code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowerCamelCase__ : def __init__( self : List[Any] , _lowercase : Dict , _lowercase : int=99 , _lowercase : List[Any]=13 , _lowercase : str=16 , _lowercase : Union[str, Any]=7 , _lowercase : str=True , _lowercase : Optional[Any]=True , _lowercase : Any=True , _lowercase : int=False , _lowercase : int=True , _lowercase : Optional[Any]=2 , _lowercase : Dict=32 , _lowercase : str=4 , _lowercase : List[str]=4 , _lowercase : str=30 , _lowercase : List[str]=0 , _lowercase : List[Any]=1 , _lowercase : int=2 , _lowercase : List[str]=None , ): A = parent A = batch_size A = decoder_seq_length # For common tests A = self.decoder_seq_length A = is_training A = use_attention_mask A = use_labels A = vocab_size A = d_model A = d_model A = decoder_layers A = decoder_layers A = decoder_ffn_dim A = decoder_attention_heads A = decoder_attention_heads A = eos_token_id A = bos_token_id A = pad_token_id A = decoder_start_token_id A = use_cache A = max_position_embeddings A = None A = decoder_seq_length A = 2 A = 1 def __a ( self : Optional[Any] ): A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A = None if self.use_attention_mask: A = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) A = None if self.use_labels: A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __a ( self : List[str] , _lowercase : Any , _lowercase : List[Any] , _lowercase : Any , _lowercase : int , ): A = True A = TrOCRDecoder(config=_lowercase ).to(_lowercase ).eval() A = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass A = model(_lowercase , use_cache=_lowercase ) A = model(_lowercase ) A = model(_lowercase , use_cache=_lowercase ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) ) self.parent.assertTrue(len(_lowercase ) == len(_lowercase ) + 1 ) A = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids A = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and A = torch.cat([input_ids, next_tokens] , dim=-1 ) A = model(_lowercase )['last_hidden_state'] A = model(_lowercase , past_key_values=_lowercase )['last_hidden_state'] # select random slice A = ids_tensor((1,) , output_from_past.shape[-1] ).item() A = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() A = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_lowercase , _lowercase , atol=1e-3 ) def __a ( self : Tuple ): A = self.prepare_config_and_inputs() A , A , A , A = config_and_inputs A = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCAmelCase = (TrOCRForCausalLM,) if is_torch_available() else () lowerCAmelCase = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {} lowerCAmelCase = True lowerCAmelCase = False def __a ( self : Union[str, Any] ): A = TrOCRStandaloneDecoderModelTester(self , is_training=_lowercase ) A = ConfigTester(self , config_class=_lowercase ) def __a ( self : Union[str, Any] ): pass def __a ( self : Union[str, Any] ): pass def __a ( self : List[Any] ): pass def __a ( self : List[str] ): self.config_tester.run_common_tests() def __a ( self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_lowercase ) def __a ( self : Optional[int] ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def __a ( self : Union[str, Any] ): pass
690
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Dict = { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """roformer""" def __init__( self : Optional[Any] , _lowercase : Any=50_000 , _lowercase : List[Any]=None , _lowercase : Tuple=768 , _lowercase : Optional[int]=12 , _lowercase : List[str]=12 , _lowercase : Any=3_072 , _lowercase : int="gelu" , _lowercase : List[str]=0.1 , _lowercase : str=0.1 , _lowercase : Optional[int]=1_536 , _lowercase : str=2 , _lowercase : Optional[Any]=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : Optional[Any]=0 , _lowercase : Optional[int]=False , _lowercase : Union[str, Any]=True , **_lowercase : str , ): super().__init__(pad_token_id=_lowercase , **_lowercase ) A = vocab_size A = hidden_size if embedding_size is None else embedding_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = rotary_value A = use_cache class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : Dict ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): @property def __a ( self : Optional[Any] ): torch.manual_seed(0 ) A = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __a ( self : Dict ): A = self.dummy_uncond_unet A = KarrasVeScheduler() A = KarrasVePipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = torch.manual_seed(0 ) A = pipe(num_inference_steps=2 , generator=_lowercase , output_type='numpy' ).images A = torch.manual_seed(0 ) A = pipe(num_inference_steps=2 , generator=_lowercase , output_type='numpy' , return_dict=_lowercase )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A = 'google/ncsnpp-celebahq-256' A = UNetaDModel.from_pretrained(_lowercase ) A = KarrasVeScheduler() A = KarrasVePipeline(unet=_lowercase , scheduler=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = torch.manual_seed(0 ) A = pipe(num_inference_steps=20 , generator=_lowercase , output_type='numpy' ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Optional[Any] = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __snake_case ( UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): A = [image] if isinstance(image[0] , PIL.Image.Image ): A , A = image[0].size A , A = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 A = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] A = np.concatenate(UpperCamelCase__ , axis=0 ) A = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_5_5.0 A = image.transpose(0 , 3 , 1 , 2 ) A = 2.0 * image - 1.0 A = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): A = torch.cat(UpperCamelCase__ , dim=0 ) return image def __snake_case ( UpperCamelCase__ ) -> Any: """simple docstring""" if isinstance(UpperCamelCase__ , torch.Tensor ): return mask elif isinstance(UpperCamelCase__ , PIL.Image.Image ): A = [mask] if isinstance(mask[0] , PIL.Image.Image ): A , A = mask[0].size A , A = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] A = np.concatenate(UpperCamelCase__ , axis=0 ) A = mask.astype(np.floataa ) / 2_5_5.0 A = 0 A = 1 A = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0] , torch.Tensor ): A = torch.cat(UpperCamelCase__ , dim=0 ) return mask class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = 42 lowerCAmelCase = 42 def __init__( self : Optional[Any] , _lowercase : Any , _lowercase : List[Any] ): super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self : Optional[Any] , _lowercase : Union[torch.Tensor, PIL.Image.Image] , _lowercase : Union[torch.Tensor, PIL.Image.Image] , _lowercase : int = 250 , _lowercase : float = 0.0 , _lowercase : int = 10 , _lowercase : int = 10 , _lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowercase : Optional[str] = "pil" , _lowercase : bool = True , ): A = image A = _preprocess_image(_lowercase ) A = original_image.to(device=self.device , dtype=self.unet.dtype ) A = _preprocess_mask(_lowercase ) A = mask_image.to(device=self.device , dtype=self.unet.dtype ) A = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) A = original_image.shape A = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase , _lowercase , _lowercase , self.device ) A = eta A = self.scheduler.timesteps[0] + 1 A = generator[0] if isinstance(_lowercase , _lowercase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual A = self.unet(_lowercase , _lowercase ).sample # compute previous image: x_t -> x_t-1 A = self.scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ).prev_sample else: # compute the reverse: x_t-1 -> x_t A = self.scheduler.undo_step(_lowercase , _lowercase , _lowercase ) A = t A = (image / 2 + 0.5).clamp(0 , 1 ) A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ = 10**9 ) -> int: """simple docstring""" A = 1 A = 2 A = 0 A = 0 A = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value A = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from collections import namedtuple UpperCamelCase : Dict = namedtuple("from_to", "from_ to") UpperCamelCase : str = { "cubicmeter": from_to(1, 1), "litre": from_to(0.001, 1_000), "kilolitre": from_to(1, 1), "gallon": from_to(0.00_454, 264.172), "cubicyard": from_to(0.76_455, 1.30_795), "cubicfoot": from_to(0.028, 35.3_147), "cup": from_to(0.000_236_588, 4_226.75), } def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> float: """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + ', '.join(UpperCamelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + ', '.join(UpperCamelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __snake_case ( UpperCamelCase__ ) -> str: """simple docstring""" def wrapper(*UpperCamelCase__ , **UpperCamelCase__ ): A = timeit.default_timer() A = func(*UpperCamelCase__ , **UpperCamelCase__ ) A = timeit.default_timer() - starttime return delta A = func.__name__ return wrapper def __snake_case ( UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=None ) -> Optional[int]: """simple docstring""" A = [] A = seq_shapes or {} for i in range(UpperCamelCase__ ): A = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): A = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": A = 'The small grey turtle was surprisingly fast when challenged.' else: A = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): A = v.feature A = seq_shapes[k] A = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) A = data dummy_data.append((i, example) ) return dummy_data def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=None ) -> Optional[Any]: """simple docstring""" A = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: A = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) A , A = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) A = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
690
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
1
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__ ( unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)] ) def __a ( self : Dict , _lowercase : Tuple ): A = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase , config_name=_lowercase ) A = GenerationConfig.from_pretrained(_lowercase , config_name=_lowercase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _lowercase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _lowercase ) def __a ( self : Optional[Any] ): A = AutoConfig.from_pretrained('gpt2' ) A = GenerationConfig.from_model_config(_lowercase ) A = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_lowercase , _lowercase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __a ( self : Dict ): A = GenerationConfig() A = { 'max_new_tokens': 1_024, 'foo': 'bar', } A = copy.deepcopy(_lowercase ) A = generation_config.update(**_lowercase ) # update_kwargs was not modified (no side effects) self.assertEqual(_lowercase , _lowercase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_lowercase , {'foo': 'bar'} ) def __a ( self : int ): A = GenerationConfig() A = 'bar' with tempfile.TemporaryDirectory('test-generation-config' ) as tmp_dir: generation_config.save_pretrained(_lowercase ) A = GenerationConfig.from_pretrained(_lowercase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar' ) A = GenerationConfig.from_model_config(_lowercase ) assert not hasattr(_lowercase , 'foo' ) # no new kwargs should be initialized if from config def __a ( self : str ): A = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _lowercase ) self.assertEqual(default_config.num_beams , 1 ) A = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _lowercase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase ) A = GenerationConfig.from_pretrained(_lowercase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _lowercase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class lowerCamelCase__ ( unittest.TestCase ): @classmethod def __a ( cls : List[str] ): A = TOKEN HfFolder.save_token(_lowercase ) @classmethod def __a ( cls : Dict ): try: delete_repo(token=cls._token , repo_id='test-generation-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org' ) except HTTPError: pass def __a ( self : List[Any] ): A = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token ) A = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase , repo_id='test-generation-config' , push_to_hub=_lowercase , use_auth_token=self._token ) A = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) def __a ( self : Tuple ): A = GenerationConfig( do_sample=_lowercase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token ) A = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase , repo_id='valid_org/test-generation-config-org' , push_to_hub=_lowercase , use_auth_token=self._token ) A = GenerationConfig.from_pretrained('valid_org/test-generation-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase , getattr(_lowercase , _lowercase ) )
690
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase : Tuple = { "configuration_chinese_clip": [ "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "ChineseCLIPConfig", "ChineseCLIPOnnxConfig", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "processing_chinese_clip": ["ChineseCLIPProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = ["ChineseCLIPFeatureExtractor"] UpperCamelCase : Tuple = ["ChineseCLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ "CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : str = logging.get_logger(__name__) def __snake_case ( UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in sd.keys(): A = torch.load(UpperCamelCase__ , map_location='cpu' )['model'] # pop unnecessary weights A = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(UpperCamelCase__ ) A = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A = sd.pop(UpperCamelCase__ ) A = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A = sd[key] # We split QKV in separate Q,K,V A = key.replace('.qkv_proj.' , '.q_proj.' ) A = key.replace('.qkv_proj.' , '.k_proj.' ) A = key.replace('.qkv_proj.' , '.v_proj.' ) A = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A , A , A = torch.split(UpperCamelCase__ , depth // 3 , dim=0 ) A = q A = k A = v del sd[key] return sd @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: """simple docstring""" A = load_checkpoint(UpperCamelCase__ ) if config is not None: A = OPTConfig.from_pretrained(UpperCamelCase__ ) else: A = OPTConfig() A = OPTModel(UpperCamelCase__ ).half().eval() model.load_state_dict(UpperCamelCase__ ) # Check results Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") UpperCamelCase : int = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
690
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Tuple , **_lowercase : Any ): super().__init__(**_lowercase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[str] , _lowercase : Union[str, List[str], "Image", List["Image"]] , **_lowercase : str ): return super().__call__(_lowercase , **_lowercase ) def __a ( self : Union[str, Any] , **_lowercase : Tuple ): A = {} if "candidate_labels" in kwargs: A = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: A = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __a ( self : List[str] , _lowercase : List[str] , _lowercase : str=None , _lowercase : List[Any]="This is a photo of {}." ): A = load_image(_lowercase ) A = self.image_processor(images=[image] , return_tensors=self.framework ) A = candidate_labels A = [hypothesis_template.format(_lowercase ) for x in candidate_labels] A = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) A = [text_inputs] return inputs def __a ( self : Union[str, Any] , _lowercase : Any ): A = model_inputs.pop('candidate_labels' ) A = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _lowercase ): A = text_inputs[0] else: # Batching case. A = text_inputs[0][0] A = self.model(**_lowercase , **_lowercase ) A = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __a ( self : Any , _lowercase : List[Any] ): A = model_outputs.pop('candidate_labels' ) A = model_outputs['logits'][0] if self.framework == "pt": A = logits.softmax(dim=-1 ).squeeze(-1 ) A = probs.tolist() if not isinstance(_lowercase , _lowercase ): A = [scores] elif self.framework == "tf": A = stable_softmax(_lowercase , axis=-1 ) A = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) A = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda _lowercase : -x[0] ) ] return result
690
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : List[Any] , _lowercase : Optional[NestedDataStructureLike[PathLike]] = None , _lowercase : Optional[NamedSplit] = None , _lowercase : Optional[Features] = None , _lowercase : str = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : Optional[int] = None , **_lowercase : str , ): A = path_or_paths A = split if split or isinstance(_lowercase , _lowercase ) else 'train' A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def __a ( self : List[Any] ): pass class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : List[Any] , _lowercase : Optional[Features] = None , _lowercase : str = None , _lowercase : bool = False , _lowercase : bool = False , _lowercase : Optional[int] = None , **_lowercase : Any , ): A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def __a ( self : Tuple ): pass
690
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
1
"""simple docstring""" from timeit import timeit UpperCamelCase : Union[str, Any] = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __snake_case ( UpperCamelCase__ ) -> bool: """simple docstring""" A = 0 A = len(UpperCamelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __snake_case ( UpperCamelCase__ ) -> bool: """simple docstring""" A = len(UpperCamelCase__ ) // 2 A = len(UpperCamelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCamelCase__ ) ) def __snake_case ( UpperCamelCase__ ) -> bool: """simple docstring""" if len(UpperCamelCase__ ) <= 2: return True if s[0] == s[len(UpperCamelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __snake_case ( UpperCamelCase__ ) -> bool: """simple docstring""" return s == s[::-1] def __snake_case ( UpperCamelCase__ ) -> None: """simple docstring""" A = f'all({name}(key) is value for key, value in test_data.items())' A = f'from __main__ import test_data, {name}' A = 500000 A = timeit(stmt=UpperCamelCase__ , setup=UpperCamelCase__ , number=UpperCamelCase__ ) print(f'{name:<35} finished {number:,} runs in {result:.5f} seconds' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
690
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0 , UpperCamelCase__=None ): A = round(val / multiple ) * multiple if max_val is not None and x > max_val: A = math.floor(val / multiple ) * multiple if x < min_val: A = math.ceil(val / multiple ) * multiple return x A = (output_size, output_size) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else output_size A , A = get_image_size(UpperCamelCase__ ) A , A = output_size # determine new height and width A = output_height / input_height A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width A = scale_width else: # fit height A = scale_height A = constraint_to_multiple_of(scale_height * input_height , multiple=UpperCamelCase__ ) A = constraint_to_multiple_of(scale_width * input_width , multiple=UpperCamelCase__ ) return (new_height, new_width) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : str , ): super().__init__(**_lowercase ) A = size if size is not None else {'height': 384, 'width': 384} A = get_size_dict(_lowercase ) A = do_resize A = size A = keep_aspect_ratio A = ensure_multiple_of A = resample A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : bool = False , _lowercase : int = 1 , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : int , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) A = get_resize_output_image_size( _lowercase , output_size=(size['height'], size['width']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase ) A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of A = resample if resample is not None else self.resample A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : Any , _lowercase : Dict , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: UpperCamelCase : Any = None UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Any = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } UpperCamelCase : int = { "google/rembert": 256, } UpperCamelCase : List[Any] = "▁" class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = RemBertTokenizer def __init__( self : List[str] , _lowercase : Union[str, Any]=None , _lowercase : Any=None , _lowercase : List[str]=True , _lowercase : List[Any]=True , _lowercase : int=False , _lowercase : Union[str, Any]="[CLS]" , _lowercase : List[Any]="[SEP]" , _lowercase : Optional[Any]="<unk>" , _lowercase : List[Any]="[SEP]" , _lowercase : Any="<pad>" , _lowercase : Optional[Any]="[CLS]" , _lowercase : int="[MASK]" , **_lowercase : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : int , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=[] ) -> Optional[Any]: """simple docstring""" A = size[0] - overlap_pixels * 2 A = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels A = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 A = np.pad(UpperCamelCase__ , mode='linear_ramp' , pad_width=UpperCamelCase__ , end_values=0 ) if "l" in remove_borders: A = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: A = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: A = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: A = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" return max(UpperCamelCase__ , min(UpperCamelCase__ , UpperCamelCase__ ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = list(UpperCamelCase__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap A = clamp_rect(UpperCamelCase__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" A = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(UpperCamelCase__ , (original_slice, 0) ) return result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" A = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) A = tile.crop(UpperCamelCase__ ) return tile def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = n % d return n - divisor class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : int , _lowercase : AutoencoderKL , _lowercase : CLIPTextModel , _lowercase : CLIPTokenizer , _lowercase : UNetaDConditionModel , _lowercase : DDPMScheduler , _lowercase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _lowercase : int = 350 , ): super().__init__( vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , low_res_scheduler=_lowercase , scheduler=_lowercase , max_noise_level=_lowercase , ) def __a ( self : Dict , _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : str , _lowercase : List[Any] , _lowercase : Union[str, Any] , **_lowercase : int ): torch.manual_seed(0 ) A = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) A = add_overlap_rect(_lowercase , _lowercase , image.size ) A = image.crop(_lowercase ) A = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] A = translated_slice_x - (original_image_slice / 2) A = max(0 , _lowercase ) A = squeeze_tile(_lowercase , _lowercase , _lowercase , _lowercase ) A = to_input.size A = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) A = super(_lowercase , self ).__call__(image=_lowercase , **_lowercase ).images[0] A = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) A = unsqueeze_tile(_lowercase , _lowercase ) A = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) A = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) A = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=_lowercase ) , mode='L' , ) final_image.paste( _lowercase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , _lowercase ) @torch.no_grad() def __call__( self : str , _lowercase : Union[str, List[str]] , _lowercase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _lowercase : int = 75 , _lowercase : float = 9.0 , _lowercase : int = 50 , _lowercase : Optional[Union[str, List[str]]] = None , _lowercase : Optional[int] = 1 , _lowercase : float = 0.0 , _lowercase : Optional[torch.Generator] = None , _lowercase : Optional[torch.FloatTensor] = None , _lowercase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _lowercase : int = 1 , _lowercase : int = 128 , _lowercase : int = 32 , _lowercase : int = 32 , ): A = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) A = math.ceil(image.size[0] / tile_size ) A = math.ceil(image.size[1] / tile_size ) A = tcx * tcy A = 0 for y in range(_lowercase ): for x in range(_lowercase ): self._process_tile( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , prompt=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , noise_level=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def __snake_case ( ) -> List[Any]: """simple docstring""" A = 'stabilityai/stable-diffusion-x4-upscaler' A = StableDiffusionTiledUpscalePipeline.from_pretrained(UpperCamelCase__ , revision='fp16' , torch_dtype=torch.floataa ) A = pipe.to('cuda' ) A = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(UpperCamelCase__ ): print(f'progress: {obj["progress"]:.4f}' ) obj["image"].save('diffusers_library_progress.jpg' ) A = pipe(image=UpperCamelCase__ , prompt='Black font, white background, vector' , noise_level=40 , callback=UpperCamelCase__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
