code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger __UpperCamelCase : Tuple = get_logger(__name__) class __UpperCamelCase : def __init__( self : List[Any] , _lowerCAmelCase : Optional[str] = None ) -> Optional[int]: """simple docstring""" __lowercase = ( os.path.join(_lowerCAmelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) __lowercase = Extractor def _a ( self : List[Any] , _lowerCAmelCase : str ) -> str: """simple docstring""" from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" __lowercase = os.path.abspath(_lowerCAmelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_lowerCAmelCase ) ) def _a ( self : Any , _lowerCAmelCase : str , _lowerCAmelCase : bool ) -> bool: """simple docstring""" return force_extract or ( not os.path.isfile(_lowerCAmelCase ) and not (os.path.isdir(_lowerCAmelCase ) and os.listdir(_lowerCAmelCase )) ) def _a ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : bool = False ) -> str: """simple docstring""" __lowercase = self.extractor.infer_extractor_format(_lowerCAmelCase ) if not extractor_format: return input_path __lowercase = self._get_output_path(_lowerCAmelCase ) if self._do_extract(_lowerCAmelCase , _lowerCAmelCase ): self.extractor.extract(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return output_path class __UpperCamelCase ( _lowerCAmelCase ): @classmethod @abstractmethod def _a ( cls : str , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : Union[str, Any] ) -> bool: """simple docstring""" ... @staticmethod @abstractmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" ... class __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ): __snake_case :List[bytes] = [] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> Tuple: """simple docstring""" with open(_lowerCAmelCase , """rb""" ) as f: return f.read(_lowerCAmelCase ) @classmethod def _a ( cls : Dict , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if not magic_number: __lowercase = max(len(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) try: __lowercase = cls.read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) except OSError: return False return any(magic_number.startswith(_lowerCAmelCase ) for cls_magic_number in cls.magic_numbers ) class __UpperCamelCase ( _lowerCAmelCase ): @classmethod def _a ( cls : Optional[int] , _lowerCAmelCase : Union[Path, str] , **_lowerCAmelCase : List[Any] ) -> bool: """simple docstring""" return tarfile.is_tarfile(_lowerCAmelCase ) @staticmethod def _a ( _lowerCAmelCase : Any , _lowerCAmelCase : str ) -> Any: """simple docstring""" def resolved(_lowerCAmelCase : str ) -> str: return os.path.realpath(os.path.abspath(_lowerCAmelCase ) ) def badpath(_lowerCAmelCase : str , _lowerCAmelCase : str ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_lowerCAmelCase , _lowerCAmelCase ) ).startswith(_lowerCAmelCase ) def badlink(_lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> bool: # Links are interpreted relative to the directory containing the link __lowercase = resolved(os.path.join(_lowerCAmelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_lowerCAmelCase ) __lowercase = resolved(_lowerCAmelCase ) for finfo in members: if badpath(finfo.name , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked (illegal path)' ) elif finfo.issym() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}' ) elif finfo.islnk() and badlink(_lowerCAmelCase , _lowerCAmelCase ): logger.error(F'Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}' ) else: yield finfo @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = tarfile.open(_lowerCAmelCase ) tar_file.extractall(_lowerCAmelCase , members=TarExtractor.safemembers(_lowerCAmelCase , _lowerCAmelCase ) ) tar_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [B'\x1F\x8B'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with gzip.open(_lowerCAmelCase , """rb""" ) as gzip_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[str] = [ B'PK\x03\x04', B'PK\x05\x06', # empty archive B'PK\x07\x08', # spanned archive ] @classmethod def _a ( cls : Tuple , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bytes = b"" ) -> bool: """simple docstring""" if super().is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_lowerCAmelCase , """rb""" ) as fp: __lowercase = _EndRecData(_lowerCAmelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: __lowercase = fp.read(_lowerCAmelCase ) # CD is where we expect it to be if len(_lowerCAmelCase ) == sizeCentralDir: __lowercase = struct.unpack(_lowerCAmelCase , _lowerCAmelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with zipfile.ZipFile(_lowerCAmelCase , """r""" ) as zip_file: zip_file.extractall(_lowerCAmelCase ) zip_file.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Tuple = [B'\xFD\x37\x7A\x58\x5A\x00'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with lzma.open(_lowerCAmelCase ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Union[str, Any] = [B'Rar!\x1a\x07\x00', B'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) __lowercase = rarfile.RarFile(_lowerCAmelCase ) rf.extractall(_lowerCAmelCase ) rf.close() class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = [B'\x28\xb5\x2F\xFD'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd __lowercase = zstd.ZstdDecompressor() with open(_lowerCAmelCase , """rb""" ) as ifh, open(_lowerCAmelCase , """wb""" ) as ofh: dctx.copy_stream(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x42\x5A\x68'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" with bza.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :List[Any] = [B'\x37\x7A\xBC\xAF\x27\x1C'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) with pyazr.SevenZipFile(_lowerCAmelCase , """r""" ) as archive: archive.extractall(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Any = [B'\x04\x22\x4D\x18'] @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] ) -> None: """simple docstring""" if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(_lowerCAmelCase , """rb""" ) as compressed_file: with open(_lowerCAmelCase , """wb""" ) as extracted_file: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) class __UpperCamelCase : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) __snake_case :Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _a ( cls : Tuple ) -> Any: """simple docstring""" return max( len(_lowerCAmelCase ) for extractor in cls.extractors.values() if issubclass(_lowerCAmelCase , _lowerCAmelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _a ( _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : int ) -> Union[str, Any]: """simple docstring""" try: return MagicNumberBaseExtractor.read_magic_number(_lowerCAmelCase , magic_number_length=_lowerCAmelCase ) except OSError: return b"" @classmethod def _a ( cls : List[str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : bool = False ) -> bool: """simple docstring""" warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = cls.infer_extractor_format(_lowerCAmelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _a ( cls : int , _lowerCAmelCase : Union[Path, str] ) -> str: # <Added version="2.4.0"/> """simple docstring""" __lowercase = cls._get_magic_number_max_length() __lowercase = cls._read_magic_number(_lowerCAmelCase , _lowerCAmelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_lowerCAmelCase , magic_number=_lowerCAmelCase ): return extractor_format @classmethod def _a ( cls : Tuple , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Union[Path, str] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[BaseExtractor] = "deprecated" , ) -> None: """simple docstring""" os.makedirs(os.path.dirname(_lowerCAmelCase ) , exist_ok=_lowerCAmelCase ) # Prevent parallel extractions __lowercase = str(Path(_lowerCAmelCase ).with_suffix(""".lock""" ) ) with FileLock(_lowerCAmelCase ): shutil.rmtree(_lowerCAmelCase , ignore_errors=_lowerCAmelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_lowerCAmelCase , _lowerCAmelCase ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=_lowerCAmelCase , ) __lowercase = extractor if extractor != """deprecated""" else extractor_format else: __lowercase = cls.extractors[extractor_format] return extractor.extract(_lowerCAmelCase , _lowerCAmelCase ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=_lowerCAmelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_lowerCAmelCase ): return extractor.extract(_lowerCAmelCase , _lowerCAmelCase )
80
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class a (unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=7 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : Dict=30 , lowerCamelCase : Any=400 , lowerCamelCase : List[str]=True , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : Tuple=True , lowerCamelCase : int=1 / 255 , lowerCamelCase : Union[str, Any]=True , lowerCamelCase : Optional[int]=[0.5, 0.5, 0.5] , lowerCamelCase : int=[0.5, 0.5, 0.5] , lowerCamelCase : Union[str, Any]=True , ) -> Optional[int]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __snake_case : str = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} __snake_case : Union[str, Any] = parent __snake_case : Optional[Any] = batch_size __snake_case : Union[str, Any] = num_channels __snake_case : Dict = min_resolution __snake_case : Optional[Any] = max_resolution __snake_case : Tuple = do_resize __snake_case : Tuple = size __snake_case : Optional[int] = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : Optional[Any] = do_normalize __snake_case : Union[str, Any] = image_mean __snake_case : Any = image_std __snake_case : str = do_pad def __snake_case ( self : Any ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __snake_case ( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=False ) -> Any: if not batched: __snake_case : List[Any] = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): __snake_case , __snake_case : Union[str, Any] = image.size else: __snake_case , __snake_case : Dict = image.shape[1], image.shape[2] if w < h: __snake_case : Optional[int] = int(self.size["shortest_edge"] * h / w ) __snake_case : Optional[int] = self.size["shortest_edge"] elif w > h: __snake_case : List[Any] = self.size["shortest_edge"] __snake_case : str = int(self.size["shortest_edge"] * w / h ) else: __snake_case : Any = self.size["shortest_edge"] __snake_case : Any = self.size["shortest_edge"] else: __snake_case : Tuple = [] for image in image_inputs: __snake_case , __snake_case : List[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __snake_case : List[str] = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] __snake_case : Optional[int] = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a (_lowerCAmelCase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = DetrImageProcessor if is_vision_available() else None def __snake_case ( self : Optional[int] ) -> Tuple: __snake_case : int = DetrImageProcessingTester(self ) @property def __snake_case ( self : Union[str, Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def __snake_case ( self : Optional[Any] ) -> List[str]: __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_rescale" ) ) self.assertTrue(hasattr(lowerCamelCase , "rescale_factor" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCamelCase , "size" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_pad" ) ) def __snake_case ( self : List[str] ) -> Optional[int]: __snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) __snake_case : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def __snake_case ( self : Any ) -> Optional[Any]: pass def __snake_case ( self : str ) -> int: # Initialize image_processing __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Any = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case , __snake_case : Any = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) __snake_case : List[Any] = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : List[Any] ) -> int: # Initialize image_processing __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input __snake_case : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Tuple = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __snake_case ( self : Tuple ) -> str: # Initialize image_processing __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input __snake_case : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __snake_case , __snake_case : str = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __snake_case : Tuple = image_processing(lowerCamelCase , return_tensors="pt" ).pixel_values __snake_case , __snake_case : int = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __snake_case ( self : Dict ) -> str: # prepare image and target __snake_case : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: __snake_case : List[str] = json.loads(f.read() ) __snake_case : Union[str, Any] = {"image_id": 39769, "annotations": target} # encode them __snake_case : str = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) __snake_case : Optional[int] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : int = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : Dict = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : str = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : Optional[Any] = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : str = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify orig_size __snake_case : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) ) @slow def __snake_case ( self : Tuple ) -> Union[str, Any]: # prepare image, target and masks_path __snake_case : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: __snake_case : List[str] = json.loads(f.read() ) __snake_case : Union[str, Any] = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} __snake_case : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them __snake_case : Dict = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) __snake_case : List[Any] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="pt" ) # verify pixel values __snake_case : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , lowerCamelCase ) __snake_case : List[Any] = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area __snake_case : List[str] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , lowerCamelCase ) ) # verify boxes __snake_case : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , lowerCamelCase ) __snake_case : str = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id __snake_case : Any = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , lowerCamelCase ) ) # verify is_crowd __snake_case : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , lowerCamelCase ) ) # verify class_labels __snake_case : Any = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , lowerCamelCase ) ) # verify masks __snake_case : str = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , lowerCamelCase ) # verify orig_size __snake_case : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , lowerCamelCase ) ) # verify size __snake_case : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , lowerCamelCase ) )
81
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' @property def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase__ ( self : Dict ) -> str: '''simple docstring''' UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = "A red cat sitting on a park bench" UpperCAmelCase_ = np.random.RandomState(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
82
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : list, A_ : int, A_ : int, A_ : int ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase , _lowerCamelCase : str = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _lowerCamelCase : Tuple = result + left + right return input_list def snake_case_ ( A_ : list ): '''simple docstring''' if len(A_ ) <= 1: return input_list _lowerCamelCase : List[str] = list(A_ ) # iteration for two-way merging _lowerCamelCase : List[Any] = 2 while p <= len(A_ ): # getting low, high and middle value for merge-sort of single list for i in range(0, len(A_ ), A_ ): _lowerCamelCase : Union[str, Any] = i _lowerCamelCase : Any = i + p - 1 _lowerCamelCase : str = (low + high + 1) // 2 _lowerCamelCase : List[str] = merge(A_, A_, A_, A_ ) # final merge of last two parts if p * 2 >= len(A_ ): _lowerCamelCase : Dict = i _lowerCamelCase : Optional[int] = merge(A_, 0, A_, len(A_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": lowerCAmelCase__ = [] else: lowerCAmelCase__ = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
83
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = args.log_outputs lowercase = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric lowercase = load_metric('wer' ) lowercase = load_metric('cer' ) # compute metrics lowercase = wer.compute(references=result['target'] , predictions=result['prediction'] ) lowercase = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results lowercase = F'''WER: {wer_result}\nCER: {cer_result}''' print(__SCREAMING_SNAKE_CASE ) with open(F'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(__SCREAMING_SNAKE_CASE ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase = F'''log_{dataset_id}_predictions.txt''' lowercase = F'''log_{dataset_id}_targets.txt''' with open(__SCREAMING_SNAKE_CASE , 'w' ) as p, open(__SCREAMING_SNAKE_CASE , 'w' ) as t: # mapping function to write output def write_to_file(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): p.write(F'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(F'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(__SCREAMING_SNAKE_CASE , with_indices=__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase = re.sub(__SCREAMING_SNAKE_CASE , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: lowercase = ' '.join(text.split(__SCREAMING_SNAKE_CASE ) ) return text def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # load dataset lowercase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=__SCREAMING_SNAKE_CASE ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase = AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase = feature_extractor.sampling_rate # resample audio lowercase = dataset.cast_column('audio' , Audio(sampling_rate=__SCREAMING_SNAKE_CASE ) ) # load eval pipeline if args.device is None: lowercase = 0 if torch.cuda.is_available() else -1 lowercase = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__SCREAMING_SNAKE_CASE ): lowercase = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase = prediction['text'] lowercase = normalize_text(batch['sentence'] ) return batch # run inference on all examples lowercase = dataset.map(__SCREAMING_SNAKE_CASE , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) UpperCAmelCase = parser.parse_args() main(args)
84
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class snake_case ( UpperCamelCase_ ): lowercase_ = 42 lowercase_ = 42 lowercase_ = None class snake_case ( UpperCamelCase_ , UpperCamelCase_ ): lowercase_ = 2 @register_to_config def __init__( self : Optional[Any] , a_ : float = 0.02 , a_ : float = 100 , a_ : float = 1.007 , a_ : float = 80 , a_ : float = 0.05 , a_ : float = 50 , )-> Tuple: """simple docstring""" # standard deviation of the initial noise distribution SCREAMING_SNAKE_CASE__ : int = sigma_max # setable values SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : np.IntTensor = None SCREAMING_SNAKE_CASE__ : torch.FloatTensor = None # sigma(t_i) def __lowercase( self : Optional[Any] , a_ : torch.FloatTensor , a_ : Optional[int] = None )-> torch.FloatTensor: """simple docstring""" return sample def __lowercase( self : Any , a_ : int , a_ : Union[str, torch.device] = None )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = num_inference_steps SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.arange(0 , self.num_inference_steps )[::-1].copy() SCREAMING_SNAKE_CASE__ : Any = torch.from_numpy(a_ ).to(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] SCREAMING_SNAKE_CASE__ : Dict = torch.tensor(a_ , dtype=torch.floataa , device=a_ ) def __lowercase( self : Tuple , a_ : torch.FloatTensor , a_ : float , a_ : Optional[torch.Generator] = None )-> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: SCREAMING_SNAKE_CASE__ : Optional[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 # sample eps ~ N(0, S_noise^2 * I) SCREAMING_SNAKE_CASE__ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=a_ ).to(sample.device ) SCREAMING_SNAKE_CASE__ : List[str] = sigma + gamma * sigma SCREAMING_SNAKE_CASE__ : Union[str, Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __lowercase( self : Dict , a_ : torch.FloatTensor , a_ : float , a_ : float , a_ : torch.FloatTensor , a_ : bool = True , )-> Union[KarrasVeOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = sample_hat + sigma_hat * model_output SCREAMING_SNAKE_CASE__ : Dict = (sample_hat - pred_original_sample) / sigma_hat SCREAMING_SNAKE_CASE__ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=a_ , derivative=a_ , pred_original_sample=a_ ) def __lowercase( self : Optional[int] , a_ : torch.FloatTensor , a_ : float , a_ : float , a_ : torch.FloatTensor , a_ : torch.FloatTensor , a_ : torch.FloatTensor , a_ : bool = True , )-> Union[KarrasVeOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = sample_prev + sigma_prev * model_output SCREAMING_SNAKE_CASE__ : Dict = (sample_prev - pred_original_sample) / sigma_prev SCREAMING_SNAKE_CASE__ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=a_ , derivative=a_ , pred_original_sample=a_ ) def __lowercase( self : Tuple , a_ : int , a_ : Tuple , a_ : Union[str, Any] )-> Optional[int]: """simple docstring""" raise NotImplementedError()
85
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :Any = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[str] = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __a :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
from math import factorial def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> float: """simple docstring""" if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(lowercase_ , lowercase_ ) or not isinstance(lowercase_ , lowercase_ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) A__ = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! A__ = float(factorial(lowercase_ ) ) coefficient /= factorial(lowercase_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.75))
87
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = DDIMPipeline __UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } __UpperCAmelCase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __UpperCAmelCase = False def UpperCamelCase_ ( self) -> Optional[int]: torch.manual_seed(0) _lowerCamelCase : str = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) _lowerCamelCase : List[Any] = DDIMScheduler() _lowerCamelCase : List[str] = {"""unet""": unet, """scheduler""": scheduler} return components def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> str: if str(SCREAMING_SNAKE_CASE).startswith("""mps"""): _lowerCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE) else: _lowerCamelCase : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE).manual_seed(SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Optional[Any] = """cpu""" _lowerCamelCase : Any = self.get_dummy_components() _lowerCamelCase : List[Any] = self.pipeline_class(**SCREAMING_SNAKE_CASE) pipe.to(SCREAMING_SNAKE_CASE) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = self.get_dummy_inputs(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = pipe(**SCREAMING_SNAKE_CASE).images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3)) _lowerCamelCase : int = np.array( [1.0_0_0e0_0, 5.7_1_7e-0_1, 4.7_1_7e-0_1, 1.0_0_0e0_0, 0.0_0_0e0_0, 1.0_0_0e0_0, 3.0_0_0e-0_4, 0.0_0_0e0_0, 9.0_0_0e-0_4]) _lowerCamelCase : List[str] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(SCREAMING_SNAKE_CASE , 1e-3) def UpperCamelCase_ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def UpperCamelCase_ ( self) -> Union[str, Any]: super().test_save_load_local(expected_max_difference=3e-3) def UpperCamelCase_ ( self) -> Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3) def UpperCamelCase_ ( self) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self) -> Tuple: _lowerCamelCase : Any = """google/ddpm-cifar10-32""" _lowerCamelCase : int = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = DDIMScheduler() _lowerCamelCase : List[str] = DDIMPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE) ddim.to(SCREAMING_SNAKE_CASE) ddim.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = torch.manual_seed(0) _lowerCamelCase : Dict = ddim(generator=SCREAMING_SNAKE_CASE , eta=0.0 , output_type="""numpy""").images _lowerCamelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowerCamelCase : int = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Union[str, Any] = """google/ddpm-ema-bedroom-256""" _lowerCamelCase : Tuple = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE) _lowerCamelCase : List[str] = DDIMScheduler.from_pretrained(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = DDIMPipeline(unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE) ddpm.to(SCREAMING_SNAKE_CASE) ddpm.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE) _lowerCamelCase : Any = torch.manual_seed(0) _lowerCamelCase : int = ddpm(generator=SCREAMING_SNAKE_CASE , output_type="""numpy""").images _lowerCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCamelCase : str = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
88
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
import re import string import numpy as np import datasets SCREAMING_SNAKE_CASE : str = "\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n" SCREAMING_SNAKE_CASE : Dict = "\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n" SCREAMING_SNAKE_CASE : Union[str, Any] = "\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowerCamelCase( datasets.Metric ): def UpperCamelCase ( self) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('string', id='sequence'), 'references': datasets.Value('string', id='sequence'), }), reference_urls=[], ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=False, ) -> Any: """simple docstring""" if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowercase : List[str] = np.array([re.sub(lowerCamelCase, '', lowerCamelCase) for x in predictions]) _lowercase : Optional[Any] = np.array([re.sub(lowerCamelCase, '', lowerCamelCase) for x in references]) else: _lowercase : Dict = np.asarray(lowerCamelCase) _lowercase : Dict = np.asarray(lowerCamelCase) if ignore_case: _lowercase : Union[str, Any] = np.char.lower(lowerCamelCase) _lowercase : List[str] = np.char.lower(lowerCamelCase) if ignore_punctuation: _lowercase : Optional[Any] = string.punctuation.maketrans('', '', string.punctuation) _lowercase : Any = np.char.translate(lowerCamelCase, table=lowerCamelCase) _lowercase : Optional[int] = np.char.translate(lowerCamelCase, table=lowerCamelCase) if ignore_numbers: _lowercase : List[str] = string.digits.maketrans('', '', string.digits) _lowercase : int = np.char.translate(lowerCamelCase, table=lowerCamelCase) _lowercase : List[str] = np.char.translate(lowerCamelCase, table=lowerCamelCase) _lowercase : str = predictions == references return {"exact_match": np.mean(lowerCamelCase) * 1_00}
89
