code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase_ ( UpperCAmelCase_): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = dataset a_ = process a_ = params def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _UpperCAmelCase ): """simple docstring""" a_ = self.dataset[i] a_ = self.process(_lowercase , **self.params ) return processed class lowercase_ ( UpperCAmelCase_): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" a_ = loader a_ = infer a_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether a_ = None a_ = loader_batch_size # Internal bookkeeping a_ = None a_ = None def __len__( self ): """simple docstring""" return len(self.loader ) def __iter__( self ): """simple docstring""" a_ = iter(self.loader ) return self def lowercase__ ( self ): """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice a_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) a_ = {} for k, element in self._loader_batch_data.items(): if isinstance(_lowercase , _lowercase ): # Convert ModelOutput to tuple first a_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): a_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): a_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(_lowercase , _lowercase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): a_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): a_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around a_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers a_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. a_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 a_ = self._loader_batch_data.__class__(_lowercase ) self._loader_batch_index += 1 return result def lowercase__ ( self ): """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch a_ = next(self.iterator ) a_ = self.infer(_lowercase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(_lowercase , torch.Tensor ): a_ = processed else: a_ = list(processed.keys() )[0] a_ = processed[key] if isinstance(_lowercase , _lowercase ): a_ = len(_lowercase ) else: a_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a_ = observed_batch_size # Setting internal index to unwrap the batch a_ = processed a_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase_ ( UpperCAmelCase_): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" super().__init__(_lowercase , _lowercase , _lowercase ) def __iter__( self ): """simple docstring""" a_ = iter(self.loader ) a_ = None return self def lowercase__ ( self ): """simple docstring""" if self.subiterator is None: a_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item a_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators a_ = self.infer(next(self.iterator ) , **self.params ) a_ = next(self.subiterator ) return processed class lowercase_ ( UpperCAmelCase_): """simple docstring""" def __iter__( self ): """simple docstring""" a_ = iter(self.loader ) return self def lowercase__ ( self ): """simple docstring""" a_ = False a_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: a_ = self.loader_batch_item() a_ = item.pop("""is_last""" ) accumulator.append(_lowercase ) if is_last: return accumulator while not is_last: a_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(_lowercase , torch.Tensor ): a_ = processed else: a_ = list(processed.keys() )[0] a_ = processed[key] if isinstance(_lowercase , _lowercase ): a_ = len(_lowercase ) else: a_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. a_ = observed_batch_size a_ = processed a_ = 0 while self._loader_batch_index < self.loader_batch_size: a_ = self.loader_batch_item() a_ = item.pop("""is_last""" ) accumulator.append(_lowercase ) if is_last: return accumulator else: a_ = processed a_ = item.pop("""is_last""" ) accumulator.append(_lowercase ) return accumulator class lowercase_ ( UpperCAmelCase_): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = dataset a_ = key def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _UpperCAmelCase ): """simple docstring""" return self.dataset[i][self.key] class lowercase_ ( UpperCAmelCase_): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = dataset a_ = keya a_ = keya def __len__( self ): """simple docstring""" return len(self.dataset ) def __getitem__( self , _UpperCAmelCase ): """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
483
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers SCREAMING_SNAKE_CASE_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowercase__ ( ) -> Any: """simple docstring""" UpperCAmelCase = os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) UpperCAmelCase = os.path.join(UpperCamelCase__ , 'words.txt' ) UpperCAmelCase = '' with open(UpperCamelCase__ ) as f: UpperCAmelCase = f.readline() UpperCAmelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCAmelCase = [ word for word in [sum(ord(UpperCamelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
373
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __UpperCamelCase ( _lowerCAmelCase = "isbn/0140328726" ) -> dict: """simple docstring""" A : Optional[Any] = olid.strip().strip("""/""" ) # Remove leading/trailing whitespace & slashes if new_olid.count("""/""" ) != 1: A : List[str] = f'''{olid} is not a valid Open Library olid''' raise ValueError(UpperCamelCase__ ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def __UpperCamelCase ( _lowerCAmelCase ) -> dict: """simple docstring""" A : Any = { """title""": """Title""", """publish_date""": """Publish date""", """authors""": """Authors""", """number_of_pages""": """Number of pages:""", """first_sentence""": """First sentence""", """isbn_10""": """ISBN (10)""", """isbn_13""": """ISBN (13)""", } A : str = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A : int = [ get_openlibrary_data(author["""key"""] )["""name"""] for author in data["""Authors"""] ] A : int = data["""First sentence"""]["""value"""] for key, value in data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A : List[str] = """, """.join(UpperCamelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: SCREAMING_SNAKE_CASE_:int = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: SCREAMING_SNAKE_CASE_:str = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print("""\n""".join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
662
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = IFImgaImgSuperResolutionPipeline __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) __SCREAMING_SNAKE_CASE : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def __lowerCAmelCase ( self : int ): '''simple docstring''' return self._get_superresolution_dummy_components() def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str=0 ): '''simple docstring''' if str(_lowercase ).startswith('mps' ): __a : Optional[Any] = torch.manual_seed(_lowercase ) else: __a : Optional[int] = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) __a : Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowercase ) ).to(_lowercase ) __a : List[Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(_lowercase ) ).to(_lowercase ) __a : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def __lowerCAmelCase ( self : str ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __lowerCAmelCase ( self : int ): '''simple docstring''' self._test_save_load_local() def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
47
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _A = logging.get_logger(__name__) # General docstring _A = "RegNetConfig" # Base docstring _A = "facebook/regnet-y-040" _A = [1, 1_088, 7, 7] # Image classification docstring _A = "facebook/regnet-y-040" _A = "tabby, tabby cat" _A = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , A_ : int , A_ : int = 3 , A_ : int = 1 , A_ : int = 1 , A_ : Optional[str] = "relu" , **A_ : Optional[Any] , )-> Tuple: super().__init__(**_lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase = tf.keras.layers.ConvaD( filters=_lowercase , kernel_size=_lowercase , strides=_lowercase , padding="VALID" , groups=_lowercase , use_bias=_lowercase , name="convolution" , ) __UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) __UpperCamelCase = ACTaFN[activation] if activation is not None else tf.identity def A ( self : List[str] , A_ : int )-> List[str]: __UpperCamelCase = self.convolution(self.padding(_lowercase ) ) __UpperCamelCase = self.normalization(_lowercase ) __UpperCamelCase = self.activation(_lowercase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[Any] , A_ : RegNetConfig , **A_ : Optional[Any] )-> Optional[int]: super().__init__(**_lowercase ) __UpperCamelCase = config.num_channels __UpperCamelCase = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def A ( self : int , A_ : int )-> Any: __UpperCamelCase = shape_list(_lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase = tf.transpose(_lowercase , perm=(0, 2, 3, 1) ) __UpperCamelCase = self.embedder(_lowercase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , A_ : int , A_ : int = 2 , **A_ : Optional[int] )-> Optional[int]: super().__init__(**_lowercase ) __UpperCamelCase = tf.keras.layers.ConvaD( filters=_lowercase , kernel_size=1 , strides=_lowercase , use_bias=_lowercase , name="convolution" ) __UpperCamelCase = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def A ( self : Optional[int] , A_ : tf.Tensor , A_ : bool = False )-> Tuple: return self.normalization(self.convolution(_lowercase ) , training=_lowercase ) class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , A_ : int , A_ : int , **A_ : Dict )-> Tuple: super().__init__(**_lowercase ) __UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowercase , name="pooler" ) __UpperCamelCase = [ tf.keras.layers.ConvaD(filters=_lowercase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=_lowercase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def A ( self : Dict , A_ : str )-> List[Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase = self.pooler(_lowercase ) for layer_module in self.attention: __UpperCamelCase = layer_module(_lowercase ) __UpperCamelCase = hidden_state * pooled return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , A_ : RegNetConfig , A_ : int , A_ : int , A_ : int = 1 , **A_ : Dict )-> Dict: super().__init__(**_lowercase ) __UpperCamelCase = in_channels != out_channels or stride != 1 __UpperCamelCase = max(1 , out_channels // config.groups_width ) __UpperCamelCase = ( TFRegNetShortCut(_lowercase , stride=_lowercase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase = [ TFRegNetConvLayer(_lowercase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _lowercase , stride=_lowercase , groups=_lowercase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(_lowercase , kernel_size=1 , activation=_lowercase , name="layer.2" ), ] __UpperCamelCase = ACTaFN[config.hidden_act] def A ( self : List[str] , A_ : Optional[int] )-> List[Any]: __UpperCamelCase = hidden_state for layer_module in self.layers: __UpperCamelCase = layer_module(_lowercase ) __UpperCamelCase = self.shortcut(_lowercase ) hidden_state += residual __UpperCamelCase = self.activation(_lowercase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , A_ : RegNetConfig , A_ : int , A_ : int , A_ : int = 1 , **A_ : Optional[int] )-> Dict: super().__init__(**_lowercase ) __UpperCamelCase = in_channels != out_channels or stride != 1 __UpperCamelCase = max(1 , out_channels // config.groups_width ) __UpperCamelCase = ( TFRegNetShortCut(_lowercase , stride=_lowercase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCamelCase = [ TFRegNetConvLayer(_lowercase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _lowercase , stride=_lowercase , groups=_lowercase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(_lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(_lowercase , kernel_size=1 , activation=_lowercase , name="layer.3" ), ] __UpperCamelCase = ACTaFN[config.hidden_act] def A ( self : List[Any] , A_ : Optional[int] )-> Optional[int]: __UpperCamelCase = hidden_state for layer_module in self.layers: __UpperCamelCase = layer_module(_lowercase ) __UpperCamelCase = self.shortcut(_lowercase ) hidden_state += residual __UpperCamelCase = self.activation(_lowercase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , A_ : RegNetConfig , A_ : int , A_ : int , A_ : int = 2 , A_ : int = 2 , **A_ : List[str] )-> str: super().__init__(**_lowercase ) __UpperCamelCase = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCamelCase = [ # downsampling is done in the first layer with stride of 2 layer(_lowercase , _lowercase , _lowercase , stride=_lowercase , name="layers.0" ), *[layer(_lowercase , _lowercase , _lowercase , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def A ( self : Optional[int] , A_ : Optional[Any] )-> Optional[Any]: for layer_module in self.layers: __UpperCamelCase = layer_module(_lowercase ) return hidden_state class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , A_ : RegNetConfig , **A_ : Union[str, Any] )-> str: super().__init__(**_lowercase ) __UpperCamelCase = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_lowercase , _lowercase , _lowercase , depth=_lowercase , name=f"""stages.