690
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
1
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC UpperCamelCase : Tuple = parse(importlib.metadata.version("torch")) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) A = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = parse(importlib.metadata.version(UpperCamelCase__ ) ) return operation(UpperCamelCase__ , parse(UpperCamelCase__ ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" return compare_versions(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Dict = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import fire from utils import calculate_rouge, save_json def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , **UpperCamelCase__ ) -> Optional[int]: """simple docstring""" A = [x.strip() for x in open(UpperCamelCase__ ).readlines()] A = [x.strip() for x in open(UpperCamelCase__ ).readlines()][: len(UpperCamelCase__ )] A = calculate_rouge(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) if save_path is not None: save_json(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
690
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
1
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCamelCase : Optional[int] = HfApi() UpperCamelCase : Optional[Any] = {} # fmt: off UpperCamelCase : Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) UpperCamelCase : Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) UpperCamelCase : Dict = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) UpperCamelCase : Tuple = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) UpperCamelCase : Tuple = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) UpperCamelCase : Dict = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) UpperCamelCase : int = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) UpperCamelCase : Tuple = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) UpperCamelCase : Optional[int] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) UpperCamelCase : int = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) UpperCamelCase : Tuple = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) UpperCamelCase : Any = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) UpperCamelCase : Tuple = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) UpperCamelCase : Dict = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) UpperCamelCase : Dict = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on UpperCamelCase : int = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCamelCase : str = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("CompVis"): UpperCamelCase : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: UpperCamelCase : Tuple = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCamelCase : Dict = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCamelCase : Optional[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
690
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase : Any = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCamelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Any , *_lowercase : Optional[Any] , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Tuple , **_lowercase : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Optional[int] , **_lowercase : List[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Dict , *_lowercase : Dict , **_lowercase : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Optional[int] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : List[str] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : Optional[Any] , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Optional[int] , **_lowercase : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Tuple , *_lowercase : Optional[Any] , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Union[str, Any] , **_lowercase : Any ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Optional[Any] , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[int] , *_lowercase : int , **_lowercase : int ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Union[str, Any] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : Union[str, Any] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : str , *_lowercase : Optional[int] , **_lowercase : int ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Union[str, Any] , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Optional[int] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[int] , *_lowercase : Any , **_lowercase : Tuple ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : Dict , **_lowercase : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[Any] , *_lowercase : Tuple , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Optional[Any] , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Optional[Any] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : str , *_lowercase : Union[str, Any] , **_lowercase : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : int , **_lowercase : str ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : Union[str, Any] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : int , *_lowercase : Union[str, Any] , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Any , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : str , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[str] , *_lowercase : Optional[Any] , **_lowercase : Tuple ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : int , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : List[Any] , **_lowercase : str ): requires_backends(cls , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[int]: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__ , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : int , *_lowercase : List[str] , **_lowercase : Dict ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Any , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Dict , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[str] , *_lowercase : List[str] , **_lowercase : Any ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : List[Any] , **_lowercase : Any ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Any , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : List[str] , **_lowercase : str ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Optional[Any] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Dict , **_lowercase : List[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[int] , *_lowercase : Any , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Any , **_lowercase : int ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : str , *_lowercase : str , **_lowercase : Any ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : Optional[Any] , **_lowercase : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Optional[Any] , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Optional[int] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : Optional[Any] , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Tuple , **_lowercase : str ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : Dict , **_lowercase : Any ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : Union[str, Any] , **_lowercase : List[str] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : Optional[Any] , **_lowercase : str ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : int , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : Dict , **_lowercase : Dict ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Optional[Any] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Dict , **_lowercase : int ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : str , **_lowercase : Any ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : List[Any] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[Any] , *_lowercase : Dict , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Union[str, Any] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Union[str, Any] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : str , *_lowercase : str , **_lowercase : Tuple ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : int , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Dict , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : Optional[Any] , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : Dict , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : Optional[int] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Any , *_lowercase : Dict , **_lowercase : int ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : List[str] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : int , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[str] , *_lowercase : Dict , **_lowercase : List[str] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Union[str, Any] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[str] , *_lowercase : List[str] , **_lowercase : int ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Optional[int] , **_lowercase : int ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Tuple , **_lowercase : int ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : Optional[Any] , **_lowercase : Any ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : str , **_lowercase : List[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Tuple , **_lowercase : List[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : int , *_lowercase : List[str] , **_lowercase : Dict ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : Any , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Dict , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[int] , *_lowercase : Optional[Any] , **_lowercase : Any ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : List[str] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Union[str, Any] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[str] , *_lowercase : List[str] , **_lowercase : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Optional[Any] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : Tuple , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Dict , *_lowercase : Union[str, Any] , **_lowercase : Optional[int] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Optional[int] , **_lowercase : Any ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Dict , **_lowercase : Any ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[Any] , *_lowercase : Tuple , **_lowercase : Union[str, Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : str , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : str , **_lowercase : int ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : int , *_lowercase : str , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : int , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Any , **_lowercase : int ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Any , *_lowercase : int , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Tuple , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : int , *_lowercase : str , **_lowercase : Optional[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Any , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Optional[Any] , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : List[Any] , **_lowercase : Dict ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Any , **_lowercase : int ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Optional[int] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Dict , *_lowercase : int , **_lowercase : int ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Dict , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : int , **_lowercase : List[str] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : Optional[int] , **_lowercase : List[str] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : Optional[int] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : str , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Any , *_lowercase : Optional[Any] , **_lowercase : Tuple ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[int] , *_lowercase : str , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[Any] , *_lowercase : int , **_lowercase : Tuple ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Any , *_lowercase : Tuple , **_lowercase : Dict ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Union[str, Any] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : int , *_lowercase : Optional[Any] , **_lowercase : Dict ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Dict , **_lowercase : int ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : int , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[Any] , *_lowercase : Union[str, Any] , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : List[Any] , **_lowercase : int ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Tuple , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Dict , *_lowercase : Union[str, Any] , **_lowercase : int ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : Optional[Any] , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : Any , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : List[str] , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : Union[str, Any] , **_lowercase : List[str] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[Any] , *_lowercase : Optional[Any] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Optional[Any] , *_lowercase : int , **_lowercase : List[str] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Union[str, Any] , *_lowercase : Tuple , **_lowercase : Any ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : List[str] , *_lowercase : List[str] , **_lowercase : Tuple ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Dict , *_lowercase : str , **_lowercase : List[str] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : Tuple , *_lowercase : List[str] , **_lowercase : Any ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : List[Any] , **_lowercase : Optional[int] ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : List[str] , *_lowercase : Tuple , **_lowercase : str ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : str , *_lowercase : Optional[int] , **_lowercase : str ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Optional[Any] , *_lowercase : Union[str, Any] , **_lowercase : Any ): requires_backends(cls , ['torch'] ) class lowerCamelCase__ ( metaclass=UpperCAmelCase_ ): lowerCAmelCase = ["""torch"""] def __init__( self : Union[str, Any] , *_lowercase : int , **_lowercase : List[Any] ): requires_backends(self , ['torch'] ) @classmethod def __a ( cls : int , *_lowercase : Dict , **_lowercase : Union[str, Any] ): requires_backends(cls , ['torch'] ) @classmethod def __a ( cls : Dict , *_lowercase : Union[str, Any] , **_lowercase : Optional[Any] ): requires_backends(cls , ['torch'] )
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
"""simple docstring""" from sklearn.metrics import recall_score import datasets UpperCamelCase : Tuple = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" UpperCamelCase : Optional[int] = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" UpperCamelCase : Dict = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def __a ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def __a ( self : Tuple , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Tuple=None , _lowercase : List[Any]=1 , _lowercase : int="binary" , _lowercase : List[Any]=None , _lowercase : Union[str, Any]="warn" , ): A = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[list[int]]: """simple docstring""" A = [] if len(UpperCamelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCamelCase__ ) ): A = nums.pop(0 ) A = permute(UpperCamelCase__ ) for perm in permutations: perm.append(UpperCamelCase__ ) result.extend(UpperCamelCase__ ) nums.append(UpperCamelCase__ ) return result def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" def backtrack(UpperCamelCase__ ): if start == len(UpperCamelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): A , A = nums[i], nums[start] backtrack(start + 1 ) A , A = nums[i], nums[start] # backtrack A = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCamelCase : int = permutea([1, 2, 3]) print(res) doctest.testmod()
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @slow def __a ( self : List[Any] ): A = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_lowercase ).to(_lowercase ) A = AutoTokenizer.from_pretrained('google/mt5-small' ) A = tokenizer('Hello there' , return_tensors='pt' ).input_ids A = tokenizer('Hi I am' , return_tensors='pt' ).input_ids A = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss A = -(labels.shape[-1] * loss.item()) A = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[int] ): A = 0 @slow def __a ( self : List[Any] ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_lowercase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_lowercase ) , 0 ) def __a ( self : Any ): A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __a ( self : Union[str, Any] ): A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __a ( self : List[Any] ): A = AutoConfig.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) # Check that tokenizer_type ≠ model_type A = AutoTokenizer.from_pretrained(_lowercase , config=_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __a ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowercase , 'vocab.txt' ) ) A = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='bert' , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowercase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowercase , 'merges.txt' ) ) A = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='gpt2' , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @require_tokenizers def __a ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowercase , 'vocab.txt' ) ) A = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='bert' ) self.assertIsInstance(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowercase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowercase , 'merges.txt' ) ) A = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='gpt2' ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : str ): with pytest.raises(_lowercase ): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx' ) @require_tokenizers def __a ( self : List[Any] ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: A = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) if isinstance(_lowercase , _lowercase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowercase ) else: self.assertEqual(tokenizer.do_lower_case , _lowercase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __a ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowercase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): A = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def __a ( self : str ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai A = TOKENIZER_MAPPING.values() A = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowercase ) @require_tokenizers def __a ( self : Optional[Any] ): self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_lowercase ) , _lowercase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) , _lowercase ) @require_tokenizers def __a ( self : Tuple ): A = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_lowercase ) A = 'Hello, world. How are you?' A = tokenizer.tokenize(_lowercase ) self.assertEqual('[UNK]' , tokens[0] ) A = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_lowercase ) A = tokenizer.tokenize(_lowercase ) self.assertEqual('[UNK]' , tokens[0] ) @require_tokenizers def __a ( self : Tuple ): A = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(_lowercase ) , _lowercase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '[UNK]' ) self.assertEqual(tokenizer.padding_side , 'right' ) self.assertEqual(tokenizer.truncation_side , 'right' ) def __a ( self : int ): A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __a ( self : Optional[Any] ): A = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Union[str, Any] ): # Check we can load the tokenizer config of an online model. A = get_tokenizer_config('bert-base-cased' ) A = config.pop('_commit_hash' , _lowercase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowercase , {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. A = get_tokenizer_config(_lowercase ) self.assertDictEqual(_lowercase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. A = AutoTokenizer.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) A = get_tokenizer_config(_lowercase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer' ) def __a ( self : Optional[int] ): try: AutoConfig.register('custom' , _lowercase ) AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) A = CustomTokenizer.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __a ( self : List[Any] ): try: AutoConfig.register('custom' , _lowercase ) # Can register in two steps AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowercase , slow_tokenizer_class=_lowercase , fast_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: A = BertTokenizerFast.from_pretrained(_lowercase ) bert_tokenizer.save_pretrained(_lowercase ) A = CustomTokenizerFast.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) A = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) A = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __a ( self : Any ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): A = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) A = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) A = AutoTokenizer.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) A = AutoTokenizer.from_pretrained(_lowercase , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) @require_tokenizers def __a ( self : Dict ): class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = False class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = NewTokenizer lowerCAmelCase = False try: AutoConfig.register('custom' , _lowercase ) AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) # If remote code is not set, the default is to use local A = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __a ( self : Tuple ): A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version A = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def __a ( self : Tuple ): with self.assertRaisesRegex( _lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): A = AutoTokenizer.from_pretrained('bert-base' ) def __a ( self : Dict ): with self.assertRaisesRegex( _lowercase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A = AutoTokenizer.from_pretrained(_lowercase , revision='aaaaaa' ) def __a ( self : Dict ): # Make sure we have cached the tokenizer. A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def __snake_case ( UpperCamelCase__ = True , *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) A = False if main_process_only: A = PartialState().local_process_index == 0 return _tqdm(*UpperCamelCase__ , **UpperCamelCase__ , disable=UpperCamelCase__ )
690
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ = 50 ) -> int: """simple docstring""" A = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
690
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : Dict = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
1