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[str] = KandinskyVaaImgaImgPipeline lowercase__ : Any = ["image_embeds", "negative_image_embeds", "image"] lowercase__ : Union[str, Any] = [ "image_embeds", "negative_image_embeds", "image", ] lowercase__ : List[str] = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] lowercase__ : Union[str, Any] = False @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return 32 @property def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return 32 @property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return self.time_input_dim @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.time_input_dim * 4 @property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return 1_00 @property def __SCREAMING_SNAKE_CASE ( self ) -> Dict: torch.manual_seed(0 ) lowerCAmelCase__ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase__ = UNetaDConditionModel(**lowerCamelCase_ ) return model @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = self.dummy_unet lowerCAmelCase__ = self.dummy_movq lowerCAmelCase__ = { '''num_train_timesteps''': 10_00, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowerCAmelCase__ = DDIMScheduler(**lowerCamelCase_ ) lowerCAmelCase__ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_=0 ) -> Dict: lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCamelCase_ ) # create init_image lowerCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase__ = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('''RGB''' ).resize((2_56, 2_56) ) if str(lowerCamelCase_ ).startswith('''mps''' ): lowerCAmelCase__ = torch.manual_seed(lowerCamelCase_ ) else: lowerCAmelCase__ = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) lowerCAmelCase__ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = self.pipeline_class(**lowerCamelCase_ ) lowerCAmelCase__ = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) lowerCAmelCase__ = output.images lowerCAmelCase__ = pipe( **self.get_dummy_inputs(lowerCamelCase_ ) , return_dict=lowerCamelCase_ , )[0] lowerCAmelCase__ = image[0, -3:, -3:, -1] lowerCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ = np.array( [0.6_199_778, 0.63_984_406, 0.46_145_785, 0.62_944_984, 0.5_622_215, 0.47_306_132, 0.47_441_456, 0.4_607_606, 0.48_719_263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) lowerCAmelCase__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowerCAmelCase__ = '''A red cartoon frog, 4k''' lowerCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCamelCase_ ) lowerCAmelCase__ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowerCAmelCase__ = pipeline.to(lowerCamelCase_ ) pipeline.set_progress_bar_config(disable=lowerCamelCase_ ) lowerCAmelCase__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCAmelCase__ , lowerCAmelCase__ = pipe_prior( lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCAmelCase__ = pipeline( image=lowerCamelCase_ , image_embeds=lowerCamelCase_ , negative_image_embeds=lowerCamelCase_ , generator=lowerCamelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type='''np''' , ) lowerCAmelCase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
90
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = '''▁''' _lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} _lowercase = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _lowercase = { '''xlm-roberta-base''': 5_12, '''xlm-roberta-large''': 5_12, '''xlm-roberta-large-finetuned-conll02-dutch''': 5_12, '''xlm-roberta-large-finetuned-conll02-spanish''': 5_12, '''xlm-roberta-large-finetuned-conll03-english''': 5_12, '''xlm-roberta-large-finetuned-conll03-german''': 5_12, } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES _lowerCamelCase: List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase: Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] ,A_ : str ,A_ : str="<s>" ,A_ : Any="</s>" ,A_ : Tuple="</s>" ,A_ : Any="<s>" ,A_ : Optional[Any]="<unk>" ,A_ : int="<pad>" ,A_ : str="<mask>" ,A_ : Optional[Dict[str, Any]] = None ,**A_ : Optional[int] ,) -> None: # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(A_ ,lstrip=A_ ,rstrip=A_ ) if isinstance(A_ ,A_ ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ ,eos_token=A_ ,unk_token=A_ ,sep_token=A_ ,cls_token=A_ ,pad_token=A_ ,mask_token=A_ ,sp_model_kwargs=self.sp_model_kwargs ,**A_ ,) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 A = len(self.sp_model ) + self.fairseq_offset A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Union[str, Any] ) -> Any: A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self : str ,A_ : str ) -> Optional[Any]: A = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[int] ,A_ : Optional[List[int]] = None ,A_ : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ ,token_ids_a=A_ ,already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : List[int] ,A_ : Optional[List[int]] = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: A = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[str]: return self.sp_model.encode(A_ ,out_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : List[Any] ) -> Tuple: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[Any] ) -> List[Any]: A = ''.join(A_ ).replace(A_ ,' ' ).strip() return out_string def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( A_ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ ,'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
91
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser UpperCamelCase_ = logging.getLogger(__name__) torch.set_grad_enabled(False) UpperCamelCase_ = """cuda""" if torch.cuda.is_available() else """cpu""" def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : Tuple=100 , __magic_name__ : Optional[int]=" " ) -> List[str]: lowercase : List[Any] =text.split(__magic_name__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__magic_name__ ) , __magic_name__ )] def _lowerCAmelCase ( __magic_name__ : dict ) -> dict: lowercase , lowercase : int =[], [] for title, text in zip(documents['''title'''] , documents['''text'''] ): if text is not None: for passage in split_text(__magic_name__ ): titles.append(title if title is not None else '''''' ) texts.append(__magic_name__ ) return {"title": titles, "text": texts} def _lowerCAmelCase ( __magic_name__ : dict , __magic_name__ : DPRContextEncoder , __magic_name__ : DPRContextEncoderTokenizerFast ) -> dict: lowercase : Dict =ctx_tokenizer( documents['''title'''] , documents['''text'''] , truncation=__magic_name__ , padding='''longest''' , return_tensors='''pt''' )['''input_ids'''] lowercase : Optional[int] =ctx_encoder(input_ids.to(device=__magic_name__ ) , return_dict=__magic_name__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _lowerCAmelCase ( __magic_name__ : "RagExampleArguments" , __magic_name__ : "ProcessingArguments" , __magic_name__ : "IndexHnswArguments" , ) -> str: ###################################### logger.info('''Step 1 - Create the dataset''' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase : Tuple =load_dataset( '''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase : Optional[int] =dataset.map(__magic_name__ , batched=__magic_name__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase : Any =DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__magic_name__ ) lowercase : Any =DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase : Optional[int] =Features( {'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space lowercase : Optional[Any] =dataset.map( partial(__magic_name__ , ctx_encoder=__magic_name__ , ctx_tokenizer=__magic_name__ ) , batched=__magic_name__ , batch_size=processing_args.batch_size , features=__magic_name__ , ) # And finally save your dataset lowercase : Optional[Any] =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' ) dataset.save_to_disk(__magic_name__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('''Step 2 - Index the dataset''' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase : Union[str, Any] =faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('''embeddings''' , custom_index=__magic_name__ ) # And save the index lowercase : Dict =os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' ) dataset.get_index('''embeddings''' ).save(__magic_name__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=str(Path(lowercase__ ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ) , metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''} , ) lowerCamelCase_ = field( default=lowercase__ , metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'} , ) lowerCamelCase_ = field( default='facebook/rag-sequence-nq' , metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''} , ) lowerCamelCase_ = field( default='facebook/dpr-ctx_encoder-multiset-base' , metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) } , ) lowerCamelCase_ = field( default=str(Path(lowercase__ ).parent / 'test_run' / 'dummy-kb' ) , metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'} , ) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=lowercase__ , metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' } , ) lowerCamelCase_ = field( default=16 , metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' } , ) @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = field( default=7_68 , metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'} , ) lowerCamelCase_ = field( default=1_28 , metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) UpperCamelCase_ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: UpperCamelCase_ = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
92
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) __A = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __A = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[str] = field( default=a , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(a )} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class _lowerCAmelCase : """simple docstring""" __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """The input training data file (a text file)."""} ) __magic_name__ :Optional[str] = field( default=a , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) __magic_name__ :Optional[str] = field( default=a , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __magic_name__ :bool = field(default=a , metadata={"""help""": """Whether ot not to use whole word mask."""} ) __magic_name__ :float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __magic_name__ :float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) __magic_name__ :int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __magic_name__ :int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) __magic_name__ :bool = field( default=a , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ) ->Optional[int]: """simple docstring""" def _dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' ) return LineByLineWithRefDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=_SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=_SCREAMING_SNAKE_CASE , file_path=_SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(_SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase__ :Optional[Any] = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ :List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCAmelCase__ :List[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.tokenizer_name: lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase__ :str = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name' ) if model_args.model_name_or_path: lowerCAmelCase__ :Optional[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch' ) lowerCAmelCase__ :int = AutoModelWithLMHead.from_config(_SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(_SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).' ) if data_args.block_size <= 0: lowerCAmelCase__ :Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase__ :Any = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCAmelCase__ :List[str] = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase__ :Optional[int] = ( get_dataset(_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , evaluate=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase__ :str = DataCollatorForPermutationLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase__ :Optional[Any] = DataCollatorForWholeWordMask( tokenizer=_SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase__ :str = DataCollatorForLanguageModeling( tokenizer=_SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase__ :Tuple = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCAmelCase__ :Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=_SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ :Optional[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCAmelCase__ :Any = trainer.evaluate() lowerCAmelCase__ :Optional[Any] = math.exp(eval_output['eval_loss'] ) lowerCAmelCase__ :Dict = {'perplexity': perplexity} lowerCAmelCase__ :List[Any] = os.path.join(training_args.output_dir , 'eval_results_lm.txt' ) if trainer.is_world_master(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) results.update(_SCREAMING_SNAKE_CASE ) return results def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
93
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCAmelCase_ ( __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = XLMProphetNetTokenizer UpperCamelCase_ = False UpperCamelCase_ = True def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase : int =XLMProphetNetTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self : Tuple ) -> str: '''simple docstring''' lowercase : Optional[Any] ='''[PAD]''' lowercase : List[str] =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(UpperCAmelCase ) , 1012 ) def A__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def A__ ( self : Any ) -> str: '''simple docstring''' lowercase : Dict =XLMProphetNetTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) lowercase : Dict =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : str =tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[Any] =tokenizer.convert_tokens_to_ids(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowercase : Any =tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual( UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def A__ ( self : List[Any] ) -> str: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Union[str, Any] ='''Hello World!''' lowercase : Optional[Any] =[3_5389, 6672, 49, 2] self.assertListEqual(UpperCAmelCase , self.big_tokenizer.encode(UpperCAmelCase ) ) @slow def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] ={'''input_ids''': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
94
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
"""simple docstring""" import json import sys def snake_case ( A__ ,A__ ): with open(A__ ,encoding="utf-8" ) as f: UpperCAmelCase_ : str = json.load(A__ ) UpperCAmelCase_ : int = ["<details>", "<summary>Show updated benchmarks!</summary>", " "] for benchmark_name in sorted(A__ ): UpperCAmelCase_ : List[Any] = results[benchmark_name] UpperCAmelCase_ : Optional[int] = benchmark_name.split("/" )[-1] output_md.append(F"""### Benchmark: {benchmark_file_name}""" ) UpperCAmelCase_ : Dict = "| metric |" UpperCAmelCase_ : Dict = "|--------|" UpperCAmelCase_ : Dict = "| new / old (diff) |" for metric_name in sorted(A__ ): UpperCAmelCase_ : Union[str, Any] = benchmark_res[metric_name] UpperCAmelCase_ : List[Any] = metric_vals["new"] UpperCAmelCase_ : List[Any] = metric_vals.get("old" ,A__ ) UpperCAmelCase_ : List[Any] = metric_vals.get("diff" ,A__ ) UpperCAmelCase_ : List[Any] = F""" {new_val:f}""" if isinstance(A__ ,(int, float) ) else "None" if old_val is not None: val_str += F""" / {old_val:f}""" if isinstance(A__ ,(int, float) ) else "None" if dif_val is not None: val_str += F""" ({dif_val:f})""" if isinstance(A__ ,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("</details>" ) with open(A__ ,"w" ,encoding="utf-8" ) as f: f.writelines("\n".join(A__ ) ) if __name__ == "__main__": lowerCamelCase_ = sys.argv[1] lowerCamelCase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
95
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml __lowerCamelCase = NewType('DataClass', Any) __lowerCamelCase = NewType('DataClassType', Any) def a ( __UpperCAmelCase : Union[str, Any] ) -> Any: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' ) def a ( __UpperCAmelCase : list ) -> Callable[[str], Any]: __magic_name__: List[Any] = {str(__UpperCAmelCase ): choice for choice in choices} return lambda __UpperCAmelCase : str_to_choice.get(__UpperCAmelCase , __UpperCAmelCase ) def a ( *, __UpperCAmelCase : Union[str, List[str]] = None , __UpperCAmelCase : str = None , __UpperCAmelCase : Any = dataclasses.MISSING , __UpperCAmelCase : Callable[[], Any] = dataclasses.MISSING , __UpperCAmelCase : dict = None , **__UpperCAmelCase : Dict , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __magic_name__: Any = {} if aliases is not None: __magic_name__: Optional[Any] = aliases if help is not None: __magic_name__: Dict = help return dataclasses.field(metadata=__UpperCAmelCase , default=__UpperCAmelCase , default_factory=__UpperCAmelCase , **__UpperCAmelCase ) class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = 42 def __init__( self : Optional[Any] , __snake_case : Union[DataClassType, Iterable[DataClassType]] , **__snake_case : int ) -> Optional[int]: # To make the default appear when using --help if "formatter_class" not in kwargs: __magic_name__: int = ArgumentDefaultsHelpFormatter super().__init__(**__snake_case ) if dataclasses.is_dataclass(__snake_case ): __magic_name__: Union[str, Any] = [dataclass_types] __magic_name__: str = list(__snake_case ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__snake_case ) @staticmethod def lowerCamelCase__ ( __snake_case : ArgumentParser , __snake_case : dataclasses.Field ) -> Dict: __magic_name__: Tuple = F'--{field.name}' __magic_name__: Optional[int] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __snake_case ): raise RuntimeError( """Unresolved type detected, which should have been done with the help of """ """`typing.get_type_hints` method by default""" ) __magic_name__: Optional[Any] = kwargs.pop("""aliases""" , [] ) if isinstance(__snake_case , __snake_case ): __magic_name__: Optional[Any] = [aliases] __magic_name__: str = getattr(field.type , """__origin__""" , field.type ) if origin_type is Union or (hasattr(__snake_case , """UnionType""" ) and isinstance(__snake_case , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__snake_case ) not in field.type.__args__ ): raise ValueError( """Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because""" """ the argument parser only supports one type per argument.""" F' Problem encountered in field \'{field.name}\'.' ) if type(__snake_case ) not in field.type.__args__: # filter `str` in Union __magic_name__: int = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __magic_name__: Union[str, Any] = getattr(field.type , """__origin__""" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __magic_name__: str = ( field.type.__args__[0] if isinstance(__snake_case , field.type.__args__[1] ) else field.type.__args__[1] ) __magic_name__: List[str] = getattr(field.type , """__origin__""" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __magic_name__: Tuple = {} if origin_type is Literal or (isinstance(field.type , __snake_case ) and issubclass(field.type , __snake_case )): if origin_type is Literal: __magic_name__: Optional[Any] = field.type.__args__ else: __magic_name__: List[Any] = [x.value for x in field.type] __magic_name__: Dict = make_choice_type_function(kwargs["""choices"""] ) if field.default is not dataclasses.MISSING: __magic_name__: Optional[Any] = field.default else: __magic_name__: Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __magic_name__: int = copy(__snake_case ) # Hack because type=bool in argparse does not behave as we want. __magic_name__: List[str] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __magic_name__: List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __magic_name__: List[str] = default # This tells argparse we accept 0 or 1 value after --field_name __magic_name__: List[Any] = """?""" # This is the value that will get picked if we do --field_name (without value) __magic_name__: List[Any] = True elif isclass(__snake_case ) and issubclass(__snake_case , __snake_case ): __magic_name__: Dict = field.type.__args__[0] __magic_name__: str = """+""" if field.default_factory is not dataclasses.MISSING: __magic_name__: Optional[Any] = field.default_factory() elif field.default is dataclasses.MISSING: __magic_name__: Tuple = True else: __magic_name__: Dict = field.type if field.default is not dataclasses.MISSING: __magic_name__: Any = field.default elif field.default_factory is not dataclasses.MISSING: __magic_name__: Any = field.default_factory() else: __magic_name__: Tuple = True parser.add_argument(__snake_case , *__snake_case , **__snake_case ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __magic_name__: Optional[Any] = False parser.add_argument(F'--no_{field.name}' , action="""store_false""" , dest=field.name , **__snake_case ) def lowerCamelCase__ ( self : str , __snake_case : DataClassType ) -> Any: if hasattr(__snake_case , """_argument_group_name""" ): __magic_name__: Tuple = self.add_argument_group(dtype._argument_group_name ) else: __magic_name__: Union[str, Any] = self try: __magic_name__: Dict[str, type] = get_type_hints(__snake_case ) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' """removing line of `from __future__ import annotations` which opts in Postponed """ """Evaluation of Annotations (PEP 563)""" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 1_0) and "unsupported operand type(s) for |" in str(__snake_case ): __magic_name__: int = """.""".join(map(__snake_case , sys.version_info[:3] ) ) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' """line of `from __future__ import annotations` which opts in union types as """ """`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To """ """support Python versions that lower than 3.10, you need to use """ """`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of """ """`X | None`.""" ) from ex raise for field in dataclasses.fields(__snake_case ): if not field.init: continue __magic_name__: List[str] = type_hints[field.name] self._parse_dataclass_field(__snake_case , __snake_case ) def lowerCamelCase__ ( self : str , __snake_case : Optional[Any]=None , __snake_case : Optional[int]=False , __snake_case : int=True , __snake_case : Optional[Any]=None , __snake_case : List[Any]=None , ) -> Tuple[DataClass, ...]: if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __magic_name__: str = [] if args_filename: args_files.append(Path(__snake_case ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(""".args""" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __magic_name__: Dict = ArgumentParser() args_file_parser.add_argument(__snake_case , type=__snake_case , action="""append""" ) # Use only remaining args for further parsing (remove the args_file_flag) __magic_name__, __magic_name__: Union[str, Any] = args_file_parser.parse_known_args(args=__snake_case ) __magic_name__: Any = vars(__snake_case ).get(args_file_flag.lstrip("""-""" ) , __snake_case ) if cmd_args_file_paths: args_files.extend([Path(__snake_case ) for p in cmd_args_file_paths] ) __magic_name__: int = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __magic_name__: List[str] = file_args + args if args is not None else file_args + sys.argv[1:] __magic_name__, __magic_name__: Optional[Any] = self.parse_known_args(args=__snake_case ) __magic_name__: List[Any] = [] for dtype in self.dataclass_types: __magic_name__: Optional[Any] = {f.name for f in dataclasses.fields(__snake_case ) if f.init} __magic_name__: List[Any] = {k: v for k, v in vars(__snake_case ).items() if k in keys} for k in keys: delattr(__snake_case , __snake_case ) __magic_name__: Dict = dtype(**__snake_case ) outputs.append(__snake_case ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__snake_case ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' ) return (*outputs,) def lowerCamelCase__ ( self : List[Any] , __snake_case : Dict[str, Any] , __snake_case : bool = False ) -> Tuple[DataClass, ...]: __magic_name__: List[Any] = set(args.keys() ) __magic_name__: Dict = [] for dtype in self.dataclass_types: __magic_name__: int = {f.name for f in dataclasses.fields(__snake_case ) if f.init} __magic_name__: Union[str, Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __magic_name__: Optional[int] = dtype(**__snake_case ) outputs.append(__snake_case ) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(__snake_case )}' ) return tuple(__snake_case ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : str , __snake_case : bool = False ) -> Tuple[DataClass, ...]: with open(Path(__snake_case ) , encoding="""utf-8""" ) as open_json_file: __magic_name__: List[Any] = json.loads(open_json_file.read() ) __magic_name__: Optional[Any] = self.parse_dict(__snake_case , allow_extra_keys=__snake_case ) return tuple(__snake_case ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : str , __snake_case : bool = False ) -> Tuple[DataClass, ...]: __magic_name__: Optional[int] = self.parse_dict(yaml.safe_load(Path(__snake_case ).read_text() ) , allow_extra_keys=__snake_case ) return tuple(__snake_case )
96
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __a = 'src/transformers' __a = 'docs/source/en/tasks' def a ( snake_case__: Optional[int] , snake_case__: Union[str, Any] , snake_case__: Any ): '''simple docstring''' with open(snake_case__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowercase_ = f.readlines() # Find the start prompt. lowercase_ = 0 while not lines[start_index].startswith(snake_case__ ): start_index += 1 start_index += 1 lowercase_ = start_index while not lines[end_index].startswith(snake_case__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __a = direct_transformers_import(TRANSFORMERS_PATH) __a = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __a = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def a ( snake_case__: Tuple ): '''simple docstring''' lowercase_ = TASK_GUIDE_TO_MODELS[task_guide] lowercase_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(snake_case__ , set() ) lowercase_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def a ( snake_case__: List[Any] , snake_case__: Optional[int]=False ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = _find_text_in_file( filename=os.path.join(snake_case__ , snake_case__ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) lowercase_ = get_model_list_for_task(snake_case__ ) if current_list != new_list: if overwrite: with open(os.path.join(snake_case__ , snake_case__ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ''' to fix this.''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __a = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
97