{i+1}""" ) ) def A ( self : str , A_ : tf.Tensor , A_ : bool = False , A_ : bool = True )-> Tuple: __UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase = hidden_states + (hidden_state,) __UpperCamelCase = stage_module(_lowercase ) if output_hidden_states: __UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_lowercase , hidden_states=_lowercase ) @keras_serializable class __UpperCAmelCase ( tf.keras.layers.Layer ): """simple docstring""" _snake_case : Dict = RegNetConfig def __init__( self : str , A_ : str , **A_ : Dict )-> Any: super().__init__(**_lowercase ) __UpperCamelCase = config __UpperCamelCase = TFRegNetEmbeddings(_lowercase , name="embedder" ) __UpperCamelCase = TFRegNetEncoder(_lowercase , name="encoder" ) __UpperCamelCase = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_lowercase , name="pooler" ) @unpack_inputs def A ( self : Union[str, Any] , A_ : tf.Tensor , A_ : Optional[bool] = None , A_ : Optional[bool] = None , A_ : bool = False , )-> Union[str, Any]: __UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase = self.embedder(_lowercase , training=_lowercase ) __UpperCamelCase = self.encoder( _lowercase , output_hidden_states=_lowercase , return_dict=_lowercase , training=_lowercase ) __UpperCamelCase = encoder_outputs[0] __UpperCamelCase = self.pooler(_lowercase ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase = tf.transpose(_lowercase , perm=(0, 3, 1, 2) ) __UpperCamelCase = tf.transpose(_lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase = tuple([tf.transpose(_lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowercase , pooler_output=_lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" _snake_case : str = RegNetConfig _snake_case : Optional[int] = 'regnet' _snake_case : List[str] = 'pixel_values' @property def A ( self : List[Any] )-> int: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} _A = R"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _A = R"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , UpperCAmelCase_ , ) class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , A_ : RegNetConfig , *A_ : int , **A_ : Dict )-> List[Any]: super().__init__(_lowercase , *_lowercase , **_lowercase ) __UpperCamelCase = TFRegNetMainLayer(_lowercase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : int , A_ : tf.Tensor , A_ : Optional[bool] = None , A_ : Optional[bool] = None , A_ : Optional[int]=False , )-> Optional[int]: __UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase = self.regnet( pixel_values=_lowercase , output_hidden_states=_lowercase , return_dict=_lowercase , training=_lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase_ , ) class __UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , A_ : RegNetConfig , *A_ : Dict , **A_ : Optional[int] )-> Dict: super().__init__(_lowercase , *_lowercase , **_lowercase ) __UpperCamelCase = config.num_labels __UpperCamelCase = TFRegNetMainLayer(_lowercase , name="regnet" ) # classification head __UpperCamelCase = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Optional[int] , A_ : tf.Tensor = None , A_ : tf.Tensor = None , A_ : bool = None , A_ : bool = None , A_ : Union[str, Any]=False , )-> Optional[int]: __UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase = self.regnet( _lowercase , output_hidden_states=_lowercase , return_dict=_lowercase , training=_lowercase ) __UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase = self.classifier[0](_lowercase ) __UpperCamelCase = self.classifier[1](_lowercase ) __UpperCamelCase = None if labels is None else self.hf_compute_loss(labels=_lowercase , logits=_lowercase ) if not return_dict: __UpperCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_lowercase , logits=_lowercase , hidden_states=outputs.hidden_states )
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = 0 @slow def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_lowercase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) self.assertIsInstance(_lowercase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_lowercase ) , 0 ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' __a = AutoConfig.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) # Check that tokenizer_type ≠ model_type __a = AutoTokenizer.from_pretrained(_lowercase , config=_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def __UpperCamelCase ( self ) ->int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowercase , 'vocab.txt' ) ) __a = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='bert' , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowercase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowercase , 'merges.txt' ) ) __a = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='gpt2' , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) @require_tokenizers def __UpperCamelCase ( self ) ->str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.txt' , os.path.join(_lowercase , 'vocab.txt' ) ) __a = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='bert' ) self.assertIsInstance(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('./tests/fixtures/vocab.json' , os.path.join(_lowercase , 'vocab.json' ) ) shutil.copy('./tests/fixtures/merges.txt' , os.path.join(_lowercase , 'merges.txt' ) ) __a = AutoTokenizer.from_pretrained(_lowercase , tokenizer_type='gpt2' ) self.assertIsInstance(_lowercase , _lowercase ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' with pytest.raises(_lowercase ): AutoTokenizer.from_pretrained('./' , tokenizer_type='xxx' ) @require_tokenizers def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __a = tokenizer_class.from_pretrained('wietsedv/bert-base-dutch-cased' ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) if isinstance(_lowercase , _lowercase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _lowercase ) else: self.assertEqual(tokenizer.do_lower_case , _lowercase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowercase , 'julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier' , ): __a = tokenizer_class.from_pretrained('julien-c/herlolip-not-exists' ) def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __a = TOKENIZER_MAPPING.values() __a = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowercase ) @require_tokenizers def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_lowercase ) , _lowercase ) self.assertIsInstance(AutoTokenizer.from_pretrained('bert-base-cased' ) , _lowercase ) @require_tokenizers def __UpperCamelCase ( self ) ->Optional[Any]: '''simple docstring''' __a = AutoTokenizer.from_pretrained('distilbert-base-uncased' , do_lower_case=_lowercase ) __a = 'Hello, world. How are you?' __a = tokenizer.tokenize(_lowercase ) self.assertEqual('[UNK]' , tokens[0] ) __a = AutoTokenizer.from_pretrained('microsoft/mpnet-base' , do_lower_case=_lowercase ) __a = tokenizer.tokenize(_lowercase ) self.assertEqual('[UNK]' , tokens[0] ) @require_tokenizers def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' __a = AutoTokenizer.from_pretrained('robot-test/dummy-tokenizer-fast-with-model-config' ) self.assertEqual(type(_lowercase ) , _lowercase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '[UNK]' ) self.assertEqual(tokenizer.padding_side , 'right' ) self.assertEqual(tokenizer.truncation_side , 'right' ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = AutoTokenizer.from_pretrained('ctrl' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowercase , _lowercase ) def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' # Check we can load the tokenizer config of an online model. __a = get_tokenizer_config('bert-base-cased' ) __a = config.pop('_commit_hash' , _lowercase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowercase , {'do_lower_case': False} ) # This model does not have a tokenizer_config so we get back an empty dict. __a = get_tokenizer_config(_lowercase ) self.assertDictEqual(_lowercase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __a = AutoTokenizer.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) __a = get_tokenizer_config(_lowercase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['tokenizer_class'] , 'BertTokenizer' ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' try: AutoConfig.register('custom' , _lowercase ) AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) __a = CustomTokenizer.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def __UpperCamelCase ( self ) ->Tuple: '''simple docstring''' try: AutoConfig.register('custom' , _lowercase ) # Can register in two steps AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowercase , slow_tokenizer_class=_lowercase , fast_tokenizer_class=_lowercase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __a = BertTokenizerFast.from_pretrained(_lowercase ) bert_tokenizer.save_pretrained(_lowercase ) __a = CustomTokenizerFast.from_pretrained(_lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) __a = AutoTokenizer.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) __a = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self ) ->List[str]: '''simple docstring''' # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): __a = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) __a = AutoTokenizer.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowercase ) __a = AutoTokenizer.from_pretrained(_lowercase , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , 'NewTokenizer' ) @require_tokenizers def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __a =False class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __a =NewTokenizer __a =False try: AutoConfig.register('custom' , _lowercase ) AutoTokenizer.register(_lowercase , slow_tokenizer_class=_lowercase ) AutoTokenizer.register(_lowercase , fast_tokenizer_class=_lowercase ) # If remote code is not set, the default is to use local __a = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) __a = AutoTokenizer.from_pretrained('hf-internal-testing/test_dynamic_tokenizer' , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertFalse(tokenizer.special_attribute_present ) __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) self.assertTrue(tokenizer.special_attribute_present ) __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version __a = AutoTokenizer.from_pretrained( 'hf-internal-testing/test_dynamic_tokenizer_legacy' , trust_remote_code=_lowercase , use_fast=_lowercase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' with self.assertRaisesRegex( _lowercase , 'bert-base is not a local folder and is not a valid model identifier' ): __a = AutoTokenizer.from_pretrained('bert-base' ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' with self.assertRaisesRegex( _lowercase , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __a = AutoTokenizer.from_pretrained(_lowercase , revision='aaaaaa' ) def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' # Make sure we have cached the tokenizer. __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: __a = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
448
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } _lowerCAmelCase = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } _lowerCAmelCase = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class _UpperCAmelCase ( UpperCAmelCase_ ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_INIT_CONFIGURATION a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = RealmTokenizer def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , _lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _lowercase ) != tokenize_chinese_chars ): A_ : Dict = getattr(_lowercase , normalizer_state.pop("""type""" ) ) A_ : Union[str, Any] = do_lower_case A_ : str = strip_accents A_ : Dict = tokenize_chinese_chars A_ : List[str] = normalizer_class(**_lowercase ) A_ : List[str] = do_lower_case def _lowerCamelCase ( self , a__ , **a__ ): A_ : List[Any] = PaddingStrategy.MAX_LENGTH A_ : Optional[int] = text A_ : Union[str, Any] = kwargs.pop("""text_pair""" , _lowercase ) A_ : Tuple = kwargs.pop("""return_tensors""" , _lowercase ) A_ : Optional[int] = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(_lowercase ): if batch_text_pair is not None: A_ : List[str] = batch_text_pair[idx] else: A_ : Optional[int] = None A_ : Optional[Any] = super().__call__(_lowercase , _lowercase , return_tensors=_lowercase , **_lowercase ) A_ : Dict = encoded_candidates.get("""input_ids""" ) A_ : Tuple = encoded_candidates.get("""attention_mask""" ) A_ : str = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(_lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_lowercase ) A_ : Optional[Any] = {key: item for key, item in output_data.items() if len(_lowercase ) != 0} return BatchEncoding(_lowercase , tensor_type=_lowercase ) def _lowerCamelCase ( self , a__ , a__=None ): A_ : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self , a__ , a__ = None ): A_ : Optional[int] = [self.sep_token_id] A_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , a__ , a__ = None ): A_ : Optional[Any] = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
569
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
def _snake_case (__lowercase = 50): UpperCamelCase_ = [1] * (length + 1) for row_length in range(length + 1): for tile_length in range(2 , 5): for tile_start in range(row_length - tile_length + 1): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
360
