lower_case_input_str:
__lowerCAmelCase = character_freq_dict.get(lowercase , 0 ) + 1
__lowerCAmelCase = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def _lowerCAmelCase ( lowercase = "" ) -> None:
print("""\nFor string = """ , lowercase , """:""" )
print(
"""> can_string_be_rearranged_as_palindrome_counter()""" , """\tans =""" , can_string_be_rearranged_as_palindrome_counter(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome_counter(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
print(
"""> can_string_be_rearranged_as_palindrome()""" , """\tans =""" , can_string_be_rearranged_as_palindrome(lowercase ) , """\ttime =""" , timeit(
"""z.can_string_be_rearranged_as_palindrome(z.check_str)""" , setup="""import __main__ as z""" , ) , """seconds""" , )
if __name__ == "__main__":
_a : int = input(
"""Enter string to determine if it can be rearranged as a palindrome or not: """
).strip()
benchmark(check_str)
_a : Optional[int] = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 689 | 0 |
'''simple docstring'''
from math import isclose, sqrt
def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__A : Tuple = point_y / 4 / point_x
__A : Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
__A : Union[str, Any] = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
__A : Union[str, Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
__A : int = outgoing_gradient**2 + 4
__A : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
__A : Optional[int] = (point_y - outgoing_gradient * point_x) ** 2 - 100
__A : Dict = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
__A : List[str] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
__A : Optional[int] = x_minus if isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else x_plus
__A : Any = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def _lowercase (SCREAMING_SNAKE_CASE = 1.4 , SCREAMING_SNAKE_CASE = -9.6 ):
'''simple docstring'''
__A : Union[str, Any] = 0
__A : Any = first_x_coord
__A : List[str] = first_y_coord
__A : Optional[int] = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
__A ,__A ,__A : Dict = next_point(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F"""{solution() = }""")
| 111 |
'''simple docstring'''
import argparse
import json
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
VideoMAEConfig,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEImageProcessor,
)
def _lowerCAmelCase ( lowercase ) -> List[Any]:
__lowerCAmelCase = VideoMAEConfig()
set_architecture_configs(lowercase , lowercase )
if "finetuned" not in model_name:
__lowerCAmelCase = False
if "finetuned" in model_name:
__lowerCAmelCase = """huggingface/label-files"""
if "kinetics" in model_name:
__lowerCAmelCase = 400
__lowerCAmelCase = """kinetics400-id2label.json"""
elif "ssv2" in model_name:
__lowerCAmelCase = 174
__lowerCAmelCase = """something-something-v2-id2label.json"""
else:
raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" )
__lowerCAmelCase = json.load(open(hf_hub_download(lowercase , lowercase , repo_type="""dataset""" ) , """r""" ) )
__lowerCAmelCase = {int(lowercase ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
return config
def _lowerCAmelCase ( lowercase , lowercase ) -> Any:
if "small" in model_name:
__lowerCAmelCase = 384
__lowerCAmelCase = 1536
__lowerCAmelCase = 12
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 3
__lowerCAmelCase = 192
__lowerCAmelCase = 768
elif "large" in model_name:
__lowerCAmelCase = 1024
__lowerCAmelCase = 4096
__lowerCAmelCase = 24
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 512
__lowerCAmelCase = 2048
elif "huge" in model_name:
__lowerCAmelCase = 1280
__lowerCAmelCase = 5120
__lowerCAmelCase = 32
__lowerCAmelCase = 16
__lowerCAmelCase = 12
__lowerCAmelCase = 8
__lowerCAmelCase = 640
__lowerCAmelCase = 2560
elif "base" not in model_name:
raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" )
def _lowerCAmelCase ( lowercase ) -> List[str]:
if "encoder." in name:
__lowerCAmelCase = name.replace("""encoder.""" , """""" )
if "cls_token" in name:
__lowerCAmelCase = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" )
if "decoder_pos_embed" in name:
__lowerCAmelCase = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" )
if "decoder.blocks" in name:
__lowerCAmelCase = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
__lowerCAmelCase = name.replace("""blocks""" , """videomae.encoder.layer""" )
if "attn.proj" in name:
__lowerCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "bias" not in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.self""" )
if "attn" in name:
__lowerCAmelCase = name.replace("""attn""" , """attention.attention""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
__lowerCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
__lowerCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
__lowerCAmelCase = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
__lowerCAmelCase = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
__lowerCAmelCase = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.weight""" , """videomae.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name and "fc" not in name:
__lowerCAmelCase = name.replace("""norm.bias""" , """videomae.layernorm.bias""" )
if "head" in name and "decoder" not in name:
__lowerCAmelCase = name.replace("""head""" , """classifier""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if key.startswith("""encoder.""" ):
__lowerCAmelCase = key.replace("""encoder.""" , """""" )
if "qkv" in key:
__lowerCAmelCase = key.split(""".""" )
if key.startswith("""decoder.blocks""" ):
__lowerCAmelCase = config.decoder_hidden_size
__lowerCAmelCase = int(key_split[2] )
__lowerCAmelCase = """decoder.decoder_layers."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = config.hidden_size
__lowerCAmelCase = int(key_split[1] )
__lowerCAmelCase = """videomae.encoder.layer."""
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
__lowerCAmelCase = np.load(lowercase )
return list(lowercase )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = get_videomae_config(lowercase )
if "finetuned" in model_name:
__lowerCAmelCase = VideoMAEForVideoClassification(lowercase )
else:
__lowerCAmelCase = VideoMAEForPreTraining(lowercase )
# download original checkpoint, hosted on Google Drive
__lowerCAmelCase = """pytorch_model.bin"""
gdown.cached_download(lowercase , lowercase , quiet=lowercase )
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )
if "model" in files:
__lowerCAmelCase = files["""model"""]
else:
__lowerCAmelCase = files["""module"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
model.load_state_dict(lowercase )
model.eval()
# verify model on basic input
__lowerCAmelCase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
__lowerCAmelCase = prepare_video()
__lowerCAmelCase = image_processor(lowercase , return_tensors="""pt""" )
if "finetuned" not in model_name:
__lowerCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" )
__lowerCAmelCase = torch.load(lowercase )
__lowerCAmelCase = model(**lowercase )
__lowerCAmelCase = outputs.logits
__lowerCAmelCase = [
"""videomae-small-finetuned-kinetics""",
"""videomae-small-finetuned-ssv2""",
# Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600)
"""videomae-base-short""",
"""videomae-base-short-finetuned-kinetics""",
"""videomae-base""",
"""videomae-base-finetuned-kinetics""",
"""videomae-large""",
"""videomae-large-finetuned-kinetics""",
"""videomae-huge-finetuned-kinetics""",
# Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400)
"""videomae-base-short-ssv2""",
"""videomae-base-short-finetuned-ssv2""",
"""videomae-base-ssv2""",
"""videomae-base-finetuned-ssv2""",
]
# NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5]
if model_name == "videomae-small-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([-0.92_91, -0.40_61, -0.93_07] )
elif model_name == "videomae-small-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.26_71, -0.46_89, -0.82_35] )
elif model_name == "videomae-base":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] )
elif model_name == "videomae-base-short":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] )
# we verified the loss both for normalized and unnormalized targets for this one
__lowerCAmelCase = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] )
elif model_name == "videomae-large":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] )
elif model_name == "videomae-large-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.07_71, 0.00_11, -0.36_25] )
elif model_name == "videomae-huge-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.24_33, 0.16_32, -0.48_94] )
elif model_name == "videomae-base-short-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.65_88, 0.09_90, -0.24_93] )
elif model_name == "videomae-base-finetuned-kinetics":
__lowerCAmelCase = torch.Size([1, 400] )
__lowerCAmelCase = torch.tensor([0.36_69, -0.06_88, -0.24_21] )
elif model_name == "videomae-base-short-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] )
elif model_name == "videomae-base-short-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([-0.05_37, -0.15_39, -0.32_66] )
elif model_name == "videomae-base-ssv2":
__lowerCAmelCase = torch.Size([1, 1408, 1536] )
__lowerCAmelCase = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] )
elif model_name == "videomae-base-finetuned-ssv2":
__lowerCAmelCase = torch.Size([1, 174] )
__lowerCAmelCase = torch.tensor([0.19_61, -0.83_37, -0.63_89] )
else:
raise ValueError(f'Model name not supported. Should be one of {model_names}' )
# verify logits
assert logits.shape == expected_shape
if "finetuned" in model_name:
assert torch.allclose(logits[0, :3] , lowercase , atol=1e-4 )
else:
print("""Logits:""" , logits[0, :3, :3] )
assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1e-4 )
print("""Logits ok!""" )
# verify loss, if applicable
if model_name == "videomae-base-short":
__lowerCAmelCase = outputs.loss
assert torch.allclose(lowercase , lowercase , atol=1e-4 )
print("""Loss ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&export=download&confirm=t&uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""",
type=str,
help=(
"""URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct"""
""" download link."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""/Users/nielsrogge/Documents/VideoMAE/Test""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""")
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
_a : int = parser.parse_args()
convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ) -> int:
'''simple docstring'''
if exponent == 1:
return base
if exponent % 2 == 0:
a_ = _modexpt(lowercase__ ,exponent // 2 ,lowercase__ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(lowercase__ ,exponent - 1 ,lowercase__ )) % modulo_value
def __UpperCAmelCase (lowercase__ = 1777 ,lowercase__ = 1855 ,lowercase__ = 8 ) -> int:
'''simple docstring'''
a_ = base
for _ in range(1 ,lowercase__ ):
a_ = _modexpt(lowercase__ ,lowercase__ ,10**digits )
return result
if __name__ == "__main__":
print(F'{solution() = }')
| 685 |
'''simple docstring'''
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
_a : Tuple = """\
"""
_a : Tuple = """
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
"""
_a : Optional[Any] = """
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to 'cuda' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]
>>> results = perplexity.compute(model_id='gpt2',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
78.22
>>> print(round(results[\"perplexities\"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric(\"perplexity\")
>>> input_texts = datasets.load_dataset(\"wikitext\",
... \"wikitext-2-raw-v1\",
... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!='']
>>> results = perplexity.compute(model_id='gpt2',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
['perplexities', 'mean_perplexity']
>>> print(round(results[\"mean_perplexity\"], 2))
60.35
>>> print(round(results[\"perplexities\"][0], 2))
81.12
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _UpperCAmelCase ( datasets.Metric ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ),reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = 16,__SCREAMING_SNAKE_CASE = True,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
__lowerCAmelCase = """cuda"""
else:
__lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
__lowerCAmelCase = AutoModelForCausalLM.from_pretrained(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = model.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
__lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__SCREAMING_SNAKE_CASE ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
__lowerCAmelCase = model.config.max_length - 1
else:
__lowerCAmelCase = model.config.max_length
__lowerCAmelCase = tokenizer(
__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,padding=__SCREAMING_SNAKE_CASE,truncation=__SCREAMING_SNAKE_CASE,max_length=__SCREAMING_SNAKE_CASE,return_tensors="""pt""",return_attention_mask=__SCREAMING_SNAKE_CASE,).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = encodings["""input_ids"""]
__lowerCAmelCase = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ),1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ),2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
__lowerCAmelCase = []
__lowerCAmelCase = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0,len(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE ) ):
__lowerCAmelCase = min(start_index + batch_size,len(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = encoded_texts[start_index:end_index]
__lowerCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
__lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch],dim=1 )
__lowerCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size(),dtype=torch.intaa ).to(__SCREAMING_SNAKE_CASE ), attn_mask],dim=1 )
__lowerCAmelCase = encoded_batch
with torch.no_grad():
__lowerCAmelCase = model(__SCREAMING_SNAKE_CASE,attention_mask=__SCREAMING_SNAKE_CASE ).logits
__lowerCAmelCase = out_logits[..., :-1, :].contiguous()
__lowerCAmelCase = labels[..., 1:].contiguous()
__lowerCAmelCase = attn_mask[..., 1:].contiguous()
__lowerCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1,2 ),__SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__SCREAMING_SNAKE_CASE )}
| 689 | 0 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
UpperCamelCase__ = True
except (ImportError, ModuleNotFoundError):
UpperCamelCase__ = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
re.sub("<n>" , "" , _UpperCamelCase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
| 620 |
'''simple docstring'''
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Union[str, Any] =["""image_processor"""]
a : Dict ="""SamImageProcessor"""
def __init__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
super().__init__(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.image_processor
__lowerCAmelCase = -10
__lowerCAmelCase = self.image_processor.size["""longest_edge"""]
def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,):
'''simple docstring'''
__lowerCAmelCase = self.image_processor(
__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,)
# pop arguments that are not used in the foward but used nevertheless
__lowerCAmelCase = encoding_image_processor["""original_sizes"""]
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor