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" A = get_failure_array(UpperCamelCase__ ) # 2) Step through text searching for pattern A , A = 0, 0 # index into text, pattern while i < len(UpperCamelCase__ ): if pattern[j] == text[i]: if j == (len(UpperCamelCase__ ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: A = failure[j - 1] continue i += 1 return False def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0] A = 0 A = 1 while j < len(UpperCamelCase__ ): if pattern[i] == pattern[j]: i += 1 elif i > 0: A = failure[i - 1] continue j += 1 failure.append(UpperCamelCase__ ) return failure if __name__ == "__main__": # Test 1) UpperCamelCase : int = "abc1abc12" UpperCamelCase : Tuple = "alskfjaldsabc1abc1abc12k23adsfabcabc" UpperCamelCase : Union[str, Any] = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) UpperCamelCase : Union[str, Any] = "ABABX" UpperCamelCase : Any = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) UpperCamelCase : Optional[Any] = "AAAB" UpperCamelCase : List[Any] = "ABAAAAAB" assert kmp(pattern, text) # Test 4) UpperCamelCase : Tuple = "abcdabcy" UpperCamelCase : Tuple = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) UpperCamelCase : Optional[int] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = [1] for i in range(2 , UpperCamelCase__ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" A = [] A = list(range(UpperCamelCase__ ) ) # Find permutation while factorials: A = factorials.pop() A , A = divmod(UpperCamelCase__ , UpperCamelCase__ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
1
"""simple docstring""" from __future__ import annotations UpperCamelCase : int = 10 def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = 1 A = max(UpperCamelCase__ ) while placement <= max_digit: # declare and initialize empty buckets A = [[] for _ in range(UpperCamelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: A = int((i / placement) % RADIX ) buckets[tmp].append(UpperCamelCase__ ) # put each buckets' contents into list_of_ints A = 0 for b in range(UpperCamelCase__ ): for i in buckets[b]: A = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase : int = tuple[int, int] class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : set[int] , _lowercase : Mapping[EdgeT, int] ): A = vertices A = { (min(_lowercase ), max(_lowercase )): weight for edge, weight in edges.items() } def __a ( self : Union[str, Any] , _lowercase : EdgeT , _lowercase : int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) A = weight def __a ( self : Union[str, Any] ): A = Graph({min(self.vertices )} , {} ) A = 42 A = 42 A = 42 A = 42 while len(subgraph.vertices ) < len(self.vertices ): A = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: A = edge A = weight subgraph.add_edge(_lowercase , _lowercase ) return subgraph def __snake_case ( UpperCamelCase__ = "p107_network.txt" ) -> int: """simple docstring""" A = os.path.abspath(os.path.dirname(UpperCamelCase__ ) ) A = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) A = {} A = 42 A = 42 A = 42 with open(UpperCamelCase__ ) as f: A = f.read().strip().split('\n' ) A = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCamelCase__ ) ): for edgea in range(UpperCamelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": A = int(adjaceny_matrix[edgea][edgea] ) A = Graph(set(range(len(UpperCamelCase__ ) ) ) , UpperCamelCase__ ) A = graph.prims_algorithm() A = sum(graph.edges.values() ) A = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
690
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : str = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
1
"""simple docstring""" from manim import * class lowerCamelCase__ ( UpperCAmelCase_ ): def __a ( self : Optional[int] ): A = Rectangle(height=0.5 , width=0.5 ) A = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) A = [mem.copy() for i in range(6 )] A = [mem.copy() for i in range(6 )] A = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) A = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) A = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) A = Text('CPU' , font_size=24 ) A = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) A = [mem.copy() for i in range(1 )] A = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) A = Text('GPU' , font_size=24 ) A = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.align_to(_lowercase , _lowercase ) gpu.set_x(gpu.get_x() - 1 ) self.add(_lowercase ) A = [mem.copy() for i in range(6 )] A = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) A = Text('Model' , font_size=24 ) A = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.play( Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , Create(_lowercase , run_time=1 ) , ) A = MarkupText( f'First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.' , font_size=24 , ) A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) A = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=2.5 ) , Write(_lowercase ) , Write(_lowercase ) ) self.add(_lowercase ) A = [] A = [] A = [] for i, rect in enumerate(_lowercase ): A = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.7 ) cpu_target.move_to(_lowercase ) cpu_target.generate_target() A = 0.4_6 / 4 A = 0.4_6 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=_lowercase ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=_lowercase , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=_lowercase , buff=0.0 ) cpu_targs.append(_lowercase ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(_lowercase ) ) second_animations.append(MoveToTarget(_lowercase , run_time=1.5 ) ) self.play(*_lowercase ) self.play(*_lowercase ) self.wait()
690
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" A = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = StableDiffusionLatentUpscalePipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase = frozenset([] ) lowerCAmelCase = True @property def __a ( self : Union[str, Any] ): A = 1 A = 4 A = (16, 16) A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image def __a ( self : List[str] ): torch.manual_seed(0 ) A = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=_lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=_lowercase , only_cross_attention=_lowercase , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) A = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) A = EulerDiscreteScheduler(prediction_type='sample' ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='quick_gelu' , projection_dim=512 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : List[Any] , _lowercase : List[str] , _lowercase : Optional[int]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __a ( self : List[Any] ): A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) A = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1e-3 ) def __a ( self : str ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def __a ( self : Union[str, Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def __a ( self : Optional[int] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __a ( self : Tuple ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def __a ( self : int ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def __a ( self : List[str] ): super().test_save_load_local(expected_max_difference=3e-3 ) def __a ( self : Tuple ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __a ( self : Dict ): A = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = 2 A = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A = getattr(_lowercase , scheduler_enum.name ) A = scheduler_cls.from_config(pipe.scheduler.config ) A = pipe(**_lowercase )[0] outputs.append(_lowercase ) assert check_same_shape(_lowercase ) @require_torch_gpu @slow class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int ): A = torch.manual_seed(33 ) A = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) A = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' A = pipe(_lowercase , generator=_lowercase , output_type='latent' ).images A = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type='np' , ).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def __a ( self : int ): A = torch.manual_seed(33 ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) A = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) A = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type='np' , ).images[0] A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : List[Any] , _lowercase : Tuple , _lowercase : int , _lowercase : Union[str, Any] ): A = dataset A = process A = params def __len__( self : Tuple ): return len(self.dataset ) def __getitem__( self : Union[str, Any] , _lowercase : List[str] ): A = self.dataset[i] A = self.process(_lowercase , **self.params ) return processed class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Union[str, Any] , _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : List[str]=None ): A = loader A = infer A = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether A = None A = loader_batch_size # Internal bookkeeping A = None A = None def __len__( self : List[str] ): return len(self.loader ) def __iter__( self : str ): A = iter(self.loader ) return self def __a ( self : Any ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice A = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) A = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowercase , _lowercase ): # Convert ModelOutput to tuple first A = element.to_tuple() if isinstance(element[0] , torch.Tensor ): A = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowercase , _lowercase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): A = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around A = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. A = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 A = self._loader_batch_data.__class__(_lowercase ) self._loader_batch_index += 1 return result def __a ( self : str ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch A = next(self.iterator ) A = self.infer(_lowercase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowercase , torch.Tensor ): A = processed else: A = list(processed.keys() )[0] A = processed[key] if isinstance(_lowercase , _lowercase ): A = len(_lowercase ) else: A = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A = observed_batch_size # Setting internal index to unwrap the batch A = processed A = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Union[str, Any] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : Tuple , _lowercase : Tuple=None ): super().__init__(_lowercase , _lowercase , _lowercase ) def __iter__( self : Union[str, Any] ): A = iter(self.loader ) A = None return self def __a ( self : List[str] ): if self.subiterator is None: A = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item A = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators A = self.infer(next(self.iterator ) , **self.params ) A = next(self.subiterator ) return processed class lowerCamelCase__ ( UpperCAmelCase_ ): def __iter__( self : str ): A = iter(self.loader ) return self def __a ( self : Optional[int] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. A = False A = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: A = self.loader_batch_item() A = item.pop('is_last' ) accumulator.append(_lowercase ) if is_last: return accumulator while not is_last: A = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowercase , torch.Tensor ): A = processed else: A = list(processed.keys() )[0] A = processed[key] if isinstance(_lowercase , _lowercase ): A = len(_lowercase ) else: A = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A = observed_batch_size A = processed A = 0 while self._loader_batch_index < self.loader_batch_size: A = self.loader_batch_item() A = item.pop('is_last' ) accumulator.append(_lowercase ) if is_last: return accumulator else: A = processed A = item.pop('is_last' ) accumulator.append(_lowercase ) return accumulator class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Tuple , _lowercase : Dataset , _lowercase : str ): A = dataset A = key def __len__( self : int ): return len(self.dataset ) def __getitem__( self : List[Any] , _lowercase : Optional[Any] ): return self.dataset[i][self.key] class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Optional[Any] , _lowercase : Dataset , _lowercase : str , _lowercase : str ): A = dataset A = keya A = keya def __len__( self : Optional[int] ): return len(self.dataset ) def __getitem__( self : int , _lowercase : str ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
690
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[Any] = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """van""" def __init__( self : str , _lowercase : Optional[int]=224 , _lowercase : Optional[Any]=3 , _lowercase : List[str]=[7, 3, 3, 3] , _lowercase : List[Any]=[4, 2, 2, 2] , _lowercase : List[str]=[64, 128, 320, 512] , _lowercase : Tuple=[3, 3, 12, 3] , _lowercase : Any=[8, 8, 4, 4] , _lowercase : Dict="gelu" , _lowercase : Dict=0.0_2 , _lowercase : List[Any]=1e-6 , _lowercase : int=1e-2 , _lowercase : int=0.0 , _lowercase : List[str]=0.0 , **_lowercase : int , ): super().__init__(**_lowercase ) A = image_size A = num_channels A = patch_sizes A = strides A = hidden_sizes A = depths A = mlp_ratios A = hidden_act A = initializer_range A = layer_norm_eps A = layer_scale_init_value A = drop_path_rate A = dropout_rate
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : Optional[int] , _lowercase : Optional[int] , _lowercase : Tuple=13 , _lowercase : List[str]=7 , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : List[Any]=True , _lowercase : List[str]=True , _lowercase : Optional[Any]=99 , _lowercase : Dict=32 , _lowercase : Optional[int]=5 , _lowercase : str=4 , _lowercase : Union[str, Any]=37 , _lowercase : Dict="gelu" , _lowercase : List[str]=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Optional[int]=512 , _lowercase : Tuple=16 , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=0.0_2 , _lowercase : int=False , _lowercase : Optional[int]=True , _lowercase : List[str]="None" , _lowercase : List[str]=3 , _lowercase : int=4 , _lowercase : str=None , ): A = parent A = batch_size A = seq_length A = is_training A = use_input_mask A = use_token_type_ids A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = type_sequence_label_size A = initializer_range A = num_labels A = num_choices A = relative_attention A = position_biased_input A = pos_att_type A = scope def __a ( self : List[Any] ): A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = None if self.use_input_mask: A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A = None if self.use_token_type_ids: A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A = None A = None A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A = ids_tensor([self.batch_size] , self.num_choices ) A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : Optional[int] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __a ( self : Dict , _lowercase : Optional[Any] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __a ( self : List[str] , _lowercase : str , _lowercase : Tuple , _lowercase : Tuple , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : Union[str, Any] , _lowercase : str ): A = DebertaVaModel(config=_lowercase ) model.to(_lowercase ) model.eval() A = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase )[0] A = model(_lowercase , token_type_ids=_lowercase )[0] A = model(_lowercase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __a ( self : Optional[int] , _lowercase : str , _lowercase : Dict , _lowercase : Any , _lowercase : str , _lowercase : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Any ): A = DebertaVaForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() A = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self : Dict , _lowercase : int , _lowercase : str , _lowercase : Tuple , _lowercase : List[str] , _lowercase : int , _lowercase : Tuple , _lowercase : List[str] ): A = self.num_labels A = DebertaVaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() A = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_lowercase ) def __a ( self : Tuple , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Any , _lowercase : Optional[Any] , _lowercase : int , _lowercase : int ): A = self.num_labels A = DebertaVaForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() A = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[str] , _lowercase : Optional[int] , _lowercase : Any , _lowercase : Any ): A = DebertaVaForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() A = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self : List[Any] , _lowercase : str , _lowercase : int , _lowercase : Any , _lowercase : Any , _lowercase : int , _lowercase : Tuple , _lowercase : int ): A = DebertaVaForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self : Optional[int] ): A = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) = config_and_inputs A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCAmelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __a ( self : str ): A = DebertaVaModelTester(self ) A = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def __a ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __a ( self : int ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowercase ) def __a ( self : Optional[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowercase ) def __a ( self : Dict ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowercase ) def __a ( self : Optional[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowercase ) def __a ( self : Tuple ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowercase ) def __a ( self : Tuple ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_lowercase ) @slow def __a ( self : Optional[int] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = DebertaVaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __a ( self : Tuple ): pass @slow def __a ( self : Optional[int] ): A = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) A = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) A = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A = model(_lowercase , attention_mask=_lowercase )[0] # compare the actual values for a slice. A = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
690
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
1
"""simple docstring""" import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( UpperCamelCase__ , UpperCamelCase__="shi-labs/oneformer_demo" ) -> List[Any]: """simple docstring""" with open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) as f: A = json.load(UpperCamelCase__ ) A = {} A = [] A = [] for key, info in class_info.items(): A = info['name'] class_names.append(info['name'] ) if info["isthing"]: thing_ids.append(int(UpperCamelCase__ ) ) A = thing_ids A = class_names return metadata class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[Any] , _lowercase : Optional[int] , _lowercase : Dict=7 , _lowercase : str=3 , _lowercase : List[Any]=30 , _lowercase : str=400 , _lowercase : int=None , _lowercase : int=True , _lowercase : Optional[int]=True , _lowercase : Tuple=[0.5, 0.5, 0.5] , _lowercase : List[Any]=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=10 , _lowercase : Any=False , _lowercase : List[str]=255 , _lowercase : Optional[Any]="shi-labs/oneformer_demo" , _lowercase : Any="ade20k_panoptic.json" , _lowercase : Tuple=10 , ): A = parent A = batch_size A = num_channels A = min_resolution A = max_resolution A = do_resize A = {'shortest_edge': 32, 'longest_edge': 1_333} if size is None else size A = do_normalize A = image_mean A = image_std A = class_info_file A = prepare_metadata(_lowercase , _lowercase ) A = num_text A = repo_path # for the post_process_functions A = 2 A = 10 A = 10 A = 3 A = 4 A = num_labels A = do_reduce_labels A = ignore_index def __a ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def __a ( self : Dict , _lowercase : int , _lowercase : Tuple=False ): if not batched: A = image_inputs[0] if isinstance(_lowercase , Image.Image ): A , A = image.size else: A , A = image.shape[1], image.shape[2] if w < h: A = int(self.size['shortest_edge'] * h / w ) A = self.size['shortest_edge'] elif w > h: A = self.size['shortest_edge'] A = int(self.size['shortest_edge'] * w / h ) else: A = self.size['shortest_edge'] A = self.size['shortest_edge'] else: A = [] for image in image_inputs: A , A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A = max(_lowercase , key=lambda _lowercase : item[0] )[0] A = max(_lowercase , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width def __a ( self : str ): return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string lowerCAmelCase = image_processing_class def __a ( self : Union[str, Any] ): A = OneFormerImageProcessorTester(self ) @property def __a ( self : List[str] ): return self.image_processing_tester.prepare_image_processor_dict() def __a ( self : str ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'ignore_index' ) ) self.assertTrue(hasattr(_lowercase , 'class_info_file' ) ) self.assertTrue(hasattr(_lowercase , 'num_text' ) ) self.assertTrue(hasattr(_lowercase , 'repo_path' ) ) self.assertTrue(hasattr(_lowercase , 'metadata' ) ) self.assertTrue(hasattr(_lowercase , 'do_reduce_labels' ) ) def __a ( self : Optional[int] ): pass def __a ( self : Dict ): # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values A , A = self.image_processing_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A = self.image_processing_tester.get_expected_values(_lowercase , batched=_lowercase ) A = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Any ): # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values A , A = self.image_processing_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A = self.image_processing_tester.get_expected_values(_lowercase , batched=_lowercase ) A = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : List[Any] ): # Initialize image_processor A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values A , A = self.image_processing_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A = self.image_processing_tester.get_expected_values(_lowercase , batched=_lowercase ) A = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : int , _lowercase : Union[str, Any]=False , _lowercase : List[str]=False , _lowercase : Optional[Any]="np" ): A = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A = self.image_processing_tester.num_labels A = None A = None A = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase ) if with_segmentation_maps: A = num_labels if is_instance_map: A = list(range(_lowercase ) ) * 2 A = dict(enumerate(_lowercase ) ) A = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A = [Image.fromarray(_lowercase ) for annotation in annotations] A = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , _lowercase , return_tensors='pt' , instance_id_to_semantic_id=_lowercase , pad_and_return_pixel_mask=_lowercase , ) return inputs def __a ( self : Any ): pass def __a ( self : List[Any] ): def common(_lowercase : List[str]=False , _lowercase : List[str]=None ): A = self.comm_get_image_processor_inputs( with_segmentation_maps=_lowercase , is_instance_map=_lowercase , segmentation_type=_lowercase ) A = inputs['mask_labels'] A = inputs['class_labels'] A = inputs['pixel_values'] A = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(_lowercase , _lowercase , _lowercase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_lowercase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_lowercase ) common(is_instance_map=_lowercase , segmentation_type='pil' ) common(is_instance_map=_lowercase , segmentation_type='pil' ) def __a ( self : Any ): A = np.zeros((20, 50) ) A = 1 A = 1 A = 1 A = binary_mask_to_rle(_lowercase ) self.assertEqual(len(_lowercase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def __a ( self : int ): A = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) A = self.image_processing_tester.get_fake_oneformer_outputs() A = fature_extractor.post_process_semantic_segmentation(_lowercase ) self.assertEqual(len(_lowercase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A = fature_extractor.post_process_semantic_segmentation(_lowercase , target_sizes=_lowercase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def __a ( self : List[str] ): A = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) A = self.image_processing_tester.get_fake_oneformer_outputs() A = image_processor.post_process_instance_segmentation(_lowercase , threshold=0 ) self.assertTrue(len(_lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _lowercase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def __a ( self : Dict ): A = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) A = self.image_processing_tester.get_fake_oneformer_outputs() A = image_processor.post_process_panoptic_segmentation(_lowercase , threshold=0 ) self.assertTrue(len(_lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _lowercase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Any = logging.get_logger(__name__) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" print('Loading config file...' ) def flatten_yaml_as_dict(UpperCamelCase__ , UpperCamelCase__="" , UpperCamelCase__="." ): A = [] for k, v in d.items(): A = parent_key + sep + k if parent_key else k if isinstance(UpperCamelCase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(UpperCamelCase__ , UpperCamelCase__ , sep=UpperCamelCase__ ).items() ) else: items.append((new_key, v) ) return dict(UpperCamelCase__ ) A = argparse.Namespace() with open(UpperCamelCase__ , 'r' ) as yaml_file: try: A = yaml.load(UpperCamelCase__ , Loader=yaml.FullLoader ) A = flatten_yaml_as_dict(UpperCamelCase__ ) for k, v in flat_cfg.items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) except yaml.YAMLError as exc: logger.error('Error while loading config file: {}. Error message: {}'.format(UpperCamelCase__ , str(UpperCamelCase__ ) ) ) return config def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = MobileViTVaConfig() A = False # dataset if task_name.startswith('imagenet1k_' ): A = 1000 if int(task_name.strip().split('_' )[-1] ) == 384: A = 384 else: A = 256 A = 'imagenet-1k-id2label.json' elif task_name.startswith('imagenet21k_to_1k_' ): A = 21000 if int(task_name.strip().split('_' )[-1] ) == 384: A = 384 else: A = 256 A = 'imagenet-22k-id2label.json' elif task_name.startswith('ade20k_' ): A = 151 A = 512 A = 'ade20k-id2label.json' A = True elif task_name.startswith('voc_' ): A = 21 A = 512 A = 'pascal-voc-id2label.json' A = True # orig_config A = load_orig_config_file(UpperCamelCase__ ) assert getattr(UpperCamelCase__ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model" A = getattr(UpperCamelCase__ , 'model.classification.mitv2.width_multiplier' , 1.0 ) assert ( getattr(UpperCamelCase__ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" A = getattr(UpperCamelCase__ , 'model.classification.activation.name' , 'swish' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: A = getattr(UpperCamelCase__ , 'model.segmentation.output_stride' , 16 ) if "_deeplabv3" in task_name: A = getattr(UpperCamelCase__ , 'model.segmentation.deeplabv3.aspp_rates' , [12, 24, 36] ) A = getattr(UpperCamelCase__ , 'model.segmentation.deeplabv3.aspp_out_channels' , 512 ) A = getattr(UpperCamelCase__ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 ) # id2label A = 'huggingface/label-files' A = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) A = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} return config def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" A = dct.pop(UpperCamelCase__ ) A = val def __snake_case ( UpperCamelCase__ , UpperCamelCase__=False ) -> List[str]: """simple docstring""" if base_model: A = '' else: A = 'mobilevitv2.' A = [] for k in state_dict.keys(): if k[:8] == "encoder.": A = k[8:] else: A = k if ".block." in k: A = k_new.replace('.block.' , '.' ) if ".conv." in k: A = k_new.replace('.conv.' , '.convolution.' ) if ".norm." in k: A = k_new.replace('.norm.' , '.normalization.' ) if "conv_1." in k: A = k_new.replace('conv_1.' , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: A = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: A = k_new.replace('.exp_1x1.' , '.expand_1x1.' ) if ".red_1x1." in k: A = k_new.replace('.red_1x1.' , '.reduce_1x1.' ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: A = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: A = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: A = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: A = [0, 1] elif i == 4: A = [0, 1, 2, 3] elif i == 5: A = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: A = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: A = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: A = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: A = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' ) if "pre_norm_attn.1." in k: A = k_new.replace('pre_norm_attn.1.' , 'attention.' ) if "pre_norm_ffn.0." in k: A = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' ) if "pre_norm_ffn.1." in k: A = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' ) if "pre_norm_ffn.3." in k: A = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' ) if "classifier.1." in k: A = k_new.replace('classifier.1.' , 'classifier.' ) if "seg_head." in k: A = k_new.replace('seg_head.' , 'segmentation_head.' ) if ".aspp_layer." in k: A = k_new.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in k: A = k_new.replace('.aspp_pool.' , '.' ) rename_keys.append((k, k_new) ) return rename_keys def __snake_case ( UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = [] for k in state_dict.keys(): if k.startswith('seg_head.aux_head.' ): keys_to_ignore.append(UpperCamelCase__ ) for k in keys_to_ignore: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( ) -> str: """simple docstring""" A = 'http://images.cocodataset.org/val2017/000000039769.jpg' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" A = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = get_mobilevitva_config(UpperCamelCase__ , UpperCamelCase__ ) # load original state_dict A = torch.load(UpperCamelCase__ , map_location='cpu' ) # load huggingface model if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ): A = MobileViTVaForSemanticSegmentation(UpperCamelCase__ ).eval() A = False else: A = MobileViTVaForImageClassification(UpperCamelCase__ ).eval() A = False # remove and rename some keys of load the original model A = checkpoint remove_unused_keys(UpperCamelCase__ ) A = create_rename_keys(UpperCamelCase__ , base_model=UpperCamelCase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load modified state_dict model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor A = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) A = image_processor(images=prepare_img() , return_tensors='pt' ) A = model(**UpperCamelCase__ ) # verify classification model if task_name.startswith('imagenet' ): A = outputs.logits A = logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0: # expected_logits for base variant A = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ) assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase : int = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
690
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
1
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Any = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """owlvit_text_model""" def __init__( self : Union[str, Any] , _lowercase : Any=49_408 , _lowercase : Optional[Any]=512 , _lowercase : List[str]=2_048 , _lowercase : str=12 , _lowercase : List[Any]=8 , _lowercase : Dict=16 , _lowercase : Optional[Any]="quick_gelu" , _lowercase : Tuple=1e-5 , _lowercase : Optional[Any]=0.0 , _lowercase : Tuple=0.0_2 , _lowercase : Union[str, Any]=1.0 , _lowercase : Tuple=0 , _lowercase : Optional[int]=49_406 , _lowercase : int=49_407 , **_lowercase : Any , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) A = vocab_size A = hidden_size A = intermediate_size A = num_hidden_layers A = num_attention_heads A = max_position_embeddings A = hidden_act A = layer_norm_eps A = attention_dropout A = initializer_range A = initializer_factor @classmethod def __a ( cls : str , _lowercase : Union[str, os.PathLike] , **_lowercase : List[str] ): cls._set_token_in_kwargs(_lowercase ) A , A = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": A = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """owlvit_vision_model""" def __init__( self : int , _lowercase : List[Any]=768 , _lowercase : Optional[Any]=3_072 , _lowercase : Optional[int]=12 , _lowercase : Optional[int]=12 , _lowercase : Any=3 , _lowercase : Any=768 , _lowercase : Tuple=32 , _lowercase : Dict="quick_gelu" , _lowercase : Tuple=1e-5 , _lowercase : Dict=0.0 , _lowercase : List[Any]=0.0_2 , _lowercase : Any=1.0 , **_lowercase : Any , ): super().__init__(**_lowercase ) A = hidden_size A = intermediate_size A = num_hidden_layers A = num_attention_heads A = num_channels A = image_size A = patch_size A = hidden_act A = layer_norm_eps A = attention_dropout A = initializer_range A = initializer_factor @classmethod def __a ( cls : List[Any] , _lowercase : Union[str, os.PathLike] , **_lowercase : Any ): cls._set_token_in_kwargs(_lowercase ) A , A = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """owlvit""" lowerCAmelCase = True def __init__( self : int , _lowercase : List[Any]=None , _lowercase : Union[str, Any]=None , _lowercase : Optional[Any]=512 , _lowercase : Optional[Any]=2.6_5_9_2 , _lowercase : List[str]=True , **_lowercase : int , ): super().__init__(**_lowercase ) if text_config is None: A = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: A = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) A = OwlViTTextConfig(**_lowercase ) A = OwlViTVisionConfig(**_lowercase ) A = projection_dim A = logit_scale_init_value A = return_dict A = 1.0 @classmethod def __a ( cls : int , _lowercase : Union[str, os.PathLike] , **_lowercase : List[str] ): cls._set_token_in_kwargs(_lowercase ) A , A = cls.get_config_dict(_lowercase , **_lowercase ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_lowercase , **_lowercase ) @classmethod def __a ( cls : Any , _lowercase : Dict , _lowercase : Dict , **_lowercase : Any ): A = {} A = text_config A = vision_config return cls.from_dict(_lowercase , **_lowercase ) def __a ( self : Union[str, Any] ): A = copy.deepcopy(self.__dict__ ) A = self.text_config.to_dict() A = self.vision_config.to_dict() A = self.__class__.model_type return output class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : Optional[int] ): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def __a ( self : int ): return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def __a ( self : List[str] ): return 1e-4 def __a ( self : List[Any] , _lowercase : "ProcessorMixin" , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : Optional["TensorType"] = None , ): A = super().generate_dummy_inputs( processor.tokenizer , batch_size=_lowercase , seq_length=_lowercase , framework=_lowercase ) A = super().generate_dummy_inputs( processor.image_processor , batch_size=_lowercase , framework=_lowercase ) return {**text_input_dict, **image_input_dict} @property def __a ( self : Tuple ): return 14
690
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> str: """simple docstring""" A = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def __snake_case ( UpperCamelCase__ ) -> dict[str, str]: """simple docstring""" A = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key A = remove_duplicates(key.upper() ) A = len(UpperCamelCase__ ) # First fill cipher with key characters A = {alphabet[i]: char for i, char in enumerate(UpperCamelCase__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(UpperCamelCase__ ) , 26 ): A = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 A = alphabet[i - offset] A = char return cipher_alphabet def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" return "".join(cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" A = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(UpperCamelCase__ , UpperCamelCase__ ) for ch in message.upper() ) def __snake_case ( ) -> None: """simple docstring""" A = input('Enter message to encode or decode: ' ).strip() A = input('Enter keyword: ' ).strip() A = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: A = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) A = create_cipher_map(UpperCamelCase__ ) print(func(UpperCamelCase__ , UpperCamelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCamelCase : List[str] = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ["ConvNextFeatureExtractor"] UpperCamelCase : str = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable UpperCamelCase : int = list[list[float | int]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Matrix: """simple docstring""" A = len(UpperCamelCase__ ) A = [[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase__ )] A = 42 A = 42 A = 42 A = 42 A = 42 A = 42 for row in range(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): A = matrix[row][col] A = vector[row][0] A = 0 A = 0 while row < size and col < size: # pivoting A = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase__ , UpperCamelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: A , A = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCamelCase__ ): A = augmented[rowa][col] / augmented[row][col] A = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCamelCase__ ): for row in range(UpperCamelCase__ ): A = augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase__ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCamelCase__ ) ] def __snake_case ( UpperCamelCase__ ) -> Callable[[int], int]: """simple docstring""" A = len(UpperCamelCase__ ) A = [[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] A = [[0] for _ in range(UpperCamelCase__ )] A = 42 A = 42 A = 42 A = 42 for x_val, y_val in enumerate(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): A = (x_val + 1) ** (size - col - 1) A = y_val A = solve(UpperCamelCase__ , UpperCamelCase__ ) def interpolated_func(UpperCamelCase__ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase__ ) ) return interpolated_func def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __snake_case ( UpperCamelCase__ = question_function , UpperCamelCase__ = 10 ) -> int: """simple docstring""" A = [func(UpperCamelCase__ ) for x_val in range(1 , order + 1 )] A = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] A = 0 A = 42 A = 42 for poly in polynomials: A = 1 while func(UpperCamelCase__ ) == poly(UpperCamelCase__ ): x_val += 1 ret += poly(UpperCamelCase__ ) return ret if __name__ == "__main__": print(F"""{solution() = }""")
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Dict = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[str] ): A = 0 def __a ( self : int ): A = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: A = Path(_lowercase ) / 'preprocessor_config.json' A = Path(_lowercase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowercase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowercase , 'w' ) ) A = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[Any] ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: A = Path(_lowercase ) / 'preprocessor_config.json' A = Path(_lowercase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowercase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowercase , 'w' ) ) A = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Dict ): with tempfile.TemporaryDirectory() as tmpdirname: A = CLIPConfig() # Create a dummy config file with image_proceesor_type A = Path(_lowercase ) / 'preprocessor_config.json' A = Path(_lowercase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowercase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowercase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally A = AutoImageProcessor.from_pretrained(_lowercase ).to_dict() config_dict.pop('image_processor_type' ) A = CLIPImageProcessor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) A = AutoImageProcessor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved A = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: A = Path(_lowercase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowercase , 'w' ) , ) A = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def __a ( self : str ): with self.assertRaisesRegex( _lowercase , 'clip-base is not a local folder and is not a valid model identifier' ): A = AutoImageProcessor.from_pretrained('clip-base' ) def __a ( self : Union[str, Any] ): with self.assertRaisesRegex( _lowercase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): A = AutoImageProcessor.from_pretrained(_lowercase , revision='aaaaaa' ) def __a ( self : Any ): with self.assertRaisesRegex( _lowercase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): A = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def __a ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): A = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowercase ) A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) A = AutoImageProcessor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def __a ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoImageProcessor.register(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: A = Path(_lowercase ) / 'preprocessor_config.json' A = Path(_lowercase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowercase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowercase , 'w' ) ) A = CustomImageProcessor.from_pretrained(_lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) A = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def __a ( self : Union[str, Any] ): class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = True try: AutoConfig.register('custom' , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local A = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub A = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_lowercase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" if is_torch_version('<' , '2.0.0' ) or not hasattr(UpperCamelCase__ , '_dynamo' ): return False return isinstance(UpperCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = True ) -> str: """simple docstring""" A = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A = is_compiled_module(UpperCamelCase__ ) if is_compiled: A = model A = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = model.module if not keep_fpaa_wrapper: A = getattr(UpperCamelCase__ , 'forward' ) A = model.__dict__.pop('_original_forward' , UpperCamelCase__ ) if original_forward is not None: while hasattr(UpperCamelCase__ , '__wrapped__' ): A = forward.__wrapped__ if forward == original_forward: break A = forward if getattr(UpperCamelCase__ , '_converted_to_transformer_engine' , UpperCamelCase__ ): convert_model(UpperCamelCase__ , to_transformer_engine=UpperCamelCase__ ) if is_compiled: A = model A = compiled_model return model def __snake_case ( ) -> int: """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase__ , UpperCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase__ , UpperCamelCase__ ) @contextmanager def __snake_case ( **UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): A = str(UpperCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" if not hasattr(UpperCamelCase__ , '__qualname__' ) and not hasattr(UpperCamelCase__ , '__name__' ): A = getattr(UpperCamelCase__ , '__class__' , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , '__qualname__' ): return obj.__qualname__ if hasattr(UpperCamelCase__ , '__name__' ): return obj.__name__ return str(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: """simple docstring""" for key, value in source.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = destination.setdefault(UpperCamelCase__ , {} ) merge_dicts(UpperCamelCase__ , UpperCamelCase__ ) else: A = value return destination def __snake_case ( UpperCamelCase__ = None ) -> bool: """simple docstring""" if port is None: A = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) def __snake_case ( UpperCamelCase__ ) -> List[int]: """simple docstring""" if isinstance(UpperCamelCase__ , np.ndarray ): return list(tensor.shape ) A = tf.shape(UpperCamelCase__ ) if tensor.shape == tf.TensorShape(UpperCamelCase__ ): return dynamic A = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(UpperCamelCase__ )] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1E-9 , axis=UpperCamelCase__ , name=UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1E-5 , UpperCamelCase__=-1 ) -> int: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized A , A = tf.nn.moments(UpperCamelCase__ , axes=[axis] , keepdims=UpperCamelCase__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis A = [1] * inputs.shape.rank A = shape_list(UpperCamelCase__ )[axis] A = tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) A = tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) # Compute layer normalization using the batch_normalization # function. A = tf.nn.batch_normalization( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , offset=UpperCamelCase__ , scale=UpperCamelCase__ , variance_epsilon=UpperCamelCase__ , ) return outputs def __snake_case ( UpperCamelCase__ , UpperCamelCase__=0 , UpperCamelCase__=-1 ) -> List[Any]: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input A = tf.shape(UpperCamelCase__ ) A = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) A = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> tf.Tensor: """simple docstring""" if not isinstance(UpperCamelCase__ , tf.Tensor ): A = tf.convert_to_tensor(UpperCamelCase__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: A = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) A = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( UpperCamelCase__ , tf.cast(UpperCamelCase__ , dtype=tensor.dtype ) , message=( f'The maximum value of {tensor_name} ({tf.math.reduce_max(UpperCamelCase__ )}) must be smaller than the embedding ' f'layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.' ) , ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: """simple docstring""" A = 64512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. A = [x for x in data if len(UpperCamelCase__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f'they are larger than {HDF5_OBJECT_HEADER_LIMIT} ' f'bytes: {bad_attributes}' ) A = np.asarray(UpperCamelCase__ ) A = 1 A = np.array_split(UpperCamelCase__ , UpperCamelCase__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 A = np.array_split(UpperCamelCase__ , UpperCamelCase__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(UpperCamelCase__ ): A = chunk_data else: A = data def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" if name in group.attrs: A = [n.decode('utf8' ) if hasattr(UpperCamelCase__ , 'decode' ) else n for n in group.attrs[name]] else: A = [] A = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(UpperCamelCase__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" def _expand_single_ad_tensor(UpperCamelCase__ ): if isinstance(UpperCamelCase__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(UpperCamelCase__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , UpperCamelCase__ )
690
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
1
"""simple docstring""" import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : List[str] , _lowercase : List[Any] , _lowercase : Optional[Any]=768 ): super().__init__(_lowercase ) A = proj_size A = CLIPVisionModel(_lowercase ) A = PaintByExampleMapper(_lowercase ) A = nn.LayerNorm(config.hidden_size ) A = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling A = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __a ( self : List[str] , _lowercase : Any , _lowercase : Any=False ): A = self.model(pixel_values=_lowercase ) A = clip_output.pooler_output A = self.mapper(latent_states[:, None] ) A = self.final_layer_norm(_lowercase ) A = self.proj_out(_lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCamelCase__ ( nn.Module ): def __init__( self : Dict , _lowercase : str ): super().__init__() A = (config.num_hidden_layers + 1) // 5 A = config.hidden_size A = 1 A = nn.ModuleList( [ BasicTransformerBlock(_lowercase , _lowercase , _lowercase , activation_fn='gelu' , attention_bias=_lowercase ) for _ in range(_lowercase ) ] ) def __a ( self : str , _lowercase : Dict ): for block in self.blocks: A = block(_lowercase ) return hidden_states
690
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
1