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
from __future__ import annotations import os from collections.abc import Mapping _lowercase = tuple[int, int] class __snake_case : """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : set[int] ,lowerCAmelCase__ : Mapping[EdgeT, int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = vertices lowerCAmelCase_ : List[Any] = { (min(_lowercase ), max(_lowercase )): weight for edge, weight in edges.items() } def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : EdgeT ,lowerCAmelCase__ : int ) -> List[str]: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCAmelCase_ : Dict = weight def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = Graph({min(self.vertices )} ,{} ) lowerCAmelCase_ : Union[str, Any] = 42 lowerCAmelCase_ : Dict = 42 lowerCAmelCase_ : int = 42 lowerCAmelCase_ : str = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCAmelCase_ : Tuple = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCAmelCase_ : Optional[int] = edge lowerCAmelCase_ : Any = weight subgraph.add_edge(_lowercase ,_lowercase ) return subgraph def UpperCamelCase ( snake_case__ = "p107_network.txt"): lowerCAmelCase_ : int = os.path.abspath(os.path.dirname(UpperCamelCase__)) lowerCAmelCase_ : int = os.path.join(UpperCamelCase__ , UpperCamelCase__) lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : List[Any] = 42 lowerCAmelCase_ : Union[str, Any] = 42 lowerCAmelCase_ : List[str] = 42 with open(UpperCamelCase__) as f: lowerCAmelCase_ : Optional[Any] = f.read().strip().split("\n") lowerCAmelCase_ : Union[str, Any] = [line.split(",") for line in data] for edgea in range(1 , len(UpperCamelCase__)): for edgea in range(UpperCamelCase__): if adjaceny_matrix[edgea][edgea] != "-": lowerCAmelCase_ : Optional[Any] = int(adjaceny_matrix[edgea][edgea]) lowerCAmelCase_ : str = Graph(set(range(len(UpperCamelCase__))) , UpperCamelCase__) lowerCAmelCase_ : int = graph.prims_algorithm() lowerCAmelCase_ : Tuple = sum(graph.edges.values()) lowerCAmelCase_ : Union[str, Any] = sum(subgraph.edges.values()) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
659
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline A : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : int=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def UpperCamelCase ( __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] = False ) -> str: """simple docstring""" lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase__ = """cpu""" lowercase__ = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) lowercase__ = Path(UpperCamelCase__ ) # TEXT ENCODER lowercase__ = pipeline.text_encoder.config.max_position_embeddings lowercase__ = pipeline.text_encoder.config.hidden_size lowercase__ = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET lowercase__ = pipeline.unet.config.in_channels lowercase__ = pipeline.unet.config.sample_size lowercase__ = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) lowercase__ = str(unet_path.absolute().as_posix() ) lowercase__ = os.path.dirname(UpperCamelCase__ ) lowercase__ = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location="""weights.pb""" , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER lowercase__ = pipeline.vae lowercase__ = vae_encoder.config.in_channels lowercase__ = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder lowercase__ = lambda __magic_name__ , __magic_name__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCamelCase__ , ) # VAE DECODER lowercase__ = pipeline.vae lowercase__ = vae_decoder.config.latent_channels lowercase__ = vae_decoder.config.out_channels # forward only through the decoder part lowercase__ = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: lowercase__ = pipeline.safety_checker lowercase__ = safety_checker.config.vision_config.num_channels lowercase__ = safety_checker.config.vision_config.image_size lowercase__ = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker lowercase__ = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) lowercase__ = pipeline.feature_extractor else: lowercase__ = None lowercase__ = None lowercase__ = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print("""ONNX pipeline saved to""" , UpperCamelCase__ ) del pipeline del onnx_pipeline lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') A : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
15
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A_ : List[str] ={ "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[str] =["ConvNextFeatureExtractor"] A_ : str =["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] =[ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple =[ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A_ : Tuple =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
483
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed SCREAMING_SNAKE_CASE_ = { "distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), "bert": (BertConfig, BertForMaskedLM, BertTokenizer), "gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def lowercase__ ( lowerCAmelCase : Tuple ) -> Dict: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def lowercase__ ( lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def lowercase__ ( lowerCAmelCase : Dict , lowerCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" if args.student_type == "roberta": UpperCAmelCase = False def lowercase__ ( ) -> str: """simple docstring""" UpperCAmelCase = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=UpperCamelCase__ , choices=['distilbert', 'roberta', 'gpt2'] , required=UpperCamelCase__ , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=UpperCamelCase__ , type=UpperCamelCase__ , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=UpperCamelCase__ , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=UpperCamelCase__ , required=UpperCamelCase__ , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=UpperCamelCase__ , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=UpperCamelCase__ , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=UpperCamelCase__ , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=UpperCamelCase__ , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=UpperCamelCase__ , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=UpperCamelCase__ , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=UpperCamelCase__ , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=UpperCamelCase__ , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=UpperCamelCase__ , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=UpperCamelCase__ , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=UpperCamelCase__ , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=UpperCamelCase__ , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=UpperCamelCase__ , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=UpperCamelCase__ , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=UpperCamelCase__ , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=UpperCamelCase__ , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=UpperCamelCase__ , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=UpperCamelCase__ , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=UpperCamelCase__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=UpperCamelCase__ , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=UpperCamelCase__ , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=UpperCamelCase__ , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=UpperCamelCase__ , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=UpperCamelCase__ , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=UpperCamelCase__ , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=UpperCamelCase__ , default=500 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=UpperCamelCase__ , default=4_000 , help='Checkpoint interval.' ) UpperCAmelCase = parser.parse_args() sanity_checks(UpperCamelCase__ ) # ARGS # init_gpu_params(UpperCamelCase__ ) set_seed(UpperCamelCase__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(UpperCamelCase__ ) , UpperCamelCase__ , indent=4 ) git_log(args.dump_path ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(UpperCamelCase__ ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , 'rb' ) as fp: UpperCAmelCase = pickle.load(UpperCamelCase__ ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , 'rb' ) as fp: UpperCAmelCase = pickle.load(UpperCamelCase__ ) UpperCAmelCase = np.maximum(UpperCamelCase__ , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=UpperCamelCase__ , data=UpperCamelCase__ ) logger.info('Data loader created.' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCamelCase__ ) else: UpperCAmelCase = student_model_class(UpperCamelCase__ ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('Student loaded.' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCamelCase__ ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(UpperCamelCase__ , UpperCamelCase__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(UpperCamelCase__ , UpperCamelCase__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=UpperCamelCase__ , dataset=UpperCamelCase__ , token_probs=UpperCamelCase__ , student=UpperCamelCase__ , teacher=UpperCamelCase__ ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
373
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
from __future__ import annotations SCREAMING_SNAKE_CASE_:Union[str, Any] = [] def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> bool: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase__ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase__ , -1 , -1 ) , range(UpperCamelCase__ , len(UpperCamelCase__ ) ) ): if board[i][j] == 1: return False return True def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> bool: """simple docstring""" if row >= len(UpperCamelCase__ ): solution.append(UpperCamelCase__ ) printboard(UpperCamelCase__ ) print() return True for i in range(len(UpperCamelCase__ ) ): if is_safe(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): A : List[Any] = 1 solve(UpperCamelCase__ , row + 1 ) A : str = 0 return False def __UpperCamelCase ( _lowerCAmelCase ) -> None: """simple docstring""" for i in range(len(UpperCamelCase__ ) ): for j in range(len(UpperCamelCase__ ) ): if board[i][j] == 1: print("""Q""" , end=""" """ ) else: print(""".""" , end=""" """ ) print() # n=int(input("The no. of queens")) SCREAMING_SNAKE_CASE_:str = 8 SCREAMING_SNAKE_CASE_:Any = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
662
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class _UpperCamelCase( unittest.TestCase ): def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Optional[int] = torch.nn.Linear(1_0 , 1_0 ) __a : List[str] = torch.optim.SGD(model.parameters() , 0.1 ) __a : List[str] = Accelerator() __a : Union[str, Any] = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
47
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {"vocab_file": "spiece.model"} _A = { "vocab_file": { "bert_for_seq_generation": ( "https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model" ), } } _A = {"bert_for_seq_generation": 512} class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" _snake_case : Dict = VOCAB_FILES_NAMES _snake_case : Any = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : int = [] _snake_case : str = ['input_ids', 'attention_mask'] def __init__( self : Dict , A_ : Union[str, Any] , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Tuple="<unk>" , A_ : Tuple="<pad>" , A_ : Optional[Any]="<::::>" , A_ : Optional[Dict[str, Any]] = None , **A_ : Any , )-> List[str]: __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , sep_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) @property def A ( self : str )-> Optional[Any]: return self.sp_model.get_piece_size() def A ( self : str )-> str: __UpperCamelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str )-> Union[str, Any]: __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self : Tuple , A_ : int )-> Any: __UpperCamelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Optional[int] , A_ : str )-> Tuple: return self.sp_model.encode(_lowercase , out_type=_lowercase ) def A ( self : Optional[Any] , A_ : str )-> List[Any]: return self.sp_model.piece_to_id(_lowercase ) def A ( self : Union[str, Any] , A_ : Optional[Any] )-> Optional[int]: __UpperCamelCase = self.sp_model.IdToPiece(_lowercase ) return token def A ( self : str , A_ : Optional[Any] )-> Tuple: __UpperCamelCase = [] __UpperCamelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase ) + token __UpperCamelCase = [] else: current_sub_tokens.append(_lowercase ) out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def A ( self : Tuple , A_ : str , A_ : Optional[str] = None )-> str: if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCamelCase = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , "wb" ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
505