__lowerCAmelCase = original_sizes.numpy()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points(
input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = self._normalize_and_convert(
__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,)
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",):
'''simple docstring'''
if input_points is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_labels is not None:
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE )
for box in input_boxes
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE )
for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
]
__lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE )
if input_boxes is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# boxes batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"""input_boxes""": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"""input_points""": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"""input_labels""": input_labels} )
return encoding_image_processor
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = max([point.shape[0] for point in input_points] )
__lowerCAmelCase = []
for i, point in enumerate(__SCREAMING_SNAKE_CASE ):
if point.shape[0] != expected_nb_points:
__lowerCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 )
__lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] )
processed_input_points.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = processed_input_points
return input_points, input_labels
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase , __lowerCAmelCase = original_size
__lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE )
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,2,2 )
__lowerCAmelCase = coords[..., 0] * (new_w / old_w)
__lowerCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1,4 )
return coords
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,):
'''simple docstring'''
if input_points is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor
__lowerCAmelCase = input_points.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input points must be a list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points]
else:
__lowerCAmelCase = None
if input_labels is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_labels.numpy().tolist()
if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ):
raise ValueError("""Input labels must be a list of list integers.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels]
else:
__lowerCAmelCase = None
if input_boxes is not None:
if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ):
__lowerCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE )
or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE )
):
raise ValueError("""Input boxes must be a list of list of list of floating points.""" )
__lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes]
else:
__lowerCAmelCase = None
return input_points, input_labels, input_boxes
@property
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) )
def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
| 689 | 0 |
'''simple docstring'''
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 442 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.17.0.dev0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
_a : int = logging.getLogger(__name__)
@dataclass
class _UpperCAmelCase :
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a : Optional[str] =field(
default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , )
a : int =field(
default=10_24 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
a : Optional[int] =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of prediction examples to this """
"""value if set."""
)
} , )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the training data."""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} )
a : Optional[str] =field(default=lowerCAmelCase_ , metadata={"""help""": """A csv or a json file containing the test data."""} )
def lowerCamelCase__ ( self ):
'''simple docstring'''
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
__lowerCAmelCase = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
__lowerCAmelCase = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a : Optional[str] =field(
default=lowerCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a : str =field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _lowerCAmelCase ( ) -> Optional[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
__lowerCAmelCase = training_args.get_process_log_level()
logger.setLevel(lowercase )
datasets.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.set_verbosity(lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
__lowerCAmelCase = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
__lowerCAmelCase = data_args.train_file.split(""".""" )[-1]
__lowerCAmelCase = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
__lowerCAmelCase = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f'load a local file for {key}: {data_files[key]}' )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
__lowerCAmelCase = load_dataset("""csv""" , data_files=lowercase , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
__lowerCAmelCase = load_dataset("""json""" , data_files=lowercase , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
__lowerCAmelCase = raw_datasets["""train"""].features["""label"""].names
__lowerCAmelCase = len(lowercase )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
__lowerCAmelCase = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , )
__lowerCAmelCase = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
__lowerCAmelCase = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
__lowerCAmelCase = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
__lowerCAmelCase = {"""Refused""": 0, """Entailed""": 1}
__lowerCAmelCase = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__lowerCAmelCase = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(lowercase ):
# Tokenize the texts
def _convert_table_text_to_pandas(lowercase ):
__lowerCAmelCase = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
__lowerCAmelCase = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
__lowerCAmelCase = examples["""statement"""]
__lowerCAmelCase = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
__lowerCAmelCase = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase )
__lowerCAmelCase = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
__lowerCAmelCase = raw_datasets.map(
lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
__lowerCAmelCase = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
__lowerCAmelCase = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
__lowerCAmelCase = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
__lowerCAmelCase = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
__lowerCAmelCase = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
__lowerCAmelCase = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(lowercase ) ) , 3 ):
logger.info(f'Sample {index} of the training set: {train_dataset[index]}.' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowercase ):
__lowerCAmelCase = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
__lowerCAmelCase = default_data_collator
elif training_args.fpaa:
__lowerCAmelCase = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 )
else:
__lowerCAmelCase = None
# Initialize our Trainer
__lowerCAmelCase = Trainer(
model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , )
# Training
if training_args.do_train:
__lowerCAmelCase = None
if training_args.resume_from_checkpoint is not None:
__lowerCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowercase )
__lowerCAmelCase = train_result.metrics
__lowerCAmelCase = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase )
)
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , lowercase )
trainer.save_metrics("""train""" , lowercase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__lowerCAmelCase = trainer.evaluate(eval_dataset=lowercase )
__lowerCAmelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase )
__lowerCAmelCase = min(lowercase , len(lowercase ) )
trainer.log_metrics("""eval""" , lowercase )
trainer.save_metrics("""eval""" , lowercase )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
__lowerCAmelCase = predict_dataset.remove_columns("""label""" )
__lowerCAmelCase = trainer.predict(lowercase , metric_key_prefix="""predict""" ).predictions
__lowerCAmelCase = np.argmax(lowercase , axis=1 )
__lowerCAmelCase = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(lowercase , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(lowercase ):
__lowerCAmelCase = label_list[item]
writer.write(f'{index}\t{item}\n' )
__lowerCAmelCase = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**lowercase )
else:
trainer.create_model_card(**lowercase )
def _lowerCAmelCase ( lowercase ) -> str:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 689 | 0 |
import argparse
import logging
import os
import re
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForLanguageModeling,
PushToHubCallback,
TFAutoModelForMaskedLM,
create_optimizer,
)
__lowerCamelCase = logging.getLogger(__name__)
__lowerCamelCase = tf.data.AUTOTUNE
def UpperCamelCase ( ):
snake_case : int = argparse.ArgumentParser(description="Train a masked language model on TPU." )
parser.add_argument(
"--pretrained_model_config" , type=__lowerCamelCase , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , )
parser.add_argument(
"--tokenizer" , type=__lowerCamelCase , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , )
parser.add_argument(
"--per_replica_batch_size" , type=__lowerCamelCase , default=8 , help="Batch size per TPU core." , )
parser.add_argument(
"--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , )
parser.add_argument(
"--tpu_name" , type=__lowerCamelCase , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , )
parser.add_argument(
"--tpu_zone" , type=__lowerCamelCase , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , )
parser.add_argument(
"--gcp_project" , type=__lowerCamelCase , help="Google cloud project name. Only used for non-Colab TPU nodes." )
parser.add_argument(
"--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , )
parser.add_argument(
"--train_dataset" , type=__lowerCamelCase , help="Path to training dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--shuffle_buffer_size" , type=__lowerCamelCase , default=2**18 , help="Size of the shuffle buffer (in samples)" , )
parser.add_argument(
"--eval_dataset" , type=__lowerCamelCase , help="Path to evaluation dataset to load. If the path begins with `gs://`"
" then the dataset will be loaded from a Google Cloud Storage bucket." , )
parser.add_argument(
"--num_epochs" , type=__lowerCamelCase , default=1 , help="Number of epochs to train for." , )
parser.add_argument(
"--learning_rate" , type=__lowerCamelCase , default=1E-4 , help="Learning rate to use for training." , )
parser.add_argument(
"--weight_decay_rate" , type=__lowerCamelCase , default=1E-3 , help="Weight decay rate to use for training." , )
parser.add_argument(
"--max_length" , type=__lowerCamelCase , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , )
parser.add_argument(
"--mlm_probability" , type=__lowerCamelCase , default=0.15 , help="Fraction of tokens to mask during training." , )
parser.add_argument("--output_dir" , type=__lowerCamelCase , required=__lowerCamelCase , help="Path to save model checkpoints to." )
parser.add_argument("--hub_model_id" , type=__lowerCamelCase , help="Model ID to upload to on the Hugging Face Hub." )
snake_case : Any = parser.parse_args()
return args
def UpperCamelCase ( __lowerCamelCase : Optional[int] ):
try:
if args.tpu_name:
snake_case : Dict = tf.distribute.cluster_resolver.TPUClusterResolver(
args.tpu_name , zone=args.tpu_zone , project=args.gcp_project )
else:
snake_case : List[str] = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
raise RuntimeError(
"Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or "
"--gcp_project. When running on a TPU VM, use --tpu_name local." )
tf.config.experimental_connect_to_cluster(__lowerCamelCase )
tf.tpu.experimental.initialize_tpu_system(__lowerCamelCase )
return tpu
def UpperCamelCase ( __lowerCamelCase : List[Any] ):
snake_case : Optional[int] = 0
for file in file_list:
snake_case : Optional[Any] = file.split("/" )[-1]
snake_case : Union[str, Any] = re.search(r"-\d+-(\d+)\.tfrecord" , __lowerCamelCase ).group(1 )
snake_case : Optional[int] = int(__lowerCamelCase )
num_samples += sample_count
return num_samples
def UpperCamelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Dict=None ):
snake_case : List[Any] = count_samples(__lowerCamelCase )
snake_case : List[str] = tf.data.Dataset.from_tensor_slices(__lowerCamelCase )
if shuffle:
snake_case : List[str] = dataset.shuffle(len(__lowerCamelCase ) )
snake_case : Tuple = tf.data.TFRecordDataset(__lowerCamelCase , num_parallel_reads=__lowerCamelCase )
# TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here
snake_case : Union[str, Any] = dataset.apply(tf.data.experimental.assert_cardinality(__lowerCamelCase ) )
snake_case : Tuple = dataset.map(__lowerCamelCase , num_parallel_calls=__lowerCamelCase )
if shuffle:
assert shuffle_buffer_size is not None
snake_case : Tuple = dataset.shuffle(args.shuffle_buffer_size )
snake_case : Any = dataset.batch(__lowerCamelCase , drop_remainder=__lowerCamelCase )
snake_case : Union[str, Any] = dataset.map(__lowerCamelCase , num_parallel_calls=__lowerCamelCase )
snake_case : Tuple = dataset.prefetch(__lowerCamelCase )
return dataset
def UpperCamelCase ( __lowerCamelCase : Dict ):
if not args.no_tpu:
snake_case : Union[str, Any] = initialize_tpu(__lowerCamelCase )
snake_case : Dict = tf.distribute.TPUStrategy(__lowerCamelCase )
else:
snake_case : List[Any] = tf.distribute.OneDeviceStrategy(device="/gpu:0" )
if args.bfloataa:
tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" )
snake_case : List[str] = AutoTokenizer.from_pretrained(args.tokenizer )
snake_case : Tuple = AutoConfig.from_pretrained(args.pretrained_model_config )
snake_case : int = tokenizer.vocab_size
snake_case : List[Any] = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) )
if not training_records:
raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" )
snake_case : str = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) )
if not eval_records:
raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" )
snake_case : Optional[Any] = count_samples(__lowerCamelCase )
snake_case : Tuple = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync)
snake_case : Tuple = steps_per_epoch * args.num_epochs
with strategy.scope():
snake_case : Optional[int] = TFAutoModelForMaskedLM.from_config(__lowerCamelCase )
model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built
snake_case , snake_case : str = create_optimizer(
num_train_steps=__lowerCamelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , )
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=__lowerCamelCase , metrics=["accuracy"] )
def decode_fn(__lowerCamelCase : Optional[Any] ):
snake_case : Dict = {
"input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
"attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ),
}
return tf.io.parse_single_example(__lowerCamelCase , __lowerCamelCase )
# Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can
# use their methods in our data pipeline.
snake_case : Optional[int] = DataCollatorForLanguageModeling(
tokenizer=__lowerCamelCase , mlm_probability=args.mlm_probability , mlm=__lowerCamelCase , return_tensors="tf" )
def mask_with_collator(__lowerCamelCase : str ):
# TF really needs an isin() function
snake_case : Dict = (
~tf.cast(batch["attention_mask"] , tf.bool )
| (batch["input_ids"] == tokenizer.cls_token_id)
| (batch["input_ids"] == tokenizer.sep_token_id)
)
snake_case , snake_case : Union[str, Any] = data_collator.tf_mask_tokens(
batch["input_ids"] , vocab_size=len(__lowerCamelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__lowerCamelCase , )
return batch
snake_case : int = args.per_replica_batch_size * strategy.num_replicas_in_sync
snake_case : List[Any] = prepare_dataset(
__lowerCamelCase , decode_fn=__lowerCamelCase , mask_fn=__lowerCamelCase , batch_size=__lowerCamelCase , shuffle=__lowerCamelCase , shuffle_buffer_size=args.shuffle_buffer_size , )
snake_case : List[Any] = prepare_dataset(
__lowerCamelCase , decode_fn=__lowerCamelCase , mask_fn=__lowerCamelCase , batch_size=__lowerCamelCase , shuffle=__lowerCamelCase , )
snake_case : Tuple = []
if args.hub_model_id:
callbacks.append(
PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__lowerCamelCase ) )
model.fit(
__lowerCamelCase , validation_data=__lowerCamelCase , epochs=args.num_epochs , callbacks=__lowerCamelCase , )
model.save_pretrained(args.output_dir )
if __name__ == "__main__":
__lowerCamelCase = parse_args()
main(args)
| 204 |
'''simple docstring'''
import os
import sys
import unittest
_a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_a : Union[str, Any] = os.path.join(git_repo_path, """src""", """diffusers""")
class _UpperCAmelCase ( unittest.TestCase ):
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = find_backend(""" if not is_torch_available():""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch""" )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
__lowerCAmelCase = find_backend(""" if not (is_torch_available() and is_transformers_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers""" )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
__lowerCAmelCase = find_backend(
""" if not (is_torch_available() and is_transformers_available() and is_onnx_available()):""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""torch_and_transformers_and_onnx""" )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn("""torch""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""flax_and_transformers""",__SCREAMING_SNAKE_CASE )
self.assertIn("""torch_and_transformers_and_onnx""",__SCREAMING_SNAKE_CASE )
# Likewise, we can't assert on the exact content of a key
self.assertIn("""UNet2DModel""",objects["""torch"""] )
self.assertIn("""FlaxUNet2DConditionModel""",objects["""flax"""] )
self.assertIn("""StableDiffusionPipeline""",objects["""torch_and_transformers"""] )
self.assertIn("""FlaxStableDiffusionPipeline""",objects["""flax_and_transformers"""] )
self.assertIn("""LMSDiscreteScheduler""",objects["""torch_and_scipy"""] )
self.assertIn("""OnnxStableDiffusionPipeline""",objects["""torch_and_transformers_and_onnx"""] )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = create_dummy_object("""CONSTANT""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,"""\nCONSTANT = None\n""" )
__lowerCAmelCase = create_dummy_object("""function""","""'torch'""" )
self.assertEqual(
__SCREAMING_SNAKE_CASE,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" )
__lowerCAmelCase = """
class FakeClass(metaclass=DummyObject):
_backends = 'torch'
def __init__(self, *args, **kwargs):
requires_backends(self, 'torch')
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, 'torch')
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, 'torch')
"""
__lowerCAmelCase = create_dummy_object("""FakeClass""","""'torch'""" )
self.assertEqual(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
__lowerCAmelCase = """# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, [\"torch\"])
class FakeClass(metaclass=DummyObject):
_backends = [\"torch\"]
def __init__(self, *args, **kwargs):
requires_backends(self, [\"torch\"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, [\"torch\"])
"""
__lowerCAmelCase = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} )
self.assertEqual(dummy_files["""torch"""],__SCREAMING_SNAKE_CASE )
| 689 | 0 |
def __snake_case ( __magic_name__ ):
'''simple docstring'''
lowercase = len(__magic_name__ )
for _ in range(__magic_name__ ):
for i in range(_ % 2 , arr_size - 1 , 2 ):
if arr[i + 1] < arr[i]:
lowercase , lowercase = arr[i + 1], arr[i]
return arr
if __name__ == "__main__":
_snake_case : int = list(range(10, 0, -1))
print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
| 441 |
'''simple docstring'''
def _lowerCAmelCase ( lowercase ) -> tuple[int, int]:
try:
__lowerCAmelCase = float(lowercase )
except ValueError:
raise ValueError("""Please enter a valid number""" )
__lowerCAmelCase = decimal - int(lowercase )
if fractional_part == 0:
return int(lowercase ), 1
else:
__lowerCAmelCase = len(str(lowercase ).split(""".""" )[1] )
__lowerCAmelCase = int(decimal * (10**number_of_frac_digits) )
__lowerCAmelCase = 10**number_of_frac_digits
__lowerCAmelCase , __lowerCAmelCase = denominator, numerator
while True:
__lowerCAmelCase = dividend % divisor
if remainder == 0:
break
__lowerCAmelCase , __lowerCAmelCase = divisor, remainder
__lowerCAmelCase , __lowerCAmelCase = numerator / divisor, denominator / divisor
return int(lowercase ), int(lowercase )
if __name__ == "__main__":
print(f'{decimal_to_fraction(2) = }')
print(f'{decimal_to_fraction(89.0) = }')
print(f'{decimal_to_fraction("67") = }')
print(f'{decimal_to_fraction("45.0") = }')
print(f'{decimal_to_fraction(1.5) = }')
print(f'{decimal_to_fraction("6.25") = }')
print(f'{decimal_to_fraction("78td") = }')
| 689 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__lowerCAmelCase = {
"""configuration_gpt_neo""": ["""GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoConfig""", """GPTNeoOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
"""GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoForCausalLM""",
"""GPTNeoForQuestionAnswering""",
"""GPTNeoForSequenceClassification""",
"""GPTNeoForTokenClassification""",
"""GPTNeoModel""",
"""GPTNeoPreTrainedModel""",
"""load_tf_weights_in_gpt_neo""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
"""FlaxGPTNeoForCausalLM""",
"""FlaxGPTNeoModel""",
"""FlaxGPTNeoPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 536 |
'''simple docstring'''
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
_a : Dict = _symbol_database.Default()
_a : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
_a : str = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
_a : str = None
_a : Union[str, Any] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
_a : Optional[int] = 4_5
_a : List[Any] = 1_5_8_1
_a : str = 1_5_1_7
_a : Optional[Any] = 1_5_7_0
_a : List[str] = 1_5_8_4
_a : List[Any] = 1_7_9_3
_a : Union[str, Any] = 1_7_9_5
_a : Tuple = 1_9_1_6
_a : List[Any] = 1_8_6_4
_a : Any = 1_9_0_5
_a : Optional[Any] = 1_9_1_9
_a : Optional[int] = 2_4_2_9
_a : Tuple = 2_2_0_8
_a : Optional[Any] = 2_4_1_8
_a : List[Any] = 2_3_2_3
_a : str = 2_4_0_7
# @@protoc_insertion_point(module_scope)
| 689 | 0 |
"""simple docstring"""
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class _UpperCamelCase ( lowerCAmelCase_ ):
'''simple docstring'''
def __get__( self , __a , __a=None ):
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute" )
__lowerCAmelCase = "__cached_" + self.fget.__name__
__lowerCAmelCase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if cached is None:
__lowerCAmelCase = self.fget(__SCREAMING_SNAKE_CASE )
setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return cached
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f"invalid truth value {val!r}" )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
if is_torch_fx_proxy(_UpperCamelCase ):
return True
if is_torch_available():
import torch
if isinstance(_UpperCamelCase , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(_UpperCamelCase , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(_UpperCamelCase , (jnp.ndarray, Tracer) ):
return True
return isinstance(_UpperCamelCase , np.ndarray )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return isinstance(_UpperCamelCase , np.ndarray )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return _is_numpy(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
import torch
return isinstance(_UpperCamelCase , torch.Tensor )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
import torch
return isinstance(_UpperCamelCase , torch.device )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch_device(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
import torch
if isinstance(_UpperCamelCase , _UpperCamelCase ):
if hasattr(_UpperCamelCase , _UpperCamelCase ):
__lowerCAmelCase = getattr(_UpperCamelCase , _UpperCamelCase )
else:
return False
return isinstance(_UpperCamelCase , torch.dtype )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return False if not is_torch_available() else _is_torch_dtype(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
import tensorflow as tf
return isinstance(_UpperCamelCase , tf.Tensor )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return False if not is_tf_available() else _is_tensorflow(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(_UpperCamelCase , "is_symbolic_tensor" ):
return tf.is_symbolic_tensor(_UpperCamelCase )
return type(_UpperCamelCase ) == tf.Tensor
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return False if not is_tf_available() else _is_tf_symbolic_tensor(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
import jax.numpy as jnp # noqa: F811
return isinstance(_UpperCamelCase , jnp.ndarray )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
return False if not is_flax_available() else _is_jax(_UpperCamelCase )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
if isinstance(_UpperCamelCase , (dict, UserDict) ):
return {k: to_py_obj(_UpperCamelCase ) for k, v in obj.items()}
elif isinstance(_UpperCamelCase , (list, tuple) ):
return [to_py_obj(_UpperCamelCase ) for o in obj]
elif is_tf_tensor(_UpperCamelCase ):
return obj.numpy().tolist()
elif is_torch_tensor(_UpperCamelCase ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(_UpperCamelCase ):
return np.asarray(_UpperCamelCase ).tolist()
elif isinstance(_UpperCamelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
if isinstance(_UpperCamelCase , (dict, UserDict) ):
return {k: to_numpy(_UpperCamelCase ) for k, v in obj.items()}
elif isinstance(_UpperCamelCase , (list, tuple) ):
return np.array(_UpperCamelCase )
elif is_tf_tensor(_UpperCamelCase ):
return obj.numpy()
elif is_torch_tensor(_UpperCamelCase ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(_UpperCamelCase ):
return np.asarray(_UpperCamelCase )
else:
return obj
class _UpperCamelCase ( lowerCAmelCase_ ):
'''simple docstring'''
def snake_case ( self ):
__lowerCAmelCase = fields(self )
# Safety and consistency checks
if not len(__SCREAMING_SNAKE_CASE ):
raise ValueError(f"{self.__class__.__name__} has no fields." )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(f"{self.__class__.__name__} should not have more than one required field." )
__lowerCAmelCase = getattr(self , class_fields[0].name )
__lowerCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__SCREAMING_SNAKE_CASE ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = first_field.items()
__lowerCAmelCase = True
else:
try:
__lowerCAmelCase = iter(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = True
except TypeError:
__lowerCAmelCase = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__SCREAMING_SNAKE_CASE ):
if (
not isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) )
or not len(__SCREAMING_SNAKE_CASE ) == 2
or not isinstance(element[0] , __SCREAMING_SNAKE_CASE )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
__lowerCAmelCase = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
__lowerCAmelCase = element[1]
elif first_field is not None:
__lowerCAmelCase = first_field
else:
for field in class_fields:
__lowerCAmelCase = getattr(self , field.name )
if v is not None:
__lowerCAmelCase = v
def __delitem__( self , *__a , **__a ):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." )
def snake_case ( self , *__a , **__a ):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." )
def snake_case ( self , *__a , **__a ):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." )
def snake_case ( self , *__a , **__a ):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." )
def __getitem__( self , __a ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self , __a , __a ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __setitem__( self , __a , __a ):
super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def snake_case ( self ):
return tuple(self[k] for k in self.keys() )
class _UpperCamelCase ( lowerCAmelCase_ ,lowerCAmelCase_ ):
'''simple docstring'''
@classmethod
def snake_case ( cls , __a ):
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" )
class _UpperCamelCase ( lowerCAmelCase_ ):
'''simple docstring'''
__UpperCAmelCase : Tuple ="""longest"""
__UpperCAmelCase : Union[str, Any] ="""max_length"""
__UpperCAmelCase : Any ="""do_not_pad"""
class _UpperCamelCase ( lowerCAmelCase_ ):
'''simple docstring'''
__UpperCAmelCase : Tuple ="""pt"""
__UpperCAmelCase : Tuple ="""tf"""
__UpperCAmelCase : Union[str, Any] ="""np"""
__UpperCAmelCase : Any ="""jax"""
class _UpperCamelCase :
'''simple docstring'''
def __init__( self , __a ):
__lowerCAmelCase = context_managers
__lowerCAmelCase = ExitStack()
def __enter__( self ):
for context_manager in self.context_managers:
self.stack.enter_context(__SCREAMING_SNAKE_CASE )
def __exit__( self , *__a , **__a ):
self.stack.__exit__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = infer_framework(_UpperCamelCase )
if framework == "tf":
__lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
__lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models
else:
__lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = model_class.__name__
__lowerCAmelCase = infer_framework(_UpperCamelCase )
if framework == "tf":
__lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
__lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models
else:
__lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = "" , _UpperCamelCase = "." ):
'''simple docstring'''
def _flatten_dict(_UpperCamelCase , _UpperCamelCase="" , _UpperCamelCase="." ):
for k, v in d.items():
__lowerCAmelCase = str(_UpperCamelCase ) + delimiter + str(_UpperCamelCase ) if parent_key else k
if v and isinstance(_UpperCamelCase , _UpperCamelCase ):
yield from flatten_dict(_UpperCamelCase , _UpperCamelCase , delimiter=_UpperCamelCase ).items()
else:
yield key, v
return dict(_flatten_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) )
@contextmanager
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = False ):
'''simple docstring'''
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=None ):
'''simple docstring'''
if is_numpy_array(_UpperCamelCase ):
return np.transpose(_UpperCamelCase , axes=_UpperCamelCase )
elif is_torch_tensor(_UpperCamelCase ):
return array.T if axes is None else array.permute(*_UpperCamelCase )
elif is_tf_tensor(_UpperCamelCase ):
import tensorflow as tf
return tf.transpose(_UpperCamelCase , perm=_UpperCamelCase )
elif is_jax_tensor(_UpperCamelCase ):
return jnp.transpose(_UpperCamelCase , axes=_UpperCamelCase )
else:
raise ValueError(f"Type not supported for transpose: {type(_UpperCamelCase )}." )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
if is_numpy_array(_UpperCamelCase ):
return np.reshape(_UpperCamelCase , _UpperCamelCase )
elif is_torch_tensor(_UpperCamelCase ):
return array.reshape(*_UpperCamelCase )
elif is_tf_tensor(_UpperCamelCase ):
import tensorflow as tf
return tf.reshape(_UpperCamelCase , _UpperCamelCase )
elif is_jax_tensor(_UpperCamelCase ):
return jnp.reshape(_UpperCamelCase , _UpperCamelCase )
else:
raise ValueError(f"Type not supported for reshape: {type(_UpperCamelCase )}." )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase=None ):
'''simple docstring'''
if is_numpy_array(_UpperCamelCase ):
return np.squeeze(_UpperCamelCase , axis=_UpperCamelCase )
elif is_torch_tensor(_UpperCamelCase ):
return array.squeeze() if axis is None else array.squeeze(dim=_UpperCamelCase )
elif is_tf_tensor(_UpperCamelCase ):
import tensorflow as tf
return tf.squeeze(_UpperCamelCase , axis=_UpperCamelCase )
elif is_jax_tensor(_UpperCamelCase ):
return jnp.squeeze(_UpperCamelCase , axis=_UpperCamelCase )
else:
raise ValueError(f"Type not supported for squeeze: {type(_UpperCamelCase )}." )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
if is_numpy_array(_UpperCamelCase ):
return np.expand_dims(_UpperCamelCase , _UpperCamelCase )
elif is_torch_tensor(_UpperCamelCase ):
return array.unsqueeze(dim=_UpperCamelCase )
elif is_tf_tensor(_UpperCamelCase ):
import tensorflow as tf
return tf.expand_dims(_UpperCamelCase , axis=_UpperCamelCase )
elif is_jax_tensor(_UpperCamelCase ):
return jnp.expand_dims(_UpperCamelCase , axis=_UpperCamelCase )
else:
raise ValueError(f"Type not supported for expand_dims: {type(_UpperCamelCase )}." )
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
if is_numpy_array(_UpperCamelCase ):
return np.size(_UpperCamelCase )
elif is_torch_tensor(_UpperCamelCase ):
return array.numel()
elif is_tf_tensor(_UpperCamelCase ):
import tensorflow as tf
return tf.size(_UpperCamelCase )
elif is_jax_tensor(_UpperCamelCase ):
return array.size
else:
raise ValueError(f"Type not supported for expand_dims: {type(_UpperCamelCase )}." )
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
for key, value in auto_map.items():
if isinstance(_UpperCamelCase , (tuple, list) ):
__lowerCAmelCase = [f"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value]
elif value is not None and "--" not in value:
__lowerCAmelCase = f"{repo_id}--{value}"
return auto_map
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
for base_class in inspect.getmro(_UpperCamelCase ):
__lowerCAmelCase = base_class.__module__
__lowerCAmelCase = base_class.__name__
if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("torch" ) or name == "PreTrainedModel":
return "pt"
elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f"Could not infer framework from class {model_class}." )
| 636 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : torch.FloatTensor
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE=True,):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = torch.nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[0],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
# down
__lowerCAmelCase = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_down_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,add_downsample=not is_final_block,resnet_eps=1e-6,downsample_padding=0,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""",attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# out
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[-1],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = 2 * out_channels if double_z else out_channels
__lowerCAmelCase = nn.Convad(block_out_channels[-1],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = x
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""","""1.11.0""" ):
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
__lowerCAmelCase = down_block(__SCREAMING_SNAKE_CASE )
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=3,__SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",),__SCREAMING_SNAKE_CASE=(64,),__SCREAMING_SNAKE_CASE=2,__SCREAMING_SNAKE_CASE=32,__SCREAMING_SNAKE_CASE="silu",__SCREAMING_SNAKE_CASE="group",):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = layers_per_block
__lowerCAmelCase = nn.Convad(
__SCREAMING_SNAKE_CASE,block_out_channels[-1],kernel_size=3,stride=1,padding=1,)
__lowerCAmelCase = None
__lowerCAmelCase = nn.ModuleList([] )
__lowerCAmelCase = in_channels if norm_type == """spatial""" else None
# mid
__lowerCAmelCase = UNetMidBlockaD(
in_channels=block_out_channels[-1],resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,output_scale_factor=1,resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type,attention_head_dim=block_out_channels[-1],resnet_groups=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,)
# up
__lowerCAmelCase = list(reversed(__SCREAMING_SNAKE_CASE ) )
__lowerCAmelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
__lowerCAmelCase = output_channel
__lowerCAmelCase = reversed_block_out_channels[i]
__lowerCAmelCase = i == len(__SCREAMING_SNAKE_CASE ) - 1
__lowerCAmelCase = get_up_block(
__SCREAMING_SNAKE_CASE,num_layers=self.layers_per_block + 1,in_channels=__SCREAMING_SNAKE_CASE,out_channels=__SCREAMING_SNAKE_CASE,prev_output_channel=__SCREAMING_SNAKE_CASE,add_upsample=not is_final_block,resnet_eps=1e-6,resnet_act_fn=__SCREAMING_SNAKE_CASE,resnet_groups=__SCREAMING_SNAKE_CASE,attention_head_dim=__SCREAMING_SNAKE_CASE,temb_channels=__SCREAMING_SNAKE_CASE,resnet_time_scale_shift=__SCREAMING_SNAKE_CASE,)
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = output_channel
# out
if norm_type == "spatial":
__lowerCAmelCase = SpatialNorm(block_out_channels[0],__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = nn.GroupNorm(num_channels=block_out_channels[0],num_groups=__SCREAMING_SNAKE_CASE,eps=1e-6 )
__lowerCAmelCase = nn.SiLU()
__lowerCAmelCase = nn.Convad(block_out_channels[0],__SCREAMING_SNAKE_CASE,3,padding=1 )
__lowerCAmelCase = False
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
__lowerCAmelCase = z
__lowerCAmelCase = self.conv_in(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""","""1.11.0""" ):
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ),__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
else:
# middle
__lowerCAmelCase = self.mid_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
__lowerCAmelCase = up_block(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
__lowerCAmelCase = self.conv_norm_out(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_act(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class _UpperCAmelCase ( nn.Module ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="random",__SCREAMING_SNAKE_CASE=False,__SCREAMING_SNAKE_CASE=True ):
'''simple docstring'''
super().__init__()
__lowerCAmelCase = n_e
__lowerCAmelCase = vq_embed_dim
__lowerCAmelCase = beta
__lowerCAmelCase = legacy
__lowerCAmelCase = nn.Embedding(self.n_e,self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e,1.0 / self.n_e )
__lowerCAmelCase = remap
if self.remap is not None:
self.register_buffer("""used""",torch.tensor(np.load(self.remap ) ) )
__lowerCAmelCase = self.used.shape[0]
__lowerCAmelCase = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
__lowerCAmelCase = self.re_embed
__lowerCAmelCase = self.re_embed + 1
print(
f'Remapping {self.n_e} indices to {self.re_embed} indices. '
f'Using {self.unknown_index} for unknown indices.' )
else:
__lowerCAmelCase = n_e
__lowerCAmelCase = sane_index_shape
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = (inds[:, :, None] == used[None, None, ...]).long()
__lowerCAmelCase = match.argmax(-1 )
__lowerCAmelCase = match.sum(2 ) < 1
if self.unknown_index == "random":
__lowerCAmelCase = torch.randint(0,self.re_embed,size=new[unknown].shape ).to(device=new.device )
else:
__lowerCAmelCase = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
__lowerCAmelCase = inds.reshape(ishape[0],-1 )
__lowerCAmelCase = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
__lowerCAmelCase = 0 # simply set to zero
__lowerCAmelCase = torch.gather(used[None, :][inds.shape[0] * [0], :],1,__SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = z.permute(0,2,3,1 ).contiguous()
__lowerCAmelCase = z.view(-1,self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
__lowerCAmelCase = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE,self.embedding.weight ),dim=1 )
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
__lowerCAmelCase = None
__lowerCAmelCase = None
# compute loss for embedding
if not self.legacy:
__lowerCAmelCase = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
__lowerCAmelCase = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
__lowerCAmelCase = z + (z_q - z).detach()
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
if self.remap is not None:
__lowerCAmelCase = min_encoding_indices.reshape(z.shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.remap_to_used(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = min_encoding_indices.reshape(-1,1 ) # flatten
if self.sane_index_shape:
__lowerCAmelCase = min_encoding_indices.reshape(z_q.shape[0],z_q.shape[2],z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if self.remap is not None:
__lowerCAmelCase = indices.reshape(shape[0],-1 ) # add batch axis
__lowerCAmelCase = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
__lowerCAmelCase = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
__lowerCAmelCase = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
__lowerCAmelCase = z_q.permute(0,3,1,2 ).contiguous()
return z_q
class _UpperCAmelCase ( lowerCAmelCase_ ):
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
__lowerCAmelCase = parameters
__lowerCAmelCase , __lowerCAmelCase = torch.chunk(__SCREAMING_SNAKE_CASE,2,dim=1 )
__lowerCAmelCase = torch.clamp(self.logvar,-30.0,20.0 )
__lowerCAmelCase = deterministic
__lowerCAmelCase = torch.exp(0.5 * self.logvar )
__lowerCAmelCase = torch.exp(self.logvar )
if self.deterministic:
__lowerCAmelCase = __lowerCAmelCase = torch.zeros_like(
self.mean,device=self.parameters.device,dtype=self.parameters.dtype )
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE = None ):
'''simple docstring'''
__lowerCAmelCase = randn_tensor(
self.mean.shape,generator=__SCREAMING_SNAKE_CASE,device=self.parameters.device,dtype=self.parameters.dtype )
__lowerCAmelCase = self.mean + self.std * sample
return x
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean,2 ) + self.var - 1.0 - self.logvar,dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean,2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,dim=[1, 2, 3],)
def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=[1, 2, 3] ):
'''simple docstring'''
if self.deterministic:
return torch.Tensor([0.0] )
__lowerCAmelCase = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean,2 ) / self.var,dim=__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( self ):
'''simple docstring'''
return self.mean
| 689 | 0 |
"""simple docstring"""
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 178 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_a : Optional[int] = logging.get_logger(__name__)
_a : int = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """Model type selected in the list: """ + """, """.join(lowerCAmelCase_ )} )
a : str =field(
default=lowerCAmelCase_ , metadata={"""help""": """The input data dir. Should contain the .json files for the SQuAD task."""} )
a : int =field(
default=1_28 , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} , )
a : int =field(
default=1_28 , metadata={"""help""": """When splitting up a long document into chunks, how much stride to take between chunks."""} , )
a : int =field(
default=64 , metadata={
"""help""": (
"""The maximum number of tokens for the question. Questions longer than this will """
"""be truncated to this length."""
)
} , )
a : int =field(
default=30 , metadata={
"""help""": (
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
)
} , )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a : bool =field(
default=lowerCAmelCase_ , metadata={"""help""": """If true, the SQuAD examples contain some that do not have an answer."""} )
a : float =field(
default=0.0 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=20 , metadata={"""help""": """If null_score - best_non_null is greater than the threshold predict null."""} )
a : int =field(
default=0 , metadata={
"""help""": (
"""language id of input for language-specific xlm models (see"""
""" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"""
)
} , )
a : int =field(default=1 , metadata={"""help""": """multiple threads for converting example to features"""} )
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : Optional[Any] ="""train"""
a : Optional[int] ="""dev"""
class _UpperCAmelCase ( lowerCAmelCase_ ):
a : SquadDataTrainingArguments
a : List[SquadFeatures]
a : Split
a : bool
def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = Split.train,__SCREAMING_SNAKE_CASE = False,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "pt",):
'''simple docstring'''
__lowerCAmelCase = args
__lowerCAmelCase = is_language_sensitive
__lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ):
try:
__lowerCAmelCase = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
__lowerCAmelCase = mode
# Load data features from cache or dataset file
__lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1"""
__lowerCAmelCase = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__lowerCAmelCase = cached_features_file + """.lock"""
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
__lowerCAmelCase = time.time()
__lowerCAmelCase = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__lowerCAmelCase = self.old_features["""features"""]
__lowerCAmelCase = self.old_features.get("""dataset""",__SCREAMING_SNAKE_CASE )
__lowerCAmelCase = self.old_features.get("""examples""",__SCREAMING_SNAKE_CASE )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
""" future run""" )
else:
if mode == Split.dev:
__lowerCAmelCase = self.processor.get_dev_examples(args.data_dir )
else:
__lowerCAmelCase = self.processor.get_train_examples(args.data_dir )
__lowerCAmelCase , __lowerCAmelCase = squad_convert_examples_to_features(
examples=self.examples,tokenizer=__SCREAMING_SNAKE_CASE,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__SCREAMING_SNAKE_CASE,)
__lowerCAmelCase = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples},__SCREAMING_SNAKE_CASE,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self,__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__lowerCAmelCase = self.features[i]
__lowerCAmelCase = torch.tensor(feature.input_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.attention_mask,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.token_type_ids,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.cls_index,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.p_mask,dtype=torch.float )
__lowerCAmelCase = torch.tensor(feature.is_impossible,dtype=torch.float )
__lowerCAmelCase = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__lowerCAmelCase = torch.tensor(feature.start_position,dtype=torch.long )
__lowerCAmelCase = torch.tensor(feature.end_position,dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 689 | 0 |
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def _lowerCAmelCase ( __lowerCAmelCase ) -> Tuple:
"""simple docstring"""
if isinstance(__lowerCAmelCase , collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class a :
def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ,__lowercase :Tuple ):
pass
def __lowerCamelCase ( self :Optional[int] ):
pass
def __lowerCamelCase ( self :Optional[Any] ):
pass
def __lowerCamelCase ( self :str ,__lowercase :int ,__lowercase :Any ,__lowercase :Optional[Any] ):
snake_case__ : Any = np.abs((a - b) ).max()
self.assertLessEqual(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,F"""Difference between torch and flax is {diff} (>= {tol}).""" )
def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :str ,__lowercase :Optional[int] ,__lowercase :Optional[int] ,__lowercase :str=None ,**__lowercase :Optional[int] ):
snake_case__ : int = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : str = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE )
self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) )
def __lowerCamelCase ( self :str ,__lowercase :List[Any] ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :Any=None ,**__lowercase :str ):
snake_case__ , snake_case__ : Union[str, Any] = self.get_vision_text_model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : str = {'''vision_model''': vision_model, '''text_model''': text_model}
snake_case__ : Tuple = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE )
self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) )
def __lowerCamelCase ( self :List[Any] ,__lowercase :List[str] ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Dict ,__lowercase :Any=None ,**__lowercase :List[Any] ):
snake_case__ , snake_case__ : str = self.get_vision_text_model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : str = {'''vision_model''': vision_model, '''text_model''': text_model}
snake_case__ : Dict = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE )
snake_case__ : int = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : int = model(input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = after_output[0]
snake_case__ : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__SCREAMING_SNAKE_CASE ,1e-3 )
def __lowerCamelCase ( self :Optional[int] ,__lowercase :Dict ,__lowercase :int ,__lowercase :Optional[Any] ,__lowercase :Union[str, Any] ,__lowercase :str=None ,**__lowercase :int ):
snake_case__ , snake_case__ : List[Any] = self.get_vision_text_model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : int = {'''vision_model''': vision_model, '''text_model''': text_model}
snake_case__ : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = model(
input_ids=__SCREAMING_SNAKE_CASE ,pixel_values=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,output_attentions=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = output.vision_model_output.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
snake_case__ : int = to_atuple(vision_model.config.image_size )
snake_case__ : Optional[Any] = to_atuple(vision_model.config.patch_size )
snake_case__ : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
snake_case__ : Dict = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) )
snake_case__ : List[Any] = output.text_model_output.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,)
def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ,__lowercase :List[Any] ,__lowercase :Optional[int] ):
pt_model.to(__SCREAMING_SNAKE_CASE )
pt_model.eval()
# prepare inputs
snake_case__ : Dict = inputs_dict
snake_case__ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
snake_case__ : int = pt_model(**__SCREAMING_SNAKE_CASE ).to_tuple()
snake_case__ : Any = fx_model(**__SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ,'''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ):
self.assert_almost_equals(__SCREAMING_SNAKE_CASE ,pt_output.numpy() ,4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ,from_pt=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = fx_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ,'''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ):
self.assert_almost_equals(__SCREAMING_SNAKE_CASE ,pt_output.numpy() ,4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = VisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE ,from_flax=__SCREAMING_SNAKE_CASE )
pt_model_loaded.to(__SCREAMING_SNAKE_CASE )
pt_model_loaded.eval()
with torch.no_grad():