"""simple docstring""" import os import sys import unittest UpperCamelCase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase : List[str] = os.path.join(git_repo_path, "src", "diffusers") class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Dict ): A = find_backend(' if not is_torch_available():' ) self.assertEqual(_lowercase , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(_lowercase , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(_lowercase , 'torch_and_transformers_and_onnx' ) def __a ( self : List[str] ): A = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , _lowercase ) self.assertIn('torch_and_transformers' , _lowercase ) self.assertIn('flax_and_transformers' , _lowercase ) self.assertIn('torch_and_transformers_and_onnx' , _lowercase ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def __a ( self : Dict ): A = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(_lowercase , '\nCONSTANT = None\n' ) A = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( _lowercase , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) A = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' A = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(_lowercase , _lowercase ) def __a ( self : int ): A = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' A = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , _lowercase )
690
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase : Any = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") UpperCamelCase : Union[str, Any] = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) UpperCamelCase : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def __snake_case ( UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" with open(UpperCamelCase__ , 'rb' ) as f: A = Image.open(UpperCamelCase__ ) return im.convert('RGB' ) @dataclass class lowerCamelCase__ : lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={ """help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).""" } , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) lowerCAmelCase = field(default=UpperCAmelCase_ , metadata={"""help""": """A folder containing the training data."""} ) lowerCAmelCase = field(default=UpperCAmelCase_ , metadata={"""help""": """A folder containing the validation data."""} ) lowerCAmelCase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self : List[Any] ): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( 'You must specify either a dataset name from the hub or a train and/or validation directory.' ) @dataclass class lowerCamelCase__ : lowerCAmelCase = field( default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) lowerCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) lowerCAmelCase = field(default=UpperCAmelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def __snake_case ( UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = torch.stack([example['pixel_values'] for example in examples] ) A = torch.tensor([example['labels'] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def __snake_case ( ) -> str: """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_image_classification' , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='image-classification' , use_auth_token=True if model_args.use_auth_token else None , ) else: A = {} if data_args.train_dir is not None: A = os.path.join(data_args.train_dir , '**' ) if data_args.validation_dir is not None: A = os.path.join(data_args.validation_dir , '**' ) A = load_dataset( 'imagefolder' , data_files=UpperCamelCase__ , cache_dir=model_args.cache_dir , task='image-classification' , ) # If we don't have a validation split, split off a percentage of train as validation. A = None if 'validation' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase__ ) and data_args.train_val_split > 0.0: A = dataset['train'].train_test_split(data_args.train_val_split ) A = split['train'] A = split['test'] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A = dataset['train'].features['labels'].names A , A = {}, {} for i, label in enumerate(UpperCamelCase__ ): A = str(UpperCamelCase__ ) A = label # Load the accuracy metric from the datasets package A = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCamelCase__ ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) A = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(UpperCamelCase__ ) , labelaid=UpperCamelCase__ , idalabel=UpperCamelCase__ , finetuning_task='image-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) A = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: A = image_processor.size['shortest_edge'] else: A = (image_processor.size['height'], image_processor.size['width']) A = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) A = Compose( [ RandomResizedCrop(UpperCamelCase__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) A = Compose( [ Resize(UpperCamelCase__ ), CenterCrop(UpperCamelCase__ ), ToTensor(), normalize, ] ) def train_transforms(UpperCamelCase__ ): A = [ _train_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image'] ] return example_batch def val_transforms(UpperCamelCase__ ): A = [_val_transforms(pil_img.convert('RGB' ) ) for pil_img in example_batch['image']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: A = ( dataset['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(UpperCamelCase__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: A = ( dataset['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(UpperCamelCase__ ) # Initalize our trainer A = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=dataset['train'] if training_args.do_train else None , eval_dataset=dataset['validation'] if training_args.do_eval else None , compute_metrics=UpperCamelCase__ , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A = trainer.evaluate() trainer.log_metrics('eval' , UpperCamelCase__ ) trainer.save_metrics('eval' , UpperCamelCase__ ) # Write model card and (optionally) push to hub A = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'image-classification', 'dataset': data_args.dataset_name, 'tags': ['image-classification', 'vision'], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) if __name__ == "__main__": main()
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase : Dict = getLogger(__name__) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 8 , UpperCamelCase__ = 1024 , UpperCamelCase__="val" , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__="summarization" , UpperCamelCase__=None , UpperCamelCase__=1 , UpperCamelCase__ = None , UpperCamelCase__="" , **UpperCamelCase__ , ) -> Dict: """simple docstring""" A = str(UpperCamelCase__ ) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=UpperCamelCase__ ) A = Path(UpperCamelCase__ ) A = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(UpperCamelCase__ ) A = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase__ ).cuda() if fpaa: A = model.half() # determine if we need to increase num_beams use_task_specific_params(UpperCamelCase__ , UpperCamelCase__ ) # update config with task specific params A = generate_kwargs.pop('num_beams' , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: A = num_return_sequences A = AutoTokenizer.from_pretrained(UpperCamelCase__ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: A = tokenizer.model_max_length if prefix is None: A = prefix or getattr(model.config , 'prefix' , '' ) or '' A = SeqaSeqDataset( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , max_target_length=1024 , type_path=UpperCamelCase__ , n_obs=UpperCamelCase__ , prefix=UpperCamelCase__ , **UpperCamelCase__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. A = ds.make_sortish_sampler(UpperCamelCase__ , distributed=UpperCamelCase__ , add_extra_examples=UpperCamelCase__ , shuffle=UpperCamelCase__ ) A = DataLoader(UpperCamelCase__ , sampler=UpperCamelCase__ , batch_size=UpperCamelCase__ , collate_fn=ds.collate_fn ) A = [] for batch in tqdm(UpperCamelCase__ ): A = model.generate( input_ids=batch['input_ids'].to(model.device ) , attention_mask=batch['attention_mask'].to(model.device ) , num_return_sequences=UpperCamelCase__ , num_beams=UpperCamelCase__ , **UpperCamelCase__ , ) A = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) A = batch['ids'] if num_return_sequences > 1: A = chunks(UpperCamelCase__ , UpperCamelCase__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(UpperCamelCase__ ): results.append({'pred': pred, 'id': ids[i].item()} ) save_json(UpperCamelCase__ , UpperCamelCase__ ) return results, sampler.num_replicas def __snake_case ( ) -> Optional[int]: """simple docstring""" A = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate' ) parser.add_argument('--data_dir' , type=UpperCamelCase__ , help='like cnn_dm/test.source' ) parser.add_argument( '--model_name' , type=UpperCamelCase__ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=UpperCamelCase__ , help='where to save' , default='tmp_gen' ) parser.add_argument('--max_source_length' , type=UpperCamelCase__ , default=UpperCamelCase__ ) parser.add_argument( '--type_path' , type=UpperCamelCase__ , default='test' , help='which subset to evaluate typically train/val/test' ) parser.add_argument('--task' , type=UpperCamelCase__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=UpperCamelCase__ , default=8 , required=UpperCamelCase__ , help='batch size' ) parser.add_argument( '--local_rank' , type=UpperCamelCase__ , default=-1 , required=UpperCamelCase__ , help='should be passed by distributed.launch' ) parser.add_argument( '--n_obs' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='How many observations. Defaults to all.' ) parser.add_argument( '--num_return_sequences' , type=UpperCamelCase__ , default=1 , required=UpperCamelCase__ , help='How many sequences to return' ) parser.add_argument( '--sync_timeout' , type=UpperCamelCase__ , default=600 , required=UpperCamelCase__ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument('--tgt_lang' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ ) parser.add_argument( '--prefix' , type=UpperCamelCase__ , required=UpperCamelCase__ , default=UpperCamelCase__ , help='will be added to the begininng of src examples' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--debug' , action='store_true' ) A = time.time() A , A = parser.parse_known_args() A = parse_numeric_n_bool_cl_kwargs(UpperCamelCase__ ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) A = Path(args.save_dir + '_tmp' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) # this handles locking. A = list(json_save_dir.glob('rank_*.json' ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. A = {} if args.src_lang is not None: A = args.src_lang if args.tgt_lang is not None: A = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=UpperCamelCase__ ) A , A = eval_data_dir( args.data_dir , UpperCamelCase__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=UpperCamelCase__ , **UpperCamelCase__ , ) if args.local_rank <= 0: A = Path(args.save_dir ) save_dir.mkdir(exist_ok=UpperCamelCase__ ) A = gather_results_from_each_node(UpperCamelCase__ , UpperCamelCase__ , args.sync_timeout ) A = combine_partial_results(UpperCamelCase__ ) if args.num_return_sequences > 1: A = save_dir.joinpath('pseudolabel_results.json' ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(UpperCamelCase__ , UpperCamelCase__ ) return A = Path(args.data_dir ).joinpath(args.type_path + '.target' ) with open(UpperCamelCase__ ) as f: A = [x.rstrip() for x in f.readlines()][: len(UpperCamelCase__ )] # Calculate metrics, save metrics, and save _generations.txt A = 'translation' in args.task A = calculate_bleu if calc_bleu else calculate_rouge A = 'bleu' if calc_bleu else 'rouge' A = score_fn(UpperCamelCase__ , UpperCamelCase__ ) A = len(UpperCamelCase__ ) A = time.time() - start_time A = round(runtime / metrics['n_obs'] , 4 ) A = num_replicas # TODO(@stas00): add whatever metadata to metrics A = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ ) print(UpperCamelCase__ ) write_txt_file(UpperCamelCase__ , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(UpperCamelCase__ , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List: """simple docstring""" A = [] for partial_result in partial_results: records.extend(UpperCamelCase__ ) A = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : x["id"] ) A = [x['pred'] for x in records] return preds def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Dict[str, List]]: """simple docstring""" A = time.time() logger.info('waiting for all nodes to finish' ) A = None while (time.time() - start_wait) < timeout: A = list(save_dir.glob('rank_*.json' ) ) if len(UpperCamelCase__ ) < num_replicas: continue try: # make sure all json files are fully saved A = lmap(UpperCamelCase__ , UpperCamelCase__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes' ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
690
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Any ): A = 'laion/clap-htsat-unfused' A = tempfile.mkdtemp() def __a ( self : Dict , **_lowercase : List[str] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **_lowercase ) def __a ( self : List[Any] , **_lowercase : int ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **_lowercase ) def __a ( self : Dict ): shutil.rmtree(self.tmpdirname ) def __a ( self : int ): A = self.get_tokenizer() A = self.get_feature_extractor() A = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) processor.save_pretrained(self.tmpdirname ) A = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) def __a ( self : Optional[int] ): A = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) A = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) A = self.get_feature_extractor(do_normalize=_lowercase , padding_value=1.0 ) A = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , _lowercase ) def __a ( self : Dict ): A = self.get_feature_extractor() A = self.get_tokenizer() A = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) A = floats_list((3, 1_000) ) A = feature_extractor(_lowercase , return_tensors='np' ) A = processor(audios=_lowercase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __a ( self : List[Any] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) A = 'This is a test string' A = processor(text=_lowercase ) A = tokenizer(_lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self : Optional[int] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) A = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A = processor.batch_decode(_lowercase ) A = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def __a ( self : List[Any] ): A = self.get_feature_extractor() A = self.get_tokenizer() A = ClapProcessor(tokenizer=_lowercase , feature_extractor=_lowercase ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
690
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') A = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(UpperCamelCase__ ): os.makedirs(UpperCamelCase__ ) A = model.state_dict() def to_tf_var_name(UpperCamelCase__ ): for patt, repl in iter(UpperCamelCase__ ): A = name.replace(UpperCamelCase__ , UpperCamelCase__ ) return f'bert/{name}' def create_tf_var(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A = tf.dtypes.as_dtype(tensor.dtype ) A = tf.get_variable(dtype=UpperCamelCase__ , shape=tensor.shape , name=UpperCamelCase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCamelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: A = to_tf_var_name(UpperCamelCase__ ) A = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): A = torch_tensor.T A = create_tf_var(tensor=UpperCamelCase__ , name=UpperCamelCase__ , session=UpperCamelCase__ ) tf.keras.backend.set_value(UpperCamelCase__ , UpperCamelCase__ ) A = session.run(UpperCamelCase__ ) print(f'Successfully created {tf_name}: {np.allclose(UpperCamelCase__ , UpperCamelCase__ )}' ) A = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , model_name.replace('-' , '_' ) + '.ckpt' ) ) def __snake_case ( UpperCamelCase__=None ) -> List[Any]: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument('--model_name' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=UpperCamelCase__ , default=UpperCamelCase__ , required=UpperCamelCase__ , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Directory in which to save tensorflow model' ) A = parser.parse_args(UpperCamelCase__ ) A = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=UpperCamelCase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
690
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = KandinskyVaaPipeline lowerCAmelCase = [ """image_embeds""", """negative_image_embeds""", ] lowerCAmelCase = ["""image_embeds""", """negative_image_embeds"""] lowerCAmelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase = False @property def __a ( self : Optional[Any] ): return 32 @property def __a ( self : Optional[int] ): return 32 @property def __a ( self : Any ): return self.time_input_dim @property def __a ( self : int ): return self.time_input_dim * 4 @property def __a ( self : Dict ): return 100 @property def __a ( self : int ): torch.manual_seed(0 ) A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A = UNetaDConditionModel(**_lowercase ) return model @property def __a ( self : Any ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Dict ): torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : str ): A = self.dummy_unet A = self.dummy_movq A = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=_lowercase , set_alpha_to_one=_lowercase , steps_offset=1 , prediction_type='epsilon' , thresholding=_lowercase , ) A = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self : int , _lowercase : List[str] , _lowercase : str=0 ): A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) A = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def __a ( self : str ): A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) A = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = pipe(**self.get_dummy_inputs(_lowercase ) ) A = output.images A = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Optional[Any] ): A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy' ) A = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) A = KandinskyVaaPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) A = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) A = 'red cat, 4k photo' A = torch.Generator(device='cuda' ).manual_seed(0 ) A , A = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A = torch.Generator(device='cuda' ).manual_seed(0 ) A = pipeline( image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , output_type='np' , ) A = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
690
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
1
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Tuple = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) UpperCamelCase : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __snake_case ( UpperCamelCase__ ) -> Any: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A = model_type_to_module_name(UpperCamelCase__ ) A = importlib.import_module(f'.{module_name}' , 'transformers.models' ) try: return getattr(UpperCamelCase__ , UpperCamelCase__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase__ , '__name__' , UpperCamelCase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A = importlib.import_module('transformers' ) if hasattr(UpperCamelCase__ , UpperCamelCase__ ): return getattr(UpperCamelCase__ , UpperCamelCase__ ) return None def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , **UpperCamelCase__ , ) -> str: """simple docstring""" A = get_file_from_repo( UpperCamelCase__ , UpperCamelCase__ , cache_dir=UpperCamelCase__ , force_download=UpperCamelCase__ , resume_download=UpperCamelCase__ , proxies=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , revision=UpperCamelCase__ , local_files_only=UpperCamelCase__ , ) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(UpperCamelCase__ , encoding='utf-8' ) as reader: return json.load(UpperCamelCase__ ) class lowerCamelCase__ : def __init__( self : Tuple ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def __a ( cls : Dict , _lowercase : Any , **_lowercase : List[Any] ): A = kwargs.pop('config' , _lowercase ) A = kwargs.pop('trust_remote_code' , _lowercase ) A = True A , A = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) A = config_dict.get('image_processor_type' , _lowercase ) A = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): A = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A = config_dict.pop('feature_extractor_type' , _lowercase ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) A = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): A = config_dict['auto_map']['AutoFeatureExtractor'] A = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): A = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` A = getattr(_lowercase , 'image_processor_type' , _lowercase ) if hasattr(_lowercase , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: A = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: A = image_processor_class_from_name(_lowercase ) A = image_processor_auto_map is not None A = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING A = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: A = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) A = kwargs.pop('code_revision' , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: A = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( f'Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ' f'`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ' f'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}' ) @staticmethod def __a ( _lowercase : Optional[int] , _lowercase : Dict ): IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
690
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> bool: """simple docstring""" A = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __snake_case ( UpperCamelCase__ = 5000 ) -> int: """simple docstring""" A = [(i * (3 * i - 1)) // 2 for i in range(1 , UpperCamelCase__ )] for i, pentagonal_i in enumerate(UpperCamelCase__ ): for j in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): A = pentagonal_nums[j] A = pentagonal_i + pentagonal_j A = pentagonal_j - pentagonal_i if is_pentagonal(UpperCamelCase__ ) and is_pentagonal(UpperCamelCase__ ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" from typing import Any def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> list: """simple docstring""" _validation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) # Creates data structures and fill initial step A = {} A = {} for state in states_space: A = observations_space[0] A = ( initial_probabilities[state] * emission_probabilities[state][observation] ) A = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(UpperCamelCase__ ) ): A = observations_space[o] A = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function A = '' A = -1 for k_state in states_space: A = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: A = probability A = k_state # Update probabilities and pointers dicts A = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) A = arg_max # The final observation A = observations_space[len(UpperCamelCase__ ) - 1] # argmax for given final observation A = '' A = -1 for k_state in states_space: A = probabilities[(k_state, final_observation)] if probability > max_probability: A = probability A = k_state A = arg_max # Process pointers backwards A = last_state A = [] for o in range(len(UpperCamelCase__ ) - 1 , -1 , -1 ): result.append(UpperCamelCase__ ) A = pointers[previous, observations_space[o]] result.reverse() return result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> None: """simple docstring""" _validate_not_empty( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) _validate_lists(UpperCamelCase__ , UpperCamelCase__ ) _validate_dicts( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> None: """simple docstring""" _validate_list(UpperCamelCase__ , 'observations_space' ) _validate_list(UpperCamelCase__ , 'states_space' ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> None: """simple docstring""" if not isinstance(_object , UpperCamelCase__ ): A = f'{var_name} must be a list' raise ValueError(UpperCamelCase__ ) else: for x in _object: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = f'{var_name} must be a list of strings' raise ValueError(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> None: """simple docstring""" _validate_dict(UpperCamelCase__ , 'initial_probabilities' , UpperCamelCase__ ) _validate_nested_dict(UpperCamelCase__ , 'transition_probabilities' ) _validate_nested_dict(UpperCamelCase__ , 'emission_probabilities' ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> None: """simple docstring""" _validate_dict(_object , UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values(): _validate_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> None: """simple docstring""" if not isinstance(_object , UpperCamelCase__ ): A = f'{var_name} must be a dict' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object ): A = f'{var_name} all keys must be strings' raise ValueError(UpperCamelCase__ ) if not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for x in _object.values() ): A = 'nested dictionary ' if nested else '' A = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