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Optional[Any] , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = 13 _UpperCamelCase = 7 _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = True _UpperCamelCase = 99 _UpperCamelCase = 32 _UpperCamelCase = 2 _UpperCamelCase = 4 _UpperCamelCase = 37 _UpperCamelCase = '''gelu''' _UpperCamelCase = 0.1 _UpperCamelCase = 0.1 _UpperCamelCase = 512 _UpperCamelCase = 16 _UpperCamelCase = 2 _UpperCamelCase = 0.02 _UpperCamelCase = 3 _UpperCamelCase = 4 _UpperCamelCase = None def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCamelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : Dict ) -> int: '''simple docstring''' ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = self.prepare_config_and_inputs() _UpperCamelCase = True _UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase = TFEsmModel(config=lowerCAmelCase__ ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(lowerCAmelCase__ ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(lowerCAmelCase__ ) _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] , ) -> List[Any]: '''simple docstring''' _UpperCamelCase = True _UpperCamelCase = TFEsmModel(config=lowerCAmelCase__ ) _UpperCamelCase = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } _UpperCamelCase = model(lowerCAmelCase__ ) _UpperCamelCase = [input_ids, input_mask] _UpperCamelCase = model(lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ ) # Also check the case where encoder outputs are not passed _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ) -> str: '''simple docstring''' _UpperCamelCase = TFEsmForMaskedLM(config=lowerCAmelCase__ ) _UpperCamelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = TFEsmForTokenClassification(config=lowerCAmelCase__ ) _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} _UpperCamelCase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _snake_case : Optional[Any] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _snake_case : Dict = False _snake_case : int = False def snake_case__ ( self : Dict ) -> Dict: '''simple docstring''' _UpperCamelCase = TFEsmModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def snake_case__ ( self : List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @slow def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFEsmModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @unittest.skip('''Protein models do not support embedding resizing.''' ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Protein models do not support embedding resizing.''' ) def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCAmelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _UpperCamelCase = model.get_bias() assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for k, v in name.items(): assert isinstance(lowerCAmelCase__ , tf.Variable ) else: _UpperCamelCase = model.get_output_embeddings() assert x is None _UpperCamelCase = model.get_bias() assert name is None @require_tf class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCamelCase = model(lowerCAmelCase__ )[0] _UpperCamelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCAmelCase__ ) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''' ) _UpperCamelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _UpperCamelCase = model(lowerCAmelCase__ )[0] # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
98
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
from math import factorial SCREAMING_SNAKE_CASE = {str(digit): factorial(digit) for digit in range(1_0)} def a (lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""Parameter number must be int""" ) if number < 0: raise ValueError("""Parameter number must be greater than or equal to 0""" ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowerCAmelCase__ ) ) def a (lowerCAmelCase__ = 60 , lowerCAmelCase__ = 1_000_000 ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""Parameters chain_length and number_limit must be int""" ) if chain_length <= 0 or number_limit <= 0: raise ValueError( """Parameters chain_length and number_limit must be greater than 0""" ) # the counter for the chains with the exact desired length __a = 0 # the cached sizes of the previous chains __a = {} for start_chain_element in range(1 , lowerCAmelCase__ ): # The temporary set will contain the elements of the chain __a = set() __a = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. __a = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowerCAmelCase__ ) chain_set_length += 1 __a = digit_factorial_sum(lowerCAmelCase__ ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] __a = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution()}''')
99
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
def __snake_case ( lowerCAmelCase_ ) -> list[list[int]]: SCREAMING_SNAKE_CASE__ = [] if len(lowerCAmelCase_ ) == 1: return [nums.copy()] for _ in range(len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ = nums.pop(0 ) SCREAMING_SNAKE_CASE__ = permute(lowerCAmelCase_ ) for perm in permutations: perm.append(lowerCAmelCase_ ) result.extend(lowerCAmelCase_ ) nums.append(lowerCAmelCase_ ) return result def __snake_case ( lowerCAmelCase_ ) -> int: def backtrack(lowerCAmelCase_ ): if start == len(lowerCAmelCase_ ) - 1: output.append(nums[:] ) else: for i in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = nums[i], nums[start] backtrack(start + 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = nums[i], nums[start] # backtrack SCREAMING_SNAKE_CASE__ = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _A : List[str] = permutea([1, 2, 3]) print(res) doctest.testmod()
100
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
lowerCAmelCase__ : Union[str, Any] ='ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def a__ ( A__ ): # Make sure the supplied data is a bytes-like object if not isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : int = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(A__ ) SCREAMING_SNAKE_CASE_ : int = ''.join(bin(A__ )[2:].zfill(8 ) for byte in data ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ) % 6 != 0 if padding_needed: # The padding that will be added later SCREAMING_SNAKE_CASE_ : Union[str, Any] = B'=' * ((6 - len(A__ ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(A__ ) % 6) else: SCREAMING_SNAKE_CASE_ : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(A__ ), 6 ) ).encode() + padding ) def a__ ( A__ ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(A__, A__ ) and not isinstance(A__, A__ ): SCREAMING_SNAKE_CASE_ : Dict = ( 'argument should be a bytes-like object or ASCII string, ' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(A__ ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(A__, A__ ): try: SCREAMING_SNAKE_CASE_ : Tuple = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) SCREAMING_SNAKE_CASE_ : str = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(A__ ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one SCREAMING_SNAKE_CASE_ : Dict = encoded_data[:-padding] SCREAMING_SNAKE_CASE_ : str = ''.join( bin(B64_CHARSET.index(A__ ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: SCREAMING_SNAKE_CASE_ : Any = ''.join( bin(B64_CHARSET.index(A__ ) )[2:].zfill(6 ) for char in encoded_data ) SCREAMING_SNAKE_CASE_ : Tuple = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(A__ ), 8 ) ] return bytes(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
101
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE = 6008_5147_5143 ): try: UpperCamelCase : Optional[Any] = int(SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) UpperCamelCase : Dict = 2 UpperCamelCase : List[Any] = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 UpperCamelCase : Optional[int] = i while n % i == 0: UpperCamelCase : Optional[Any] = n // i i += 1 return int(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''{solution() = }''')
102
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py snake_case = '''src/diffusers''' # Matches is_xxx_available() snake_case = re.compile(r'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') snake_case = ''' {0} = None ''' snake_case = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' snake_case = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def snake_case ( lowerCAmelCase_ ) -> Any: _snake_case = _re_backend.findall(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) == 0: return None return "_and_".join(lowerCAmelCase_ ) def snake_case ( ) -> Dict: with open(os.path.join(lowerCAmelCase_ , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _snake_case = f.readlines() # Get to the point we do the actual imports for type checking _snake_case = 0 _snake_case = {} # Go through the end of the file while line_index < len(lowerCAmelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _snake_case = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _snake_case = [] # Until we unindent, add backend objects to the list while line_index < len(lowerCAmelCase_ ) and len(lines[line_index] ) > 1: _snake_case = lines[line_index] _snake_case = _re_single_line_import.search(lowerCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowerCAmelCase_ ) > 0: _snake_case = objects else: line_index += 1 return backend_specific_objects def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: if name.isupper(): return DUMMY_CONSTANT.format(lowerCAmelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(lowerCAmelCase_ , lowerCAmelCase_ ) else: return DUMMY_CLASS.format(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_=None ) -> Optional[int]: if backend_specific_objects is None: _snake_case = read_init() # For special correspondence backend to module name as used in the function requires_modulename _snake_case = {} for backend, objects in backend_specific_objects.items(): _snake_case = '''[''' + ''', '''.join(f"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' _snake_case = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowerCAmelCase_ , lowerCAmelCase_ ) for o in objects] ) _snake_case = dummy_file return dummy_files def snake_case ( lowerCAmelCase_=False ) -> str: _snake_case = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _snake_case = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _snake_case = os.path.join(lowerCAmelCase_ , '''utils''' ) _snake_case = { backend: os.path.join(lowerCAmelCase_ , f"""dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py""" ) for backend in dummy_files.keys() } _snake_case = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowerCAmelCase_ ): with open(lowerCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: _snake_case = f.read() else: _snake_case = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f"""Updating diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f"""diffusers.utils.dummy_{short_names.get(lowerCAmelCase_ , lowerCAmelCase_ )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') snake_case = parser.parse_args() check_dummies(args.fix_and_overwrite)
103
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Optional[int] = (IPNDMScheduler,) A__ : str = (("num_inference_steps", 5_0),) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> Optional[int]: A__ = {"num_train_timesteps": 1000} config.update(**SCREAMING_SNAKE_CASE__ ) return config def snake_case__ ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ) -> str: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] if time_step is None: A__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals A__ = dummy_past_residuals[:] A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self ) -> Union[str, Any]: pass def snake_case__ ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) A__ = self.dummy_sample A__ = 0.1 * sample A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) A__ = dummy_past_residuals[:] if time_step is None: A__ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) A__ = dummy_past_residuals[:] A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = new_scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> List[str]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) A__ = 10 A__ = self.dummy_model() A__ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.timesteps ): A__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def snake_case__ ( self ) -> str: A__ = dict(self.forward_default_kwargs ) A__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: A__ = self.get_scheduler_config() A__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) A__ = self.dummy_sample A__ = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): A__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A__ = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] A__ = dummy_past_residuals[:] A__ = scheduler.timesteps[5] A__ = scheduler.timesteps[6] A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample A__ = scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case__ ( self ) -> Union[str, Any]: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ , time_step=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ , time_step=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> List[str]: A__ = self.full_loop() A__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_mean.item() - 2540529 ) < 10
104
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: UpperCamelCase__ : Dict = None UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Dict = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Dict = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCamelCase__ : Any = '''▁''' class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[str] = VOCAB_FILES_NAMES __a : int = PRETRAINED_VOCAB_FILES_MAP __a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : List[Any] = ["input_ids", "attention_mask"] __a : Dict = BarthezTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__="<s>" ,snake_case__="</s>" ,snake_case__="</s>" ,snake_case__="<s>" ,snake_case__="<unk>" ,snake_case__="<pad>" ,snake_case__="<mask>" ,**snake_case__ ,): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : str = AddedToken(snake_case__ ,lstrip=snake_case__ ,rstrip=snake_case__ ) if isinstance(snake_case__ ,snake_case__ ) else mask_token super().__init__( snake_case__ ,tokenizer_file=snake_case__ ,bos_token=snake_case__ ,eos_token=snake_case__ ,unk_token=snake_case__ ,sep_token=snake_case__ ,cls_token=snake_case__ ,pad_token=snake_case__ ,mask_token=snake_case__ ,**snake_case__ ,) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_file SCREAMING_SNAKE_CASE_ : int = False if not self.vocab_file else True def snake_case ( self ,snake_case__ ,snake_case__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : Dict = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case ( self ,snake_case__ ,snake_case__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join( snake_case__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file ,snake_case__ ) return (out_vocab_file,)
105
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
def lowerCamelCase_ ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> tuple[float, float]: '''simple docstring''' if not len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) == 3: raise ValueError('Please enter a valid equation.' ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError('Both a & b of two equations can\'t be zero.' ) # Extract the coefficients A , A , A = equationa A , A , A = equationa # Calculate the determinants of the matrices A = aa * ba - aa * ba A = ca * ba - ca * ba A = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError('Infinite solutions. (Consistent system)' ) else: raise ValueError('No solution. (Inconsistent system)' ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: A = determinant_x / determinant A = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
106
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase_ : """simple docstring""" def __init__( self : str, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[str]=13, UpperCamelCase__ : Any=64, UpperCamelCase__ : Optional[int]=2, UpperCamelCase__ : Optional[Any]=3, UpperCamelCase__ : List[str]=True, UpperCamelCase__ : str=True, UpperCamelCase__ : Tuple=32, UpperCamelCase__ : str=5, UpperCamelCase__ : Union[str, Any]=4, UpperCamelCase__ : List[str]=37, UpperCamelCase__ : int="gelu", UpperCamelCase__ : Any=0.1, UpperCamelCase__ : Union[str, Any]=0.1, UpperCamelCase__ : Optional[int]=10, UpperCamelCase__ : Union[str, Any]=0.02, UpperCamelCase__ : str=[1, 16, 4, 4], UpperCamelCase__ : Dict=None, ) -> Dict: _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _A = (self.image_size // 32) ** 2 _A = num_patches + 1 def __UpperCAmelCase ( self : List[Any] ) -> str: _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size], self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : str ) -> List[Any]: _A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, backbone_featmap_shape=self.backbone_featmap_shape, backbone_config=UpperCamelCase__, ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple, UpperCamelCase__ : Any ) -> Any: _A = ViTHybridModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[int] ) -> List[str]: _A = self.type_sequence_label_size _A = ViTHybridForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self : Any ) -> int: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __UpperCAmelCase ( self : int ) -> List[Any]: _A = ViTHybridModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def __UpperCAmelCase ( self : Tuple ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: pass def __UpperCAmelCase ( self : Tuple ) -> Tuple: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__, nn.Linear ) ) def __UpperCAmelCase ( self : Dict ) -> Tuple: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> List[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def __UpperCAmelCase ( self : int ) -> List[str]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: _A = model_class(config=UpperCamelCase__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _A = [f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item(), [0.0, 1.0], msg=f'Parameter {name} of model {model_class} seems not properly initialized', ) @slow def __UpperCAmelCase ( self : List[str] ) -> List[str]: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTHybridModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _SCREAMING_SNAKE_CASE ( ): _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: _A = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) # verify the logits _A = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) _A = torch.tensor([-1.9_090, -0.4_993, -0.2_389] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1e-4 ) ) @slow @require_accelerate def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _A = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) _A = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384', device_map='auto' ) _A = prepare_img() _A = image_processor(images=UpperCamelCase__, return_tensors='pt' ) _A = model(**UpperCamelCase__ ) _A = outputs.logits # model predicts one of the 1000 ImageNet classes _A = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx], 'tabby, tabby cat' )
107
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : List[str] ) -> Any: """simple docstring""" _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = BlipImageProcessor() _UpperCAmelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _UpperCAmelCase = BlipaProcessor(lowerCamelCase , lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self : Tuple , **lowerCamelCase : Tuple ) -> str: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).tokenizer def lowerCamelCase ( self : Union[str, Any] , **lowerCamelCase : Any ) -> Optional[int]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ).image_processor def lowerCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase ( self : Dict ) -> List[str]: """simple docstring""" _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _UpperCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) _UpperCAmelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(lowerCamelCase , return_tensors="""np""" ) _UpperCAmelCase = processor(images=lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowerCamelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = """lower newer""" _UpperCAmelCase = processor(text=lowerCamelCase ) _UpperCAmelCase = tokenizer(lowerCamelCase , return_token_type_ids=lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = """lower newer""" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def lowerCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase = processor.batch_decode(lowerCamelCase ) _UpperCAmelCase = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def lowerCamelCase ( self : Any ) -> str: """simple docstring""" _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = BlipaProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _UpperCAmelCase = """lower newer""" _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """input_ids""", """attention_mask"""] )
108
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class __a ( tf.keras.optimizers.schedules.LearningRateSchedule ): def __init__( self : List[str] ,lowerCamelCase : float ,lowerCamelCase : Callable ,lowerCamelCase : int ,lowerCamelCase : float = 1.0 ,lowerCamelCase : str = None ,): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = initial_learning_rate __SCREAMING_SNAKE_CASE = warmup_steps __SCREAMING_SNAKE_CASE = power __SCREAMING_SNAKE_CASE = decay_schedule_fn __SCREAMING_SNAKE_CASE = name def __call__( self : List[Any] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' with tf.name_scope(self.name or """WarmUp""" ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __SCREAMING_SNAKE_CASE = tf.cast(lowerCamelCase ,tf.floataa ) __SCREAMING_SNAKE_CASE = tf.cast(self.warmup_steps ,tf.floataa ) __SCREAMING_SNAKE_CASE = global_step_float / warmup_steps_float __SCREAMING_SNAKE_CASE = self.initial_learning_rate * tf.math.pow(lowerCamelCase ,self.power ) return tf.cond( global_step_float < warmup_steps_float ,lambda: warmup_learning_rate ,lambda: self.decay_schedule_fn(step - self.warmup_steps ) ,name=lowerCamelCase ,) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 0.9 , __UpperCAmelCase = 0.9_9_9 , __UpperCAmelCase = 1e-8 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = None , ) -> Any: '''simple docstring''' __SCREAMING_SNAKE_CASE = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=__UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=__UpperCAmelCase , ) if num_warmup_steps: __SCREAMING_SNAKE_CASE = WarmUp( initial_learning_rate=__UpperCAmelCase , decay_schedule_fn=__UpperCAmelCase , warmup_steps=__UpperCAmelCase , ) if weight_decay_rate > 0.0: __SCREAMING_SNAKE_CASE = AdamWeightDecay( learning_rate=__UpperCAmelCase , weight_decay_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=__UpperCAmelCase , ) else: __SCREAMING_SNAKE_CASE = tf.keras.optimizers.Adam( learning_rate=__UpperCAmelCase , beta_a=__UpperCAmelCase , beta_a=__UpperCAmelCase , epsilon=__UpperCAmelCase , clipnorm=__UpperCAmelCase , global_clipnorm=__UpperCAmelCase , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class __a ( _snake_case ): def __init__( self : Dict ,lowerCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 ,lowerCamelCase : float = 0.9 ,lowerCamelCase : float = 0.999 ,lowerCamelCase : float = 1E-7 ,lowerCamelCase : bool = False ,lowerCamelCase : float = 0.0 ,lowerCamelCase : Optional[List[str]] = None ,lowerCamelCase : Optional[List[str]] = None ,lowerCamelCase : str = "AdamWeightDecay" ,**lowerCamelCase : Any ,): '''simple docstring''' super().__init__(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,**lowerCamelCase ) __SCREAMING_SNAKE_CASE = weight_decay_rate __SCREAMING_SNAKE_CASE = include_in_weight_decay __SCREAMING_SNAKE_CASE = exclude_from_weight_decay @classmethod def UpperCAmelCase__ ( cls : List[Any] ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {"""WarmUp""": WarmUp} return super(lowerCamelCase ,cls ).from_config(lowerCamelCase ,custom_objects=lowerCamelCase ) def UpperCAmelCase__ ( self : Any ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : List[Any] ): '''simple docstring''' super(lowerCamelCase ,self )._prepare_local(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.constant( self.weight_decay_rate ,name="""adam_weight_decay_rate""" ) def UpperCAmelCase__ ( self : List[str] ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] ,use_locking=self._use_locking ,) return tf.no_op() def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : List[Any] ,lowerCamelCase : int=None ,**lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = list(zip(*lowerCamelCase ) ) return super(lowerCamelCase ,self ).apply_gradients(zip(lowerCamelCase ,lowerCamelCase ) ,name=lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ,lowerCamelCase : Dict ,lowerCamelCase : Union[str, Any] ,lowerCamelCase : Any ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} __SCREAMING_SNAKE_CASE = apply_state or {} __SCREAMING_SNAKE_CASE = apply_state.get((var_device, var_dtype) ) if coefficients is None: __SCREAMING_SNAKE_CASE = self._fallback_apply_state(lowerCamelCase ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Optional[Any] ,lowerCamelCase : int ,lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._get_lr(var.device ,var.dtype.base_dtype ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._decay_weights_op(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) with tf.control_dependencies([decay] ): return super(lowerCamelCase ,self )._resource_apply_dense(lowerCamelCase ,lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : Dict ,lowerCamelCase : Optional[Any] ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self._get_lr(var.device ,var.dtype.base_dtype ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self._decay_weights_op(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ) with tf.control_dependencies([decay] ): return super(lowerCamelCase ,self )._resource_apply_sparse(lowerCamelCase ,lowerCamelCase ,lowerCamelCase ,**lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = super().get_config() config.update({"""weight_decay_rate""": self.weight_decay_rate} ) return config def UpperCAmelCase__ ( self : int ,lowerCamelCase : List[Any] ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase ,lowerCamelCase ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase ,lowerCamelCase ) is not None: return False return True class __a ( _snake_case ): def __init__( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = None @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' if self._accum_steps is None: __SCREAMING_SNAKE_CASE = tf.Variable( tf.constant(0 ,dtype=tf.intaa ) ,trainable=lowerCamelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) return self._accum_steps.value() @property def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self._gradients: raise ValueError("""The accumulator should be called first to initialize the gradients""" ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self : Union[str, Any] ,lowerCamelCase : List[str] ): '''simple docstring''' if not self._gradients: __SCREAMING_SNAKE_CASE = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase ) ,trainable=lowerCamelCase ,synchronization=tf.VariableSynchronization.ON_READ ,aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA ,) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase ) != len(self._gradients ): raise ValueError(f"""Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase )}""" ) for accum_gradient, gradient in zip(self._gradients ,lowerCamelCase ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase ) self._accum_steps.assign_add(1 ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase ) )
109