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Union[str, Any], SCREAMING_SNAKE_CASE__: List[Any], SCREAMING_SNAKE_CASE__: Union[str, Any], SCREAMING_SNAKE_CASE__: Dict ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(SCREAMING_SNAKE_CASE__: Dict, SCREAMING_SNAKE_CASE__: Union[str, Any], SCREAMING_SNAKE_CASE__: Optional[Any]=0, SCREAMING_SNAKE_CASE__: Optional[Any]=None ): __a = round(val / multiple ) * multiple if max_val is not None and x > max_val: __a = math.floor(val / multiple ) * multiple if x < min_val: __a = math.ceil(val / multiple ) * multiple return x __a = (output_size, output_size) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else output_size __a , __a = get_image_size(UpperCamelCase__ ) __a , __a = output_size # determine new height and width __a = output_height / input_height __a = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __a = scale_width else: # fit height __a = scale_height __a = constraint_to_multiple_of(scale_height * input_height, multiple=UpperCamelCase__ ) __a = constraint_to_multiple_of(scale_width * input_width, multiple=UpperCamelCase__ ) return (new_height, new_width) class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): __a =["pixel_values"] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = False , lowerCamelCase = 1 , lowerCamelCase = True , lowerCamelCase = 1 / 255 , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = None , **lowerCamelCase , ) ->Union[str, Any]: '''simple docstring''' super().__init__(**_lowercase ) __a = size if size is not None else {'height': 384, 'width': 384} __a = get_size_dict(_lowercase ) __a = do_resize __a = size __a = keep_aspect_ratio __a = ensure_multiple_of __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __a = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = 1 , lowerCamelCase = PILImageResampling.BICUBIC , lowerCamelCase = None , **lowerCamelCase , ) ->Optional[Any]: '''simple docstring''' __a = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""" ) __a = get_resize_output_image_size( _lowercase , output_size=(size['height'], size['width']) , keep_aspect_ratio=_lowercase , multiple=_lowercase , ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) ->List[Any]: '''simple docstring''' return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase , ) ->List[str]: '''simple docstring''' return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) ->Any: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = size if size is not None else self.size __a = get_size_dict(_lowercase ) __a = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __a = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __a = [to_numpy_array(_lowercase ) for image in images] if do_resize: __a = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_rescale: __a = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: __a = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] __a = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __a = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None ) ->int: '''simple docstring''' __a = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): __a = target_sizes.numpy() __a = [] for idx in range(len(_lowercase ) ): __a = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) __a = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: __a = logits.argmax(dim=1 ) __a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
448
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): A_ : int = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) A_ : Tuple = AutoTokenizer.from_pretrained("""google/mt5-small""" ) A_ : Any = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids A_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids A_ : Dict = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss A_ : Union[str, Any] = -(labels.shape[-1] * loss.item()) A_ : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
569
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _a : """simple docstring""" A_ = MBartConfig A_ = {} A_ = """gelu""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ) -> Union[str, Any]: UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_ = prepare_mbart_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase ) -> Tuple: UpperCamelCase_ = TFMBartModel(config=_lowercase ).get_decoder() UpperCamelCase_ = inputs_dict['input_ids'] UpperCamelCase_ = input_ids[:1, :] UpperCamelCase_ = inputs_dict['attention_mask'][:1, :] UpperCamelCase_ = inputs_dict['head_mask'] UpperCamelCase_ = 1 # first forward pass UpperCamelCase_ = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() UpperCamelCase_ = past_key_values[1] def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCamelCase_ = tf.cast(tf.math.not_equal(UpperCamelCase__ , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase_ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_ = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase_ = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _a ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" A_ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A_ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A_ = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A_ = True A_ = False A_ = False def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> int: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = TFMBartModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_lowercase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowercase ) @require_sentencepiece @require_tokenizers @require_tf class _a ( unittest.TestCase ): """simple docstring""" A_ = [ """ UN Chief Says There Is No Military Solution in Syria""", ] A_ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] A_ = """facebook/mbart-large-en-ro""" @cached_property def _UpperCAmelCase ( self ) -> int: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> Optional[int]: UpperCamelCase_ = self.translate_src_text(**_lowercase ) self.assertListEqual(self.expected_text , _lowercase ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> str: UpperCamelCase_ = self.tokenizer(self.src_text , **_lowercase , return_tensors='tf' ) UpperCamelCase_ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase_ = self.tokenizer.batch_decode(_lowercase , skip_special_tokens=_lowercase ) return generated_words @slow def _UpperCAmelCase ( self ) -> int: self._assert_generated_batch_equal_expected()
23
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig SCREAMING_SNAKE_CASE: Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE: List[Any] = "T5Config" class lowercase_ (UpperCAmelCase_ ): lowerCAmelCase__ ="mt5" lowerCAmelCase__ =MTaConfig class lowercase_ (UpperCAmelCase_ ): lowerCAmelCase__ ="mt5" lowerCAmelCase__ =MTaConfig class lowercase_ (UpperCAmelCase_ ): lowerCAmelCase__ ="mt5" lowerCAmelCase__ =MTaConfig
360
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __snake_case ( UpperCAmelCase_ ): """simple docstring""" UpperCamelCase_ = 'mra' def __init__( self : int ,lowerCAmelCase__ : Any=5_02_65 ,lowerCAmelCase__ : str=7_68 ,lowerCAmelCase__ : Union[str, Any]=12 ,lowerCAmelCase__ : Dict=12 ,lowerCAmelCase__ : int=30_72 ,lowerCAmelCase__ : Any="gelu" ,lowerCAmelCase__ : str=0.1 ,lowerCAmelCase__ : List[Any]=0.1 ,lowerCAmelCase__ : Dict=5_12 ,lowerCAmelCase__ : Any=1 ,lowerCAmelCase__ : Tuple=0.02 ,lowerCAmelCase__ : str=1e-5 ,lowerCAmelCase__ : Any="absolute" ,lowerCAmelCase__ : List[Any]=4 ,lowerCAmelCase__ : Optional[int]="full" ,lowerCAmelCase__ : Tuple=0 ,lowerCAmelCase__ : Optional[Any]=0 ,lowerCAmelCase__ : Dict=1 ,lowerCAmelCase__ : Union[str, Any]=0 ,lowerCAmelCase__ : Tuple=2 ,**lowerCAmelCase__ : Dict ,) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=_lowercase ,bos_token_id=_lowercase ,eos_token_id=_lowercase ,**_lowercase ) lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Tuple = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : Any = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : Optional[Any] = type_vocab_size lowerCAmelCase_ : int = layer_norm_eps lowerCAmelCase_ : Tuple = position_embedding_type lowerCAmelCase_ : Tuple = block_per_row lowerCAmelCase_ : str = approx_mode lowerCAmelCase_ : Any = initial_prior_first_n_blocks lowerCAmelCase_ : List[Any] = initial_prior_diagonal_n_blocks
659
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def UpperCamelCase ( __magic_name__ : Tuple ) -> Tuple: """simple docstring""" if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(UpperCamelCase__ , """_dynamo""" ): return False return isinstance(UpperCamelCase__ , torch._dynamo.eval_frame.OptimizedModule ) def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : List[Any] = True ) -> str: """simple docstring""" lowercase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowercase__ = is_compiled_module(UpperCamelCase__ ) if is_compiled: lowercase__ = model lowercase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase__ = model.module if not keep_fpaa_wrapper: lowercase__ = getattr(UpperCamelCase__ , """forward""" ) lowercase__ = model.__dict__.pop("""_original_forward""" , UpperCamelCase__ ) if original_forward is not None: while hasattr(UpperCamelCase__ , """__wrapped__""" ): lowercase__ = forward.__wrapped__ if forward == original_forward: break lowercase__ = forward if getattr(UpperCamelCase__ , """_converted_to_transformer_engine""" , UpperCamelCase__ ): convert_model(UpperCamelCase__ , to_transformer_engine=UpperCamelCase__ ) if is_compiled: lowercase__ = model lowercase__ = compiled_model return model def UpperCamelCase ( ) -> int: """simple docstring""" PartialState().wait_for_everyone() def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[Any] ) -> Optional[int]: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(UpperCamelCase__ , UpperCamelCase__ ) elif PartialState().local_process_index == 0: torch.save(UpperCamelCase__ , UpperCamelCase__ ) @contextmanager def UpperCamelCase ( **__magic_name__ : int ) -> Union[str, Any]: """simple docstring""" for key, value in kwargs.items(): lowercase__ = str(UpperCamelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def UpperCamelCase ( __magic_name__ : str ) -> Tuple: """simple docstring""" if not hasattr(UpperCamelCase__ , """__qualname__""" ) and not hasattr(UpperCamelCase__ , """__name__""" ): lowercase__ = getattr(UpperCamelCase__ , """__class__""" , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , """__qualname__""" ): return obj.__qualname__ if hasattr(UpperCamelCase__ , """__name__""" ): return obj.__name__ return str(UpperCamelCase__ ) def UpperCamelCase ( __magic_name__ : Tuple , __magic_name__ : Any ) -> Tuple: """simple docstring""" for key, value in source.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowercase__ = destination.setdefault(UpperCamelCase__ , {} ) merge_dicts(UpperCamelCase__ , UpperCamelCase__ ) else: lowercase__ = value return destination def UpperCamelCase ( __magic_name__ : List[str] = None ) -> bool: """simple docstring""" if port is None: lowercase__ = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
15
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" a_ = [0 for i in range(r + 1 )] # nc0 = 1 a_ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a_ = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
483
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( enum.Enum ): __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : Dict = 2 @add_end_docstrings(UpperCAmelCase_ ) class _UpperCAmelCase ( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : Optional[int] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *lowercase_ , **lowercase_ ) -> List[Any]: super().__init__(*_lowercase , **_lowercase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase = None if self.model.config.prefix is not None: UpperCAmelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._sanitize_parameters(prefix=_lowercase , **self._forward_params ) UpperCAmelCase = {**self._preprocess_params, **preprocess_params} UpperCAmelCase = {**self._forward_params, **forward_params} def a_ ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ) -> Tuple: UpperCAmelCase = {} if prefix is not None: UpperCAmelCase = prefix if prefix: UpperCAmelCase = self.tokenizer( _lowercase , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) UpperCAmelCase = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ' [None, \'hole\']' ) UpperCAmelCase = handle_long_generation preprocess_params.update(_lowercase ) UpperCAmelCase = generate_kwargs UpperCAmelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) UpperCAmelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) UpperCAmelCase = ReturnType.TENSORS if return_type is not None: UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase = self.tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) if len(_lowercase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a_ ( self , *lowercase_ , **lowercase_ ) -> Any: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*_lowercase , **_lowercase ) def __call__( self , lowercase_ , **lowercase_ ) -> int: return super().__call__(_lowercase , **_lowercase ) def a_ ( self , lowercase_ , lowercase_="" , lowercase_=None , **lowercase_ ) -> int: UpperCAmelCase = self.tokenizer( prefix + prompt_text , padding=_lowercase , add_special_tokens=_lowercase , return_tensors=self.framework ) UpperCAmelCase = prompt_text if handle_long_generation == "hole": UpperCAmelCase = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase = generate_kwargs['max_new_tokens'] else: UpperCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) UpperCAmelCase = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase = inputs['attention_mask'][:, -keep_length:] return inputs def a_ ( self , lowercase_ , **lowercase_ ) -> str: UpperCAmelCase = model_inputs['input_ids'] UpperCAmelCase = model_inputs.get('attention_mask' , _lowercase ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = 1 else: UpperCAmelCase = input_ids.shape[0] UpperCAmelCase = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: UpperCAmelCase = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase = self.model.generate(input_ids=_lowercase , attention_mask=_lowercase , **_lowercase ) UpperCAmelCase = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase = generated_sequence.reshape(_lowercase , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase = tf.reshape(_lowercase , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a_ ( self , lowercase_ , lowercase_=ReturnType.FULL_TEXT , lowercase_=True ) -> Optional[int]: UpperCAmelCase = model_outputs['generated_sequence'][0] UpperCAmelCase = model_outputs['input_ids'] UpperCAmelCase = model_outputs['prompt_text'] UpperCAmelCase = generated_sequence.numpy().tolist() UpperCAmelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase = self.tokenizer.decode( _lowercase , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase = 0 else: UpperCAmelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_lowercase , clean_up_tokenization_spaces=_lowercase , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase = prompt_text + text[prompt_length:] else: UpperCAmelCase = text[prompt_length:] UpperCAmelCase = {'generated_text': all_text} records.append(_lowercase ) return records