690
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Optional[int] = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } UpperCamelCase : Optional[int] = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } UpperCamelCase : Tuple = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = RealmTokenizer def __init__( self : Any , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : Optional[Any]=True , _lowercase : Dict="[UNK]" , _lowercase : Optional[int]="[SEP]" , _lowercase : List[str]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : int="[MASK]" , _lowercase : List[Any]=True , _lowercase : Tuple=None , **_lowercase : Tuple , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : str , **_lowercase : str ): A = PaddingStrategy.MAX_LENGTH A = text A = kwargs.pop('text_pair' , _lowercase ) A = kwargs.pop('return_tensors' , _lowercase ) A = { 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(_lowercase ): if batch_text_pair is not None: A = batch_text_pair[idx] else: A = None A = super().__call__(_lowercase , _lowercase , return_tensors=_lowercase , **_lowercase ) A = encoded_candidates.get('input_ids' ) A = encoded_candidates.get('attention_mask' ) A = encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowercase ) A = {key: item for key, item in output_data.items() if len(_lowercase ) != 0} return BatchEncoding(_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : Tuple , _lowercase : Dict=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[int] , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=5 ) -> int: """simple docstring""" assert masked_input.count('<mask>' ) == 1 A = torch.tensor(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ).unsqueeze(0 ) # Batch size 1 A = model(UpperCamelCase__ )[0] # The last hidden-state is the first element of the output tuple A = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A = logits[0, masked_index, :] A = logits.softmax(dim=0 ) A , A = prob.topk(k=UpperCamelCase__ , dim=0 ) A = ' '.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(UpperCamelCase__ ) )] ) A = tokenizer.mask_token A = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(' ' ) ): A = predicted_token_bpe.replace('\u2581' , ' ' ) if " {0}".format(UpperCamelCase__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(' {0}'.format(UpperCamelCase__ ) , UpperCamelCase__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(UpperCamelCase__ , UpperCamelCase__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs UpperCamelCase : List[str] = CamembertTokenizer.from_pretrained("camembert-base") UpperCamelCase : Optional[int] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() UpperCamelCase : int = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
690
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
1
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = TaConfig.from_json_file(UpperCamelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) A = TaForConditionalGeneration(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase : List[str] = 16 UpperCamelCase : Tuple = 32 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Any: """simple docstring""" A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. A = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A = 16 elif accelerator.mixed_precision != "no": A = 8 else: A = None return tokenizer.pad( UpperCamelCase__ , padding='longest' , max_length=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_tensors='pt' , ) # Instantiate dataloaders. A = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) A = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase : int = mocked_dataloaders # noqa: F811 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase__ ) == "1": A = 2 # Initialize accelerator A = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A = config['lr'] A = int(config['num_epochs'] ) A = int(config['seed'] ) A = int(config['batch_size'] ) A = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase__ ) def inner_training_loop(UpperCamelCase__ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A = model.to(accelerator.device ) # Instantiate optimizer A = AdamW(params=model.parameters() , lr=UpperCamelCase__ ) A , A = get_dataloaders(UpperCamelCase__ , UpperCamelCase__ ) # Instantiate scheduler A = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A , A , A , A , A = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A = model(**UpperCamelCase__ ) A = outputs.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A = model(**UpperCamelCase__ ) A = outputs.logits.argmax(dim=-1 ) A , A = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase__ , references=UpperCamelCase__ , ) A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCamelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase__ , default=UpperCamelCase__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) A = parser.parse_args() A = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": main()
690
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } UpperCamelCase : Optional[int] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" for attribute in key.split('.' ): A = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: A = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value elif weight_type == "running_mean": A = value elif weight_type == "running_var": A = value elif weight_type == "num_batches_tracked": A = value elif weight_type == "inv_freq": A = value else: A = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" A = [] A = fairseq_model.state_dict() A = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) A = True else: for key, mapped_key in MAPPING.items(): A = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: A = True if "*" in mapped_key: A = name.split(UpperCamelCase__ )[0].split('.' )[-2] A = mapped_key.replace('*' , UpperCamelCase__ ) if "pos_bias_u" in name: A = None elif "pos_bias_v" in name: A = None elif "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' elif "running_mean" in name: A = 'running_mean' elif "inv_freq" in name: A = 'inv_freq' elif "running_var" in name: A = 'running_var' elif "num_batches_tracked" in name: A = 'num_batches_tracked' else: A = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: """simple docstring""" A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) A = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) A = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) A = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) A = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(UpperCamelCase__ ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: A = WavaVecaConformerConfig.from_pretrained(UpperCamelCase__ , hidden_act='swish' ) else: A = WavaVecaConformerConfig() if "rope" in checkpoint_path: A = 'rotary' if is_finetuned: if dict_path: A = Dictionary.load(UpperCamelCase__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A = target_dict.pad_index A = target_dict.bos_index A = target_dict.eos_index A = len(target_dict.symbols ) A = os.path.join(UpperCamelCase__ , 'vocab.json' ) if not os.path.isdir(UpperCamelCase__ ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(UpperCamelCase__ ) ) return os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) A = target_dict.indices # fairseq has the <pad> and <s> switched A = 0 A = 1 with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(UpperCamelCase__ , UpperCamelCase__ ) A = WavaVecaCTCTokenizer( UpperCamelCase__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=UpperCamelCase__ , ) A = True if config.feat_extract_norm == 'layer' else False A = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) A = WavaVecaProcessor(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) A = WavaVecaConformerForCTC(UpperCamelCase__ ) else: A = WavaVecaConformerForPreTraining(UpperCamelCase__ ) if is_finetuned: A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: A = argparse.Namespace(task='audio_pretraining' ) A = fairseq.tasks.setup_task(UpperCamelCase__ ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase__ ) A = model[0].eval() recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase : List[Any] = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
690
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=True , UpperCamelCase__="pt" ) -> Tuple: """simple docstring""" A = {'add_prefix_space': True} if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and not line.startswith(' ' ) else {} A = padding_side return tokenizer( [line] , max_length=UpperCamelCase__ , padding='max_length' if pad_to_max_length else None , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , ) -> List[Any]: """simple docstring""" A = input_ids.ne(UpperCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase__ ( UpperCAmelCase_ ): def __init__( self : str , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Any , _lowercase : List[Any] , _lowercase : int="train" , _lowercase : str=None , _lowercase : Tuple=None , _lowercase : List[Any]=None , _lowercase : str="" , ): super().__init__() A = Path(_lowercase ).joinpath(type_path + '.source' ) A = Path(_lowercase ).joinpath(type_path + '.target' ) A = self.get_char_lens(self.src_file ) A = max_source_length A = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A = tokenizer A = prefix if n_obs is not None: A = self.src_lens[:n_obs] A = src_lang A = tgt_lang def __len__( self : Tuple ): return len(self.src_lens ) def __getitem__( self : Any , _lowercase : str ): A = index + 1 # linecache starts at 1 A = self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip('\n' ) A = linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip('\n' ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) A = self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer A = encode_line(_lowercase , _lowercase , self.max_source_length , 'right' ) A = encode_line(_lowercase , _lowercase , self.max_target_length , 'right' ) A = source_inputs['input_ids'].squeeze() A = target_inputs['input_ids'].squeeze() A = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __a ( _lowercase : Any ): return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def __a ( self : Optional[int] , _lowercase : int ): A = torch.stack([x['input_ids'] for x in batch] ) A = torch.stack([x['attention_mask'] for x in batch] ) A = torch.stack([x['decoder_input_ids'] for x in batch] ) A = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) A = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) A = trim_batch(_lowercase , _lowercase ) A , A = trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) A = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch UpperCamelCase : Union[str, Any] = getLogger(__name__) def __snake_case ( UpperCamelCase__ ) -> List[Any]: """simple docstring""" return list(itertools.chain.from_iterable(UpperCamelCase__ ) ) def __snake_case ( UpperCamelCase__ ) -> None: """simple docstring""" A = get_git_info() save_json(UpperCamelCase__ , os.path.join(UpperCamelCase__ , 'git_log.json' ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=4 , **UpperCamelCase__ ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase__ , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ , indent=UpperCamelCase__ , **UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" with open(UpperCamelCase__ ) as f: return json.load(UpperCamelCase__ ) def __snake_case ( ) -> int: """simple docstring""" A = git.Repo(search_parent_directories=UpperCamelCase__ ) A = { 'repo_id': str(UpperCamelCase__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> List: """simple docstring""" return list(map(UpperCamelCase__ , UpperCamelCase__ ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" with open(UpperCamelCase__ , 'wb' ) as f: return pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" def remove_articles(UpperCamelCase__ ): return re.sub(r'\b(a|an|the)\b' , ' ' , UpperCamelCase__ ) def white_space_fix(UpperCamelCase__ ): return " ".join(text.split() ) def remove_punc(UpperCamelCase__ ): A = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase__ ) ) ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" A = normalize_answer(UpperCamelCase__ ).split() A = normalize_answer(UpperCamelCase__ ).split() A = Counter(UpperCamelCase__ ) & Counter(UpperCamelCase__ ) A = sum(common.values() ) if num_same == 0: return 0 A = 1.0 * num_same / len(UpperCamelCase__ ) A = 1.0 * num_same / len(UpperCamelCase__ ) A = (2 * precision * recall) / (precision + recall) return fa def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict: """simple docstring""" return normalize_answer(UpperCamelCase__ ) == normalize_answer(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Dict: """simple docstring""" assert len(UpperCamelCase__ ) == len(UpperCamelCase__ ) A = 0 for hypo, pred in zip(UpperCamelCase__ , UpperCamelCase__ ): em += exact_match_score(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: em /= len(UpperCamelCase__ ) return {"em": em} def __snake_case ( UpperCamelCase__ ) -> Any: """simple docstring""" return model_prefix.startswith('rag' ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A = 'dropout_rate' for p in extra_params: if getattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and not hasattr(UpperCamelCase__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(UpperCamelCase__ ) ) delattr(UpperCamelCase__ , UpperCamelCase__ ) continue A = p if hasattr(UpperCamelCase__ , UpperCamelCase__ ) else equivalent_param[p] setattr(UpperCamelCase__ , UpperCamelCase__ , getattr(UpperCamelCase__ , UpperCamelCase__ ) ) delattr(UpperCamelCase__ , UpperCamelCase__ ) return hparams, config
690
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
1
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCamelCase : Dict = TypeVar("T") class lowerCamelCase__ ( Generic[T] ): def __init__( self : int , _lowercase : T ): A = data A = None def __str__( self : int ): return f'{self.data}' class lowerCamelCase__ ( Generic[T] ): def __init__( self : str ): A = None def __iter__( self : Any ): A = self.top while node: yield node.data A = node.next def __str__( self : Tuple ): return "->".join([str(_lowercase ) for item in self] ) def __len__( self : Optional[int] ): return len(tuple(iter(self ) ) ) def __a ( self : List[Any] ): return self.top is None def __a ( self : Dict , _lowercase : T ): A = Node(_lowercase ) if not self.is_empty(): A = self.top A = node def __a ( self : Optional[Any] ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _lowercase ) A = self.top A = self.top.next return pop_node.data def __a ( self : Optional[Any] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def __a ( self : Any ): A = None if __name__ == "__main__": from doctest import testmod testmod()
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 A , A = 1, 1 for _ in range(number_of_steps - 1 ): A , A = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCamelCase : str = logging.getLogger() def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" A = {} A = os.path.join(UpperCamelCase__ , 'all_results.json' ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , 'r' ) as f: A = json.load(UpperCamelCase__ ) else: raise ValueError(f'can\'t find {path}' ) return results UpperCamelCase : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase__ ( UpperCAmelCase_ ): def __a ( self : Union[str, Any] ): import xla_spawn A = self.get_auto_remove_tmp_dir() A = f'\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(_lowercase , 'argv' , _lowercase ): A = time() xla_spawn.main() A = time() A = get_results(_lowercase ) self.assertGreaterEqual(result['eval_accuracy'] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def __a ( self : List[Any] ): import xla_spawn A = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split() with patch.object(_lowercase , 'argv' , _lowercase ): xla_spawn.main()
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = (DDIMParallelScheduler,) lowerCAmelCase = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def __a ( self : Optional[Any] , **_lowercase : Optional[int] ): A = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_lowercase ) return config def __a ( self : List[Any] , **_lowercase : List[Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config(**_lowercase ) A = scheduler_class(**_lowercase ) A , A = 10, 0.0 A = self.dummy_model() A = self.dummy_sample_deter scheduler.set_timesteps(_lowercase ) for t in scheduler.timesteps: A = model(_lowercase , _lowercase ) A = scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase ).prev_sample return sample def __a ( self : Union[str, Any] ): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def __a ( self : str ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase ) A = self.scheduler_classes[0] A = self.get_scheduler_config(steps_offset=1 ) A = scheduler_class(**_lowercase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __a ( self : int ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def __a ( self : Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def __a ( self : List[str] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def __a ( self : Tuple ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def __a ( self : int ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowercase ) def __a ( self : Tuple ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowercase ) def __a ( self : List[Any] ): self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def __a ( self : Union[str, Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=_lowercase ) def __a ( self : List[Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_lowercase , num_inference_steps=_lowercase ) def __a ( self : int ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowercase , eta=_lowercase ) def __a ( self : List[str] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1e-5 def __a ( self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A , A = 10, 0.0 scheduler.set_timesteps(_lowercase ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] , dim=0 ) A = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase ) A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _lowercase ) A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1e-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1e-3 def __a ( self : Optional[int] ): A = self.full_loop() A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1e-3 def __a ( self : Optional[Any] ): A = self.full_loop(prediction_type='v_prediction' ) A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1e-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1e-3 def __a ( self : Any ): # We specify different beta, so that the first alpha is 0.99 A = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.0_1 ) A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1e-3 def __a ( self : Optional[Any] ): # We specify different beta, so that the first alpha is 0.99 A = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.0_1 ) A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1e-3
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from __future__ import annotations UpperCamelCase : Union[str, Any] = [] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , len(UpperCamelCase__ ) ) ): if board[i][j] == 1: return False return True def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" if row >= len(UpperCamelCase__ ): solution.append(UpperCamelCase__ ) printboard(UpperCamelCase__ ) print() return True for i in range(len(UpperCamelCase__ ) ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A = 1 solve(UpperCamelCase__ , row + 1 ) A = 0 return False def __snake_case ( UpperCamelCase__ ) -> None: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): for j in range(len(UpperCamelCase__ ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) UpperCamelCase : str = 8 UpperCamelCase : Any = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("The total no. of solutions are :", len(solution))
690
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
1
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = (DDPMParallelScheduler,) def __a ( self : Optional[int] , **_lowercase : Any ): A = { 'num_train_timesteps': 1_000, 'beta_start': 0.0_0_0_1, 'beta_end': 0.0_2, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**_lowercase ) return config def __a ( self : Optional[int] ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def __a ( self : Optional[Any] ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def __a ( self : List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def __a ( self : str ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def __a ( self : Union[str, Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def __a ( self : str ): self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def __a ( self : Dict ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def __a ( self : List[str] ): for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def __a ( self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def __a ( self : Union[str, Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A = len(_lowercase ) A = self.dummy_model() A = self.dummy_sample_deter A = self.dummy_sample_deter + 0.1 A = self.dummy_sample_deter - 0.1 A = samplea.shape[0] A = torch.stack([samplea, samplea, samplea] , dim=0 ) A = torch.arange(_lowercase )[0:3, None].repeat(1 , _lowercase ) A = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) A = scheduler.batch_step_no_noise(_lowercase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def __a ( self : Union[str, Any] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A = len(_lowercase ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual A = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def __a ( self : Dict ): A = self.scheduler_classes[0] A = self.get_scheduler_config(prediction_type='v_prediction' ) A = scheduler_class(**_lowercase ) A = len(_lowercase ) A = self.dummy_model() A = self.dummy_sample_deter A = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual A = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 A = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample A = pred_prev_sample A = torch.sum(torch.abs(_lowercase ) ) A = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def __a ( self : List[str] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) A = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: A = -1 else: A = timesteps[i + 1] A = scheduler.previous_timestep(_lowercase ) A = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def __a ( self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=_lowercase ) def __a ( self : Any ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A = [100, 87, 50, 1, 0] A = len(_lowercase ) with self.assertRaises(_lowercase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def __a ( self : List[str] ): A = self.scheduler_classes[0] A = self.get_scheduler_config() A = scheduler_class(**_lowercase ) A = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=_lowercase )
690
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
1
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def __snake_case ( UpperCamelCase__ ) -> Dict: """simple docstring""" A = r'\w+[.]\d+' A = re.findall(UpperCamelCase__ , UpperCamelCase__ ) for pat in pats: A = key.replace(UpperCamelCase__ , '_'.join(pat.split('.' ) ) ) return key def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: """simple docstring""" A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=42 ) -> Optional[Any]: """simple docstring""" A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(UpperCamelCase__ ) ) A = flatten_dict(UpperCamelCase__ ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(UpperCamelCase__ ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(UpperCamelCase__ ) return unflatten_dict(UpperCamelCase__ )
690