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _a ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A_ = StableUnCLIPPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false A_ = False def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = 32 UpperCamelCase_ = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=_lowercase , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCamelCase_ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_lowercase , num_layers=1 , ) torch.manual_seed(0 ) UpperCamelCase_ = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=_lowercase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) UpperCamelCase_ = StableUnCLIPImageNormalizer(embedding_dim=_lowercase ) UpperCamelCase_ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowercase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowercase , layers_per_block=1 , upcast_attention=_lowercase , use_linear_projection=_lowercase , ) torch.manual_seed(0 ) UpperCamelCase_ = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='v_prediction' , set_alpha_to_one=_lowercase , steps_offset=1 , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=0 ) -> List[Any]: if str(_lowercase ).startswith('mps' ): UpperCamelCase_ = torch.manual_seed(_lowercase ) else: UpperCamelCase_ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) UpperCamelCase_ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=_lowercase ) def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_lowercase ) @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) UpperCamelCase_ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase_ = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase_ = pipe('anime turle' , generator=_lowercase , output_type='np' ) UpperCamelCase_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase ) def _UpperCAmelCase ( self ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase_ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) UpperCamelCase_ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase_ = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) UpperCamelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( )-> Optional[Any]: SCREAMING_SNAKE_CASE_ = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=UpperCamelCase__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=UpperCamelCase__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=UpperCamelCase__ ) return parser.parse_args() def _a ( )-> Dict: SCREAMING_SNAKE_CASE_ = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE_ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE_ = script_fpath.stem SCREAMING_SNAKE_CASE_ = importlib.import_module(UpperCamelCase__ ) # Patch sys.argv SCREAMING_SNAKE_CASE_ = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def UpperCamelCase ( snake_case__): if not is_accelerate_available(): return method lowerCAmelCase_ : Dict = version.parse(accelerate.__version__).base_version if version.parse(UpperCamelCase__) < version.parse("0.17.0"): return method def wrapper(self , *snake_case__ , **snake_case__): if hasattr(self , "_hf_hook") and hasattr(self._hf_hook , "pre_forward"): self._hf_hook.pre_forward(self) return method(self , *UpperCamelCase__ , **UpperCamelCase__) return wrapper
659
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A ( UpperCAmelCase_ ): '''simple docstring''' A__ = '''naver-clova-ix/donut-base-finetuned-docvqa''' A__ = ( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) A__ = '''document_qa''' A__ = AutoProcessor A__ = VisionEncoderDecoderModel A__ = ['''image''', '''text'''] A__ = ['''text'''] def __init__(self : Tuple , *_UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Optional[Any] ) -> List[Any]: """simple docstring""" if not is_vision_available(): raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" ) super().__init__(*_lowercase , **_lowercase ) def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Tuple: """simple docstring""" lowercase__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase__ = task_prompt.replace("""{user_input}""" , _lowercase ) lowercase__ = self.pre_processor.tokenizer( _lowercase , add_special_tokens=_lowercase , return_tensors="""pt""" ).input_ids lowercase__ = self.pre_processor(_lowercase , return_tensors="""pt""" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowerCamelCase__ (self : Dict , _UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" return self.model.generate( inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_lowercase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_lowercase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_lowercase , ).sequences def lowerCamelCase__ (self : int , _UpperCAmelCase : Tuple ) -> Any: """simple docstring""" lowercase__ = self.pre_processor.batch_decode(_lowercase )[0] lowercase__ = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" ) lowercase__ = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" ) lowercase__ = re.sub(r"""<.*?>""" , """""" , _lowercase , count=1 ).strip() # remove first task start token lowercase__ = self.pre_processor.tokenajson(_lowercase ) return sequence["answer"]
15
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) A_ : str =logging.getLogger() def lowerCamelCase_ ( UpperCAmelCase__ ): """simple docstring""" a_ = {} a_ = os.path.join(UpperCamelCase__ , """all_results.json""" ) if os.path.exists(UpperCamelCase__ ): with open(UpperCamelCase__ , """r""" ) as f: a_ = json.load(UpperCamelCase__ ) else: raise ValueError(F"can\'t find {path}" ) return results A_ : Union[str, Any] =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowercase_ ( UpperCAmelCase_): """simple docstring""" def lowercase__ ( self ): """simple docstring""" import xla_spawn a_ = self.get_auto_remove_tmp_dir() a_ = f"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_lowercase , """argv""" , _lowercase ): a_ = time() xla_spawn.main() a_ = time() a_ = get_results(_lowercase ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 500 ) def lowercase__ ( self ): """simple docstring""" import xla_spawn a_ = """\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n """.split() with patch.object(_lowercase , """argv""" , _lowercase ): xla_spawn.main()
483
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" from random import shuffle import tensorflow as tf from numpy import array def lowercase__ ( lowerCAmelCase : List[str] , lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" UpperCAmelCase = int(UpperCamelCase__ ) assert noofclusters < len(UpperCamelCase__ ) # Find out the dimensionality UpperCAmelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCAmelCase = list(range(len(UpperCamelCase__ ) ) ) shuffle(UpperCamelCase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCAmelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCAmelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCAmelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCamelCase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCAmelCase = tf.placeholder('float64' , [dim] ) UpperCAmelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCamelCase__ , UpperCamelCase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCAmelCase = [tf.Variable(0 ) for i in range(len(UpperCamelCase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCAmelCase = tf.placeholder('int32' ) UpperCAmelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCamelCase__ , UpperCamelCase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCAmelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCAmelCase = tf.reduce_mean(UpperCamelCase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCAmelCase = tf.placeholder('float' , [dim] ) UpperCAmelCase = tf.placeholder('float' , [dim] ) UpperCAmelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCamelCase__ , UpperCamelCase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCAmelCase = tf.placeholder('float' , [noofclusters] ) UpperCAmelCase = tf.argmin(UpperCamelCase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCAmelCase = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCamelCase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCAmelCase = 100 for _ in range(UpperCamelCase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCamelCase__ ) ): UpperCAmelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCAmelCase = [ sess.run(UpperCamelCase__ , feed_dict={va: vect, va: sess.run(UpperCamelCase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCAmelCase = sess.run( UpperCamelCase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCamelCase__ ): # Collect all the vectors assigned to this cluster UpperCAmelCase = [ vectors[i] for i in range(len(UpperCamelCase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCAmelCase = sess.run( UpperCamelCase__ , feed_dict={mean_input: array(UpperCamelCase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCAmelCase = sess.run(UpperCamelCase__ ) UpperCAmelCase = sess.run(UpperCamelCase__ ) return centroids, assignments
373
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self, lowerCamelCase__, lowerCamelCase__=13, lowerCamelCase__=7, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=True, lowerCamelCase__=99, lowerCamelCase__=32, lowerCamelCase__=5, lowerCamelCase__=4, lowerCamelCase__=37, lowerCamelCase__="gelu", lowerCamelCase__=0.1, lowerCamelCase__=0.1, lowerCamelCase__=512, lowerCamelCase__=16, lowerCamelCase__=2, lowerCamelCase__=0.02, lowerCamelCase__=False, lowerCamelCase__=True, lowerCamelCase__="None", lowerCamelCase__=3, lowerCamelCase__=4, lowerCamelCase__=None, ): A : Union[str, Any] = parent A : Tuple = batch_size A : Union[str, Any] = seq_length A : Tuple = is_training A : List[Any] = use_input_mask A : List[str] = use_token_type_ids A : Any = use_labels A : Dict = vocab_size A : List[Any] = hidden_size A : Any = num_hidden_layers A : Tuple = num_attention_heads A : List[str] = intermediate_size A : List[str] = hidden_act A : Optional[int] = hidden_dropout_prob A : str = attention_probs_dropout_prob A : Tuple = max_position_embeddings A : Optional[Any] = type_vocab_size A : Dict = type_sequence_label_size A : str = initializer_range A : int = num_labels A : Tuple = num_choices A : int = relative_attention A : Optional[int] = position_biased_input A : Union[str, Any] = pos_att_type A : List[str] = scope def _lowerCAmelCase ( self ): A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) A : Tuple = None if self.use_input_mask: A : Any = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) A : Dict = None if self.use_token_type_ids: A : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) A : Optional[Any] = None A : Optional[int] = None A : Optional[Any] = None if self.use_labels: A : List[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) A : List[Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) A : Optional[int] = ids_tensor([self.batch_size], self.num_choices ) A : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCAmelCase ( self ): return DebertaVaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, relative_attention=self.relative_attention, position_biased_input=self.position_biased_input, pos_att_type=self.pos_att_type, ) def _lowerCAmelCase ( self, lowerCamelCase__ ): self.parent.assertListEqual(list(result.loss.size() ), [] ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Dict = DebertaVaModel(config=_lowercase ) model.to(_lowercase ) model.eval() A : Optional[Any] = model(_lowercase, attention_mask=_lowercase, token_type_ids=_lowercase )[0] A : Dict = model(_lowercase, token_type_ids=_lowercase )[0] A : Dict = model(_lowercase )[0] self.parent.assertListEqual(list(sequence_output.size() ), [self.batch_size, self.seq_length, self.hidden_size] ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = DebertaVaForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() A : Union[str, Any] = model(_lowercase, attention_mask=_lowercase, token_type_ids=_lowercase, labels=_lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Any = self.num_labels A : Union[str, Any] = DebertaVaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() A : Union[str, Any] = model(_lowercase, attention_mask=_lowercase, token_type_ids=_lowercase, labels=_lowercase ) self.parent.assertListEqual(list(result.logits.size() ), [self.batch_size, self.num_labels] ) self.check_loss_output(_lowercase ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : Dict = self.num_labels A : int = DebertaVaForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() A : Optional[int] = model(_lowercase, attention_mask=_lowercase, token_type_ids=_lowercase, labels=_lowercase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : List[Any] = DebertaVaForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() A : Dict = model( _lowercase, attention_mask=_lowercase, token_type_ids=_lowercase, start_positions=_lowercase, end_positions=_lowercase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ): A : int = DebertaVaForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() A : List[str] = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() A : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() A : List[str] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() A : Union[str, Any] = model( _lowercase, attention_mask=_lowercase, token_type_ids=_lowercase, labels=_lowercase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _lowerCAmelCase ( self ): A : List[Any] = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Optional[Any] = config_and_inputs A : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Optional[Any] = True __lowerCamelCase : int = False __lowerCamelCase : Any = False __lowerCamelCase : List[Any] = False __lowerCamelCase : str = False def _lowerCAmelCase ( self ): A : Union[str, Any] = DebertaVaModelTester(self ) A : int = ConfigTester(self, config_class=_lowercase, hidden_size=37 ) def _lowerCAmelCase ( self ): self.config_tester.run_common_tests() def _lowerCAmelCase ( self ): A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_lowercase ) def _lowerCAmelCase ( self ): A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_lowercase ) def _lowerCAmelCase ( self ): A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_lowercase ) def _lowerCAmelCase ( self ): A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_lowercase ) def _lowerCAmelCase ( self ): A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_lowercase ) def _lowerCAmelCase ( self ): A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_lowercase ) @slow def _lowerCAmelCase ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : Optional[int] = DebertaVaModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def _lowerCAmelCase ( self ): pass @slow def _lowerCAmelCase ( self ): A : Dict = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) A : Dict = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) A : str = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A : Union[str, Any] = model(_lowercase, attention_mask=_lowercase )[0] # compare the actual values for a slice. A : Any = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], _lowercase, atol=1e-4 ), f'''{output[:, 1:4, 1:4]}''' )
662
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _UpperCamelCase( unittest.TestCase ): @require_torch def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : List[str] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) __a : int = load_dataset('ashraq/esc50' ) __a : Dict = dataset['train']['audio'][-1]['array'] __a : Optional[int] = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(_lowercase ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @slow @require_torch def __lowerCAmelCase ( self : Any ): '''simple docstring''' __a : List[str] = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog __a : Union[str, Any] = load_dataset('ashraq/esc50' ) __a : List[str] = dataset['train']['audio'][-1]['array'] __a : List[Any] = audio_classifier(_lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(_lowercase ) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) __a : Any = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) __a : Optional[Any] = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(_lowercase ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' pass
47
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _A = logging.get_logger(__name__) _A = {"vocab_file": "vocab.txt"} _A = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } _A = { "facebook/esm2_t6_8M_UR50D": 1_024, "facebook/esm2_t12_35M_UR50D": 1_024, } def lowercase (_snake_case ) -> Union[str, Any]: '''simple docstring''' with open(UpperCamelCase__ ,"r" ) as f: __UpperCamelCase = f.read().splitlines() return [l.strip() for l in lines] class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" _snake_case : Tuple = VOCAB_FILES_NAMES _snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : List[str] , A_ : int , A_ : Any="<unk>" , A_ : Dict="<cls>" , A_ : Optional[int]="<pad>" , A_ : str="<mask>" , A_ : Optional[int]="<eos>" , **A_ : Tuple , )-> Any: super().__init__(**_lowercase ) __UpperCamelCase = load_vocab_file(_lowercase ) __UpperCamelCase = dict(enumerate(self.all_tokens ) ) __UpperCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} __UpperCamelCase = unk_token __UpperCamelCase = cls_token __UpperCamelCase = pad_token __UpperCamelCase = mask_token __UpperCamelCase = eos_token __UpperCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A ( self : Optional[int] , A_ : int )-> Tuple: return self._id_to_token.get(_lowercase , self.unk_token ) def A ( self : Union[str, Any] , A_ : str )-> str: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token ) ) def A ( self : int , A_ : Dict , **A_ : List[str] )-> Union[str, Any]: return text.split() def A ( self : Union[str, Any] , A_ : int=False )-> Any: return len(self._id_to_token ) def A ( self : Dict )-> int: return {token: i for i, token in enumerate(self.all_tokens )} def A ( self : Optional[int] , A_ : str )-> str: return self._token_to_id.get(_lowercase , self._token_to_id.get(self.unk_token ) ) def A ( self : List[str] , A_ : int )-> List[Any]: return self._id_to_token.get(_lowercase , self.unk_token ) def A ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None )-> Optional[Any]: __UpperCamelCase = [self.cls_token_id] __UpperCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A ( self : List[str] , A_ : List , A_ : Optional[List] = None , A_ : bool = False )-> List[str]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __UpperCamelCase = [1] + ([0] * len(_lowercase )) + [1] if token_ids_a is not None: mask += [0] * len(_lowercase ) + [1] return mask def A ( self : Union[str, Any] , A_ : Any , A_ : Any )-> Dict: __UpperCamelCase = os.path.join(_lowercase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(_lowercase , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def A ( self : Tuple )-> List[Any]: return self.get_vocab_size(with_added_tokens=_lowercase ) def A ( self : int , A_ : Union[List[str], List[AddedToken]] , A_ : bool = False )-> Any: return super()._add_tokens(_lowercase , special_tokens=_lowercase )
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
'''simple docstring''' import os import sys __UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Any, **SCREAMING_SNAKE_CASE__: Optional[Any] ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: List[str], **SCREAMING_SNAKE_CASE__: List[str] ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Union[str, Any], **SCREAMING_SNAKE_CASE__: Any ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Union[str, Any], **SCREAMING_SNAKE_CASE__: Any ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Optional[Any], **SCREAMING_SNAKE_CASE__: Tuple ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Optional[int], **SCREAMING_SNAKE_CASE__: List[str] ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: int, **SCREAMING_SNAKE_CASE__: Optional[int] ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ )
448
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Any = torch.load(UpperCamelCase__ ,map_location="""cpu""" ) if "model" in sd.keys(): A_ : Tuple = torch.load(UpperCamelCase__ ,map_location="""cpu""" )["""model"""] # pop unnecessary weights A_ : Union[str, Any] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(UpperCamelCase__ ) A_ : Optional[Any] = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ : Optional[int] = sd.pop(UpperCamelCase__ ) A_ : List[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ : Optional[Any] = sd[key] # We split QKV in separate Q,K,V A_ : Tuple = key.replace(""".qkv_proj.""" ,""".q_proj.""" ) A_ : str = key.replace(""".qkv_proj.""" ,""".k_proj.""" ) A_ : Dict = key.replace(""".qkv_proj.""" ,""".v_proj.""" ) A_ : List[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ , A_ , A_ : Optional[Any] = torch.split(UpperCamelCase__ ,depth // 3 ,dim=0 ) A_ : Optional[Any] = q A_ : List[str] = k A_ : int = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase=None ): '''simple docstring''' A_ : Union[str, Any] = load_checkpoint(UpperCamelCase__ ) if config is not None: A_ : Optional[int] = OPTConfig.from_pretrained(UpperCamelCase__ ) else: A_ : Any = OPTConfig() A_ : int = OPTModel(UpperCamelCase__ ).half().eval() model.load_state_dict(UpperCamelCase__ ) # Check results Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _lowerCAmelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
569
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
from __future__ import annotations def _snake_case (__lowercase , __lowercase): if b == 0: return (1, 0) ((UpperCamelCase_) , (UpperCamelCase_)) = extended_euclid(UpperCamelCase__ , a % b) UpperCamelCase_ = a // b return (y, x - k * y) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): ((UpperCamelCase_) , (UpperCamelCase_)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__) UpperCamelCase_ = na * na UpperCamelCase_ = ra * x * na + ra * y * na return (n % m + m) % m def _snake_case (__lowercase , __lowercase): ((UpperCamelCase_) , (UpperCamelCase_)) = extended_euclid(UpperCamelCase__ , UpperCamelCase__) if b < 0: UpperCamelCase_ = (b % n + n) % n return b def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ , UpperCamelCase_ = invert_modulo(UpperCamelCase__ , UpperCamelCase__), invert_modulo(UpperCamelCase__ , UpperCamelCase__) UpperCamelCase_ = na * na UpperCamelCase_ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="""chinese_remainder_theorem""", verbose=True) testmod(name="""chinese_remainder_theorem2""", verbose=True) testmod(name="""invert_modulo""", verbose=True) testmod(name="""extended_euclid""", verbose=True)
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
from timeit import timeit def _a ( lowerCAmelCase )-> int: if number < 0: raise ValueError('the value of input must not be negative' ) SCREAMING_SNAKE_CASE_ = 0 while number: number &= number - 1 result += 1 return result def _a ( lowerCAmelCase )-> int: if number < 0: raise ValueError('the value of input must not be negative' ) SCREAMING_SNAKE_CASE_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _a ( )-> None: def do_benchmark(lowerCAmelCase ) -> None: SCREAMING_SNAKE_CASE_ = 'import __main__ as z' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(UpperCamelCase__ ) = }''' ) SCREAMING_SNAKE_CASE_ = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=UpperCamelCase__ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(UpperCamelCase__ ) = }''' ) SCREAMING_SNAKE_CASE_ = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=UpperCamelCase__ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(UpperCamelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
360
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() def UpperCAmelCase_ ( self : int ) -> str: '''simple docstring''' lowerCAmelCase_ , lowerCAmelCase_ : str = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" ,revision="bf16" ,dtype=jnp.bfloataa ,) lowerCAmelCase_ : Optional[Any] = "A painting of a squirrel eating a burger" lowerCAmelCase_ : Tuple = jax.device_count() lowerCAmelCase_ : str = num_samples * [prompt] lowerCAmelCase_ : Tuple = sd_pipe.prepare_inputs(_lowercase ) lowerCAmelCase_ : List[Any] = replicate(_lowercase ) lowerCAmelCase_ : List[Any] = shard(_lowercase ) lowerCAmelCase_ : Optional[Any] = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Dict = jax.random.split(_lowercase ,jax.device_count() ) lowerCAmelCase_ : Dict = sd_pipe(_lowercase ,_lowercase ,_lowercase ,num_inference_steps=25 ,jit=_lowercase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowerCAmelCase_ : Union[str, Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ : Dict = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase_ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ : Dict = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : str = "stabilityai/stable-diffusion-2" lowerCAmelCase_ , lowerCAmelCase_ : Tuple = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowercase ,subfolder="scheduler" ) lowerCAmelCase_ , lowerCAmelCase_ : Any = FlaxStableDiffusionPipeline.from_pretrained( _lowercase ,scheduler=_lowercase ,revision="bf16" ,dtype=jnp.bfloataa ,) lowerCAmelCase_ : Any = scheduler_params lowerCAmelCase_ : Dict = "A painting of a squirrel eating a burger" lowerCAmelCase_ : List[str] = jax.device_count() lowerCAmelCase_ : Dict = num_samples * [prompt] lowerCAmelCase_ : List[str] = sd_pipe.prepare_inputs(_lowercase ) lowerCAmelCase_ : List[str] = replicate(_lowercase ) lowerCAmelCase_ : List[Any] = shard(_lowercase ) lowerCAmelCase_ : int = jax.random.PRNGKey(0 ) lowerCAmelCase_ : Union[str, Any] = jax.random.split(_lowercase ,jax.device_count() ) lowerCAmelCase_ : int = sd_pipe(_lowercase ,_lowercase ,_lowercase ,num_inference_steps=25 ,jit=_lowercase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowerCAmelCase_ : Dict = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase_ : str = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase_ : Dict = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase_ : Optional[Any] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
659
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: A : Any = None A : str = logging.get_logger(__name__) A : List[str] = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} A : Any = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } A : int = { "google/rembert": 2_5_6, } A : List[Any] = "▁" class A ( UpperCAmelCase_ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = RemBertTokenizer def __init__(self : List[str] , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]="[CLS]" , _UpperCAmelCase : List[Any]="[SEP]" , _UpperCAmelCase : Optional[Any]="<unk>" , _UpperCAmelCase : List[Any]="[SEP]" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : Optional[Any]="[CLS]" , _UpperCAmelCase : int="[MASK]" , **_UpperCAmelCase : Optional[Any] , ) -> int: """simple docstring""" lowercase__ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = False if not self.vocab_file else True def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[str]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[str]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def lowerCamelCase__ (self : Tuple , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> Optional[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ (self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple: """simple docstring""" if not os.path.isdir(_lowercase ): logger.error("""Vocabulary path ({}) should be a directory""".format(_lowercase ) ) return lowercase__ = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
15
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
from __future__ import annotations from collections.abc import Iterator class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = value a_ = None a_ = None class lowercase_ : """simple docstring""" def __init__( self , _UpperCAmelCase ): """simple docstring""" a_ = tree def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
483