snake_case__ : Tuple = pt_model_loaded(**__SCREAMING_SNAKE_CASE ).to_tuple()
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ,'''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ):
self.assert_almost_equals(__SCREAMING_SNAKE_CASE ,pt_output_loaded.numpy() ,4e-2 )
def __lowerCamelCase ( self :List[str] ,__lowercase :int ,__lowercase :Optional[int] ,__lowercase :Tuple ):
snake_case__ : List[str] = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : int = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = fx_state
self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :Optional[Any] ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :List[str] ):
snake_case__ : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
snake_case__ : int = VisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = FlaxVisionTextDualEncoderModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = load_flax_weights_in_pytorch_model(__SCREAMING_SNAKE_CASE ,fx_model.params )
self.check_pt_flax_equivalence(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :List[Any] ):
snake_case__ : List[Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :int ):
snake_case__ : List[str] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :Union[str, Any] ):
snake_case__ : Optional[int] = self.prepare_config_and_inputs()
self.check_save_load(**__SCREAMING_SNAKE_CASE )
def __lowerCamelCase ( self :str ):
snake_case__ : Tuple = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__SCREAMING_SNAKE_CASE )
@is_pt_flax_cross_test
def __lowerCamelCase ( self :str ):
snake_case__ : int = self.prepare_config_and_inputs()
snake_case__ : Optional[Any] = config_inputs_dict.pop('''vision_config''' )
snake_case__ : str = config_inputs_dict.pop('''text_config''' )
snake_case__ : List[Any] = config_inputs_dict
self.check_equivalence_pt_to_flax(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
self.check_equivalence_flax_to_pt(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
@slow
def __lowerCamelCase ( self :Optional[int] ):
snake_case__ , snake_case__ : List[Any] = self.get_pretrained_model_and_inputs()
snake_case__ : Optional[int] = model_a(**__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : int = FlaxVisionTextDualEncoderModel.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : str = model_a(**__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = after_outputs[0]
snake_case__ : Optional[Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__SCREAMING_SNAKE_CASE ,1e-5 )
@require_flax
class a ( lowerCAmelCase_ , unittest.TestCase ):
def __lowerCamelCase ( self :Optional[Any] ):
snake_case__ : List[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=__SCREAMING_SNAKE_CASE ,text_from_pt=__SCREAMING_SNAKE_CASE ,)
snake_case__ : List[str] = 1_3
snake_case__ : Tuple = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
snake_case__ : List[Any] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size )
snake_case__ : Optional[Any] = random_attention_mask([batch_size, 4] )
snake_case__ : Union[str, Any] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def __lowerCamelCase ( self :Tuple ,__lowercase :int ,__lowercase :str ):
snake_case__ : Tuple = FlaxViTModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = FlaxBertModel(__SCREAMING_SNAKE_CASE )
return vision_model, text_model
def __lowerCamelCase ( self :Optional[Any] ):
snake_case__ : Tuple = FlaxViTModelTester(self )
snake_case__ : Tuple = FlaxBertModelTester(self )
snake_case__ : List[str] = vit_model_tester.prepare_config_and_inputs()
snake_case__ : Tuple = bert_model_tester.prepare_config_and_inputs()
snake_case__ , snake_case__ : List[str] = vision_config_and_inputs
snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class a ( lowerCAmelCase_ , unittest.TestCase ):
def __lowerCamelCase ( self :Optional[Any] ):
snake_case__ : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=__SCREAMING_SNAKE_CASE ,text_from_pt=__SCREAMING_SNAKE_CASE ,)
snake_case__ : int = 1_3
snake_case__ : Optional[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
snake_case__ : Optional[int] = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size )
snake_case__ : Dict = random_attention_mask([batch_size, 4] )
snake_case__ : Dict = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def __lowerCamelCase ( self :str ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ):
snake_case__ : Any = FlaxCLIPVisionModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = FlaxBertModel(__SCREAMING_SNAKE_CASE )
return vision_model, text_model
def __lowerCamelCase ( self :Union[str, Any] ):
snake_case__ : List[str] = FlaxCLIPVisionModelTester(self )
snake_case__ : Tuple = FlaxBertModelTester(self )
snake_case__ : str = clip_model_tester.prepare_config_and_inputs()
snake_case__ : Optional[Any] = bert_model_tester.prepare_config_and_inputs()
snake_case__ , snake_case__ : List[Any] = vision_config_and_inputs
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class a ( unittest.TestCase ):
@slow
def __lowerCamelCase ( self :Union[str, Any] ):
snake_case__ : Optional[int] = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 )
snake_case__ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
snake_case__ : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
snake_case__ : Optional[Any] = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=__SCREAMING_SNAKE_CASE ,padding=__SCREAMING_SNAKE_CASE ,return_tensors='''np''' )
snake_case__ : Tuple = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,)
snake_case__ : Union[str, Any] = np.array([[1.228_4727, 0.310_4122]] )
self.assertTrue(np.allclose(outputs.logits_per_image ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) )
| 252 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
# vision encoder
if "img_encoder.pos_embed" in name:
__lowerCAmelCase = name.replace("""img_encoder.pos_embed""" , """vision_model.embeddings.position_embeddings""" )
if "img_encoder.patch_embed.proj" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.proj""" , """vision_model.embeddings.patch_embeddings.projection""" )
if "img_encoder.patch_embed.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.patch_embed.norm""" , """vision_model.embeddings.layernorm""" )
if "img_encoder.layers" in name:
__lowerCAmelCase = name.replace("""img_encoder.layers""" , """vision_model.encoder.stages""" )
if "blocks" in name and "res" not in name:
__lowerCAmelCase = name.replace("""blocks""" , """layers""" )
if "attn" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""attn""" , """self_attn""" )
if "proj" in name and "self_attn" in name and "text" not in name:
__lowerCAmelCase = name.replace("""proj""" , """out_proj""" )
if "pre_assign_attn.attn.proj" in name:
__lowerCAmelCase = name.replace("""pre_assign_attn.attn.proj""" , """pre_assign_attn.attn.out_proj""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """layer_norm1""" )
if "norm2" in name and "pre_assign" not in name:
__lowerCAmelCase = name.replace("""norm2""" , """layer_norm2""" )
if "img_encoder.norm" in name:
__lowerCAmelCase = name.replace("""img_encoder.norm""" , """vision_model.layernorm""" )
# text encoder
if "text_encoder.token_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.token_embedding""" , """text_model.embeddings.token_embedding""" )
if "text_encoder.positional_embedding" in name:
__lowerCAmelCase = name.replace("""text_encoder.positional_embedding""" , """text_model.embeddings.position_embedding.weight""" )
if "text_encoder.transformer.resblocks." in name:
__lowerCAmelCase = name.replace("""text_encoder.transformer.resblocks.""" , """text_model.encoder.layers.""" )
if "ln_1" in name:
__lowerCAmelCase = name.replace("""ln_1""" , """layer_norm1""" )
if "ln_2" in name:
__lowerCAmelCase = name.replace("""ln_2""" , """layer_norm2""" )
if "c_fc" in name:
__lowerCAmelCase = name.replace("""c_fc""" , """fc1""" )
if "c_proj" in name:
__lowerCAmelCase = name.replace("""c_proj""" , """fc2""" )
if "text_encoder" in name:
__lowerCAmelCase = name.replace("""text_encoder""" , """text_model""" )
if "ln_final" in name:
__lowerCAmelCase = name.replace("""ln_final""" , """final_layer_norm""" )
# projection layers
if "img_projector.linear_hidden." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_hidden.""" , """visual_projection.""" )
if "img_projector.linear_out." in name:
__lowerCAmelCase = name.replace("""img_projector.linear_out.""" , """visual_projection.3.""" )
if "text_projector.linear_hidden" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_hidden""" , """text_projection""" )
if "text_projector.linear_out" in name:
__lowerCAmelCase = name.replace("""text_projector.linear_out""" , """text_projection.3""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Dict:
for key in orig_state_dict.copy().keys():
__lowerCAmelCase = orig_state_dict.pop(lowercase )
if "qkv" in key:
# weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase , __lowerCAmelCase = int(key_split[2] ), int(key_split[4] )
__lowerCAmelCase = config.vision_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[dim : dim * 2, :]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
elif "in_proj" in key:
# weights and biases of the key, value and query projections of text encoder's attention layers require special treatment:
# we need to split them up into separate matrices/vectors
__lowerCAmelCase = key.split(""".""" )
__lowerCAmelCase = int(key_split[3] )
__lowerCAmelCase = config.text_config.hidden_size
if "weight" in key:
__lowerCAmelCase = val[:dim, :]
__lowerCAmelCase = val[
dim : dim * 2, :
]
__lowerCAmelCase = val[-dim:, :]
else:
__lowerCAmelCase = val[:dim]
__lowerCAmelCase = val[dim : dim * 2]
__lowerCAmelCase = val[-dim:]
else:
__lowerCAmelCase = rename_key(lowercase )
# squeeze if necessary
if (
"text_projection.0" in new_name
or "text_projection.3" in new_name
or "visual_projection.0" in new_name
or "visual_projection.3" in new_name
):
__lowerCAmelCase = val.squeeze_()
else:
__lowerCAmelCase = val
return orig_state_dict
def _lowerCAmelCase ( ) -> str:
__lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCAmelCase = Image.open(requests.get(lowercase , stream=lowercase ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase="groupvit-gcc-yfcc" , lowercase=False ) -> List[Any]:
__lowerCAmelCase = GroupViTConfig()
__lowerCAmelCase = GroupViTModel(lowercase ).eval()
__lowerCAmelCase = torch.load(lowercase , map_location="""cpu""" )["""model"""]
__lowerCAmelCase = convert_state_dict(lowercase , lowercase )
__lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowercase , strict=lowercase )
assert missing_keys == ["text_model.embeddings.position_ids"]
assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(lowercase ) == 0)
# verify result
__lowerCAmelCase = CLIPProcessor.from_pretrained("""openai/clip-vit-base-patch32""" )
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = processor(text=["""a photo of a cat""", """a photo of a dog"""] , images=lowercase , padding=lowercase , return_tensors="""pt""" )
with torch.no_grad():
__lowerCAmelCase = model(**lowercase )
if model_name == "groupvit-gcc-yfcc":
__lowerCAmelCase = torch.tensor([[13.35_23, 6.36_29]] )
elif model_name == "groupvit-gcc-redcaps":
__lowerCAmelCase = torch.tensor([[16.18_73, 8.62_30]] )
else:
raise ValueError(f'Model name {model_name} not supported.' )
assert torch.allclose(outputs.logits_per_image , lowercase , atol=1e-3 )
processor.save_pretrained(lowercase )
model.save_pretrained(lowercase )
print("""Successfully saved processor and model to""" , lowercase )
if push_to_hub:
print("""Pushing to the hub...""" )
processor.push_to_hub(lowercase , organization="""nielsr""" )
model.push_to_hub(lowercase , organization="""nielsr""" )
if __name__ == "__main__":
_a : int = argparse.ArgumentParser()
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to dump the processor and PyTorch model."""