373
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
def __UpperCamelCase ( _lowerCAmelCase = 10**9 ) -> int: """simple docstring""" A : Optional[int] = 1 A : Optional[int] = 2 A : str = 0 A : Dict = 0 A : Optional[int] = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value A : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
662
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } SCREAMING_SNAKE_CASE__ = { "allenai/longformer-base-4096": 4096, "allenai/longformer-large-4096": 4096, "allenai/longformer-large-4096-finetuned-triviaqa": 4096, "allenai/longformer-base-4096-extra.pos.embd.only": 4096, "allenai/longformer-large-4096-extra.pos.embd.only": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def UpperCAmelCase__ ( ): __a : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) __a : Optional[Any] = bs[:] __a : Optional[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase__ ) cs.append(2**8 + n ) n += 1 __a : Tuple = [chr(UpperCamelCase__ ) for n in cs] return dict(zip(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCAmelCase__ ( lowerCamelCase_ : int ): __a : List[str] = set() __a : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __a : List[str] = char return pairs class _UpperCamelCase( UpperCAmelCase_ ): __SCREAMING_SNAKE_CASE : Dict = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]="replace" , SCREAMING_SNAKE_CASE__ : str="<s>" , SCREAMING_SNAKE_CASE__ : List[str]="</s>" , SCREAMING_SNAKE_CASE__ : str="</s>" , SCREAMING_SNAKE_CASE__ : Optional[Any]="<s>" , SCREAMING_SNAKE_CASE__ : List[Any]="<unk>" , SCREAMING_SNAKE_CASE__ : List[str]="<pad>" , SCREAMING_SNAKE_CASE__ : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE__ : Optional[int]=False , **SCREAMING_SNAKE_CASE__ : List[str] , ): '''simple docstring''' __a : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token __a : str = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token __a : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token __a : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token __a : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token __a : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __a : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding='utf-8' ) as vocab_handle: __a : Any = json.load(_lowercase ) __a : Tuple = {v: k for k, v in self.encoder.items()} __a : int = errors # how to handle errors in decoding __a : Optional[int] = bytes_to_unicode() __a : Any = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding='utf-8' ) as merges_handle: __a : int = merges_handle.read().split('\n' )[1:-1] __a : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __a : Dict = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) __a : Tuple = {} __a : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __a : List[str] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def __lowerCAmelCase ( self : int ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] __a : Dict = tuple(_lowercase ) __a : str = get_pairs(_lowercase ) if not pairs: return token while True: __a : Union[str, Any] = min(_lowercase , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(_lowercase , float('inf' ) ) ) if bigram not in self.bpe_ranks: break __a , __a : str = bigram __a : str = [] __a : Optional[Any] = 0 while i < len(_lowercase ): try: __a : int = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __a : Tuple = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __a : str = tuple(_lowercase ) __a : Optional[int] = new_word if len(_lowercase ) == 1: break else: __a : List[Any] = get_pairs(_lowercase ) __a : Optional[Any] = ' '.join(_lowercase ) __a : Union[str, Any] = word return word def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Optional[int] = [] for token in re.findall(self.pat , _lowercase ): __a : str = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(' ' ) ) return bpe_tokens def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' return self.decoder.get(_lowercase ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a : Dict = ''.join(_lowercase ) __a : str = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_lowercase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Union[str, Any] = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(_lowercase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '\n' ) __a : Tuple = 0 with open(_lowercase , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) __a : Any = token_index writer.write(' '.join(_lowercase ) + '\n' ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __a : Any = [self.cls_token_id] __a : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ): '''simple docstring''' __a : Dict = [self.sep_token_id] __a : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=False , **SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' __a : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): __a : List[Any] = ' ' + text return (text, kwargs)
47
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase (_snake_case ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = filter(lambda _snake_case : p.requires_grad ,model.parameters() ) __UpperCamelCase = sum([np.prod(p.size() ) for p in model_parameters] ) return params _A = logging.getLogger(__name__) def lowercase (_snake_case ,_snake_case ) -> Union[str, Any]: '''simple docstring''' if metric == "rouge2": __UpperCamelCase = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": __UpperCamelCase = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": __UpperCamelCase = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": __UpperCamelCase = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( f"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) __UpperCamelCase = ModelCheckpoint( dirpath=UpperCamelCase__ ,filename=UpperCamelCase__ ,monitor=f"""val_{metric}""" ,mode="max" ,save_top_k=1 ,every_n_epochs=1 ,) return checkpoint_callback def lowercase (_snake_case ,_snake_case ) -> str: '''simple docstring''' return EarlyStopping( monitor=f"""val_{metric}""" ,mode="min" if "loss" in metric else "max" ,patience=UpperCamelCase__ ,verbose=UpperCamelCase__ ,) class __UpperCAmelCase ( pl.Callback ): """simple docstring""" def A ( self : Optional[Any] , A_ : Optional[int] , A_ : Any )-> Union[str, Any]: __UpperCamelCase = {f"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_lowercase ) @rank_zero_only def A ( self : Tuple , A_ : pl.Trainer , A_ : pl.LightningModule , A_ : str , A_ : Any=True )-> Optional[Any]: logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) __UpperCamelCase = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results __UpperCamelCase = Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase = od / "test_results.txt" __UpperCamelCase = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase = od / f"""{type_path}_results/{trainer.global_step:05d}.txt""" __UpperCamelCase = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=_lowercase ) generations_file.parent.mkdir(exist_ok=_lowercase ) with open(_lowercase , "a+" ) as writer: for key in sorted(_lowercase ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase = metrics[key] if isinstance(_lowercase , torch.Tensor ): __UpperCamelCase = val.item() __UpperCamelCase = f"""{key}: {val:.6f}\n""" writer.write(_lowercase ) if not save_generations: return if "preds" in metrics: __UpperCamelCase = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_lowercase ) @rank_zero_only def A ( self : Any , A_ : Union[str, Any] , A_ : List[str] )-> int: try: __UpperCamelCase = pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase = pl_module.model.num_parameters() __UpperCamelCase = count_trainable_parameters(_lowercase ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def A ( self : List[Any] , A_ : pl.Trainer , A_ : pl.LightningModule )-> int: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_lowercase , _lowercase , "test" ) @rank_zero_only def A ( self : Tuple , A_ : pl.Trainer , A_ : Optional[int] )-> str: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
505
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=True , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=[0.5, 0.5, 0.5] , lowerCamelCase=True , lowerCamelCase=1 / 255 , lowerCamelCase=True , ) ->int: '''simple docstring''' # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __a = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __a = parent __a = batch_size __a = num_channels __a = min_resolution __a = max_resolution __a = do_resize __a = size __a = do_normalize __a = image_mean __a = image_std __a = do_rescale __a = rescale_factor __a = do_pad def __UpperCamelCase ( self ) ->str: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase=False ) ->Optional[Any]: '''simple docstring''' if not batched: __a = image_inputs[0] if isinstance(_lowercase , Image.Image ): __a , __a = image.size else: __a , __a = image.shape[1], image.shape[2] if w < h: __a = int(self.size['shortest_edge'] * h / w ) __a = self.size['shortest_edge'] elif w > h: __a = self.size['shortest_edge'] __a = int(self.size['shortest_edge'] * w / h ) else: __a = self.size['shortest_edge'] __a = self.size['shortest_edge'] else: __a = [] for image in image_inputs: __a , __a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __a = max(_lowercase , key=lambda lowerCamelCase : item[0] )[0] __a = max(_lowercase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): __a =YolosImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ) ->Optional[int]: '''simple docstring''' __a = YolosImageProcessingTester(self ) @property def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' __a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) def __UpperCamelCase ( self ) ->Any: '''simple docstring''' __a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _lowercase ) __a = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _lowercase ) def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' pass def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a , __a = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) __a = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ) ->str: '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(_lowercase , return_tensors='pt' ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' # Initialize image_processing __a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input __a = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __a = image_processing(_lowercase , return_tensors='pt' ).pixel_values __a , __a = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self ) ->Union[str, Any]: '''simple docstring''' # Initialize image_processings __a = self.image_processing_class(**self.image_processor_dict ) __a = self.image_processing_class(do_resize=_lowercase , do_normalize=_lowercase , do_rescale=_lowercase ) # create random PyTorch tensors __a = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __a = image_processing_a.pad(_lowercase , return_tensors='pt' ) __a = image_processing_a(_lowercase , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) ->Dict: '''simple docstring''' # prepare image and target __a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __a = json.loads(f.read() ) __a = {'image_id': 3_9769, 'annotations': target} # encode them __a = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __a = image_processing(images=_lowercase , annotations=_lowercase , return_tensors='pt' ) # verify pixel values __a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowercase ) __a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowercase , atol=1e-4 ) ) # verify area __a = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowercase ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowercase ) __a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowercase , atol=1e-3 ) ) # verify image_id __a = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowercase ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowercase ) ) # verify class_labels __a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowercase ) ) # verify orig_size __a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowercase ) ) # verify size __a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowercase ) ) @slow def __UpperCamelCase ( self ) ->List[Any]: '''simple docstring''' # prepare image, target and masks_path __a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __a = json.loads(f.read() ) __a = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __a = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __a = YolosImageProcessor(format='coco_panoptic' ) __a = image_processing(images=_lowercase , annotations=_lowercase , masks_path=_lowercase , return_tensors='pt' ) # verify pixel values __a = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowercase ) __a = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowercase , atol=1e-4 ) ) # verify area __a = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowercase ) ) # verify boxes __a = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowercase ) __a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowercase , atol=1e-3 ) ) # verify image_id __a = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowercase ) ) # verify is_crowd __a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowercase ) ) # verify class_labels __a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowercase ) ) # verify masks __a = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _lowercase ) # verify orig_size __a = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowercase ) ) # verify size __a = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowercase ) )
448
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class _UpperCAmelCase ( UpperCAmelCase_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization a = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) a = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) a = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) a = '''question''' a = '''context''' a = '''answers''' @property def _lowerCamelCase ( self ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
569
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
import argparse from collections import defaultdict import yaml snake_case__ : Optional[Any] = "docs/source/en/_toctree.yml" def _snake_case (__lowercase): UpperCamelCase_ = defaultdict(UpperCamelCase__) UpperCamelCase_ = [] UpperCamelCase_ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']}) else: new_doc_list.append(UpperCamelCase__) UpperCamelCase_ = new_doc_list UpperCamelCase_ = [key for key, value in counts.items() if value > 1] UpperCamelCase_ = [] for duplicate_key in duplicates: UpperCamelCase_ = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key}) if len(UpperCamelCase__) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.') # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1]) UpperCamelCase_ = sorted(UpperCamelCase__ , key=lambda __lowercase: s["title"].lower()) # "overview" gets special treatment and is always first if len(UpperCamelCase__) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.') overview_doc.extend(UpperCamelCase__) # Sort return overview_doc def _snake_case (__lowercase=False): with open(UpperCamelCase__ , encoding='utf-8') as f: UpperCamelCase_ = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase_ = content[api_idx]['sections'] # Then to the model doc UpperCamelCase_ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 UpperCamelCase_ = api_doc[scheduler_idx]['sections'] UpperCamelCase_ = clean_doc_toc(UpperCamelCase__) UpperCamelCase_ = False if new_scheduler_doc != scheduler_doc: UpperCamelCase_ = True if overwrite: UpperCamelCase_ = new_scheduler_doc if diff: if overwrite: UpperCamelCase_ = api_doc with open(UpperCamelCase__ , 'w' , encoding='utf-8') as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__)) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.') def _snake_case (__lowercase=False): with open(UpperCamelCase__ , encoding='utf-8') as f: UpperCamelCase_ = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase_ = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase_ = content[api_idx]['sections'] # Then to the model doc UpperCamelCase_ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 UpperCamelCase_ = False UpperCamelCase_ = api_doc[pipeline_idx]['sections'] UpperCamelCase_ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: UpperCamelCase_ = pipeline_doc['section'] UpperCamelCase_ = clean_doc_toc(UpperCamelCase__) if overwrite: UpperCamelCase_ = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__) # sort overall pipeline doc UpperCamelCase_ = clean_doc_toc(UpperCamelCase__) if new_pipeline_docs != pipeline_docs: UpperCamelCase_ = True if overwrite: UpperCamelCase_ = new_pipeline_docs if diff: if overwrite: UpperCamelCase_ = api_doc with open(UpperCamelCase__ , 'w' , encoding='utf-8') as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__)) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.') if __name__ == "__main__": snake_case__ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") snake_case__ : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
23
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE: List[str] = Lock() def _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )-> List[str]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def _a ( lowerCAmelCase )-> List[str]: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): SCREAMING_SNAKE_CASE_ = Pipe() SCREAMING_SNAKE_CASE_ = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ = temp_rs SCREAMING_SNAKE_CASE_ = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): SCREAMING_SNAKE_CASE_ = result_pipe[p][0].recv() process_array_[p].join() return arr def _a ( )-> Optional[Any]: SCREAMING_SNAKE_CASE_ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
360
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
import functools def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : int = len(UpperCamelCase__) lowerCAmelCase_ : Optional[int] = len(UpperCamelCase__) @functools.cache def min_distance(snake_case__ , snake_case__) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ : List[str] = int(worda[indexa] != worda[indexa]) # current letters not identical return min( 1 + min_distance(indexa + 1 , UpperCamelCase__) , 1 + min_distance(UpperCamelCase__ , indexa + 1) , diff + min_distance(indexa + 1 , indexa + 1) , ) return min_distance(0 , 0) if __name__ == "__main__": import doctest doctest.testmod()
659
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) def UpperCamelCase ( __magic_name__ : Dict ) -> List[str]: """simple docstring""" lowercase__ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) lowercase__ = DetaConfig( backbone_config=UpperCamelCase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=UpperCamelCase__ , with_box_refine=UpperCamelCase__ , two_stage=UpperCamelCase__ , ) # set labels lowercase__ = """huggingface/label-files""" if "o365" in model_name: lowercase__ = 366 lowercase__ = """object365-id2label.json""" else: lowercase__ = 91 lowercase__ = """coco-detection-id2label.json""" lowercase__ = num_labels lowercase__ = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) ) lowercase__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( __magic_name__ : str ) -> Optional[int]: """simple docstring""" lowercase__ = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def UpperCamelCase ( __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] ) -> int: """simple docstring""" lowercase__ = dct.pop(UpperCamelCase__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : List[str] , __magic_name__ : List[Any] ) -> Any: """simple docstring""" lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) lowercase__ = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def UpperCamelCase ( __magic_name__ : Any , __magic_name__ : Optional[int] ) -> Optional[Any]: """simple docstring""" lowercase__ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:hidden_size, :] lowercase__ = in_proj_bias[:hidden_size] lowercase__ = in_proj_weight[ hidden_size : hidden_size * 2, : ] lowercase__ = in_proj_bias[hidden_size : hidden_size * 2] lowercase__ = in_proj_weight[-hidden_size:, :] lowercase__ = in_proj_bias[-hidden_size:] def UpperCamelCase ( ) -> List[str]: """simple docstring""" lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Dict ) -> List[str]: """simple docstring""" lowercase__ = get_deta_config(UpperCamelCase__ ) # load original state dict if model_name == "deta-swin-large": lowercase__ = hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": lowercase__ = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f'''Model name {model_name} not supported''' ) lowercase__ = torch.load(UpperCamelCase__ , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(UpperCamelCase__ , param.shape ) # rename keys lowercase__ = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: lowercase__ = state_dict.pop(UpperCamelCase__ ) lowercase__ = val if "input_proj" in key: lowercase__ = state_dict.pop(UpperCamelCase__ ) lowercase__ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: lowercase__ = state_dict.pop(UpperCamelCase__ ) lowercase__ = val # finally, create HuggingFace model and load state dict lowercase__ = DetaForObjectDetection(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() lowercase__ = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(UpperCamelCase__ ) # load image processor lowercase__ = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image lowercase__ = prepare_img() lowercase__ = processor(images=UpperCamelCase__ , return_tensors="""pt""" ) lowercase__ = encoding["""pixel_values"""] lowercase__ = model(pixel_values.to(UpperCamelCase__ ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": lowercase__ = torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) lowercase__ = torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": lowercase__ = torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) lowercase__ = torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(UpperCamelCase__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(UpperCamelCase__ ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) processor.save_pretrained(UpperCamelCase__ ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A : Dict = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0.0 , _UpperCAmelCase = None , _UpperCAmelCase = "geglu" , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = "layer_norm" , _UpperCAmelCase = False , ): """simple docstring""" super().__init__() a_ = only_cross_attention a_ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" a_ = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: a_ = AdaLayerNorm(_lowercase , _lowercase ) elif self.use_ada_layer_norm_zero: a_ = AdaLayerNormZero(_lowercase , _lowercase ) else: a_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) a_ = Attention( query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_lowercase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. a_ = ( AdaLayerNorm(_lowercase , _lowercase ) if self.use_ada_layer_norm else nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) ) a_ = Attention( query_dim=_lowercase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_lowercase , dim_head=_lowercase , dropout=_lowercase , bias=_lowercase , upcast_attention=_lowercase , ) # is self-attn if encoder_hidden_states is none else: a_ = None a_ = None # 3. Feed-forward a_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) a_ = FeedForward(_lowercase , dropout=_lowercase , activation_fn=_lowercase , final_dropout=_lowercase ) # let chunk size default to None a_ = None a_ = 0 def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = chunk_size a_ = dim def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , ): """simple docstring""" if self.use_ada_layer_norm: a_ = self.norma(_lowercase , _lowercase ) elif self.use_ada_layer_norm_zero: a_ , a_ , a_ , a_ , a_ = self.norma( _lowercase , _lowercase , _lowercase , hidden_dtype=hidden_states.dtype ) else: a_ = self.norma(_lowercase ) a_ = cross_attention_kwargs if cross_attention_kwargs is not None else {} a_ = self.attna( _lowercase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_lowercase , **_lowercase , ) if self.use_ada_layer_norm_zero: a_ = gate_msa.unsqueeze(1 ) * attn_output a_ = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: a_ = ( self.norma(_lowercase , _lowercase ) if self.use_ada_layer_norm else self.norma(_lowercase ) ) a_ = self.attna( _lowercase , encoder_hidden_states=_lowercase , attention_mask=_lowercase , **_lowercase , ) a_ = attn_output + hidden_states # 3. Feed-forward a_ = self.norma(_lowercase ) if self.use_ada_layer_norm_zero: a_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) a_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size a_ = torch.cat( [self.ff(_lowercase ) for hid_slice in norm_hidden_states.chunk(_lowercase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: a_ = self.ff(_lowercase ) if self.use_ada_layer_norm_zero: a_ = gate_mlp.unsqueeze(1 ) * ff_output a_ = ff_output + hidden_states return hidden_states class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = "geglu" , _UpperCAmelCase = False , ): """simple docstring""" super().