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self , lowercase_ , lowercase_ ) -> Union[str, Any]: UpperCAmelCase = jnp.ones((batch_size, length) ) / length return scores def a_ ( self ) -> str: UpperCAmelCase = None UpperCAmelCase = 2_0 UpperCAmelCase = self._get_uniform_logits(batch_size=2 , length=_lowercase ) # tweak scores to not be uniform anymore UpperCAmelCase = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCAmelCase = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCAmelCase = jax.nn.softmax(_lowercase , axis=-1 ) UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCAmelCase = jax.nn.softmax(temp_dist_warper_sharper(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) UpperCAmelCase = jax.nn.softmax(temp_dist_warper_smoother(_lowercase , scores.copy() , cur_len=_lowercase ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a_ ( self ) -> List[Any]: UpperCAmelCase = None UpperCAmelCase = 1_0 UpperCAmelCase = 2 # create ramp distribution UpperCAmelCase = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() UpperCAmelCase = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCAmelCase = FlaxTopKLogitsWarper(3 ) UpperCAmelCase = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCAmelCase = 5 UpperCAmelCase = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCAmelCase = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, length) ).copy() UpperCAmelCase = top_k_warp_safety_check(_lowercase , _lowercase , cur_len=_lowercase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a_ ( self ) -> Dict: UpperCAmelCase = None UpperCAmelCase = 1_0 UpperCAmelCase = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCAmelCase = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) UpperCAmelCase = np.exp(top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCAmelCase = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # check edge cases with negative and extreme logits UpperCAmelCase = np.broadcast_to(np.arange(_lowercase )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCAmelCase = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept UpperCAmelCase = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCAmelCase = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = 2_0 UpperCAmelCase = 4 UpperCAmelCase = 0 UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowercase ) # check that min length is applied at length 5 UpperCAmelCase = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) UpperCAmelCase = 5 UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf' )] ) # check that min length is not applied anymore at length 15 UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = 1_5 UpperCAmelCase = min_dist_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def a_ ( self ) -> List[Any]: UpperCAmelCase = 2_0 UpperCAmelCase = 4 UpperCAmelCase = 0 UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) # check that all scores are -inf except the bos_token_id score UpperCAmelCase = ids_tensor((batch_size, 1) , vocab_size=2_0 ) UpperCAmelCase = 1 UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCAmelCase = 3 UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def a_ ( self ) -> Optional[Any]: UpperCAmelCase = 2_0 UpperCAmelCase = 4 UpperCAmelCase = 0 UpperCAmelCase = 5 UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCAmelCase = ids_tensor((batch_size, 4) , vocab_size=2_0 ) UpperCAmelCase = 4 UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCAmelCase = 3 UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = logits_processor(_lowercase , _lowercase , cur_len=_lowercase ) self.assertFalse(jnp.isinf(_lowercase ).any() ) def a_ ( self ) -> Optional[int]: UpperCAmelCase = 4 UpperCAmelCase = 1_0 UpperCAmelCase = 1_5 UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 1_5 # dummy input_ids and scores UpperCAmelCase = ids_tensor((batch_size, sequence_length) , _lowercase ) UpperCAmelCase = input_ids.copy() UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = scores.copy() # instantiate all dist processors UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase = FlaxTopKLogitsWarper(3 ) UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowercase ) UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) UpperCAmelCase = 1_0 # no processor list UpperCAmelCase = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) # with processor list UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase = processor(_lowercase , _lowercase , cur_len=_lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a_ ( self ) -> Dict: UpperCAmelCase = 4 UpperCAmelCase = 1_0 UpperCAmelCase = 1_5 UpperCAmelCase = 2 UpperCAmelCase = 1 UpperCAmelCase = 1_5 # dummy input_ids and scores UpperCAmelCase = ids_tensor((batch_size, sequence_length) , _lowercase ) UpperCAmelCase = input_ids.copy() UpperCAmelCase = self._get_uniform_logits(_lowercase , _lowercase ) UpperCAmelCase = scores.copy() # instantiate all dist processors UpperCAmelCase = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase = FlaxTopKLogitsWarper(3 ) UpperCAmelCase = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=_lowercase ) UpperCAmelCase = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowercase ) UpperCAmelCase = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowercase , eos_token_id=_lowercase ) UpperCAmelCase = 1_0 # no processor list def run_no_processor_list(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = temp_dist_warp(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = top_k_warp(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = top_p_warp(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = min_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = bos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) UpperCAmelCase = eos_dist_proc(_lowercase , _lowercase , cur_len=_lowercase ) return scores # with processor list def run_processor_list(lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase = processor(_lowercase , _lowercase , cur_len=_lowercase ) return scores UpperCAmelCase = jax.jit(_lowercase ) UpperCAmelCase = jax.jit(_lowercase ) UpperCAmelCase = jitted_run_no_processor_list(_lowercase , _lowercase , _lowercase ) UpperCAmelCase = jitted_run_processor_list(_lowercase , _lowercase , _lowercase ) # scores should be equal self.assertTrue(jnp.allclose(_lowercase , _lowercase , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
373
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = None, **lowerCamelCase__, ): A : List[Any] = path_or_paths A : Optional[int] = split if split or isinstance(_lowercase, _lowercase ) else """train""" A : Union[str, Any] = features A : int = cache_dir A : str = keep_in_memory A : str = streaming A : Dict = num_proc A : Optional[Any] = kwargs @abstractmethod def _lowerCAmelCase ( self ): pass class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = False, lowerCamelCase__ = None, **lowerCamelCase__, ): A : List[str] = features A : Dict = cache_dir A : List[Any] = keep_in_memory A : str = streaming A : Tuple = num_proc A : Optional[Any] = kwargs @abstractmethod def _lowerCAmelCase ( self ): pass
662
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
import string from math import logaa def UpperCAmelCase__ ( lowerCamelCase_ : Dict , lowerCamelCase_ : str ): __a : Tuple = document.translate( str.maketrans('' , '' , string.punctuation ) ).replace('\n' , '' ) __a : Tuple = document_without_punctuation.split(' ' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def UpperCAmelCase__ ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] ): __a : Tuple = corpus.lower().translate( str.maketrans('' , '' , string.punctuation ) ) # strip all punctuation and replace it with '' __a : List[Any] = corpus_without_punctuation.split('\n' ) __a : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : List[str]=False ): if smoothing: if n == 0: raise ValueError('log10(0) is undefined.' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('df must be > 0' ) elif n == 0: raise ValueError('log10(0) is undefined.' ) return round(logaa(n / df ) , 3 ) def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] ): return round(tf * idf , 3 )
47
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
"""simple docstring""" from collections.abc import Sequence def lowercase (_snake_case = None ) -> int: '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) __UpperCamelCase = nums[0] for i in range(1 ,len(UpperCamelCase__ ) ): __UpperCamelCase = nums[i] __UpperCamelCase = max(UpperCamelCase__ ,ans + num ,UpperCamelCase__ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user _A = int(input("Enter number of elements : ").strip()) _A = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n] print(max_subsequence_sum(array))
505
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = {"configuration_glpn": ["GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP", "GLPNConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["GLPNFeatureExtractor"] __UpperCamelCase : Optional[int] = ["GLPNImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ "GLPN_PRETRAINED_MODEL_ARCHIVE_LIST", "GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
448
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _lowerCAmelCase = TypeVar("""T""") class _UpperCAmelCase ( Generic[T] ): def __init__( self , a__ ): A_ : Optional[int] = data A_ : List[str] = None def __str__( self ): return F"""{self.data}""" class _UpperCAmelCase ( Generic[T] ): def __init__( self ): A_ : Optional[int] = None def __iter__( self ): A_ : Optional[int] = self.top while node: yield node.data A_ : List[Any] = node.next def __str__( self ): return "->".join([str(_lowercase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def _lowerCamelCase ( self ): return self.top is None def _lowerCamelCase ( self , a__ ): A_ : int = Node(_lowercase ) if not self.is_empty(): A_ : Optional[int] = self.top A_ : List[str] = node def _lowerCamelCase ( self ): if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , _lowercase ) A_ : int = self.top A_ : List[str] = self.top.next return pop_node.data def _lowerCamelCase ( self ): if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def _lowerCamelCase ( self ): A_ : Union[str, Any] = None if __name__ == "__main__": from doctest import testmod testmod()
569
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
def _snake_case (__lowercase): assert isinstance(UpperCamelCase__ , UpperCamelCase__), f"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: UpperCamelCase_ = f"""The input value of [n={number}] has to be > 0""" raise ValueError(UpperCamelCase__) else: UpperCamelCase_ = sylvester(number - 1) UpperCamelCase_ = num - 1 UpperCamelCase_ = num return lower * upper + 1 if __name__ == "__main__": print(f'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging SCREAMING_SNAKE_CASE: Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowercase_ (UpperCAmelCase_ ): lowerCAmelCase__ =["pixel_values"] def __init__( self : List[str] , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_55 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : bool = True , **snake_case__ : Tuple , ): """simple docstring""" super().__init__(**_lowercase ) SCREAMING_SNAKE_CASE_ = size if size is not None else {'shortest_edge': 2_24} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase , default_to_square=_lowercase ) SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) SCREAMING_SNAKE_CASE_ = do_resize SCREAMING_SNAKE_CASE_ = size SCREAMING_SNAKE_CASE_ = resample SCREAMING_SNAKE_CASE_ = do_center_crop SCREAMING_SNAKE_CASE_ = crop_size SCREAMING_SNAKE_CASE_ = do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else OPENAI_CLIP_STD SCREAMING_SNAKE_CASE_ = do_convert_rgb def __a ( self : str , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) SCREAMING_SNAKE_CASE_ = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : str , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : List[str] , ): """simple docstring""" return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Union[str, Any] , ): """simple docstring""" return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : int = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : bool = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[ChannelDimension] = ChannelDimension.FIRST , **snake_case__ : int , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ = size if size is not None else self.size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) SCREAMING_SNAKE_CASE_ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE_ = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE_ = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) SCREAMING_SNAKE_CASE_ = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb SCREAMING_SNAKE_CASE_ = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: SCREAMING_SNAKE_CASE_ = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ = [to_numpy_array(_lowercase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE_ = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] SCREAMING_SNAKE_CASE_ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] SCREAMING_SNAKE_CASE_ = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def UpperCamelCase ( snake_case__ , snake_case__=10): lowerCAmelCase_ : Union[str, Any] = [] for _ in range(UpperCamelCase__): lrs.append(scheduler.get_lr()[0]) scheduler.step() return lrs def UpperCamelCase ( snake_case__ , snake_case__=10): lowerCAmelCase_ : str = [] for step in range(UpperCamelCase__): lrs.append(scheduler.get_lr()[0]) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : Tuple = os.path.join(UpperCamelCase__ , "schedule.bin") torch.save(scheduler.state_dict() , UpperCamelCase__) lowerCAmelCase_ : Union[str, Any] = torch.load(UpperCamelCase__) scheduler.load_state_dict(UpperCamelCase__) return lrs @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Any ) -> Tuple: '''simple docstring''' self.assertEqual(len(_lowercase ) ,len(_lowercase ) ) for a, b in zip(_lowercase ,_lowercase ): self.assertAlmostEqual(_lowercase ,_lowercase ,delta=_lowercase ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=_lowercase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase_ : int = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase_ : List[str] = AdamW(params=[w] ,lr=2e-1 ,weight_decay=0.0 ) for _ in range(1_00 ): lowerCAmelCase_ : str = criterion(_lowercase ,_lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Dict = torch.tensor([0.1, -0.2, -0.1] ,requires_grad=_lowercase ) lowerCAmelCase_ : str = torch.tensor([0.4, 0.2, -0.5] ) lowerCAmelCase_ : Tuple = nn.MSELoss() # No warmup, constant schedule, no gradient clipping lowerCAmelCase_ : str = Adafactor( params=[w] ,lr=1e-2 ,eps=(1e-3_0, 1e-3) ,clip_threshold=1.0 ,decay_rate=-0.8 ,betaa=_lowercase ,weight_decay=0.0 ,relative_step=_lowercase ,scale_parameter=_lowercase ,warmup_init=_lowercase ,) for _ in range(10_00 ): lowerCAmelCase_ : Any = criterion(_lowercase ,_lowercase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() ,[0.4, 0.2, -0.5] ,tol=1e-2 ) @require_torch class __snake_case ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None UpperCamelCase_ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCamelCase_ = 1_0 def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[int]=None ) -> Optional[Any]: '''simple docstring''' self.assertEqual(len(_lowercase ) ,len(_lowercase ) ) for a, b in zip(_lowercase ,_lowercase ): self.assertAlmostEqual(_lowercase ,_lowercase ,delta=_lowercase ,msg=_lowercase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : int = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) lowerCAmelCase_ : str = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): lowerCAmelCase_ , lowerCAmelCase_ : Dict = data lowerCAmelCase_ : Any = scheduler_func(self.optimizer ,**_lowercase ) self.assertEqual(len([scheduler.get_lr()[0]] ) ,1 ) lowerCAmelCase_ : Dict = unwrap_schedule(_lowercase ,self.num_steps ) self.assertListAlmostEqual( _lowercase ,_lowercase ,tol=1e-2 ,msg=f'''failed for {scheduler_func} in normal scheduler''' ,) lowerCAmelCase_ : Optional[Any] = scheduler_func(self.optimizer ,**_lowercase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_lowercase ) # wrap to test picklability of the schedule lowerCAmelCase_ : Optional[int] = unwrap_and_save_reload_schedule(_lowercase ,self.num_steps ) self.assertListEqual(_lowercase ,_lowercase ,msg=f'''failed for {scheduler_func} in save and reload''' ) class __snake_case : """simple docstring""" def __init__( self : Union[str, Any] ,lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = fn def __call__( self : Tuple ,*lowerCAmelCase__ : Tuple ,**lowerCAmelCase__ : Tuple ) -> str: '''simple docstring''' return self.fn(*_lowercase ,**_lowercase ) @classmethod def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : List[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = list(map(self ,scheduler.lr_lambdas ) )
659
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
def UpperCamelCase ( __magic_name__ : Any ) -> int: """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 lowercase__ , lowercase__ = 1, 1 for _ in range(number_of_steps - 1 ): lowercase__ , lowercase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
15
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A_ : Union[str, Any] ={"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A_ : Optional[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
483
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class _UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , **lowercase_ ) -> Any: super().__init__(**_lowercase ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowercase_ , **lowercase_ ) -> Dict: return super().__call__(_lowercase , **_lowercase ) def a_ ( self , **lowercase_ ) -> int: UpperCAmelCase = {} if "candidate_labels" in kwargs: UpperCAmelCase = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: UpperCAmelCase = kwargs['hypothesis_template'] return preprocess_params, {}, {} def a_ ( self , lowercase_ , lowercase_=None , lowercase_="This is a photo of {}." ) -> List[Any]: UpperCAmelCase = load_image(_lowercase ) UpperCAmelCase = self.image_processor(images=[image] , return_tensors=self.framework ) UpperCAmelCase = candidate_labels UpperCAmelCase = [hypothesis_template.format(_lowercase ) for x in candidate_labels] UpperCAmelCase = self.tokenizer(_lowercase , return_tensors=self.framework , padding=_lowercase ) UpperCAmelCase = [text_inputs] return inputs def a_ ( self , lowercase_ ) -> str: UpperCAmelCase = model_inputs.pop('candidate_labels' ) UpperCAmelCase = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , _lowercase ): UpperCAmelCase = text_inputs[0] else: # Batching case. UpperCAmelCase = text_inputs[0][0] UpperCAmelCase = self.model(**_lowercase , **_lowercase ) UpperCAmelCase = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def a_ ( self , lowercase_ ) -> Tuple: UpperCAmelCase = model_outputs.pop('candidate_labels' ) UpperCAmelCase = model_outputs['logits'][0] if self.framework == "pt": UpperCAmelCase = logits.softmax(dim=-1 ).squeeze(-1 ) UpperCAmelCase = probs.tolist() if not isinstance(_lowercase , _lowercase ): UpperCAmelCase = [scores] elif self.framework == "tf": UpperCAmelCase = stable_softmax(_lowercase , axis=-1 ) UpperCAmelCase = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) UpperCAmelCase = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(_lowercase , _lowercase ) , key=lambda lowercase_ : -x[0] ) ] return result
373
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE_:Dict = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_:str = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_:str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
662
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase( UpperCAmelCase_ ): def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=7_6_8 ): '''simple docstring''' super().__init__(_lowercase ) __a : int = proj_size __a : List[Any] = CLIPVisionModel(_lowercase ) __a : Union[str, Any] = PaintByExampleMapper(_lowercase ) __a : str = nn.LayerNorm(config.hidden_size ) __a : Any = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling __a : List[str] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any=False ): '''simple docstring''' __a : Tuple = self.model(pixel_values=_lowercase ) __a : Tuple = clip_output.pooler_output __a : Tuple = self.mapper(latent_states[:, None] ) __a : List[str] = self.final_layer_norm(_lowercase ) __a : Optional[int] = self.proj_out(_lowercase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _UpperCamelCase( nn.Module ): def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' super().__init__() __a : Any = (config.num_hidden_layers + 1) // 5 __a : int = config.hidden_size __a : Tuple = 1 __a : int = nn.ModuleList( [ BasicTransformerBlock(_lowercase , _lowercase , _lowercase , activation_fn='gelu' , attention_bias=_lowercase ) for _ in range(_lowercase ) ] ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' for block in self.blocks: __a : Tuple = block(_lowercase ) return hidden_states
47
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _A = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase (_snake_case ,_snake_case ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,_snake_case=None ,) -> Any: '''simple docstring''' if attention_mask is None: __UpperCamelCase = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: __UpperCamelCase = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: __UpperCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , A_ : List[str] , A_ : Dict=13 , A_ : str=7 , A_ : List[Any]=True , A_ : Optional[int]=False , A_ : Optional[int]=99 , A_ : str=16 , A_ : Optional[Any]=2 , A_ : Optional[int]=4 , A_ : List[Any]=4 , A_ : Optional[Any]="gelu" , A_ : Optional[int]=0.1 , A_ : Optional[int]=0.1 , A_ : List[str]=32 , A_ : str=2 , A_ : Any=1 , A_ : Tuple=0 , A_ : List[str]=0.02 , )-> Tuple: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = eos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = initializer_range def A ( self : Any )-> Optional[Any]: __UpperCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase = shift_tokens_right(_lowercase , 1 , 2 ) __UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowercase , ) __UpperCamelCase = prepare_blenderbot_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def A ( self : Optional[int] )-> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def A ( self : Union[str, Any] , A_ : str , A_ : Any , A_ : Any )-> Optional[Any]: __UpperCamelCase = 20 __UpperCamelCase = model_class_name(_lowercase ) __UpperCamelCase = model.encode(inputs_dict["input_ids"] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) __UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowercase , ) __UpperCamelCase = model.decode(_lowercase , _lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def A ( self : List[str] , A_ : Tuple , A_ : Union[str, Any] , A_ : Dict )-> Optional[int]: __UpperCamelCase = 20 __UpperCamelCase = model_class_name(_lowercase ) __UpperCamelCase = model.encode(inputs_dict["input_ids"] ) __UpperCamelCase , __UpperCamelCase = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __UpperCamelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , _lowercase , _lowercase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase = model.decode( decoder_input_ids[:, :-1] , _lowercase , decoder_attention_mask=_lowercase , past_key_values=_lowercase , decoder_position_ids=_lowercase , ) __UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __UpperCamelCase = model.decode( decoder_input_ids[:, -1:] , _lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowercase , decoder_position_ids=_lowercase , ) __UpperCamelCase = model.decode(_lowercase , _lowercase , decoder_attention_mask=_lowercase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : str = 9_9 def A ( self : Any )-> Any: __UpperCamelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def A ( self : List[Any] )-> List[str]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._get_config_and_data() __UpperCamelCase = FlaxBlenderbotForConditionalGeneration(_lowercase ) __UpperCamelCase = lm_model(input_ids=_lowercase ) __UpperCamelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowercase ) def A ( self : int )-> List[Any]: __UpperCamelCase = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCamelCase = FlaxBlenderbotForConditionalGeneration(_lowercase ) __UpperCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase = lm_model(input_ids=_lowercase , decoder_input_ids=_lowercase ) __UpperCamelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , _lowercase ) def A ( self : Dict )-> Tuple: __UpperCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCamelCase = shift_tokens_right(_lowercase , 1 , 2 ) __UpperCamelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() __UpperCamelCase = np.equal(_lowercase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowercase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __UpperCAmelCase ( UpperCAmelCase_ , unittest.TestCase , UpperCAmelCase_ ): """simple docstring""" _snake_case : Tuple = True _snake_case : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _snake_case : List[Any] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def A ( self : str )-> str: __UpperCamelCase = FlaxBlenderbotModelTester(self ) def A ( self : Dict )-> Any: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowercase , _lowercase , _lowercase ) def A ( self : Any )-> int: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowercase , _lowercase , _lowercase ) def A ( self : Tuple )-> int: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCamelCase = model_class(_lowercase ) @jax.jit def encode_jitted(A_ : Any , A_ : Optional[int]=None , **A_ : Optional[Any] ): return model.encode(input_ids=_lowercase , attention_mask=_lowercase ) with self.subTest("JIT Enabled" ): __UpperCamelCase = encode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCamelCase = encode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def A ( self : str )-> Optional[int]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase = model_class(_lowercase ) __UpperCamelCase = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __UpperCamelCase = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(A_ : List[str] , A_ : List[Any] , A_ : Dict ): return model.decode( decoder_input_ids=_lowercase , decoder_attention_mask=_lowercase , encoder_outputs=_lowercase , ) with self.subTest("JIT Enabled" ): __UpperCamelCase = decode_jitted(**_lowercase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCamelCase = decode_jitted(**_lowercase ).to_tuple() self.assertEqual(len(_lowercase ) , len(_lowercase ) ) for jitted_output, output in zip(_lowercase , _lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def A ( self : Dict )-> List[Any]: for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase = np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase = model(_lowercase ) self.assertIsNotNone(_lowercase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def A ( self : int )-> str: __UpperCamelCase = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} __UpperCamelCase = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} __UpperCamelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=_lowercase ) __UpperCamelCase = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) __UpperCamelCase = ["Sam"] __UpperCamelCase = tokenizer(_lowercase , return_tensors="jax" ) __UpperCamelCase = model.generate(**_lowercase , **_lowercase ) __UpperCamelCase = "Sam is a great name. It means \"sun\" in Gaelic." __UpperCamelCase = tokenizer.batch_decode(_lowercase , **_lowercase ) assert generated_txt[0].strip() == tgt_text
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Union[str, Any] = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
448
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import math import sys import cva import numpy as np def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Union[str, Any] = math.sqrt(UpperCamelCase__ ) A_ : Union[str, Any] = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Union[str, Any] = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = np.zeros((kernel_size, kernel_size) ) for i in range(0 ,UpperCamelCase__ ): for j in range(0 ,UpperCamelCase__ ): A_ : Tuple = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(UpperCamelCase__ ,UpperCamelCase__ ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): '''simple docstring''' A_ : List[str] = np.zeros(img.shape ) A_ : List[Any] = get_gauss_kernel(UpperCamelCase__ ,UpperCamelCase__ ) A_ , A_ : List[Any] = img.shape for i in range(kernel_size // 2 ,size_x - kernel_size // 2 ): for j in range(kernel_size // 2 ,size_y - kernel_size // 2 ): A_ : Any = get_slice(UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ) A_ : Optional[int] = img_s - img_s[kernel_size // 2, kernel_size // 2] A_ : Optional[int] = vec_gaussian(UpperCamelCase__ ,UpperCamelCase__ ) A_ : int = np.multiply(UpperCamelCase__ ,UpperCamelCase__ ) A_ : List[Any] = np.multiply(UpperCamelCase__ ,UpperCamelCase__ ) A_ : Dict = np.sum(UpperCamelCase__ ) / np.sum(UpperCamelCase__ ) A_ : Dict = val return imga def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = args[1] if args[1:] else """../image_data/lena.jpg""" A_ : int = float(args[2] ) if args[2:] else 1.0 A_ : List[str] = float(args[3] ) if args[3:] else 1.0 if args[4:]: A_ : List[str] = int(args[4] ) A_ : str = kernel_size + abs(kernel_size % 2 - 1 ) else: A_ : Union[str, Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": _lowerCAmelCase = parse_args(sys.argv) _lowerCAmelCase = cva.imread(filename, 0) cva.imshow("""input image""", img) _lowerCAmelCase = img / 255 _lowerCAmelCase = out.astype("""float32""") _lowerCAmelCase = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) _lowerCAmelCase = out * 255 _lowerCAmelCase = np.uinta(out) cva.imshow("""output image""", out) cva.waitKey(0) cva.destroyAllWindows()