)
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to GroupViT checkpoint""")
parser.add_argument(
"""--model_name""",
default="""groupvit-gccy-fcc""",
type=str,
help="""Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'""",
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.""",
)
_a : List[str] = parser.parse_args()
convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 689 | 0 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_a: Optional[Any] = 16
_a: Any = 32
def __lowerCAmelCase ( A , A = 16 ):
UpperCAmelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" )
UpperCAmelCase_ = load_dataset("glue" , "mrpc" )
def tokenize_function(A ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
UpperCAmelCase_ = datasets.map(
A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
UpperCAmelCase_ = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
UpperCAmelCase_ = 16
elif accelerator.mixed_precision != "no":
UpperCAmelCase_ = 8
else:
UpperCAmelCase_ = None
return tokenizer.pad(
A , padding="longest" , max_length=A , pad_to_multiple_of=A , return_tensors="pt" , )
# Instantiate dataloaders.
UpperCAmelCase_ = DataLoader(
tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A )
UpperCAmelCase_ = DataLoader(
tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_a: int = mocked_dataloaders # noqa: F811
def __lowerCAmelCase ( A , A ):
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS" , A ) == "1":
UpperCAmelCase_ = 2
# Initialize accelerator
UpperCAmelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ = config["lr"]
UpperCAmelCase_ = int(config["num_epochs"] )
UpperCAmelCase_ = int(config["seed"] )
UpperCAmelCase_ = int(config["batch_size"] )
UpperCAmelCase_ = evaluate.load("glue" , "mrpc" )
# If the batch size is too big we use gradient accumulation
UpperCAmelCase_ = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
UpperCAmelCase_ = batch_size // MAX_GPU_BATCH_SIZE
UpperCAmelCase_ = MAX_GPU_BATCH_SIZE
set_seed(A )
UpperCAmelCase_ , UpperCAmelCase_ = get_dataloaders(A , A )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=A )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
UpperCAmelCase_ = model.to(accelerator.device )
# Instantiate optimizer
UpperCAmelCase_ = AdamW(params=model.parameters() , lr=A )
# Instantiate scheduler
UpperCAmelCase_ = get_linear_schedule_with_warmup(
optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = accelerator.prepare(
A , A , A , A , A )
# Now we train the model
for epoch in range(A ):
model.train()
for step, batch in enumerate(A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
UpperCAmelCase_ = model(**A )
UpperCAmelCase_ = outputs.loss
UpperCAmelCase_ = loss / gradient_accumulation_steps
accelerator.backward(A )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
UpperCAmelCase_ = 0
for step, batch in enumerate(A ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ = model(**A )
UpperCAmelCase_ = outputs.logits.argmax(dim=-1 )
UpperCAmelCase_ , UpperCAmelCase_ = accelerator.gather((predictions, batch["labels"]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(A ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
UpperCAmelCase_ = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=A , references=A , )
UpperCAmelCase_ = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}:" , A )
def __lowerCAmelCase ( ):
UpperCAmelCase_ = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=A , default=A , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
UpperCAmelCase_ = parser.parse_args()
UpperCAmelCase_ = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(A , A )
if __name__ == "__main__":
main() | 162 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_a : Tuple = logging.get_logger(__name__)
_a : Optional[int] = ["""model.decoder.embed_positions.weights"""]
def _lowerCAmelCase ( lowercase ) -> Optional[Any]:
if "emb" in name:
__lowerCAmelCase = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
__lowerCAmelCase = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
__lowerCAmelCase = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
__lowerCAmelCase = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
__lowerCAmelCase = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
__lowerCAmelCase = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
__lowerCAmelCase = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
__lowerCAmelCase = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
__lowerCAmelCase = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
__lowerCAmelCase = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
__lowerCAmelCase = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _lowerCAmelCase ( lowercase , lowercase ) -> Tuple[Dict, Dict]:
__lowerCAmelCase = list(state_dict.keys() )
__lowerCAmelCase = {}
for key in keys:
__lowerCAmelCase = state_dict.pop(lowercase )
__lowerCAmelCase = rename_keys(lowercase )
if "in_proj_weight" in key:
# split fused qkv proj
__lowerCAmelCase = val[:hidden_size, :]
__lowerCAmelCase = val[hidden_size : 2 * hidden_size, :]
__lowerCAmelCase = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
__lowerCAmelCase = val
else:
__lowerCAmelCase = val
return state_dict, enc_dec_proj_state_dict
def _lowerCAmelCase ( lowercase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
__lowerCAmelCase = 1024
__lowerCAmelCase = 24
__lowerCAmelCase = 16
elif checkpoint == "medium":
__lowerCAmelCase = 1536
__lowerCAmelCase = 48
__lowerCAmelCase = 24
elif checkpoint == "large":
__lowerCAmelCase = 2048
__lowerCAmelCase = 48
__lowerCAmelCase = 32
else:
raise ValueError(f'Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.' )
__lowerCAmelCase = MusicgenDecoderConfig(
hidden_size=lowercase , ffn_dim=hidden_size * 4 , num_hidden_layers=lowercase , num_attention_heads=lowercase , )
return config
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase=None , lowercase=None , lowercase="cpu" ) -> Optional[Any]:
__lowerCAmelCase = MusicGen.get_pretrained(lowercase , device=lowercase )
__lowerCAmelCase = decoder_config_from_checkpoint(lowercase )
__lowerCAmelCase = fairseq_model.lm.state_dict()
__lowerCAmelCase , __lowerCAmelCase = rename_state_dict(
lowercase , hidden_size=decoder_config.hidden_size )
__lowerCAmelCase = TaEncoderModel.from_pretrained("""t5-base""" )
__lowerCAmelCase = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
__lowerCAmelCase = MusicgenForCausalLM(lowercase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
__lowerCAmelCase , __lowerCAmelCase = decoder.load_state_dict(lowercase , strict=lowercase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(lowercase )
if len(lowercase ) > 0:
raise ValueError(f'Missing key(s) in state_dict: {missing_keys}' )
if len(lowercase ) > 0:
raise ValueError(f'Unexpected key(s) in state_dict: {unexpected_keys}' )
# init the composite model
__lowerCAmelCase = MusicgenForConditionalGeneration(text_encoder=lowercase , audio_encoder=lowercase , decoder=lowercase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(lowercase )
# check we can do a forward pass
__lowerCAmelCase = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
__lowerCAmelCase = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
__lowerCAmelCase = model(input_ids=lowercase , decoder_input_ids=lowercase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
__lowerCAmelCase = AutoTokenizer.from_pretrained("""t5-base""" )
__lowerCAmelCase = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
__lowerCAmelCase = MusicgenProcessor(feature_extractor=lowercase , tokenizer=lowercase )
# set the appropriate bos/pad token ids
__lowerCAmelCase = 2048
__lowerCAmelCase = 2048
# set other default generation config params
__lowerCAmelCase = int(30 * audio_encoder.config.frame_rate )
__lowerCAmelCase = True
__lowerCAmelCase = 3.0
if pytorch_dump_folder is not None:
Path(lowercase ).mkdir(exist_ok=lowercase )
logger.info(f'Saving model {checkpoint} to {pytorch_dump_folder}' )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if repo_id:
logger.info(f'Pushing model {checkpoint} to {repo_id}' )
model.push_to_hub(lowercase )
processor.push_to_hub(lowercase )
if __name__ == "__main__":
_a : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint""",
default="""small""",
type=str,
help="""Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.""",
)
parser.add_argument(
"""--pytorch_dump_folder""",
required=True,
default=None,
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub."""
)
parser.add_argument(
"""--device""", default="""cpu""", type=str, help="""Torch device to run the conversion, either cpu or cuda."""