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
1
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCamelCase : List[Any] = True except (ImportError, ModuleNotFoundError): UpperCamelCase : List[str] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __snake_case ( UpperCamelCase__ ) -> str: """simple docstring""" re.sub('<n>' , '' , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class lowerCamelCase__ : lowerCAmelCase = MBartConfig lowerCAmelCase = {} lowerCAmelCase = """gelu""" def __init__( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : List[str]=13 , _lowercase : str=7 , _lowercase : Optional[Any]=True , _lowercase : Tuple=False , _lowercase : Union[str, Any]=99 , _lowercase : str=32 , _lowercase : List[str]=2 , _lowercase : Optional[int]=4 , _lowercase : Dict=37 , _lowercase : Dict=0.1 , _lowercase : str=0.1 , _lowercase : Optional[Any]=20 , _lowercase : Optional[int]=2 , _lowercase : str=1 , _lowercase : Optional[int]=0 , ): A = parent A = batch_size A = seq_length A = is_training A = use_labels A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = eos_token_id A = pad_token_id A = bos_token_id def __a ( self : Tuple ): A = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) A = tf.concat([input_ids, eos_tensor] , axis=1 ) A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) A = prepare_mbart_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def __a ( self : Optional[int] , _lowercase : Tuple , _lowercase : int ): A = TFMBartModel(config=_lowercase ).get_decoder() A = inputs_dict['input_ids'] A = input_ids[:1, :] A = inputs_dict['attention_mask'][:1, :] A = inputs_dict['head_mask'] A = 1 # first forward pass A = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) A , A = outputs.to_tuple() A = past_key_values[1] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , ) -> Tuple: """simple docstring""" if attention_mask is None: A = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () lowerCAmelCase = (TFMBartForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False def __a ( self : int , _lowercase : str , _lowercase : Dict , _lowercase : Tuple , _lowercase : Dict , _lowercase : List[str] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def __a ( self : int ): A = TFMBartModelTester(self ) A = ConfigTester(self , config_class=_lowercase ) def __a ( self : List[Any] ): self.config_tester.run_common_tests() def __a ( self : List[Any] ): A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) @require_sentencepiece @require_tokenizers @require_tf class lowerCamelCase__ ( unittest.TestCase ): lowerCAmelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", ] lowerCAmelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] lowerCAmelCase = """facebook/mbart-large-en-ro""" @cached_property def __a ( self : List[Any] ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def __a ( self : Optional[int] ): A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def __a ( self : str , **_lowercase : Union[str, Any] ): A = self.translate_src_text(**_lowercase ) self.assertListEqual(self.expected_text , _lowercase ) def __a ( self : List[str] , **_lowercase : Tuple ): A = self.tokenizer(self.src_text , **_lowercase , return_tensors='tf' ) A = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) A = self.tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) return generated_words @slow def __a ( self : List[Any] ): self._assert_generated_batch_equal_expected()
690
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
1
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase__ ( unittest.TestCase ): @require_torch def __a ( self : List[str] ): A = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) A = load_dataset('ashraq/esc50' ) A = dataset['train']['audio'][-1]['array'] A = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(_lowercase ) , [{'score': 0.5_0_1, 'label': 'Sound of a dog'}, {'score': 0.4_9_9, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def __a ( self : Union[str, Any] ): pass @slow @require_torch def __a ( self : Any ): A = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog A = load_dataset('ashraq/esc50' ) A = dataset['train']['audio'][-1]['array'] A = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(_lowercase ) , [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ] , ) A = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) A = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def __a ( self : Dict ): pass
690
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
1
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCamelCase__ : def __a ( self : Union[str, Any] ): torch.manual_seed(0 ) A = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) A = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowercase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) A = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __a ( self : Dict ): torch.manual_seed(0 ) A = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5' ) torch.manual_seed(0 ) A = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=_lowercase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0 ) A = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) A = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __a ( self : str ): A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = inputs['prompt'] A = inputs['generator'] A = inputs['num_inference_steps'] A = inputs['output_type'] if "image" in inputs: A = inputs['image'] else: A = None if "mask_image" in inputs: A = inputs['mask_image'] else: A = None if "original_image" in inputs: A = inputs['original_image'] else: A = None A , A = pipe.encode_prompt(_lowercase ) # inputs with prompt converted to embeddings A = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: A = image if mask_image is not None: A = mask_image if original_image is not None: A = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowercase , _lowercase , _lowercase ) A = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) A = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowercase , _lowercase ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) A = self.get_dummy_inputs(_lowercase ) A = inputs['generator'] A = inputs['num_inference_steps'] A = inputs['output_type'] # inputs with prompt converted to embeddings A = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: A = image if mask_image is not None: A = mask_image if original_image is not None: A = original_image A = pipe_loaded(**_lowercase )[0] A = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase , 1e-4 ) def __a ( self : Dict ): A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) A = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A = self.get_dummy_inputs(_lowercase ) A = pipe_loaded(**_lowercase )[0] A = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase , 1e-4 )
690
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
1
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def __snake_case ( ) -> Any: """simple docstring""" A = os.getenv('SM_HP_MP_PARAMETERS' , '{}' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. A = json.loads(UpperCamelCase__ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. A = os.getenv('SM_FRAMEWORK_PARAMS' , '{}' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". A = json.loads(UpperCamelCase__ ) if not mpi_options.get('sagemaker_mpi_enabled' , UpperCamelCase__ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = field( default="""""" , metadata={"""help""": """Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"""} , ) def __a ( self : List[str] ): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , _lowercase , ) @cached_property def __a ( self : str ): logger.info('PyTorch: setting up devices' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch' ) if self.no_cuda: A = torch.device('cpu' ) A = 0 elif is_sagemaker_model_parallel_available(): A = smp.local_rank() A = torch.device('cuda' , _lowercase ) A = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta ) A = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK' ) ) A = torch.device('cuda' , self.local_rank ) A = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 A = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. A = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta ) A = torch.device('cuda' , self.local_rank ) A = 1 if device.type == "cuda": torch.cuda.set_device(_lowercase ) return device @property def __a ( self : Optional[int] ): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __a ( self : Optional[Any] ): return not is_sagemaker_model_parallel_available() @property def __a ( self : List[str] ): return False
690
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __snake_case ( UpperCamelCase__ ) -> Optional[int]: """simple docstring""" A = filter(lambda UpperCamelCase__ : p.requires_grad , model.parameters() ) A = sum([np.prod(p.size() ) for p in model_parameters] ) return params UpperCamelCase : str = logging.getLogger(__name__) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: """simple docstring""" if metric == "rouge2": A = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": A = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": A = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": A = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) A = ModelCheckpoint( dirpath=UpperCamelCase__ , filename=UpperCamelCase__ , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=UpperCamelCase__ , verbose=UpperCamelCase__ , ) class lowerCamelCase__ ( pl.Callback ): def __a ( self : Optional[Any] , _lowercase : Optional[int] , _lowercase : Any ): A = {f'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowercase ) @rank_zero_only def __a ( self : Tuple , _lowercase : pl.Trainer , _lowercase : pl.LightningModule , _lowercase : str , _lowercase : Any=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) A = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results A = Path(pl_module.hparams.output_dir ) if type_path == "test": A = od / 'test_results.txt' A = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. A = od / f'{type_path}_results/{trainer.global_step:05d}.txt' A = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_lowercase ) generations_file.parent.mkdir(exist_ok=_lowercase ) with open(_lowercase , 'a+' ) as writer: for key in sorted(_lowercase ): if key in ["log", "progress_bar", "preds"]: continue A = metrics[key] if isinstance(_lowercase , torch.Tensor ): A = val.item() A = f'{key}: {val:.6f}\n' writer.write(_lowercase ) if not save_generations: return if "preds" in metrics: A = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(_lowercase ) @rank_zero_only def __a ( self : Any , _lowercase : Union[str, Any] , _lowercase : List[str] ): try: A = pl_module.model.model.num_parameters() except AttributeError: A = pl_module.model.num_parameters() A = count_trainable_parameters(_lowercase ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6} ) @rank_zero_only def __a ( self : List[Any] , _lowercase : pl.Trainer , _lowercase : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowercase , _lowercase , 'test' ) @rank_zero_only def __a ( self : Tuple , _lowercase : pl.Trainer , _lowercase : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
690
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = 384 A = 7 if "tiny" in model_name: A = 96 A = (2, 2, 6, 2) A = (3, 6, 12, 24) elif "small" in model_name: A = 96 A = (2, 2, 18, 2) A = (3, 6, 12, 24) elif "base" in model_name: A = 128 A = (2, 2, 18, 2) A = (4, 8, 16, 32) A = 12 A = 512 elif "large" in model_name: A = 192 A = (2, 2, 18, 2) A = (6, 12, 24, 48) A = 12 A = 768 # set label information A = 150 A = 'huggingface/label-files' A = 'ade20k-id2label.json' A = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) A = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} A = {v: k for k, v in idalabel.items()} A = SwinConfig( embed_dim=UpperCamelCase__ , depths=UpperCamelCase__ , num_heads=UpperCamelCase__ , window_size=UpperCamelCase__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) A = UperNetConfig( backbone_config=UpperCamelCase__ , auxiliary_in_channels=UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ , ) return config def __snake_case ( UpperCamelCase__ ) -> Any: """simple docstring""" A = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: """simple docstring""" A = dct.pop(UpperCamelCase__ ) A = val def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) A = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:dim, :] A = in_proj_bias[: dim] A = in_proj_weight[ dim : dim * 2, : ] A = in_proj_bias[ dim : dim * 2 ] A = in_proj_weight[ -dim :, : ] A = in_proj_bias[-dim :] # fmt: on def __snake_case ( UpperCamelCase__ ) -> Optional[int]: """simple docstring""" A , A = x.shape A = x.reshape(UpperCamelCase__ , 4 , in_channel // 4 ) A = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) return x def __snake_case ( UpperCamelCase__ ) -> Optional[int]: """simple docstring""" A , A = x.shape A = x.reshape(UpperCamelCase__ , in_channel // 4 , 4 ) A = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(UpperCamelCase__ , UpperCamelCase__ ) return x def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" A = x.shape[0] A = x.reshape(4 , in_channel // 4 ) A = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(UpperCamelCase__ ) return x def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" A = x.shape[0] A = x.reshape(in_channel // 4 , 4 ) A = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(UpperCamelCase__ ) return x def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: """simple docstring""" A = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } A = model_name_to_url[model_name] A = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location='cpu' , file_name=UpperCamelCase__ )[ 'state_dict' ] for name, param in state_dict.items(): print(UpperCamelCase__ , param.shape ) A = get_upernet_config(UpperCamelCase__ ) A = UperNetForSemanticSegmentation(UpperCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): A = state_dict.pop(UpperCamelCase__ ) if "bn" in key: A = key.replace('bn' , 'batch_norm' ) A = val # rename keys A = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: A = reverse_correct_unfold_reduction_order(UpperCamelCase__ ) if "norm" in key: A = reverse_correct_unfold_norm_order(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) # verify on image A = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' A = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert('RGB' ) A = SegformerImageProcessor() A = processor(UpperCamelCase__ , return_tensors='pt' ).pixel_values with torch.no_grad(): A = model(UpperCamelCase__ ) A = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": A = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ) elif model_name == "upernet-swin-small": A = torch.tensor( [[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] ) elif model_name == "upernet-swin-base": A = torch.tensor( [[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] ) elif model_name == "upernet-swin-large": A = torch.tensor( [[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCamelCase__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase : Any = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : Optional[int] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[Any] = ["OwlViTFeatureExtractor"] UpperCamelCase : int = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """wav2vec2""" def __init__( self : int , _lowercase : Any=32 , _lowercase : List[str]=768 , _lowercase : int=12 , _lowercase : Optional[Any]=12 , _lowercase : Any=3_072 , _lowercase : Any="gelu" , _lowercase : str=0.1 , _lowercase : Any=0.1 , _lowercase : List[Any]=0.1 , _lowercase : Union[str, Any]=0.0 , _lowercase : Optional[Any]=0.0 , _lowercase : str=0.1 , _lowercase : Tuple=0.1 , _lowercase : List[Any]=0.0_2 , _lowercase : Union[str, Any]=1e-5 , _lowercase : List[Any]="group" , _lowercase : Optional[int]="gelu" , _lowercase : Dict=(512, 512, 512, 512, 512, 512, 512) , _lowercase : str=(5, 2, 2, 2, 2, 2, 2) , _lowercase : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , _lowercase : Union[str, Any]=False , _lowercase : List[Any]=128 , _lowercase : Optional[int]=16 , _lowercase : Any=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=0.0_5 , _lowercase : Optional[Any]=10 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0 , _lowercase : List[str]=10 , _lowercase : int=0 , _lowercase : int=320 , _lowercase : Optional[Any]=2 , _lowercase : Optional[int]=0.1 , _lowercase : Dict=100 , _lowercase : Dict=256 , _lowercase : int=256 , _lowercase : Optional[Any]=0.1 , _lowercase : List[Any]="sum" , _lowercase : Tuple=False , _lowercase : Tuple=False , _lowercase : str=256 , _lowercase : Union[str, Any]=(512, 512, 512, 512, 1_500) , _lowercase : Any=(5, 3, 3, 1, 1) , _lowercase : List[Any]=(1, 2, 3, 1, 1) , _lowercase : str=512 , _lowercase : Any=0 , _lowercase : int=1 , _lowercase : Optional[Any]=2 , _lowercase : List[str]=False , _lowercase : Any=3 , _lowercase : Tuple=2 , _lowercase : Optional[int]=3 , _lowercase : Any=None , _lowercase : List[Any]=None , **_lowercase : Any , ): super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) A = hidden_size A = feat_extract_norm A = feat_extract_activation A = list(_lowercase ) A = list(_lowercase ) A = list(_lowercase ) A = conv_bias A = num_conv_pos_embeddings A = num_conv_pos_embedding_groups A = len(self.conv_dim ) A = num_hidden_layers A = intermediate_size A = hidden_act A = num_attention_heads A = hidden_dropout A = attention_dropout A = activation_dropout A = feat_proj_dropout A = final_dropout A = layerdrop A = layer_norm_eps A = initializer_range A = vocab_size A = do_stable_layer_norm A = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' f' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A = apply_spec_augment A = mask_time_prob A = mask_time_length A = mask_time_min_masks A = mask_feature_prob A = mask_feature_length A = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A = num_codevectors_per_group A = num_codevector_groups A = contrastive_logits_temperature A = feat_quantizer_dropout A = num_negatives A = codevector_dim A = proj_codevector_dim A = diversity_loss_weight # ctc loss A = ctc_loss_reduction A = ctc_zero_infinity # adapter A = add_adapter A = adapter_kernel_size A = adapter_stride A = num_adapter_layers A = output_hidden_size or hidden_size A = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. A = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. A = list(_lowercase ) A = list(_lowercase ) A = list(_lowercase ) A = xvector_output_dim @property def __a ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """facebook/bart-large-mnli""" lowerCAmelCase = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) lowerCAmelCase = """text_classifier""" lowerCAmelCase = AutoTokenizer lowerCAmelCase = AutoModelForSequenceClassification lowerCAmelCase = ["""text""", ["""text"""]] lowerCAmelCase = ["""text"""] def __a ( self : Union[str, Any] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(_lowercase ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def __a ( self : Optional[Any] , _lowercase : Optional[int] , _lowercase : List[Any] ): A = labels return self.pre_processor( [text] * len(_lowercase ) , [f'This example is {label}' for label in labels] , return_tensors='pt' , padding='max_length' , ) def __a ( self : Optional[int] , _lowercase : List[Any] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from __future__ import annotations from PIL import Image # Define glider example UpperCamelCase : Optional[int] = [ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example UpperCamelCase : Any = [[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __snake_case ( UpperCamelCase__ ) -> list[list[int]]: """simple docstring""" A = [] for i in range(len(UpperCamelCase__ ) ): A = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours A = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(UpperCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(UpperCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(UpperCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. A = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(UpperCamelCase__ ) return next_generation def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> list[Image.Image]: """simple docstring""" A = [] for _ in range(UpperCamelCase__ ): # Create output image A = Image.new('RGB' , (len(cells[0] ), len(UpperCamelCase__ )) ) A = img.load() # Save cells to image for x in range(len(UpperCamelCase__ ) ): for y in range(len(cells[0] ) ): A = 255 - cells[y][x] * 255 A = (colour, colour, colour) # Save image images.append(UpperCamelCase__ ) A = new_generation(UpperCamelCase__ ) return images if __name__ == "__main__": UpperCamelCase : Tuple = generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
690
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
1
"""simple docstring""" from timeit import timeit def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) A = 0 while number: number &= number - 1 result += 1 return result def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if number < 0: raise ValueError('the value of input must not be negative' ) A = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __snake_case ( ) -> None: """simple docstring""" def do_benchmark(UpperCamelCase__ ) -> None: A = 'import __main__ as z' print(f'Benchmark when {number = }:' ) print(f'{get_set_bits_count_using_modulo_operator(UpperCamelCase__ ) = }' ) A = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=UpperCamelCase__ ) print(f'timeit() runs in {timing} seconds' ) print(f'{get_set_bits_count_using_brian_kernighans_algorithm(UpperCamelCase__ ) = }' ) A = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=UpperCamelCase__ , ) print(f'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(UpperCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
690
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"vocab_file": "spiece.model"} UpperCamelCase : Optional[Any] = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } UpperCamelCase : int = {"bert_for_seq_generation": 512} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = [] lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Tuple="<unk>" , _lowercase : Tuple="<pad>" , _lowercase : Optional[Any]="<::::>" , _lowercase : Optional[Dict[str, Any]] = None , **_lowercase : Any , ): A = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , sep_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) A = vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) @property def __a ( self : str ): return self.sp_model.get_piece_size() def __a ( self : str ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ): A = self.__dict__.copy() A = None return state def __setstate__( self : Tuple , _lowercase : int ): A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __a ( self : Optional[int] , _lowercase : str ): return self.sp_model.encode(_lowercase , out_type=_lowercase ) def __a ( self : Optional[Any] , _lowercase : str ): return self.sp_model.piece_to_id(_lowercase ) def __a ( self : Union[str, Any] , _lowercase : Optional[Any] ): A = self.sp_model.IdToPiece(_lowercase ) return token def __a ( self : str , _lowercase : Optional[Any] ): A = [] A = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase ) + token A = [] else: current_sub_tokens.append(_lowercase ) out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def __a ( self : Tuple , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , 'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
690
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
1
"""simple docstring""" import math UpperCamelCase : Optional[Any] = 10 UpperCamelCase : str = 7 UpperCamelCase : Dict = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( UpperCamelCase__ = 20 ) -> str: """simple docstring""" A = math.comb(UpperCamelCase__ , UpperCamelCase__ ) A = math.comb(NUM_BALLS - BALLS_PER_COLOUR , UpperCamelCase__ ) A = NUM_COLOURS * (1 - missing_colour / total) return f'{result:.9f}' if __name__ == "__main__": print(solution(20))