569
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) snake_case__ : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } snake_case__ : List[str] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase): for attribute in key.split('.'): UpperCamelCase_ = getattr(UpperCamelCase__ , UpperCamelCase__) if weight_type is not None: UpperCamelCase_ = getattr(UpperCamelCase__ , UpperCamelCase__).shape else: UpperCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCamelCase_ = value elif weight_type == "weight_g": UpperCamelCase_ = value elif weight_type == "weight_v": UpperCamelCase_ = value elif weight_type == "bias": UpperCamelCase_ = value else: UpperCamelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""") def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = [] UpperCamelCase_ = fairseq_model.state_dict() UpperCamelCase_ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCamelCase_ = None for name, value in fairseq_dict.items(): UpperCamelCase_ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase_ = True elif name.split('.')[0] == "proj": UpperCamelCase_ = fairseq_model.proj UpperCamelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase_ = True if "*" in mapped_key: UpperCamelCase_ = name.split(UpperCamelCase__)[0].split('.')[-2] UpperCamelCase_ = mapped_key.replace('*' , UpperCamelCase__) if "weight_g" in name: UpperCamelCase_ = 'weight_g' elif "weight_v" in name: UpperCamelCase_ = 'weight_v' elif "bias" in name: UpperCamelCase_ = 'bias' elif "weight" in name: UpperCamelCase_ = 'weight' else: UpperCamelCase_ = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) continue if not is_used: unused_weights.append(UpperCamelCase__) logger.warning(f"""Unused weights: {unused_weights}""") return proj_weight def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = full_name.split('conv_layers.')[-1] UpperCamelCase_ = name.split('.') UpperCamelCase_ = int(items[0]) UpperCamelCase_ = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCamelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCamelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCamelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCamelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""") else: unused_weights.append(UpperCamelCase__) def _snake_case (__lowercase): UpperCamelCase_ , UpperCamelCase_ = emb.weight.shape UpperCamelCase_ = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__) UpperCamelCase_ = emb.weight.data return lin_layer def _snake_case (__lowercase): with open(UpperCamelCase__ , 'r' , encoding='utf-8') as f: UpperCamelCase_ = f.readlines() UpperCamelCase_ = [line.split(' ')[0] for line in lines] UpperCamelCase_ = len(UpperCamelCase__) UpperCamelCase_ = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(UpperCamelCase__ , range(4 , num_words + 4)))) return vocab_dict @torch.no_grad() def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ): UpperCamelCase_ = WavaVecaConfig.from_pretrained(UpperCamelCase__) UpperCamelCase_ = SpeechaTextaConfig.from_pretrained( UpperCamelCase__ , vocab_size=UpperCamelCase__ , decoder_layers=UpperCamelCase__ , do_stable_layer_norm=UpperCamelCase__) UpperCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) UpperCamelCase_ = model[0].eval() # set weights for wav2vec2 encoder UpperCamelCase_ = WavaVecaModel(UpperCamelCase__) UpperCamelCase_ = recursively_load_weights_wavaveca(model.encoder , UpperCamelCase__) UpperCamelCase_ = SpeechaTextaForCausalLM(UpperCamelCase__) UpperCamelCase_ , UpperCamelCase_ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase__) # set output linear layer unexpected_keys.remove('embed_out') UpperCamelCase_ = nn.Parameter(model.decoder.embed_out.detach()) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""") logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""") UpperCamelCase_ = SpeechEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__) UpperCamelCase_ = False # add projection layer UpperCamelCase_ = nn.Parameter(projection_layer.weight) UpperCamelCase_ = nn.Parameter(projection_layer.bias) UpperCamelCase_ = create_vocab_dict(UpperCamelCase__) with open(os.path.join(UpperCamelCase__ , 'vocab.json') , 'w') as fp: json.dump(UpperCamelCase__ , UpperCamelCase__) UpperCamelCase_ = SpeechaTextaTokenizer(os.path.join(UpperCamelCase__ , 'vocab.json')) tokenizer.save_pretrained(UpperCamelCase__) UpperCamelCase_ = hf_wavavec.config.to_dict() UpperCamelCase_ = tokenizer.pad_token_id UpperCamelCase_ = tokenizer.bos_token_id UpperCamelCase_ = tokenizer.eos_token_id UpperCamelCase_ = 'speech_to_text_2' UpperCamelCase_ = 'wav2vec2' UpperCamelCase_ = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase__) hf_wavavec.save_pretrained(UpperCamelCase__) feature_extractor.save_pretrained(UpperCamelCase__) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0_2_2_4, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") snake_case__ : List[Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE: Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE: Optional[Any] = {"vocab_file": "spiece.model"} SCREAMING_SNAKE_CASE: str = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } SCREAMING_SNAKE_CASE: Dict = { "AI-Sweden/gpt-sw3-126m": 2_0_4_8, "AI-Sweden/gpt-sw3-350m": 2_0_4_8, "AI-Sweden/gpt-sw3-1.6b": 2_0_4_8, "AI-Sweden/gpt-sw3-6.7b": 2_0_4_8, "AI-Sweden/gpt-sw3-20b": 2_0_4_8, } class lowercase_ (UpperCAmelCase_ ): lowerCAmelCase__ =VOCAB_FILES_NAMES lowerCAmelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ =["input_ids", "attention_mask"] def __init__( self : str , snake_case__ : str , snake_case__ : Union[str, Any]=False , snake_case__ : List[Any]=False , snake_case__ : str=False , snake_case__ : Any=None , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Optional[int] , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) SCREAMING_SNAKE_CASE_ = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing SCREAMING_SNAKE_CASE_ = '<|endoftext|>' if eos_token is None else eos_token SCREAMING_SNAKE_CASE_ = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: SCREAMING_SNAKE_CASE_ = unk_token if pad_token is None else pad_token SCREAMING_SNAKE_CASE_ = eos_token if bos_token is None else bos_token else: SCREAMING_SNAKE_CASE_ = '<pad>' if pad_token is None else pad_token SCREAMING_SNAKE_CASE_ = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) # Used for whitespace normalization in input texts # fmt : off SCREAMING_SNAKE_CASE_ = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing SCREAMING_SNAKE_CASE_ = re.compile( f'''[{"".join(map(_lowercase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]''' ) def __getstate__( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.__dict__.copy() SCREAMING_SNAKE_CASE_ = None return state def __setstate__( self : str , snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def __a ( self : Any ): """simple docstring""" return len(self.sp_model ) def __a ( self : str , snake_case__ : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.non_printing_characters_re.sub('' , _lowercase ) # Normalize whitespaces SCREAMING_SNAKE_CASE_ = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization SCREAMING_SNAKE_CASE_ = unicodedata.normalize('NFC' , _lowercase ) return text def __a ( self : List[Any] , snake_case__ : str , **snake_case__ : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.preprocess_text(_lowercase ) return self.sp_model.encode(_lowercase , out_type=_lowercase ) def __a ( self : List[str] , snake_case__ : str ): """simple docstring""" return self.sp_model.PieceToId(_lowercase ) def __a ( self : Dict , snake_case__ : int ): """simple docstring""" return self.sp_model.IdToPiece(_lowercase ) @staticmethod def __a ( snake_case__ : str ): """simple docstring""" return out_string def __a ( self : int , snake_case__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = '' SCREAMING_SNAKE_CASE_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = [] else: current_sub_tokens.append(_lowercase ) SCREAMING_SNAKE_CASE_ = False out_string += self.sp_model.decode(_lowercase ) return out_string def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,) def __a ( self : Any , snake_case__ : Union[str, List[str]] , snake_case__ : Union[str, bool] = False ): """simple docstring""" if isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE_ = self.preprocess_text(_lowercase ) SCREAMING_SNAKE_CASE_ = self.sp_model.encode(_lowercase ) else: SCREAMING_SNAKE_CASE_ = [self.preprocess_text(_lowercase ) for t in text] SCREAMING_SNAKE_CASE_ = self.sp_model.encode(_lowercase ) if return_tensors is True or return_tensors == "pt": SCREAMING_SNAKE_CASE_ = torch.tensor(_lowercase ) return token_ids def __a ( self : Union[str, Any] , snake_case__ : Union[int, List[int]] ): """simple docstring""" return self.sp_model.decode(_lowercase ) def __a ( self : int , snake_case__ : "Conversation" ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] SCREAMING_SNAKE_CASE_ = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(_lowercase ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=_lowercase )
360
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__=5): assert masked_input.count("<mask>") == 1 lowerCAmelCase_ : int = torch.tensor(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__)).unsqueeze(0) # Batch size 1 lowerCAmelCase_ : Dict = model(UpperCamelCase__)[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase_ : List[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase_ : Dict = logits[0, masked_index, :] lowerCAmelCase_ : int = logits.softmax(dim=0) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = prob.topk(k=UpperCamelCase__ , dim=0) lowerCAmelCase_ : Tuple = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item()) for i in range(len(UpperCamelCase__))]) lowerCAmelCase_ : Optional[Any] = tokenizer.mask_token lowerCAmelCase_ : List[str] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" ")): lowerCAmelCase_ : Any = predicted_token_bpe.replace("\u2581" , " ") if " {0}".format(UpperCamelCase__) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(UpperCamelCase__) , UpperCamelCase__), values[index].item(), predicted_token, )) else: topk_filled_outputs.append( ( masked_input.replace(UpperCamelCase__ , UpperCamelCase__), values[index].item(), predicted_token, )) return topk_filled_outputs _lowercase = CamembertTokenizer.from_pretrained('''camembert-base''') _lowercase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() _lowercase = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
659
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : Dict = logging.get_logger(__name__) class A ( UpperCAmelCase_ ): '''simple docstring''' A__ = ['''pixel_values'''] def __init__(self : str , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 255 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , **_UpperCAmelCase : Any , ) -> Optional[int]: """simple docstring""" super().__init__(**_lowercase ) lowercase__ = size if size is not None else {"""shortest_edge""": 256} lowercase__ = get_size_dict(_lowercase , default_to_square=_lowercase ) lowercase__ = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} lowercase__ = get_size_dict(_lowercase ) lowercase__ = do_resize lowercase__ = size lowercase__ = resample lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ (self : Any , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" lowercase__ = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) lowercase__ = get_resize_output_image_size(_lowercase , size=size["""shortest_edge"""] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> str: """simple docstring""" lowercase__ = get_size_dict(_lowercase ) return center_crop(_lowercase , size=(size["""height"""], size["""width"""]) , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ (self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : int , ) -> Dict: """simple docstring""" return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_UpperCAmelCase : Any , ) -> int: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(_lowercase , default_to_square=_lowercase ) lowercase__ = resample if resample is not None else self.resample lowercase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase__ = crop_size if crop_size is not None else self.crop_size lowercase__ = get_size_dict(_lowercase ) lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(_lowercase ) for image in images] if do_resize: lowercase__ = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: lowercase__ = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] lowercase__ = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] lowercase__ = {"""pixel_values""": images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
15
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": A_ : Optional[Any] =argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) A_ : List[str] =parser.parse_args() A_ : List[Any] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) A_ : Dict =CLIPImageProcessor() A_ : List[Any] =CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") A_ : Dict =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
483
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" from sklearn.metrics import recall_score import datasets SCREAMING_SNAKE_CASE_ = "\nRecall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation:\nRecall = TP / (TP + FN)\nWhere TP is the true positives and FN is the false negatives.\n" SCREAMING_SNAKE_CASE_ = "\nArgs:\n- **predictions** (`list` of `int`): The predicted labels.\n- **references** (`list` of `int`): The ground truth labels.\n- **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None.\n- **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`.\n- **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary.\n - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives.\n - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall.\n - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n- **sample_weight** (`list` of `float`): Sample weights Defaults to `None`.\n- **zero_division** (): Sets the value to return when there is a zero division. Defaults to .\n - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised.\n - `0`: If there is a zero division, the return value is `0`.\n - `1`: If there is a zero division, the return value is `1`.\n\nReturns:\n- **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better.\n\nExamples:\n\n Example 1-A simple example with some errors\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1])\n >>> print(results)\n {'recall': 0.6666666666666666}\n\n Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`.\n >>> recall_metric = datasets.load_metric('recall')\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0)\n >>> print(results)\n {'recall': 0.5}\n\n Example 3-The same example as Example 1, but with `sample_weight` included.\n >>> recall_metric = datasets.load_metric('recall')\n >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8]\n >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight)\n >>> print(results)\n {'recall': 0.55}\n\n Example 4-A multiclass example, using different averages.\n >>> recall_metric = datasets.load_metric('recall')\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted')\n >>> print(results)\n {'recall': 0.3333333333333333}\n >>> results = recall_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'recall': array([1., 0., 0.])}\n" SCREAMING_SNAKE_CASE_ = "\n@article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def a_ ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('int32' ) ), 'references': datasets.Sequence(datasets.Value('int32' ) ), } if self.config_name == 'multilabel' else { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=['https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html'] , ) def a_ ( self , lowercase_ , lowercase_ , lowercase_=None , lowercase_=1 , lowercase_="binary" , lowercase_=None , lowercase_="warn" , ) -> List[str]: UpperCAmelCase = recall_score( _lowercase , _lowercase , labels=_lowercase , pos_label=_lowercase , average=_lowercase , sample_weight=_lowercase , zero_division=_lowercase , ) return {"recall": float(_lowercase ) if score.size == 1 else score}
373
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : Tuple = tempfile.mkdtemp() A : Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] A : Union[str, Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) A : List[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } A : str = os.path.join(self.tmpdirname, _lowercase ) with open(self.image_processor_file, """w""", encoding="""utf-8""" ) as fp: json.dump(_lowercase, _lowercase ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BertTokenizer.from_pretrained(self.tmpdirname, **_lowercase ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BertTokenizerFast.from_pretrained(self.tmpdirname, **_lowercase ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname, **_lowercase ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): A : Optional[Any] = [np.random.randint(255, size=(3, 30, 400), dtype=np.uinta )] A : List[str] = [Image.fromarray(np.moveaxis(_lowercase, 0, -1 ) ) for x in image_inputs] return image_inputs def _lowerCAmelCase ( self ): A : Optional[Any] = self.get_tokenizer() A : int = self.get_rust_tokenizer() A : Dict = self.get_image_processor() A : int = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) processor_slow.save_pretrained(self.tmpdirname ) A : Any = AlignProcessor.from_pretrained(self.tmpdirname, use_fast=_lowercase ) A : str = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) processor_fast.save_pretrained(self.tmpdirname ) A : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer, _lowercase ) self.assertIsInstance(processor_fast.tokenizer, _lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor, _lowercase ) self.assertIsInstance(processor_fast.image_processor, _lowercase ) def _lowerCAmelCase ( self ): A : List[str] = AlignProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A : Optional[int] = self.get_tokenizer(bos_token="""(BOS)""", eos_token="""(EOS)""" ) A : List[str] = self.get_image_processor(do_normalize=_lowercase, padding_value=1.0 ) A : Any = AlignProcessor.from_pretrained( self.tmpdirname, bos_token="""(BOS)""", eos_token="""(EOS)""", do_normalize=_lowercase, padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer, _lowercase ) self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor, _lowercase ) def _lowerCAmelCase ( self ): A : Any = self.get_image_processor() A : Dict = self.get_tokenizer() A : Optional[Any] = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) A : Tuple = self.prepare_image_inputs() A : Tuple = image_processor(_lowercase, return_tensors="""np""" ) A : Tuple = processor(images=_lowercase, return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2 ) def _lowerCAmelCase ( self ): A : Dict = self.get_image_processor() A : List[Any] = self.get_tokenizer() A : Union[str, Any] = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) A : str = """lower newer""" A : List[Any] = processor(text=_lowercase ) A : Union[str, Any] = tokenizer(_lowercase, padding="""max_length""", max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowerCAmelCase ( self ): A : Dict = self.get_image_processor() A : Union[str, Any] = self.get_tokenizer() A : int = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) A : int = """lower newer""" A : int = self.prepare_image_inputs() A : int = processor(text=_lowercase, images=_lowercase ) self.assertListEqual(list(inputs.keys() ), ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def _lowerCAmelCase ( self ): A : Union[str, Any] = self.get_image_processor() A : Optional[int] = self.get_tokenizer() A : List[Any] = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) A : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A : Dict = processor.batch_decode(_lowercase ) A : List[Any] = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase, _lowercase ) def _lowerCAmelCase ( self ): A : str = self.get_image_processor() A : Optional[int] = self.get_tokenizer() A : List[Any] = AlignProcessor(tokenizer=_lowercase, image_processor=_lowercase ) A : Optional[Any] = """lower newer""" A : int = self.prepare_image_inputs() A : List[Any] = processor(text=_lowercase, images=_lowercase ) self.assertListEqual(list(inputs.keys() ), processor.model_input_names )
662
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class _UpperCamelCase( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : Any = '''deta''' __SCREAMING_SNAKE_CASE : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=9_0_0 , SCREAMING_SNAKE_CASE__ : Tuple=2_0_4_8 , SCREAMING_SNAKE_CASE__ : int=6 , SCREAMING_SNAKE_CASE__ : List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Dict=1_0_2_4 , SCREAMING_SNAKE_CASE__ : Any=8 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.0 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str="relu" , SCREAMING_SNAKE_CASE__ : List[Any]=2_5_6 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Dict=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : int=1.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : Tuple="sine" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5 , SCREAMING_SNAKE_CASE__ : Optional[int]=4 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Any=3_0_0 , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Tuple=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=5 , SCREAMING_SNAKE_CASE__ : str=2 , SCREAMING_SNAKE_CASE__ : List[str]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.25 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __a : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(_lowercase , _lowercase ): __a : List[str] = backbone_config.pop('model_type' ) __a : Optional[Any] = CONFIG_MAPPING[backbone_model_type] __a : str = config_class.from_dict(_lowercase ) __a : List[str] = backbone_config __a : int = num_queries __a : List[str] = max_position_embeddings __a : List[str] = d_model __a : int = encoder_ffn_dim __a : int = encoder_layers __a : List[Any] = encoder_attention_heads __a : Tuple = decoder_ffn_dim __a : Union[str, Any] = decoder_layers __a : str = decoder_attention_heads __a : Tuple = dropout __a : int = attention_dropout __a : Dict = activation_dropout __a : Union[str, Any] = activation_function __a : int = init_std __a : Dict = init_xavier_std __a : Tuple = encoder_layerdrop __a : Optional[int] = auxiliary_loss __a : Any = position_embedding_type # deformable attributes __a : str = num_feature_levels __a : List[str] = encoder_n_points __a : int = decoder_n_points __a : Any = two_stage __a : str = two_stage_num_proposals __a : Dict = with_box_refine __a : Tuple = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __a : Tuple = class_cost __a : Optional[int] = bbox_cost __a : List[Any] = giou_cost # Loss coefficients __a : Optional[int] = mask_loss_coefficient __a : Union[str, Any] = dice_loss_coefficient __a : Any = bbox_loss_coefficient __a : List[Any] = giou_loss_coefficient __a : List[str] = eos_coefficient __a : Any = focal_alpha super().__init__(is_encoder_decoder=_lowercase , **_lowercase ) @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.encoder_attention_heads @property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.d_model def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : Optional[int] = copy.deepcopy(self.__dict__ ) __a : List[Any] = self.backbone_config.to_dict() __a : Optional[Any] = self.__class__.model_type return output
47
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
"""simple docstring""" def lowercase (_snake_case ) -> bool: '''simple docstring''' if num < 0: return False __UpperCamelCase = num __UpperCamelCase = 0 while num > 0: __UpperCamelCase = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
505
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") __UpperCamelCase : Tuple = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : __a =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __a =field( default=UpperCAmelCase_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __a =field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __a =field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __a =field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : __a =field( default=UpperCAmelCase_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Train language if it is different from the evaluation language."} ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a =field( default=UpperCAmelCase_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __a =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __a =field( default=UpperCAmelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) __a =field( default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __a , __a , __a = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli', UpperCamelCase__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) datasets.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __a = load_dataset( 'xnli', model_args.language, split='train', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: __a = load_dataset( 'xnli', model_args.train_language, split='train', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) __a = train_dataset.features['label'].names if training_args.do_eval: __a = load_dataset( 'xnli', model_args.language, split='validation', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) __a = eval_dataset.features['label'].names if training_args.do_predict: __a = load_dataset( 'xnli', model_args.language, split='test', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) __a = predict_dataset.features['label'].names # Labels __a = len(UpperCamelCase__ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=UpperCamelCase__, idalabel={str(UpperCamelCase__ ): label for i, label in enumerate(UpperCamelCase__ )}, labelaid={label: i for i, label in enumerate(UpperCamelCase__ )}, finetuning_task='xnli', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __a = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __a = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=UpperCamelCase__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __a = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a = False def preprocess_function(SCREAMING_SNAKE_CASE__: Optional[int] ): # Tokenize the texts return tokenizer( examples['premise'], examples['hypothesis'], padding=UpperCamelCase__, max_length=data_args.max_seq_length, truncation=UpperCamelCase__, ) if training_args.do_train: if data_args.max_train_samples is not None: __a = min(len(UpperCamelCase__ ), data_args.max_train_samples ) __a = train_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __a = train_dataset.map( UpperCamelCase__, batched=UpperCamelCase__, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on train dataset', ) # Log a few random samples from the training set: for index in random.sample(range(len(UpperCamelCase__ ) ), 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: __a = min(len(UpperCamelCase__ ), data_args.max_eval_samples ) __a = eval_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __a = eval_dataset.map( UpperCamelCase__, batched=UpperCamelCase__, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on validation dataset', ) if training_args.do_predict: if data_args.max_predict_samples is not None: __a = min(len(UpperCamelCase__ ), data_args.max_predict_samples ) __a = predict_dataset.select(range(UpperCamelCase__ ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): __a = predict_dataset.map( UpperCamelCase__, batched=UpperCamelCase__, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on prediction dataset', ) # Get the metric function __a = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__: Dict ): __a = p.predictions[0] if isinstance(p.predictions, UpperCamelCase__ ) else p.predictions __a = np.argmax(UpperCamelCase__, axis=1 ) return metric.compute(predictions=UpperCamelCase__, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a = default_data_collator elif training_args.fpaa: __a = DataCollatorWithPadding(UpperCamelCase__, pad_to_multiple_of=8 ) else: __a = None # Initialize our Trainer __a = Trainer( model=UpperCamelCase__, args=UpperCamelCase__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=UpperCamelCase__, tokenizer=UpperCamelCase__, data_collator=UpperCamelCase__, ) # Training if training_args.do_train: __a = None if training_args.resume_from_checkpoint is not None: __a = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a = last_checkpoint __a = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) __a = train_result.metrics __a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ ) ) __a = min(UpperCamelCase__, len(UpperCamelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train', UpperCamelCase__ ) trainer.save_metrics('train', UpperCamelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __a = trainer.evaluate(eval_dataset=UpperCamelCase__ ) __a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ ) __a = min(UpperCamelCase__, len(UpperCamelCase__ ) ) trainer.log_metrics('eval', UpperCamelCase__ ) trainer.save_metrics('eval', UpperCamelCase__ ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) __a , __a , __a = trainer.predict(UpperCamelCase__, metric_key_prefix='predict' ) __a = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase__ ) ) __a = min(UpperCamelCase__, len(UpperCamelCase__ ) ) trainer.log_metrics('predict', UpperCamelCase__ ) trainer.save_metrics('predict', UpperCamelCase__ ) __a = np.argmax(UpperCamelCase__, axis=1 ) __a = os.path.join(training_args.output_dir, 'predictions.txt' ) if trainer.is_world_process_zero(): with open(UpperCamelCase__, 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(UpperCamelCase__ ): __a = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