__init__() a_ = int(dim * mult ) a_ = dim_out if dim_out is not None else dim if activation_fn == "gelu": a_ = GELU(_lowercase , _lowercase ) if activation_fn == "gelu-approximate": a_ = GELU(_lowercase , _lowercase , approximate="""tanh""" ) elif activation_fn == "geglu": a_ = GEGLU(_lowercase , _lowercase ) elif activation_fn == "geglu-approximate": a_ = ApproximateGELU(_lowercase , _lowercase ) a_ = nn.ModuleList([] ) # project in self.net.append(_lowercase ) # project dropout self.net.append(nn.Dropout(_lowercase ) ) # project out self.net.append(nn.Linear(_lowercase , _lowercase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_lowercase ) ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" for module in self.net: a_ = module(_lowercase ) return hidden_states class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "none" ): """simple docstring""" super().__init__() a_ = nn.Linear(_lowercase , _lowercase ) a_ = approximate def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_lowercase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ = self.proj(_lowercase ) a_ = self.gelu(_lowercase ) return hidden_states class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" super().__init__() a_ = nn.Linear(_lowercase , dim_out * 2 ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" if gate.device.type != "mps": return F.gelu(_lowercase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ , a_ = self.proj(_lowercase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_lowercase ) class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" super().__init__() a_ = nn.Linear(_lowercase , _lowercase ) def lowercase__ ( self , _UpperCAmelCase ): """simple docstring""" a_ = self.proj(_lowercase ) return x * torch.sigmoid(1.7_0_2 * x ) class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" super().__init__() a_ = nn.Embedding(_lowercase , _lowercase ) a_ = nn.SiLU() a_ = nn.Linear(_lowercase , embedding_dim * 2 ) a_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" a_ = self.linear(self.silu(self.emb(_lowercase ) ) ) a_ , a_ = torch.chunk(_lowercase , 2 ) a_ = self.norm(_lowercase ) * (1 + scale) + shift return x class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" super().__init__() a_ = CombinedTimestepLabelEmbeddings(_lowercase , _lowercase ) a_ = nn.SiLU() a_ = nn.Linear(_lowercase , 6 * embedding_dim , bias=_lowercase ) a_ = nn.LayerNorm(_lowercase , elementwise_affine=_lowercase , eps=1e-6 ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" a_ = self.linear(self.silu(self.emb(_lowercase , _lowercase , hidden_dtype=_lowercase ) ) ) a_ , a_ , a_ , a_ , a_ , a_ = emb.chunk(6 , dim=1 ) a_ = self.norm(_lowercase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowercase_ ( nn.Module): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = 1e-5 ): """simple docstring""" super().__init__() a_ = num_groups a_ = eps if act_fn is None: a_ = None else: a_ = get_activation(_lowercase ) a_ = nn.Linear(_lowercase , out_dim * 2 ) def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if self.act: a_ = self.act(_lowercase ) a_ = self.linear(_lowercase ) a_ = emb[:, :, None, None] a_ , a_ = emb.chunk(2 , dim=1 ) a_ = F.group_norm(_lowercase , self.num_groups , eps=self.eps ) a_ = x * (1 + scale) + shift return x
483
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device SCREAMING_SNAKE_CASE_ = False class _UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def a_ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self ) -> int: UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCAmelCase = 'A painting of a squirrel eating a burger ' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=_lowercase , generator=_lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowercase ) UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCAmelCase = generator.manual_seed(0 ) UpperCAmelCase = pipe( prompt=_lowercase , generator=_lowercase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def a_ ( self ) -> Optional[Any]: UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) UpperCAmelCase = 'A painting of a squirrel eating a burger ' UpperCAmelCase = torch.manual_seed(0 ) UpperCAmelCase = pipe( prompt=_lowercase , generator=_lowercase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type='numpy' ).images UpperCAmelCase = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
373
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel SCREAMING_SNAKE_CASE_:Optional[int] = HfApi() SCREAMING_SNAKE_CASE_:Optional[Any] = {} # fmt: off SCREAMING_SNAKE_CASE_:Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) SCREAMING_SNAKE_CASE_:Optional[Any] = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) SCREAMING_SNAKE_CASE_:Dict = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) SCREAMING_SNAKE_CASE_:Tuple = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) SCREAMING_SNAKE_CASE_:Tuple = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) SCREAMING_SNAKE_CASE_:Dict = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) SCREAMING_SNAKE_CASE_:int = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) SCREAMING_SNAKE_CASE_:Tuple = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) SCREAMING_SNAKE_CASE_:Optional[int] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) SCREAMING_SNAKE_CASE_:int = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) SCREAMING_SNAKE_CASE_:Tuple = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) SCREAMING_SNAKE_CASE_:Any = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) SCREAMING_SNAKE_CASE_:Tuple = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) SCREAMING_SNAKE_CASE_:Dict = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) SCREAMING_SNAKE_CASE_:Dict = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on SCREAMING_SNAKE_CASE_:int = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": SCREAMING_SNAKE_CASE_:str = "/home/patrick/google_checkpoints/" + mod.modelId.split("""/""")[-1] print(F"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): SCREAMING_SNAKE_CASE_:Optional[int] = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: SCREAMING_SNAKE_CASE_:Tuple = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) SCREAMING_SNAKE_CASE_:Dict = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) SCREAMING_SNAKE_CASE_:Optional[Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): SCREAMING_SNAKE_CASE_:Union[str, Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1E-3 ) print(F"""{mod.modelId} has passed successfully!!!""")
662
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase: def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3 , SCREAMING_SNAKE_CASE__ : int=3_2 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Dict=1_0 , SCREAMING_SNAKE_CASE__ : List[Any]=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE__ : Any=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[str]="relu" , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ): '''simple docstring''' __a : int = parent __a : Union[str, Any] = batch_size __a : Dict = image_size __a : List[str] = num_channels __a : Union[str, Any] = embeddings_size __a : int = hidden_sizes __a : Optional[Any] = depths __a : List[str] = is_training __a : List[str] = use_labels __a : Optional[int] = hidden_act __a : str = num_labels __a : Union[str, Any] = scope __a : Optional[int] = len(_lowercase ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : int = None if self.use_labels: __a : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __a : Optional[int] = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' __a : str = TFRegNetModel(config=_lowercase ) __a : List[str] = model(_lowercase , training=_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : Optional[int] = self.num_labels __a : List[str] = TFRegNetForImageClassification(_lowercase ) __a : Tuple = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' __a : List[str] = self.prepare_config_and_inputs() __a , __a , __a : str = config_and_inputs __a : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __SCREAMING_SNAKE_CASE : Dict = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Any = False __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : List[str] = False def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Optional[int] = TFRegNetModelTester(self ) __a : str = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def __lowerCAmelCase ( self : str ): '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def __lowerCAmelCase ( self : Any ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def __lowerCAmelCase ( self : int ): '''simple docstring''' __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : List[str] = model_class(_lowercase ) __a : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Union[str, Any] = [*signature.parameters.keys()] __a : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): __a : Tuple = model_class(_lowercase ) __a : List[str] = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) __a : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __a , __a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __a : Optional[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __a : Optional[int] = layer_type __a : Optional[int] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Optional[Any] = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int={} ): __a : List[Any] = model(_lowercase , return_dict=_lowercase , **_lowercase ) __a : Any = model(_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowercase , _lowercase ) ) , msg=( 'Tuple and dict output are not equal. Difference:' f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __a : Union[str, Any] = model_class(_lowercase ) __a : Tuple = self._prepare_for_class(_lowercase , _lowercase ) __a : List[str] = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __a : Optional[int] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __a : List[Any] = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __a : Any = self._prepare_for_class(_lowercase , _lowercase ) __a : Tuple = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'output_hidden_states': True} ) __a : Any = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __a : Any = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'output_hidden_states': True} ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def __lowerCAmelCase ( self : int ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Optional[Any] = TFRegNetModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def UpperCAmelCase__ ( ): __a : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _UpperCamelCase( unittest.TestCase ): @cached_property def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Tuple = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __a : str = self.default_image_processor __a : Union[str, Any] = prepare_img() __a : Tuple = image_processor(images=_lowercase , return_tensors='tf' ) # forward pass __a : Union[str, Any] = model(**_lowercase , training=_lowercase ) # verify the logits __a : Union[str, Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowercase ) __a : int = tf.constant([-0.4_180, -1.5_051, -3.4_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
47