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) UpperCamelCase : Tuple = "pytorch_model.bin" @dataclasses.dataclass class lowerCamelCase__ : lowerCAmelCase = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class lowerCamelCase__ : lowerCAmelCase = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) lowerCAmelCase = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the task to train on."""} , ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class lowerCamelCase__ : lowerCAmelCase = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) lowerCAmelCase = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) lowerCAmelCase = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) lowerCAmelCase = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) lowerCAmelCase = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) lowerCAmelCase = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) lowerCAmelCase = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) lowerCAmelCase = dataclasses.field( default=UpperCAmelCase_ , metadata={"""help""": """Random seed for initialization."""} , ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" A = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: A = dataset.filter(lambda UpperCamelCase__ : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 A = int(eval_result * len(UpperCamelCase__ ) ) print(UpperCamelCase__ ) A = dataset.sort('probability' , reverse=UpperCamelCase__ ) A = dataset.select(range(UpperCamelCase__ ) ) A = dataset.remove_columns(['label', 'probability'] ) A = dataset.rename_column('prediction' , 'label' ) A = dataset.map(lambda UpperCamelCase__ : {"label": idalabel[example["label"]]} ) A = dataset.shuffle(seed=args.seed ) A = os.path.join(UpperCamelCase__ , f'train_pseudo.{args.data_file_extension}' ) if args.data_file_extension == "csv": dataset.to_csv(UpperCamelCase__ , index=UpperCamelCase__ ) else: dataset.to_json(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) -> Any: """simple docstring""" A = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() A = STModelArguments(model_name_or_path=UpperCamelCase__ ) A = STDataArguments(train_file=UpperCamelCase__ , infer_file=UpperCamelCase__ ) A = STTrainingArguments(output_dir=UpperCamelCase__ ) A = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(UpperCamelCase__ ).items(): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for key, value in kwargs.items(): if hasattr(UpperCamelCase__ , UpperCamelCase__ ): setattr(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Sanity checks A = {} A = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None A = args.train_file A = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None A = args.eval_file for key in data_files: A = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f'`{key}_file` should be a csv or a json file.' if args.data_file_extension is None: A = extension else: assert extension == args.data_file_extension, f'`{key}_file` should be a {args.data_file_extension} file`.' assert ( args.eval_metric in datasets.list_metrics() ), f'{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) A = f'{args.output_dir}/self-train_iter-{{}}'.format A = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) accelerator.wait_for_everyone() A = None A = None A = 0 A = False # Show the progress bar A = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): A = data_dir_format(UpperCamelCase__ ) assert os.path.exists(UpperCamelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 A = os.path.join(UpperCamelCase__ , 'stage-1' ) A = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(UpperCamelCase__ , UpperCamelCase__ ): arguments_dict.update({key: value} ) A = os.path.join(UpperCamelCase__ , 'best-checkpoint' , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , UpperCamelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data A = os.path.join(UpperCamelCase__ , 'best-checkpoint' ) A = os.path.join(UpperCamelCase__ , 'stage-2' ) # Update arguments_dict A = model_path A = data_files['train'] A = current_output_dir A = os.path.join(UpperCamelCase__ , 'best-checkpoint' , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , UpperCamelCase__ , UpperCamelCase__ , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , UpperCamelCase__ ) finetune(**UpperCamelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(UpperCamelCase__ ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , UpperCamelCase__ ) A = iteration A = data_dir_format(iteration + 1 ) A = AutoConfig.from_pretrained(os.path.join(UpperCamelCase__ , 'best-checkpoint' ) ) A = config.idalabel A = os.path.join(UpperCamelCase__ , 'eval_results_best-checkpoint.json' ) A = os.path.join(UpperCamelCase__ , 'test_results_best-checkpoint.json' ) assert os.path.exists(UpperCamelCase__ ) with open(UpperCamelCase__ , 'r' ) as f: A = float(json.load(UpperCamelCase__ )[args.eval_metric] ) A = os.path.join(UpperCamelCase__ , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(UpperCamelCase__ ) # Loading the dataset from local csv or json files. A = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] A = load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , f'eval_results_iter-{iteration}.json' ) ) if os.path.exists(UpperCamelCase__ ): shutil.copy(UpperCamelCase__ , os.path.join(UpperCamelCase__ , f'test_results_iter-{iteration}.json' ) ) create_pseudo_labeled_data(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.wait_for_everyone() A = os.path.join(UpperCamelCase__ , f'train_pseudo.{args.data_file_extension}' ) if args.evaluation_strategy != IntervalStrategy.NO.value: A = eval_result if best_iteration is None: A = new_iteration A = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: A = new_iteration A = new_eval_result A = 0 else: if new_eval_result == best_eval_result: A = new_iteration A = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: A = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , UpperCamelCase__ ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , f'eval_results_iter-{iteration}.json' ) , os.path.join(UpperCamelCase__ , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , UpperCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(UpperCamelCase__ , f'eval_results_iter-{args.max_selftrain_iterations - 1}.json' ) , os.path.join(UpperCamelCase__ , 'eval_results_best-iteration.json' ) , )
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : Optional[Any] = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Any = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=0 ) -> Any: """simple docstring""" if name is None: A = None else: A = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}' A = fmt.format(UpperCamelCase__ ) # Print and recurse (if needed). if isinstance(UpperCamelCase__ , UpperCamelCase__ ): if msg is not None: print(UpperCamelCase__ ) for k in val.keys(): recursive_print(UpperCamelCase__ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase__ , torch.Tensor ): print(UpperCamelCase__ , ':' , val.size() ) else: print(UpperCamelCase__ , ':' , UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> str: """simple docstring""" A = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] A = (num_heads, hidden_size, num_splits) + input_shape[1:] A = param.view(*UpperCamelCase__ ) A = param.transpose(0 , 2 ) A = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] A = (num_heads, num_splits, hidden_size) + input_shape[1:] A = param.view(*UpperCamelCase__ ) A = param.transpose(0 , 1 ).contiguous() A = param.view(*UpperCamelCase__ ) return param def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: """simple docstring""" A = {} # old versions did not store training args A = input_state_dict.get('args' , UpperCamelCase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) A = ds_args.padded_vocab_size A = ds_args.max_position_embeddings A = ds_args.hidden_size A = ds_args.num_layers A = ds_args.num_attention_heads A = ds_args.ffn_hidden_size # pprint(config) # The number of heads. A = config.n_head # The hidden_size per head. A = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): A = input_state_dict['checkpoint_version'] else: A = 0.0 # The model. A = input_state_dict['model'] # The language model. A = model['language_model'] # The embeddings. A = lm['embedding'] # The word embeddings. A = embeddings['word_embeddings']['weight'] # Truncate the embedding table to vocab_size rows. A = word_embeddings[: config.vocab_size, :] A = word_embeddings # The position embeddings. A = embeddings['position_embeddings']['weight'] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] A = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match' ) # Store the position embeddings. A = pos_embeddings # The transformer. A = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder'] # The regex to extract layer names. A = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' ) # The simple map of names for "automated" rules. A = { 'attention.dense': '.attn.c_proj.', 'self_attention.dense': '.attn.c_proj.', 'mlp.dense_h_to_4h': '.mlp.c_fc.', 'mlp.dense_4h_to_h': '.mlp.c_proj.', } # Extract the layers. for key, val in transformer.items(): # Match the name. A = layer_re.match(UpperCamelCase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. A = int(m.group(1 ) ) # The name of the operation. A = m.group(2 ) # Is it a weight or a bias? A = m.group(3 ) # The name of the layer. A = f'transformer.h.{layer_idx}' # For layernorm(s), simply store the layer norm. if op_name.endswith('layernorm' ): A = 'ln_1' if op_name.startswith('input' ) else 'ln_2' A = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. A = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase__ , UpperCamelCase__ ) A = causal_mask # Insert a "dummy" tensor for masked_bias. A = torch.tensor(-1E4 , dtype=torch.floataa ) A = masked_bias A = fix_query_key_value_ordering(UpperCamelCase__ , UpperCamelCase__ , 3 , UpperCamelCase__ , UpperCamelCase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. A = out_val.transpose(0 , 1 ).contiguous() # Store. A = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": A = fix_query_key_value_ordering(UpperCamelCase__ , UpperCamelCase__ , 3 , UpperCamelCase__ , UpperCamelCase__ ) # Store. No change of shape. A = out_val # Transpose the weights. elif weight_or_bias == "weight": A = megatron_to_transformers[op_name] A = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": A = megatron_to_transformers[op_name] A = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. A = transformer['final_layernorm.weight'] A = transformer['final_layernorm.bias'] # For LM head, transformers' wants the matrix to weight embeddings. A = word_embeddings # It should be done! return output_state_dict def __snake_case ( ) -> Union[str, Any]: """simple docstring""" A = argparse.ArgumentParser() parser.add_argument('--print-checkpoint-structure' , action='store_true' ) parser.add_argument( 'path_to_checkpoint' , type=UpperCamelCase__ , help='Path to the checkpoint file (.zip archive or direct .pt file)' , ) parser.add_argument( '--config_file' , default='' , type=UpperCamelCase__ , help='An optional config json file describing the pre-trained model.' , ) A = parser.parse_args() # Extract the basename. A = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'Extracting PyTorch state dictionary from {args.path_to_checkpoint}' ) if args.path_to_checkpoint.endswith('.zip' ): with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint: with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict: A = torch.load(UpperCamelCase__ , map_location='cpu' ) else: A = torch.load(args.path_to_checkpoint , map_location='cpu' ) A = input_state_dict.get('args' , UpperCamelCase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: A = 'gelu_fast' elif ds_args.openai_gelu: A = 'gelu_new' else: A = 'gelu' else: # in the very early days this used to be "gelu_new" A = 'gelu_new' # Spell out all parameters in case the defaults change. A = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCamelCase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type='cls_index' , summary_use_proj=UpperCamelCase__ , summary_activation=UpperCamelCase__ , summary_proj_to_labels=UpperCamelCase__ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase__ , use_cache=UpperCamelCase__ , bos_token_id=50256 , eos_token_id=50256 , ) else: A = GPTaConfig.from_json_file(args.config_file ) A = ['GPT2LMHeadModel'] # Convert. print('Converting' ) A = convert_megatron_checkpoint(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase__ , UpperCamelCase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: A = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": A = 'gpt2' elif tokenizer_type == "PretrainedFromHF": A = ds_args.tokenizer_name_or_path else: raise ValueError(f'Unrecognized tokenizer_type {tokenizer_type}' ) else: A = 'gpt2' A = AutoTokenizer.from_pretrained(UpperCamelCase__ ) A = type(UpperCamelCase__ ).__name__ A = tokenizer_class # Store the config to file. print('Saving config' ) config.save_pretrained(UpperCamelCase__ ) # Save tokenizer based on args print(f'Adding {tokenizer_class} tokenizer files' ) tokenizer.save_pretrained(UpperCamelCase__ ) # Store the state_dict to file. A = os.path.join(UpperCamelCase__ , 'pytorch_model.bin' ) print(f'Saving checkpoint to "{output_checkpoint_file}"' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = KandinskyImgaImgPipeline lowerCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] lowerCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] lowerCAmelCase = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase = False @property def __a ( self : Union[str, Any] ): return 32 @property def __a ( self : int ): return 32 @property def __a ( self : List[Any] ): return self.time_input_dim @property def __a ( self : List[str] ): return self.time_input_dim * 4 @property def __a ( self : Any ): return 100 @property def __a ( self : int ): A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def __a ( self : Optional[int] ): torch.manual_seed(0 ) A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) A = MultilingualCLIP(_lowercase ) A = text_encoder.eval() return text_encoder @property def __a ( self : List[str] ): torch.manual_seed(0 ) A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } A = UNetaDConditionModel(**_lowercase ) return model @property def __a ( self : str ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Optional[Any] ): torch.manual_seed(0 ) A = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : str ): A = self.dummy_text_encoder A = self.dummy_tokenizer A = self.dummy_unet A = self.dummy_movq A = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } A = DDIMScheduler(**_lowercase ) A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def __a ( self : str , _lowercase : List[str] , _lowercase : str=0 ): A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase ) A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase ) # create init_image A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) A = image.cpu().permute(0 , 2 , 3 , 1 )[0] A = Image.fromarray(np.uinta(_lowercase ) ).convert('RGB' ).resize((256, 256) ) if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def __a ( self : List[str] ): A = 'cpu' A = self.get_dummy_components() A = self.pipeline_class(**_lowercase ) A = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = pipe(**self.get_dummy_inputs(_lowercase ) ) A = output.images A = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array( [0.6_1_4_7_4_9_4_3, 0.6_0_7_3_5_3_9, 0.4_3_3_0_8_5_4_4, 0.5_9_2_8_2_6_9, 0.4_7_4_9_3_5_9_5, 0.4_6_7_5_5_9_7_3, 0.4_6_1_3_8_3_8, 0.4_5_3_6_8_7_9_7, 0.5_0_1_1_9_2_3_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Dict ): A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) A = 'A red cartoon frog, 4k' A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) A = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) A = torch.Generator(device='cpu' ).manual_seed(0 ) A , A = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() A = pipeline( _lowercase , image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
690
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
1
"""simple docstring""" import string from math import logaa def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) A = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> tuple[int, int]: """simple docstring""" A = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' A = corpus_without_punctuation.split('\n' ) A = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> float: """simple docstring""" if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> float: """simple docstring""" return round(tf * idf , 3 )
690
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : Tuple = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase = """swin""" lowerCAmelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , _lowercase : Dict=224 , _lowercase : Dict=4 , _lowercase : Dict=3 , _lowercase : Optional[Any]=96 , _lowercase : Optional[Any]=[2, 2, 6, 2] , _lowercase : Tuple=[3, 6, 12, 24] , _lowercase : Optional[Any]=7 , _lowercase : List[Any]=4.0 , _lowercase : int=True , _lowercase : Tuple=0.0 , _lowercase : Dict=0.0 , _lowercase : str=0.1 , _lowercase : Union[str, Any]="gelu" , _lowercase : Any=False , _lowercase : Tuple=0.0_2 , _lowercase : Optional[int]=1e-5 , _lowercase : int=32 , _lowercase : Any=None , _lowercase : List[str]=None , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = image_size A = patch_size A = num_channels A = embed_dim A = depths A = len(_lowercase ) A = num_heads A = window_size A = mlp_ratio A = qkv_bias A = hidden_dropout_prob A = attention_probs_dropout_prob A = drop_path_rate A = hidden_act A = use_absolute_embeddings A = layer_norm_eps A = initializer_range A = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) A = ['stem'] + [f'stage{idx}' for idx in range(1 , len(_lowercase ) + 1 )] A , A = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = version.parse("""1.11""" ) @property def __a ( self : str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __a ( self : List[Any] ): return 1e-4
690
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
1
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[int] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = ReformerTokenizer lowerCAmelCase = ReformerTokenizerFast lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True def __a ( self : Any ): super().setUp() A = ReformerTokenizer(_lowercase , keep_accents=_lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : List[Any] ): A = '<s>' A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def __a ( self : Optional[Any] ): A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_lowercase ) , 1_000 ) def __a ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def __a ( self : Optional[Any] ): if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer() A = 'I was born in 92000, and this is falsé.' A = tokenizer.tokenize(_lowercase ) A = rust_tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) A = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) A = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) self.assertListEqual(_lowercase , _lowercase ) A = self.get_rust_tokenizer() A = tokenizer.encode(_lowercase ) A = rust_tokenizer.encode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def __a ( self : Union[str, Any] , _lowercase : Union[str, Any]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # Simple input A = 'This is a simple input' A = ['This is a simple input 1', 'This is a simple input 2'] A = ('This is a simple input', 'This is a pair') A = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) def __a ( self : List[str] ): pass def __a ( self : List[Any] ): A = ReformerTokenizer(_lowercase , keep_accents=_lowercase ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(_lowercase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [285, 46, 10, 170, 382] , ) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def __a ( self : Optional[int] ): return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' ) @slow def __a ( self : Any ): A = 'Hello World!' A = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @slow def __a ( self : Tuple ): A = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) A = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase ) ) @require_torch @slow def __a ( self : List[str] ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence A = list(self.big_tokenizer.get_vocab().keys() )[:10] A = ' '.join(_lowercase ) A = self.big_tokenizer.encode_plus(_lowercase , return_tensors='pt' ) A = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors='pt' ) A = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) A = encoded_sequence['input_ids'].shape A = ReformerModel(_lowercase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase ) model(**_lowercase ) @slow def __a ( self : int ): # fmt: off A = {'input_ids': [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 A = [ 'This is a very simple sentence.', 'The quick brown fox jumps over the lazy dog.', ] self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='google/reformer-crime-and-punishment' , revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a' , padding=_lowercase , sequences=_lowercase , )
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__=10 ) -> List[str]: """simple docstring""" A = [] for _ in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( UpperCamelCase__ , UpperCamelCase__=10 ) -> Optional[Any]: """simple docstring""" A = [] for step in range(UpperCamelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(UpperCamelCase__ , 'schedule.bin' ) torch.save(scheduler.state_dict() , UpperCamelCase__ ) A = torch.load(UpperCamelCase__ ) scheduler.load_state_dict(UpperCamelCase__ ) return lrs @require_torch class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[int] , _lowercase : Dict , _lowercase : Dict , _lowercase : Any ): self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase ) def __a ( self : Tuple ): A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase ) A = torch.tensor([0.4, 0.2, -0.5] ) A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): A = criterion(_lowercase , _lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __a ( self : Dict ): A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_lowercase ) A = torch.tensor([0.4, 0.2, -0.5] ) A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_lowercase , weight_decay=0.0 , relative_step=_lowercase , scale_parameter=_lowercase , warmup_init=_lowercase , ) for _ in range(1_000 ): A = criterion(_lowercase , _lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): lowerCAmelCase = nn.Linear(50 , 50 ) if is_torch_available() else None lowerCAmelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCAmelCase = 10 def __a ( self : int , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : str , _lowercase : Optional[int]=None ): self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for a, b in zip(_lowercase , _lowercase ): self.assertAlmostEqual(_lowercase , _lowercase , delta=_lowercase , msg=_lowercase ) def __a ( self : Optional[Any] ): A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A = { get_constant_schedule: ({}, [1_0.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1e-7}, [0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4], ), } for scheduler_func, data in scheds.items(): A , A = data A = scheduler_func(self.optimizer , **_lowercase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A = unwrap_schedule(_lowercase , self.num_steps ) self.assertListAlmostEqual( _lowercase , _lowercase , tol=1e-2 , msg=f'failed for {scheduler_func} in normal scheduler' , ) A = scheduler_func(self.optimizer , **_lowercase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_lowercase ) # wrap to test picklability of the schedule A = unwrap_and_save_reload_schedule(_lowercase , self.num_steps ) self.assertListEqual(_lowercase , _lowercase , msg=f'failed for {scheduler_func} in save and reload' ) class lowerCamelCase__ : def __init__( self : Union[str, Any] , _lowercase : List[Any] ): A = fn def __call__( self : Tuple , *_lowercase : Tuple , **_lowercase : Tuple ): return self.fn(*_lowercase , **_lowercase ) @classmethod def __a ( self : Any , _lowercase : List[Any] ): A = list(map(self , scheduler.lr_lambdas ) )
690
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase : Union[str, Any] = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : List[str] = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
1