448
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "vinvino02/glpn-kitti": "https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json", # See all GLPN models at https://huggingface.co/models?filter=glpn } class _UpperCAmelCase ( UpperCAmelCase_ ): a = '''glpn''' def __init__( self , a__=3 , a__=4 , a__=[2, 2, 2, 2] , a__=[8, 4, 2, 1] , a__=[32, 64, 160, 256] , a__=[7, 3, 3, 3] , a__=[4, 2, 2, 2] , a__=[1, 2, 5, 8] , a__=[4, 4, 4, 4] , a__="gelu" , a__=0.0 , a__=0.0 , a__=0.02 , a__=0.1 , a__=1E-6 , a__=64 , a__=10 , a__=-1 , **a__ , ): super().__init__(**_lowercase ) A_ : List[str] = num_channels A_ : str = num_encoder_blocks A_ : Union[str, Any] = depths A_ : str = sr_ratios A_ : Optional[Any] = hidden_sizes A_ : Tuple = patch_sizes A_ : List[str] = strides A_ : Dict = mlp_ratios A_ : List[str] = num_attention_heads A_ : List[Any] = hidden_act A_ : int = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Optional[int] = initializer_range A_ : Tuple = drop_path_rate A_ : List[str] = layer_norm_eps A_ : str = decoder_hidden_size A_ : Tuple = max_depth A_ : Optional[int] = head_in_index
569
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _snake_case (__lowercase , __lowercase="shi-labs/oneformer_demo"): with open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset') , 'r') as f: UpperCamelCase_ = json.load(UpperCamelCase__) UpperCamelCase_ = {} UpperCamelCase_ = [] UpperCamelCase_ = [] for key, info in class_info.items(): UpperCamelCase_ = info['name'] class_names.append(info['name']) if info["isthing"]: thing_ids.append(int(UpperCamelCase__)) UpperCamelCase_ = thing_ids UpperCamelCase_ = class_names return metadata class _a ( unittest.TestCase ): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=10 , _UpperCAmelCase=False , _UpperCAmelCase=255 , _UpperCAmelCase="shi-labs/oneformer_demo" , _UpperCAmelCase="ade20k_panoptic.json" , _UpperCAmelCase=10 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = {'shortest_edge': 32, 'longest_edge': 1333} if size is None else size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = class_info_file UpperCamelCase_ = prepare_metadata(_lowercase , _lowercase ) UpperCamelCase_ = num_text UpperCamelCase_ = repo_path # for the post_process_functions UpperCamelCase_ = 2 UpperCamelCase_ = 10 UpperCamelCase_ = 10 UpperCamelCase_ = 3 UpperCamelCase_ = 4 UpperCamelCase_ = num_labels UpperCamelCase_ = do_reduce_labels UpperCamelCase_ = ignore_index def _UpperCAmelCase ( self ) -> Optional[int]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase=False ) -> str: if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size['shortest_edge'] * h / w ) UpperCamelCase_ = self.size['shortest_edge'] elif w > h: UpperCamelCase_ = self.size['shortest_edge'] UpperCamelCase_ = int(self.size['shortest_edge'] * w / h ) else: UpperCamelCase_ = self.size['shortest_edge'] UpperCamelCase_ = self.size['shortest_edge'] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(_lowercase , key=lambda _UpperCAmelCase : item[0] )[0] UpperCamelCase_ = max(_lowercase , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width def _UpperCAmelCase ( self ) -> Any: return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class _a ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A_ = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string A_ = image_processing_class def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = OneFormerImageProcessorTester(self ) @property def _UpperCAmelCase ( self ) -> Dict: return self.image_processing_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'ignore_index' ) ) self.assertTrue(hasattr(_lowercase , 'class_info_file' ) ) self.assertTrue(hasattr(_lowercase , 'num_text' ) ) self.assertTrue(hasattr(_lowercase , 'repo_path' ) ) self.assertTrue(hasattr(_lowercase , 'metadata' ) ) self.assertTrue(hasattr(_lowercase , 'do_reduce_labels' ) ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processor UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(_lowercase , batched=_lowercase ) UpperCamelCase_ = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize image_processor UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(_lowercase , batched=_lowercase ) UpperCamelCase_ = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize image_processor UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processing_tester.get_expected_values(_lowercase , batched=_lowercase ) UpperCamelCase_ = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def _UpperCAmelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="np" ) -> Dict: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # prepare image and target UpperCamelCase_ = self.image_processing_tester.num_labels UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = prepare_image_inputs(self.image_processing_tester , equal_resolution=_lowercase ) if with_segmentation_maps: UpperCamelCase_ = num_labels if is_instance_map: UpperCamelCase_ = list(range(_lowercase ) ) * 2 UpperCamelCase_ = dict(enumerate(_lowercase ) ) UpperCamelCase_ = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": UpperCamelCase_ = [Image.fromarray(_lowercase ) for annotation in annotations] UpperCamelCase_ = image_processor( _lowercase , ['semantic'] * len(_lowercase ) , _lowercase , return_tensors='pt' , instance_id_to_semantic_id=_lowercase , pad_and_return_pixel_mask=_lowercase , ) return inputs def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Dict: def common(_UpperCAmelCase=False , _UpperCAmelCase=None ): UpperCamelCase_ = self.comm_get_image_processor_inputs( with_segmentation_maps=_lowercase , is_instance_map=_lowercase , segmentation_type=_lowercase ) UpperCamelCase_ = inputs['mask_labels'] UpperCamelCase_ = inputs['class_labels'] UpperCamelCase_ = inputs['pixel_values'] UpperCamelCase_ = inputs['text_inputs'] # check the batch_size for mask_label, class_label, text_input in zip(_lowercase , _lowercase , _lowercase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(_lowercase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=_lowercase ) common(is_instance_map=_lowercase , segmentation_type='pil' ) common(is_instance_map=_lowercase , segmentation_type='pil' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase_ = np.zeros((20, 50) ) UpperCamelCase_ = 1 UpperCamelCase_ = 1 UpperCamelCase_ = 1 UpperCamelCase_ = binary_mask_to_rle(_lowercase ) self.assertEqual(len(_lowercase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase_ = fature_extractor.post_process_semantic_segmentation(_lowercase ) self.assertEqual(len(_lowercase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) UpperCamelCase_ = [(1, 4) for i in range(self.image_processing_tester.batch_size )] UpperCamelCase_ = fature_extractor.post_process_semantic_segmentation(_lowercase , target_sizes=_lowercase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase_ = image_processor.post_process_instance_segmentation(_lowercase , threshold=0 ) self.assertTrue(len(_lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _lowercase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , ) UpperCamelCase_ = self.image_processing_tester.get_fake_oneformer_outputs() UpperCamelCase_ = image_processor.post_process_panoptic_segmentation(_lowercase , threshold=0 ) self.assertTrue(len(_lowercase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue('segmentation' in el ) self.assertTrue('segments_info' in el ) self.assertEqual(type(el['segments_info'] ) , _lowercase ) self.assertEqual( el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE: Optional[int] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: List[Any] = ["OwlViTFeatureExtractor"] SCREAMING_SNAKE_CASE: int = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE: List[str] = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys SCREAMING_SNAKE_CASE: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __snake_case ( unittest.TestCase ): """simple docstring""" @parameterized.expand([(None,), ("foo.json",)] ) def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = GenerationConfig( do_sample=_lowercase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase ,config_name=_lowercase ) lowerCAmelCase_ : Optional[int] = GenerationConfig.from_pretrained(_lowercase ,config_name=_lowercase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample ,_lowercase ) self.assertEqual(loaded_config.temperature ,0.7 ) self.assertEqual(loaded_config.length_penalty ,1.0 ) self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k ,50 ) self.assertEqual(loaded_config.max_length ,20 ) self.assertEqual(loaded_config.max_time ,_lowercase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained("gpt2" ) lowerCAmelCase_ : List[str] = GenerationConfig.from_model_config(_lowercase ) lowerCAmelCase_ : Any = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_lowercase ,_lowercase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = GenerationConfig() lowerCAmelCase_ : Union[str, Any] = { "max_new_tokens": 10_24, "foo": "bar", } lowerCAmelCase_ : int = copy.deepcopy(_lowercase ) lowerCAmelCase_ : Union[str, Any] = generation_config.update(**_lowercase ) # update_kwargs was not modified (no side effects) self.assertEqual(_lowercase ,_lowercase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens ,10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_lowercase ,{"foo": "bar"} ) def UpperCAmelCase_ ( self : int ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : str = GenerationConfig() lowerCAmelCase_ : Optional[int] = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(_lowercase ) lowerCAmelCase_ : Optional[int] = GenerationConfig.from_pretrained(_lowercase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo ,"bar" ) lowerCAmelCase_ : Tuple = GenerationConfig.from_model_config(_lowercase ) assert not hasattr(_lowercase ,"foo" ) # no new kwargs should be initialized if from config def UpperCAmelCase_ ( self : str ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature ,1.0 ) self.assertEqual(default_config.do_sample ,_lowercase ) self.assertEqual(default_config.num_beams ,1 ) lowerCAmelCase_ : Dict = GenerationConfig( do_sample=_lowercase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) self.assertEqual(config.temperature ,0.7 ) self.assertEqual(config.do_sample ,_lowercase ) self.assertEqual(config.num_beams ,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_lowercase ) lowerCAmelCase_ : Union[str, Any] = GenerationConfig.from_pretrained(_lowercase ,temperature=1.0 ) self.assertEqual(loaded_config.temperature ,1.0 ) self.assertEqual(loaded_config.do_sample ,_lowercase ) self.assertEqual(loaded_config.num_beams ,1 ) # default value @is_staging_test class __snake_case ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase_ ( cls : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = TOKEN HfFolder.save_token(_lowercase ) @classmethod def UpperCAmelCase_ ( cls : Dict ) -> List[Any]: '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = GenerationConfig( do_sample=_lowercase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub("test-generation-config" ,use_auth_token=self._token ) lowerCAmelCase_ : str = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase ,getattr(_lowercase ,_lowercase ) ) # Reset repo delete_repo(token=self._token ,repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase ,repo_id="test-generation-config" ,push_to_hub=_lowercase ,use_auth_token=self._token ) lowerCAmelCase_ : Tuple = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase ,getattr(_lowercase ,_lowercase ) ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = GenerationConfig( do_sample=_lowercase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub("valid_org/test-generation-config-org" ,use_auth_token=self._token ) lowerCAmelCase_ : Dict = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase ,getattr(_lowercase ,_lowercase ) ) # Reset repo delete_repo(token=self._token ,repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _lowercase ,repo_id="valid_org/test-generation-config-org" ,push_to_hub=_lowercase ,use_auth_token=self._token ) lowerCAmelCase_ : Optional[Any] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_lowercase ,getattr(_lowercase ,_lowercase ) )
659
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' A__ = KandinskyImgaImgPipeline A__ = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] A__ = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] A__ = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] A__ = False @property def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" return 32 @property def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" return 32 @property def lowerCamelCase__ (self : List[Any] ) -> Optional[int]: """simple docstring""" return self.time_input_dim @property def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase__ (self : Any ) -> Tuple: """simple docstring""" return 100 @property def lowerCamelCase__ (self : int ) -> str: """simple docstring""" lowercase__ = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def lowerCamelCase__ (self : Optional[int] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowercase__ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowercase__ = MultilingualCLIP(_lowercase ) lowercase__ = text_encoder.eval() return text_encoder @property def lowerCamelCase__ (self : List[str] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } lowercase__ = UNetaDConditionModel(**_lowercase ) return model @property def lowerCamelCase__ (self : str ) -> Any: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) lowercase__ = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ (self : str ) -> List[Any]: """simple docstring""" lowercase__ = self.dummy_text_encoder lowercase__ = self.dummy_tokenizer lowercase__ = self.dummy_unet lowercase__ = self.dummy_movq lowercase__ = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00_085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } lowercase__ = DDIMScheduler(**_lowercase ) lowercase__ = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ (self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : str=0 ) -> str: """simple docstring""" lowercase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_lowercase ) ).to(_lowercase ) lowercase__ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_lowercase ) # create init_image lowercase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ = Image.fromarray(np.uinta(_lowercase ) ).convert("""RGB""" ).resize((256, 256) ) if str(_lowercase ).startswith("""mps""" ): lowercase__ = torch.manual_seed(_lowercase ) else: lowercase__ = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) lowercase__ = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ (self : List[str] ) -> Tuple: """simple docstring""" lowercase__ = """cpu""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**_lowercase ) lowercase__ = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) lowercase__ = pipe(**self.get_dummy_inputs(_lowercase ) ) lowercase__ = output.images lowercase__ = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] lowercase__ = image[0, -3:, -3:, -1] lowercase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Dict ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) lowercase__ = """A red cartoon frog, 4k""" lowercase__ = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) lowercase__ = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) lowercase__ = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) lowercase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase__ , lowercase__ = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() lowercase__ = pipeline( _lowercase , image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) lowercase__ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
15
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A_ : Optional[Any] ="facebook/wmt19-en-de" A_ : Optional[Any] =FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A_ : List[str] =FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A_ : Dict =FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test A_ : Tuple =tokenizer(["""Making tiny model"""], return_tensors="""pt""") A_ : Tuple =tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save A_ : Any ="tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
483
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int]=False ) -> Any: """simple docstring""" UpperCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"blocks.{i}.norm1.weight", F"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"blocks.{i}.norm1.bias", F"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((F"blocks.{i}.attn.proj.weight", F"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"blocks.{i}.attn.proj.bias", F"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"blocks.{i}.norm2.weight", F"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"blocks.{i}.norm2.bias", F"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc1.weight", F"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc1.bias", F"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"blocks.{i}.mlp.fc2.weight", F"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"blocks.{i}.mlp.fc2.bias", F"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def lowercase__ ( lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any]=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase = '' else: UpperCAmelCase = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) UpperCAmelCase = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase = in_proj_bias[: config.hidden_size] UpperCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase = in_proj_bias[-config.hidden_size :] def lowercase__ ( lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str ) -> Tuple: """simple docstring""" UpperCAmelCase = dct.pop(UpperCamelCase__ ) UpperCAmelCase = val def lowercase__ ( ) -> Dict: """simple docstring""" UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def lowercase__ ( lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCAmelCase = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase = 1_000 UpperCAmelCase = 'huggingface/label-files' UpperCAmelCase = 'imagenet-1k-id2label.json' UpperCAmelCase = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} UpperCAmelCase = int(deit_name[-6:-4] ) UpperCAmelCase = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): UpperCAmelCase = 192 UpperCAmelCase = 768 UpperCAmelCase = 12 UpperCAmelCase = 3 elif deit_name[9:].startswith('small' ): UpperCAmelCase = 384 UpperCAmelCase = 1_536 UpperCAmelCase = 12 UpperCAmelCase = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): UpperCAmelCase = 1_024 UpperCAmelCase = 4_096 UpperCAmelCase = 24 UpperCAmelCase = 16 # load original model from timm UpperCAmelCase = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase = timm_model.state_dict() UpperCAmelCase = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # load HuggingFace model UpperCAmelCase = DeiTForImageClassificationWithTeacher(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase = DeiTImageProcessor(size=UpperCamelCase__ , crop_size=config.image_size ) UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ) UpperCAmelCase = encoding['pixel_values'] UpperCAmelCase = model(UpperCamelCase__ ) UpperCAmelCase = timm_model(UpperCamelCase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1E-3 ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) print(F"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCamelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
373
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
import math def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> float: """simple docstring""" if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCamelCase__ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
662
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCAmelCase__ ( lowerCamelCase_ : Union[str, Any] ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase__ ( ): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase__ ( ): __a : Tuple = 'mock-s3-bucket' __a : Optional[int] = f'''s3://{mock_bucket}''' __a : List[str] = extract_path_from_uri(UpperCamelCase__ ) assert dataset_path.startswith('s3://' ) is False __a : Dict = './local/path' __a : Optional[Any] = extract_path_from_uri(UpperCamelCase__ ) assert dataset_path == new_dataset_path def UpperCAmelCase__ ( lowerCamelCase_ : Any ): __a : Optional[int] = is_remote_filesystem(UpperCamelCase__ ) assert is_remote is True __a : Union[str, Any] = fsspec.filesystem('file' ) __a : Any = is_remote_filesystem(UpperCamelCase__ ) assert is_remote is False @pytest.mark.parametrize('compression_fs_class' , UpperCamelCase__ ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict ): __a : int = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_file, 'bz2': bza_file, 'lz4': lza_file} __a : Tuple = input_paths[compression_fs_class.protocol] if input_path is None: __a : Optional[Any] = f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(UpperCamelCase__ ) __a : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=UpperCamelCase__ ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) __a : List[str] = os.path.basename(UpperCamelCase__ ) __a : str = expected_filename[: expected_filename.rindex('.' )] assert fs.glob('*' ) == [expected_filename] with fs.open(UpperCamelCase__ , 'r' , encoding='utf-8' ) as f, open(UpperCamelCase__ , encoding='utf-8' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('protocol' , ['zip', 'gzip'] ) def UpperCAmelCase__ ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] ): __a : Optional[Any] = {'zip': zip_jsonl_path, 'gzip': jsonl_gz_path} __a : List[Any] = compressed_file_paths[protocol] __a : str = 'dataset.jsonl' __a : Optional[int] = f'''{protocol}://{member_file_path}::{compressed_file_path}''' __a , *__a : Any = fsspec.get_fs_token_paths(UpperCamelCase__ ) assert fs.isfile(UpperCamelCase__ ) assert not fs.isfile('non_existing_' + member_file_path ) @pytest.mark.integration def UpperCAmelCase__ ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Dict , lowerCamelCase_ : int , lowerCamelCase_ : int ): __a : Optional[int] = hf_api.dataset_info(UpperCamelCase__ , token=UpperCamelCase__ ) __a : Union[str, Any] = HfFileSystem(repo_info=UpperCamelCase__ , token=UpperCamelCase__ ) assert sorted(hffs.glob('*' ) ) == [".gitattributes", "data"] assert hffs.isdir('data' ) assert hffs.isfile('.gitattributes' ) and hffs.isfile('data/text_data.txt' ) with open(UpperCamelCase__ ) as f: assert hffs.open('data/text_data.txt' , 'r' ).read() == f.read() def UpperCAmelCase__ ( ): __a : Union[str, Any] = 'bz2' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(UpperCamelCase__ , UpperCamelCase__ , clobber=UpperCamelCase__ ) with pytest.warns(UpperCamelCase__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(UpperCamelCase__ ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
47