)
_a : List[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 689 | 0 |
'''simple docstring'''
def _lowercase (SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if n_term == "":
return []
__A : List[Any] = []
for temp in range(int(SCREAMING_SNAKE_CASE ) ):
series.append(f"1/{temp + 1}" if series else "1" )
return series
if __name__ == "__main__":
_UpperCamelCase = input("""Enter the last number (nth term) of the Harmonic Series""")
print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""")
print(harmonic_series(nth_term))
| 111 |
'''simple docstring'''
from collections import deque
def _lowerCAmelCase ( lowercase ) -> Dict:
__lowerCAmelCase = len(lowercase )
__lowerCAmelCase = deque()
__lowerCAmelCase = [False for _ in range(lowercase )]
__lowerCAmelCase = [-1 for _ in range(lowercase )]
__lowerCAmelCase = index_of[:]
def strong_connect(lowercase , lowercase , lowercase ):
__lowerCAmelCase = index # the number when this node is seen
__lowerCAmelCase = index # lowest rank node reachable from here
index += 1
stack.append(lowercase )
__lowerCAmelCase = True
for w in g[v]:
if index_of[w] == -1:
__lowerCAmelCase = strong_connect(lowercase , lowercase , lowercase )
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
elif on_stack[w]:
__lowerCAmelCase = (
lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
)
if lowlink_of[v] == index_of[v]:
__lowerCAmelCase = []
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
while w != v:
__lowerCAmelCase = stack.pop()
__lowerCAmelCase = False
component.append(lowercase )
components.append(lowercase )
return index
__lowerCAmelCase = []
for v in range(lowercase ):
if index_of[v] == -1:
strong_connect(lowercase , 0 , lowercase )
return components
def _lowerCAmelCase ( lowercase , lowercase ) -> str:
__lowerCAmelCase = [[] for _ in range(lowercase )]
for u, v in edges:
g[u].append(lowercase )
return g
if __name__ == "__main__":
# Test
_a : Any = 7
_a : Tuple = [0, 0, 1, 2, 3, 3, 4, 4, 6]
_a : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5]
_a : Optional[Any] = [(u, v) for u, v in zip(source, target)]
_a : Optional[int] = create_graph(n_vertices, edges)
assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
| 689 | 0 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class SCREAMING_SNAKE_CASE__ :
def __init__( self: Tuple , a: Dict , a: str=13 , a: Optional[int]=7 , a: Any=True , a: int=True , a: Dict=False , a: str=True , a: Optional[int]=99 , a: Any=32 , a: List[str]=5 , a: Dict=4 , a: List[str]=37 , a: Optional[int]="gelu" , a: int=0.1 , a: int=0.1 , a: str=5_12 , a: str=16 , a: List[str]=2 , a: Any=0.02 , a: str=3 , a: List[Any]=4 , a: Dict=None , ) ->List[str]:
'''simple docstring'''
a_ = parent
a_ = batch_size
a_ = seq_length
a_ = is_training
a_ = use_input_mask
a_ = use_token_type_ids
a_ = use_labels
a_ = vocab_size
a_ = hidden_size
a_ = num_hidden_layers
a_ = num_attention_heads
a_ = intermediate_size
a_ = hidden_act
a_ = hidden_dropout_prob
a_ = attention_probs_dropout_prob
a_ = max_position_embeddings
a_ = type_vocab_size
a_ = type_sequence_label_size
a_ = initializer_range
a_ = num_labels
a_ = num_choices
a_ = scope
def _lowerCAmelCase ( self: str) ->List[str]:
'''simple docstring'''
a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
a_ = None
if self.use_input_mask:
a_ = random_attention_mask([self.batch_size, self.seq_length])
a_ = None
if self.use_token_type_ids:
a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
a_ = None
a_ = None
a_ = None
if self.use_labels:
a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size)
a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
a_ = ids_tensor([self.batch_size] , self.num_choices)
a_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCAmelCase ( self: int) ->List[Any]:
'''simple docstring'''
return OpenLlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , use_stable_embedding=__SCREAMING_SNAKE_CASE , )
def _lowerCAmelCase ( self: Optional[Any] , a: List[Any] , a: Union[str, Any] , a: List[str] , a: int , a: List[str] , a: Any , a: List[str]) ->Dict:
'''simple docstring'''
a_ = OpenLlamaModel(config=__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
a_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)
a_ = model(__SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _lowerCAmelCase ( self: List[str] , a: int , a: Optional[Any] , a: List[Any] , a: int , a: str , a: Optional[int] , a: int , a: List[str] , a: Union[str, Any] , ) ->Dict:
'''simple docstring'''
a_ = True
a_ = OpenLlamaModel(__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
a_ = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , )
a_ = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , )
a_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def _lowerCAmelCase ( self: Union[str, Any] , a: Optional[int] , a: Dict , a: Union[str, Any] , a: Optional[int] , a: Optional[int] , a: Union[str, Any] , a: List[str] , a: List[str] , a: Dict , ) ->List[str]:
'''simple docstring'''
a_ = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
a_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def _lowerCAmelCase ( self: List[str] , a: List[Any] , a: Dict , a: Optional[int] , a: Tuple , a: Union[str, Any] , a: Any , a: Optional[int] , a: Union[str, Any] , a: str , ) ->Optional[Any]:
'''simple docstring'''
a_ = True
a_ = True
a_ = OpenLlamaForCausalLM(config=__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
# first forward pass
a_ = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , )
a_ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
a_ = ids_tensor((self.batch_size, 3) , config.vocab_size)
a_ = ids_tensor((self.batch_size, 3) , vocab_size=2)
# append to next input_ids and
a_ = torch.cat([input_ids, next_tokens] , dim=-1)
a_ = torch.cat([input_mask, next_mask] , dim=-1)
a_ = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0]
a_ = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["hidden_states"][0]
# select random slice
a_ = ids_tensor((1,) , output_from_past.shape[-1]).item()
a_ = output_from_no_past[:, -3:, random_slice_idx].detach()
a_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3))
def _lowerCAmelCase ( self: List[Any]) ->str:
'''simple docstring'''
a_ = self.prepare_config_and_inputs()
(
(
a_
) , (
a_
) , (
a_
) , (
a_
) , (
a_
) , (
a_
) , (
a_
) ,
) = config_and_inputs
a_ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ):
_UpperCAmelCase =(
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
_UpperCAmelCase =(OpenLlamaForCausalLM,) if is_torch_available() else ()
_UpperCAmelCase =(
{
"""feature-extraction""": OpenLlamaModel,
"""text-classification""": OpenLlamaForSequenceClassification,
"""text-generation""": OpenLlamaForCausalLM,
"""zero-shot""": OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
_UpperCAmelCase =False
_UpperCAmelCase =False
def _lowerCAmelCase ( self: int) ->Dict:
'''simple docstring'''
a_ = OpenLlamaModelTester(self)
a_ = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37)
def _lowerCAmelCase ( self: Optional[Any]) ->Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _lowerCAmelCase ( self: Dict) ->List[Any]:
'''simple docstring'''
a_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE)
def _lowerCAmelCase ( self: Optional[int]) ->Dict:
'''simple docstring'''
a_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a_ = type
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE)
def _lowerCAmelCase ( self: Tuple) ->str:
'''simple docstring'''
a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common()
a_ = 3
a_ = input_dict["input_ids"]
a_ = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE)
a_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
a_ = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
a_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _lowerCAmelCase ( self: str) ->Optional[Any]:
'''simple docstring'''
a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common()
a_ = 3
a_ = "single_label_classification"
a_ = input_dict["input_ids"]
a_ = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE)
a_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size)
a_ = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
a_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
def _lowerCAmelCase ( self: Optional[int]) ->List[str]:
'''simple docstring'''
a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common()
a_ = 3
a_ = "multi_label_classification"
a_ = input_dict["input_ids"]
a_ = input_ids.ne(1).to(__SCREAMING_SNAKE_CASE)
a_ = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float)
a_ = OpenLlamaForSequenceClassification(__SCREAMING_SNAKE_CASE)
model.to(__SCREAMING_SNAKE_CASE)
model.eval()
a_ = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE)
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip("Open-Llama buffers include complex numbers, which breaks this test")
def _lowerCAmelCase ( self: List[Any]) ->Optional[Any]:
'''simple docstring'''
pass
@parameterized.expand([("linear",), ("dynamic",)])
def _lowerCAmelCase ( self: Optional[Any] , a: int) ->Dict:
'''simple docstring'''
a_ , a_ = self.model_tester.prepare_config_and_inputs_for_common()
a_ = ids_tensor([1, 10] , config.vocab_size)
a_ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
a_ = OpenLlamaModel(__SCREAMING_SNAKE_CASE)
original_model.to(__SCREAMING_SNAKE_CASE)
original_model.eval()
a_ = original_model(__SCREAMING_SNAKE_CASE).last_hidden_state
a_ = original_model(__SCREAMING_SNAKE_CASE).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
a_ = {"type": scaling_type, "factor": 10.0}
a_ = OpenLlamaModel(__SCREAMING_SNAKE_CASE)
scaled_model.to(__SCREAMING_SNAKE_CASE)
scaled_model.eval()
a_ = scaled_model(__SCREAMING_SNAKE_CASE).last_hidden_state
a_ = scaled_model(__SCREAMING_SNAKE_CASE).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5))
else:
self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5))
| 685 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _lowerCAmelCase ( ) -> Union[str, Any]:
__lowerCAmelCase = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" )
__lowerCAmelCase = parser.add_subparsers(help="""diffusers-cli command helpers""" )
# Register commands
EnvironmentCommand.register_subcommand(lowercase )
# Let's go
__lowerCAmelCase = parser.parse_args()
if not hasattr(lowercase , """func""" ):
parser.print_help()
exit(1 )
# Run
__lowerCAmelCase = args.func(lowercase )
service.run()
if __name__ == "__main__":
main()
| 689 | 0 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowercase_ : List[str] = ArgumentParser(
description=(
"PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"
) )
# Optional arguments for the launch helper
parser.add_argument("--num_cores" , type=_UpperCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." )
# positional
parser.add_argument(
"training_script" , type=_UpperCamelCase , help=(
"The full path to the single TPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script"
) , )
# rest from the training program
parser.add_argument("training_script_args" , nargs=_UpperCamelCase )
return parser.parse_args()
def __SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowercase_ : List[Any] = parse_args()
# Import training_script as a module.
lowercase_ : Any = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
lowercase_ : Tuple = script_fpath.stem
lowercase_ : str = importlib.import_module(_UpperCamelCase )
# Patch sys.argv
lowercase_ : Optional[int] = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 620 |
'''simple docstring'''
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
_a : List[Any] = logging.get_logger(__name__)
_a : int = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
_a : Any = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
for attribute in key.split(""".""" ):
__lowerCAmelCase = getattr(lowercase , lowercase )
if weight_type is not None:
__lowerCAmelCase = getattr(lowercase , lowercase ).shape
else:
__lowerCAmelCase = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__lowerCAmelCase = value
elif weight_type == "weight_g":
__lowerCAmelCase = value
elif weight_type == "weight_v":
__lowerCAmelCase = value
elif weight_type == "bias":
__lowerCAmelCase = value
else:
__lowerCAmelCase = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def _lowerCAmelCase ( lowercase , lowercase ) -> List[Any]:
__lowerCAmelCase = []
__lowerCAmelCase = fairseq_model.state_dict()
__lowerCAmelCase = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__lowerCAmelCase = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , )
__lowerCAmelCase = True
else:
for key, mapped_key in MAPPING.items():
__lowerCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
__lowerCAmelCase = True
if "*" in mapped_key:
__lowerCAmelCase = name.split(lowercase )[0].split(""".""" )[-2]
__lowerCAmelCase = mapped_key.replace("""*""" , lowercase )
if "weight_g" in name:
__lowerCAmelCase = """weight_g"""
elif "weight_v" in name:
__lowerCAmelCase = """weight_v"""
elif "bias" in name:
__lowerCAmelCase = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__lowerCAmelCase = """weight"""
else:
__lowerCAmelCase = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(f'Unused weights: {unused_weights}' )
def _lowerCAmelCase ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[Any]:
__lowerCAmelCase = full_name.split("""conv_layers.""" )[-1]
__lowerCAmelCase = name.split(""".""" )
__lowerCAmelCase = int(items[0] )
__lowerCAmelCase = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
__lowerCAmelCase = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _lowerCAmelCase ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Dict:
if config_path is not None:
__lowerCAmelCase = UniSpeechSatConfig.from_pretrained(lowercase )
else:
__lowerCAmelCase = UniSpeechSatConfig()
__lowerCAmelCase = """"""
if is_finetuned:
__lowerCAmelCase = UniSpeechSatForCTC(lowercase )
else:
__lowerCAmelCase = UniSpeechSatForPreTraining(lowercase )
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
__lowerCAmelCase = model[0].eval()
recursively_load_weights(lowercase , lowercase )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
_a : List[str] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
_a : Union[str, Any] = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 689 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.