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class __UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , A_ : Any , A_ : Union[str, Any]=3 , A_ : Union[str, Any]=7 , A_ : List[str]=True , A_ : str=True , A_ : List[Any]=False , A_ : List[Any]=True , A_ : Union[str, Any]=99 , A_ : Optional[int]=32 , A_ : Any=5 , A_ : Tuple=4 , A_ : str=37 , A_ : str="gelu" , A_ : Optional[int]=0.1 , A_ : Any=0.1 , A_ : Dict=5_12 , A_ : Tuple=16 , A_ : Optional[Any]=2 , A_ : str=0.02 , A_ : Dict=3 , A_ : Any=4 , A_ : Optional[Any]=None , )-> Any: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def A ( self : int )-> Any: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Union[str, Any] )-> int: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_lowercase , ) def A ( self : str , A_ : Tuple , A_ : int , A_ : int , A_ : List[Any] , A_ : Optional[Any] , A_ : str , A_ : Union[str, Any] )-> Union[str, Any]: __UpperCamelCase = FalconModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model(_lowercase , attention_mask=_lowercase ) __UpperCamelCase = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Any , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : str , A_ : str , A_ : int , A_ : Union[str, Any] , A_ : Union[str, Any] , A_ : Optional[int] , )-> Optional[int]: __UpperCamelCase = True __UpperCamelCase = FalconModel(_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) __UpperCamelCase = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) __UpperCamelCase = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , A_ : List[Any] , A_ : Dict , A_ : Optional[int] , A_ : Optional[Any] , A_ : Union[str, Any] , A_ : str , A_ : Dict , A_ : int , A_ : int , )-> str: __UpperCamelCase = FalconForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , A_ : Any , A_ : Dict , A_ : Optional[int] , A_ : int , A_ : Dict , A_ : Union[str, Any] , A_ : List[Any] , A_ : str , A_ : List[str] , )-> Optional[int]: __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = FalconForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass __UpperCamelCase = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) __UpperCamelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCamelCase = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] __UpperCamelCase = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["hidden_states"][0] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def A ( self : Union[str, Any] )-> str: __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _snake_case : List[Any] = (FalconForCausalLM,) if is_torch_available() else () _snake_case : List[str] = ( { 'feature-extraction': FalconModel, 'text-classification': FalconForSequenceClassification, 'text-generation': FalconForCausalLM, 'question-answering': FalconForQuestionAnswering, 'token-classification': FalconForTokenClassification, 'zero-shot': FalconForSequenceClassification, } if is_torch_available() else {} ) _snake_case : List[Any] = False _snake_case : Optional[int] = False def A ( self : Tuple )-> Any: __UpperCamelCase = FalconModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def A ( self : Optional[Any] )-> Optional[Any]: self.config_tester.run_common_tests() def A ( self : Optional[int] )-> int: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def A ( self : Tuple )-> List[str]: __UpperCamelCase , *__UpperCamelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __UpperCamelCase = alibi self.model_tester.create_and_check_model(_lowercase , *_lowercase ) def A ( self : Optional[Any] )-> Optional[Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = input_dict["input_ids"] __UpperCamelCase = input_ids.ne(1 ).to(_lowercase ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase = FalconForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : str )-> Tuple: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = "single_label_classification" __UpperCamelCase = input_dict["input_ids"] __UpperCamelCase = input_ids.ne(1 ).to(_lowercase ) __UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCamelCase = FalconForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[Any] )-> Union[str, Any]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = input_dict["input_ids"] __UpperCamelCase = FalconForCausalLM(_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model(_lowercase , use_cache=_lowercase ) __UpperCamelCase = input_ids.shape[0] __UpperCamelCase = model._convert_to_rw_cache(result.past_key_values ) __UpperCamelCase = model._convert_cache_to_standard_format(_lowercase , _lowercase ) for layer in range(len(_lowercase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A ( self : Union[str, Any] )-> List[str]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = 3 __UpperCamelCase = "multi_label_classification" __UpperCamelCase = input_dict["input_ids"] __UpperCamelCase = input_ids.ne(1 ).to(_lowercase ) __UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCamelCase = FalconForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() __UpperCamelCase = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : List[Any] )-> List[Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_lowercase , "use_cache" ): return __UpperCamelCase = model_class(_lowercase ).to(_lowercase ) if "use_cache" not in inputs: __UpperCamelCase = True __UpperCamelCase = model(**_lowercase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __UpperCamelCase = ( getattr(_lowercase , "decoder_layers" , _lowercase ) or getattr(_lowercase , "num_decoder_layers" , _lowercase ) or config.num_hidden_layers ) __UpperCamelCase = getattr(_lowercase , "num_kv_heads" , config.num_attention_heads ) __UpperCamelCase = getattr(_lowercase , "d_model" , config.hidden_size ) __UpperCamelCase = embed_dim // num_attention_heads __UpperCamelCase = outputs["past_key_values"] self.assertEqual(len(_lowercase ) , _lowercase ) __UpperCamelCase , __UpperCamelCase = inputs["input_ids"].shape for i in range(_lowercase ): if config.new_decoder_architecture: __UpperCamelCase = config.num_attention_heads elif config.multi_query: __UpperCamelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Tuple )-> int: __UpperCamelCase = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) __UpperCamelCase = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(_lowercase ) __UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(_lowercase ) __UpperCamelCase = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) __UpperCamelCase = model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=19 ) __UpperCamelCase = tokenizer.batch_decode(_lowercase )[0] self.assertEqual(_lowercase , _lowercase ) @slow def A ( self : Union[str, Any] )-> Any: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = FalconForCausalLM.from_pretrained(_lowercase ) model.eval() model.to(_lowercase ) __UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(_lowercase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=4 ) model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=4 ) model.generate(**_lowercase , num_beams=2 , max_new_tokens=4 ) @slow def A ( self : int )-> int: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = FalconForCausalLM.from_pretrained(_lowercase ) model.eval() model.to(device=_lowercase ) __UpperCamelCase = tokenizer("My favorite food is" , return_tensors="pt" ).to(_lowercase ) # Test results are the same with and without cache __UpperCamelCase = model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=20 , use_cache=_lowercase ) __UpperCamelCase = model.generate(**_lowercase , do_sample=_lowercase , max_new_tokens=20 , use_cache=_lowercase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
'''simple docstring''' def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Dict ) -> bool: """simple docstring""" __a = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[Any] = 5000 ) -> int: """simple docstring""" __a = [(i * (3 * i - 1)) // 2 for i in range(1, UpperCamelCase__ )] for i, pentagonal_i in enumerate(UpperCamelCase__ ): for j in range(UpperCamelCase__, len(UpperCamelCase__ ) ): __a = pentagonal_nums[j] __a = pentagonal_i + pentagonal_j __a = pentagonal_j - pentagonal_i if is_pentagonal(UpperCamelCase__ ) and is_pentagonal(UpperCamelCase__ ): return b return -1 if __name__ == "__main__": print(f"""{solution() = }""")
448
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): A_ : Optional[Any] = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) A_ : str = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) A_ : List[str] = """The dog is cute and lives in the garden house""" A_ : List[str] = jnp.array([tokenizer.encode(_lowercase )] ) A_ : Tuple = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim A_ : Optional[int] = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) A_ : Optional[Any] = model(_lowercase )["""last_hidden_state"""] self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _lowercase , atol=1E-3 ) )
569
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = TaConfig.from_json_file(UpperCamelCase__) print(f"""Building PyTorch model from configuration: {config}""") UpperCamelCase_ = TaForConditionalGeneration(UpperCamelCase__) # Load weights from tf checkpoint load_tf_weights_in_ta(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""") model.save_pretrained(UpperCamelCase__) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) snake_case__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE: Tuple = parse(importlib.metadata.version('''torch''')) def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> Optional[int]: if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) SCREAMING_SNAKE_CASE_ = STR_OPERATION_TO_FUNC[operation] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ = parse(importlib.metadata.version(UpperCamelCase__ ) ) return operation(UpperCamelCase__ , parse(UpperCamelCase__ ) ) def _a ( lowerCAmelCase , lowerCAmelCase )-> List[str]: return compare_versions(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
360
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
659
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A ( unittest.TestCase ): '''simple docstring''' def __init__(self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int=7 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Tuple=18 , _UpperCAmelCase : Dict=30 , _UpperCAmelCase : Any=400 , _UpperCAmelCase : int=True , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : int=[0.5, 0.5, 0.5] , _UpperCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size if size is not None else {"""height""": 18, """width""": 20} lowercase__ = do_thumbnail lowercase__ = do_align_axis lowercase__ = do_pad lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def lowerCamelCase__ (self : Any ) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' A__ = DonutImageProcessor if is_vision_available() else None def lowerCamelCase__ (self : List[str] ) -> Any: """simple docstring""" lowercase__ = DonutImageProcessingTester(self ) @property def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ (self : Union[str, Any] ) -> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) self.assertTrue(hasattr(_lowercase , """do_thumbnail""" ) ) self.assertTrue(hasattr(_lowercase , """do_align_long_axis""" ) ) self.assertTrue(hasattr(_lowercase , """do_pad""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) def lowerCamelCase__ (self : int ) -> Optional[Any]: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def lowerCamelCase__ (self : Any ) -> List[str]: """simple docstring""" pass @is_flaky() def lowerCamelCase__ (self : int ) -> Any: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase__ (self : List[str] ) -> List[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowerCamelCase__ (self : List[Any] ) -> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched lowercase__ = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
15
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : List[Any] =logging.get_logger(__name__) A_ : Tuple ={ "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase_ ( UpperCAmelCase_ ,UpperCAmelCase_): """simple docstring""" snake_case_ = '''swin''' snake_case_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): """simple docstring""" super().__init__(**_lowercase ) a_ = image_size a_ = patch_size a_ = num_channels a_ = embed_dim a_ = depths a_ = len(_lowercase ) a_ = num_heads a_ = window_size a_ = mlp_ratio a_ = qkv_bias a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = drop_path_rate a_ = hidden_act a_ = use_absolute_embeddings a_ = layer_norm_eps a_ = initializer_range a_ = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a_ = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) a_ = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(_lowercase ) + 1 )] a_ , a_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names ) class lowercase_ ( UpperCAmelCase_): """simple docstring""" snake_case_ = version.parse('''1.11''') @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
483
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class _UpperCAmelCase ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : Any = "owlvit_text_model" def __init__( self , lowercase_=4_9_4_0_8 , lowercase_=5_1_2 , lowercase_=2_0_4_8 , lowercase_=1_2 , lowercase_=8 , lowercase_=1_6 , lowercase_="quick_gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , lowercase_=0 , lowercase_=4_9_4_0_6 , lowercase_=4_9_4_0_7 , **lowercase_ , ) -> Union[str, Any]: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def a_ ( cls , lowercase_ , **lowercase_ ) -> int: cls._set_token_in_kwargs(_lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": UpperCAmelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class _UpperCAmelCase ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = "owlvit_vision_model" def __init__( self , lowercase_=7_6_8 , lowercase_=3_0_7_2 , lowercase_=1_2 , lowercase_=1_2 , lowercase_=3 , lowercase_=7_6_8 , lowercase_=3_2 , lowercase_="quick_gelu" , lowercase_=1E-5 , lowercase_=0.0 , lowercase_=0.0_2 , lowercase_=1.0 , **lowercase_ , ) -> int: super().__init__(**_lowercase ) UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = num_channels UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = hidden_act UpperCAmelCase = layer_norm_eps UpperCAmelCase = attention_dropout UpperCAmelCase = initializer_range UpperCAmelCase = initializer_factor @classmethod def a_ ( cls , lowercase_ , **lowercase_ ) -> Union[str, Any]: cls._set_token_in_kwargs(_lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": UpperCAmelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class _UpperCAmelCase ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : int = "owlvit" __SCREAMING_SNAKE_CASE : int = True def __init__( self , lowercase_=None , lowercase_=None , lowercase_=5_1_2 , lowercase_=2.6_5_9_2 , lowercase_=True , **lowercase_ , ) -> List[str]: super().__init__(**_lowercase ) if text_config is None: UpperCAmelCase = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: UpperCAmelCase = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) UpperCAmelCase = OwlViTTextConfig(**_lowercase ) UpperCAmelCase = OwlViTVisionConfig(**_lowercase ) UpperCAmelCase = projection_dim UpperCAmelCase = logit_scale_init_value UpperCAmelCase = return_dict UpperCAmelCase = 1.0 @classmethod def a_ ( cls , lowercase_ , **lowercase_ ) -> str: cls._set_token_in_kwargs(_lowercase ) UpperCAmelCase , UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) @classmethod def a_ ( cls , lowercase_ , lowercase_ , **lowercase_ ) -> Optional[Any]: UpperCAmelCase = {} UpperCAmelCase = text_config UpperCAmelCase = vision_config return cls.from_dict(_lowercase , **_lowercase ) def a_ ( self ) -> Union[str, Any]: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = self.text_config.to_dict() UpperCAmelCase = self.vision_config.to_dict() UpperCAmelCase = self.__class__.model_type return output class _UpperCAmelCase ( UpperCAmelCase_ ): @property def a_ ( self ) -> int: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def a_ ( self ) -> Optional[Any]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def a_ ( self ) -> Optional[int]: return 1E-4 def a_ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = None , ) -> Union[str, Any]: UpperCAmelCase = super().generate_dummy_inputs( processor.tokenizer , batch_size=_lowercase , seq_length=_lowercase , framework=_lowercase ) UpperCAmelCase = super().generate_dummy_inputs( processor.image_processor , batch_size=_lowercase , framework=_lowercase ) return {**text_input_dict, **image_input_dict} @property def a_ ( self ) -> List[Any]: return 1_4
373
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : str = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : Optional[Any] = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : Tuple = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : Tuple = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : int = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=UpperCAmelCase_ ): '''simple docstring''' __lowerCamelCase : str = ["torch", "transformers", "onnx"] def __init__( self, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(self, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] ) @classmethod def _lowerCAmelCase ( cls, *lowerCamelCase__, **lowerCamelCase__ ): requires_backends(cls, ["""torch""", """transformers""", """onnx"""] )
662
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
class _UpperCamelCase: def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : list ): '''simple docstring''' __a : int = set_counts __a : Dict = max(_lowercase ) __a : Tuple = len(_lowercase ) __a : Optional[int] = [1] * num_sets __a : Optional[int] = list(range(_lowercase ) ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' __a : Dict = self.get_parent(_lowercase ) __a : Any = self.get_parent(_lowercase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __a : Any = 0 __a : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __a : Optional[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __a : Dict = 0 __a : Optional[int] = src_parent __a : Union[str, Any] = self.set_counts[src_parent] __a : Optional[int] = max(self.max_set , _lowercase ) return True def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set __a : Union[str, Any] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
47
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
"""simple docstring""" import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class __UpperCAmelCase : """simple docstring""" def __init__( self : Tuple )-> int: __UpperCamelCase = False def A ( self : List[Any] , A_ : int , A_ : Optional[Any] , A_ : Dict , A_ : List[Any] )-> List[Any]: if not self.initialized: __UpperCamelCase = RagRetriever( _lowercase , question_encoder_tokenizer=_lowercase , generator_tokenizer=_lowercase , index=_lowercase , init_retrieval=_lowercase , ) __UpperCamelCase = True def A ( self : Dict )-> List[str]: self.retriever.index.init_index() def A ( self : Tuple , A_ : Union[str, Any] , A_ : Optional[Any] )-> Any: __UpperCamelCase , __UpperCamelCase = self.retriever._main_retrieve(_lowercase , _lowercase ) return doc_ids, retrieved_doc_embeds class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , A_ : Dict , A_ : List[str] , A_ : Any , A_ : Optional[int] , A_ : Optional[int]=None )-> Dict: if index is not None and index.is_initialized() and len(_lowercase ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you\'ll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( _lowercase , question_encoder_tokenizer=_lowercase , generator_tokenizer=_lowercase , index=_lowercase , init_retrieval=_lowercase , ) __UpperCamelCase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowercase , _lowercase , _lowercase , _lowercase ) for worker in self.retrieval_workers ] ) def A ( self : int )-> List[str]: logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def A ( self : Tuple , A_ : Any , A_ : Optional[Any] )-> Dict: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase = ray.get(random_worker.retrieve.remote(_lowercase , _lowercase ) ) else: __UpperCamelCase , __UpperCamelCase = self._main_retrieve(_lowercase , _lowercase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowercase ) @classmethod def A ( cls : int , A_ : List[Any] , A_ : List[str]=None , **A_ : Optional[Any] )-> List[str]: return super(_lowercase , cls ).get_tokenizers(_lowercase , _lowercase , **_lowercase ) @classmethod def A ( cls : int , A_ : str , A_ : List[str] , A_ : List[Any]=None , **A_ : Dict )-> Dict: __UpperCamelCase = kwargs.pop("config" , _lowercase ) or RagConfig.from_pretrained(_lowercase , **_lowercase ) __UpperCamelCase = RagTokenizer.from_pretrained(_lowercase , config=_lowercase ) __UpperCamelCase = rag_tokenizer.question_encoder __UpperCamelCase = rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase = "custom" __UpperCamelCase = CustomHFIndex(config.retrieval_vector_size , _lowercase ) else: __UpperCamelCase = cls._build_index(_lowercase ) return cls( _lowercase , question_encoder_tokenizer=_lowercase , generator_tokenizer=_lowercase , retrieval_workers=_lowercase , index=_lowercase , )
505
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Any, **SCREAMING_SNAKE_CASE__: Optional[Any] ) -> str: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: str, **SCREAMING_SNAKE_CASE__: Any ) -> Optional[int]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Optional[int], **SCREAMING_SNAKE_CASE__: Dict ) -> Optional[int]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: List[Any], **SCREAMING_SNAKE_CASE__: int ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Union[str, Any], **SCREAMING_SNAKE_CASE__: str ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: Optional[Any], **SCREAMING_SNAKE_CASE__: List[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) def __UpperCAmelCase ( *SCREAMING_SNAKE_CASE__: str, **SCREAMING_SNAKE_CASE__: Optional[int] ) -> List[Any]: """simple docstring""" requires_backends(UpperCamelCase__, ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[str]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Dict: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->int: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->List[Any]: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->str: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): __a =["torch"] def __init__( self , *lowerCamelCase , **lowerCamelCase ) ->Any: '''simple docstring''' requires_backends(self , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Tuple: '''simple docstring''' requires_backends(cls , ['torch'] ) @classmethod def __UpperCamelCase ( cls , *lowerCamelCase , **lowerCamelCase ) ->Optional[int]: '''simple docstring''' requires_backends(cls , ['torch'] )
448
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
from timeit import timeit _lowerCAmelCase = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = 0 A_ : Union[str, Any] = len(UpperCamelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = len(UpperCamelCase__ ) // 2 A_ : List[str] = len(UpperCamelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCamelCase__ ) ) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' if len(UpperCamelCase__ ) <= 2: return True if s[0] == s[len(UpperCamelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return s == s[::-1] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Optional[Any] = f"""all({name}(key) is value for key, value in test_data.items())""" A_ : Optional[int] = f"""from __main__ import test_data, {name}""" A_ : List[str] = 5_0_0_0_0_0 A_ : Any = timeit(stmt=UpperCamelCase__ ,setup=UpperCamelCase__ ,number=UpperCamelCase__ ) print(f"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'''{key:21} {value}''') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
569
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _a ( UpperCAmelCase_ ): """simple docstring""" A_ = ["""image_processor""", """tokenizer"""] A_ = """BlipImageProcessor""" A_ = """AutoTokenizer""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = False super().__init__(_lowercase , _lowercase ) UpperCamelCase_ = self.image_processor def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ) -> List[str]: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCamelCase_ = self.tokenizer UpperCamelCase_ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) return text_encoding # add pixel_values UpperCamelCase_ = self.image_processor(_lowercase , return_tensors=_lowercase ) if text is not None: UpperCamelCase_ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_token_type_ids=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) else: UpperCamelCase_ = None if text_encoding is not None: encoding_image_processor.update(_lowercase ) return encoding_image_processor def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Dict: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def _UpperCAmelCase ( self , *_UpperCAmelCase , **_UpperCAmelCase ) -> Union[str, Any]: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self.tokenizer.model_input_names UpperCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def _a ( lowerCAmelCase )-> str: def wrapper(*lowerCAmelCase , **lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = timeit.default_timer() SCREAMING_SNAKE_CASE_ = func(*UpperCamelCase__ , **UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ = timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE_ = func.__name__ return wrapper def _a ( lowerCAmelCase , lowerCAmelCase=100 , lowerCAmelCase=None )-> Optional[int]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = seq_shapes or {} for i in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCamelCase__ , _ArrayXD ): SCREAMING_SNAKE_CASE_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCamelCase__ , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE_ = 'The small grey turtle was surprisingly fast when challenged.' else: SCREAMING_SNAKE_CASE_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCamelCase__ , datasets.Sequence ): while isinstance(UpperCamelCase__ , datasets.Sequence ): SCREAMING_SNAKE_CASE_ = v.feature SCREAMING_SNAKE_CASE_ = seq_shapes[k] SCREAMING_SNAKE_CASE_ = np.random.rand(*UpperCamelCase__ ).astype(v.dtype ) SCREAMING_SNAKE_CASE_ = data dummy_data.append((i, example) ) return dummy_data def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=100 , lowerCAmelCase=None )-> Optional[Any]: SCREAMING_SNAKE_CASE_ = generate_examples(UpperCamelCase__ , num_examples=UpperCamelCase__ , seq_shapes=UpperCamelCase__ ) with ArrowWriter(features=UpperCamelCase__ , path=UpperCamelCase__ ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE_ = features.encode_example(UpperCamelCase__ ) writer.write(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) SCREAMING_SNAKE_CASE_ = datasets.Dataset.from_file(filename=UpperCamelCase__ , info=datasets.DatasetInfo(features=UpperCamelCase__ ) ) return dataset
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowercase = logging.get_logger(__name__) def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[Any] = R"\w+[.]\d+" lowerCAmelCase_ : Tuple = re.findall(UpperCamelCase__ , UpperCamelCase__) for pat in pats: lowerCAmelCase_ : Union[str, Any] = key.replace(UpperCamelCase__ , "_".join(pat.split("."))) return key def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : Dict = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase_ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase_ : int = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase_ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase_ : Dict = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase_ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase_ : List[str] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase_ : Optional[int] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase_ : Any = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=42): lowerCAmelCase_ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase_ : Any = flax_model.init_weights(PRNGKey(UpperCamelCase__)) lowerCAmelCase_ : List[str] = flatten_dict(UpperCamelCase__) lowerCAmelCase_ : str = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase_ : int = rename_key(UpperCamelCase__) lowerCAmelCase_ : Dict = tuple(renamed_pt_key.split(".")) # Correctly rename weight parameters lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = rename_key_and_reshape_tensor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''') # also add unexpected weight so that warning is thrown lowerCAmelCase_ : Tuple = jnp.asarray(UpperCamelCase__) return unflatten_dict(UpperCamelCase__)
659
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py A : str = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. A : Optional[Any] = importlib.util.spec_from_file_location( 'transformers', os.path.join(PATH_TO_TRANSFORMERS, '__init__.py'), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) A : Tuple = spec.loader.load_module() A : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` A : List[str] = re.compile('\[(.+?)\]\((https://huggingface\.co/.+?)\)') A : int = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowercase__ = [] for config_class in list(CONFIG_MAPPING.values() ): lowercase__ = False # source code of `config_class` lowercase__ = inspect.getsource(UpperCamelCase__ ) lowercase__ = _re_checkpoint.findall(UpperCamelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowercase__ , lowercase__ = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowercase__ = f'''https://huggingface.co/{ckpt_name}''' if ckpt_link == ckpt_link_from_name: lowercase__ = True break lowercase__ = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowercase__ = """\n""".join(sorted(UpperCamelCase__ ) ) raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
15
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0