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def A ( self : List[str] )-> Any: __UpperCamelCase = 0 def A ( self : int )-> Dict: __UpperCamelCase = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(_lowercase , _lowercase ) def A ( self : str )-> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = Path(_lowercase ) / "preprocessor_config.json" __UpperCamelCase = Path(_lowercase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_lowercase , "w" ) , ) json.dump({"model_type": "clip"} , open(_lowercase , "w" ) ) __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def A ( self : Optional[Any] )-> Optional[Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = Path(_lowercase ) / "preprocessor_config.json" __UpperCamelCase = Path(_lowercase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(_lowercase , "w" ) , ) json.dump({"model_type": "clip"} , open(_lowercase , "w" ) ) __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def A ( self : Dict )-> Any: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase = Path(_lowercase ) / "preprocessor_config.json" __UpperCamelCase = Path(_lowercase ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_lowercase , "w" ) , ) json.dump({"model_type": "clip"} , open(_lowercase , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase ).to_dict() config_dict.pop("image_processor_type" ) __UpperCamelCase = CLIPImageProcessor(**_lowercase ) # save in new folder model_config.save_pretrained(_lowercase ) config.save_pretrained(_lowercase ) __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase ) # make sure private variable is not incorrectly saved __UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(_lowercase , _lowercase ) def A ( self : Optional[int] )-> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = Path(_lowercase ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(_lowercase , "w" ) , ) __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) def A ( self : str )-> Tuple: with self.assertRaisesRegex( _lowercase , "clip-base is not a local folder and is not a valid model identifier" ): __UpperCamelCase = AutoImageProcessor.from_pretrained("clip-base" ) def A ( self : Union[str, Any] )-> Optional[int]: with self.assertRaisesRegex( _lowercase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase , revision="aaaaaa" ) def A ( self : Any )-> int: with self.assertRaisesRegex( _lowercase , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __UpperCamelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def A ( self : List[Any] )-> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase ): __UpperCamelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase ): __UpperCamelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_lowercase ) __UpperCamelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase , trust_remote_code=_lowercase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def A ( self : Optional[Any] )-> Optional[Any]: try: AutoConfig.register("custom" , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase ): AutoImageProcessor.register(_lowercase , _lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase = Path(_lowercase ) / "preprocessor_config.json" __UpperCamelCase = Path(_lowercase ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(_lowercase , "w" ) , ) json.dump({"model_type": "clip"} , open(_lowercase , "w" ) ) __UpperCamelCase = CustomImageProcessor.from_pretrained(_lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowercase ) __UpperCamelCase = AutoImageProcessor.from_pretrained(_lowercase ) self.assertIsInstance(_lowercase , _lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : Union[str, Any] )-> Optional[Any]: class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = True try: AutoConfig.register("custom" , _lowercase ) AutoImageProcessor.register(_lowercase , _lowercase ) # If remote code is not set, the default is to use local __UpperCamelCase = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __UpperCamelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __UpperCamelCase = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=_lowercase ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(_lowercase , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
505
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCamelCase : List[str] = 16 __UpperCamelCase : Tuple = 32 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: List[Any], SCREAMING_SNAKE_CASE__: List[str] = 16 ) -> Any: """simple docstring""" __a = AutoTokenizer.from_pretrained('bert-base-cased' ) __a = load_dataset('glue', 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__: List[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['sentence1'], examples['sentence2'], truncation=UpperCamelCase__, max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a = datasets.map( UpperCamelCase__, batched=UpperCamelCase__, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__: Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a = 16 elif accelerator.mixed_precision != "no": __a = 8 else: __a = None return tokenizer.pad( UpperCamelCase__, padding='longest', max_length=UpperCamelCase__, pad_to_multiple_of=UpperCamelCase__, return_tensors='pt', ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['train'], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) __a = DataLoader( tokenized_datasets['validation'], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __UpperCamelCase : int = mocked_dataloaders # noqa: F811 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: Optional[int], SCREAMING_SNAKE_CASE__: Dict ) -> List[Any]: """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS', UpperCamelCase__ ) == "1": __a = 2 # Initialize accelerator __a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['lr'] __a = int(config['num_epochs'] ) __a = int(config['seed'] ) __a = int(config['batch_size'] ) __a = evaluate.load('glue', 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=UpperCamelCase__ ) def inner_training_loop(SCREAMING_SNAKE_CASE__: List[str] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(UpperCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=UpperCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a = model.to(accelerator.device ) # Instantiate optimizer __a = AdamW(params=model.parameters(), lr=UpperCamelCase__ ) __a , __a = get_dataloaders(UpperCamelCase__, UpperCamelCase__ ) # Instantiate scheduler __a = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__, num_warmup_steps=100, num_training_steps=(len(UpperCamelCase__ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # Now we train the model for epoch in range(UpperCamelCase__ ): model.train() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __a = model(**UpperCamelCase__ ) __a = outputs.loss accelerator.backward(UpperCamelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**UpperCamelCase__ ) __a = outputs.logits.argmax(dim=-1 ) __a , __a = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase__, references=UpperCamelCase__, ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", UpperCamelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" __a = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=UpperCamelCase__, default=UpperCamelCase__, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) __a = parser.parse_args() __a = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
448
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _lowerCAmelCase = get_logger(__name__) class _UpperCAmelCase : a = '''dummy_data''' a = '''datasets''' a = False def __init__( self , a__ , a__ , a__ , a__ = None , a__ = False , a__ = True , a__ = None , ): A_ : int = 0 A_ : Any = dataset_name A_ : Tuple = cache_dir A_ : str = use_local_dummy_data A_ : Any = config # download_callbacks take a single url as input A_ : List[Any] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root A_ : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general A_ : List[str] = str(_lowercase ) # to be downloaded A_ : Optional[int] = None A_ : Dict = None @property def _lowerCamelCase ( self ): if self._dummy_file is None: A_ : Tuple = self.download_dummy_data() return self._dummy_file @property def _lowerCamelCase ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def _lowerCamelCase ( self ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def _lowerCamelCase ( self ): A_ : Any = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) A_ : Dict = cached_path( _lowercase , cache_dir=self.cache_dir , extract_compressed_file=_lowercase , force_extract=_lowercase ) return os.path.join(_lowercase , self.dummy_file_name ) @property def _lowerCamelCase ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def _lowerCamelCase ( self ): if self._bucket_url is None: A_ : Optional[int] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def _lowerCamelCase ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def _lowerCamelCase ( self , a__ , *a__ ): if self.load_existing_dummy_data: # dummy data is downloaded and tested A_ : str = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned A_ : int = self.dummy_file_name # special case when data_url is a dict if isinstance(_lowercase , _lowercase ): return self.create_dummy_data_dict(_lowercase , _lowercase ) elif isinstance(_lowercase , (list, tuple) ): return self.create_dummy_data_list(_lowercase , _lowercase ) else: return self.create_dummy_data_single(_lowercase , _lowercase ) def _lowerCamelCase ( self , a__ , *a__ ): return self.download_and_extract(_lowercase ) def _lowerCamelCase ( self , a__ , a__ ): return self.download_and_extract(_lowercase ) def _lowerCamelCase ( self , a__ , *a__ , **a__ ): return path def _lowerCamelCase ( self ): return {} def _lowerCamelCase ( self , a__ , a__ ): A_ : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_lowercase , _lowercase ): for single_url in single_urls: download_callback(_lowercase ) else: A_ : int = single_urls download_callback(_lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_lowercase , _lowercase ): A_ : Dict = [os.path.join(_lowercase , urllib.parse.quote_plus(Path(_lowercase ).name ) ) for x in single_urls] else: A_ : List[str] = single_urls A_ : Optional[Any] = os.path.join(_lowercase , urllib.parse.quote_plus(Path(_lowercase ).name ) ) A_ : Union[str, Any] = value # make sure that values are unique if all(isinstance(_lowercase , _lowercase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique A_ : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def _lowerCamelCase ( self , a__ , a__ ): A_ : List[Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one A_ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , _lowercase ) ) for url in data_url ) A_ : Tuple = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): A_ : Tuple = [data_url[0]] * len(_lowercase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A_ : str = os.path.join(_lowercase , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(_lowercase ) return dummy_data_list def _lowerCamelCase ( self , a__ , a__ ): for download_callback in self.download_callbacks: download_callback(_lowercase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus A_ : Union[str, Any] = os.path.join(_lowercase , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(_lowercase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self , a__ ): def _iter_archive_members(a__ ): # this preserves the order of the members inside the ZIP archive A_ : Optional[Any] = Path(self.dummy_file ).parent A_ : Optional[int] = path.relative_to(_lowercase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: A_ : Tuple = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_lowercase ) A_ : Dict = Path(_lowercase ) A_ : str = _iter_archive_members(_lowercase ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(_lowercase ).as_posix(), file_path.open("""rb""" ) def _lowerCamelCase ( self , a__ ): if not isinstance(_lowercase , _lowercase ): A_ : str = [paths] for path in paths: if os.path.isfile(_lowercase ): if os.path.basename(_lowercase ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_lowercase ): if os.path.basename(_lowercase ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(_lowercase ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(_lowercase , _lowercase )
569
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
from __future__ import annotations from collections.abc import Iterator class A__ : def __init__( self : Any , _a : int ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None class A__ : def __init__( self : List[Any] , _a : Node ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE =tree def __UpperCamelCase ( self : Union[str, Any] , _a : Node | None ) -> int: """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
691
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _SCREAMING_SNAKE_CASE ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _SCREAMING_SNAKE_CASE =f"{src_lang}-{tgt_lang}" _SCREAMING_SNAKE_CASE =f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a__ ,exist_ok=a__) _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''README.md''') print(f"Generating {path}") with open(a__ ,'''w''' ,encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project snake_case_ : Any = Path(__file__).resolve().parent.parent.parent snake_case_ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : Union[str, Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
691
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : List[Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
691
1
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =(32, 32) _SCREAMING_SNAKE_CASE =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(_a ) @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" def extract(*_a : List[Any] , **_a : Dict ): class A__ : def __init__( self : str ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.ones([0] ) def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] ) -> List[str]: """simple docstring""" self.pixel_values.to(_a ) return self return Out() return extract def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.dummy_cond_unet _SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a ) _SCREAMING_SNAKE_CASE =self.dummy_vae _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _SCREAMING_SNAKE_CASE =77 _SCREAMING_SNAKE_CASE =self.dummy_image.to(_a ) _SCREAMING_SNAKE_CASE =init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE =AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _SCREAMING_SNAKE_CASE =alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''A painting of a squirrel eating a burger''' _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(0 ) _SCREAMING_SNAKE_CASE =alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_a , ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(0 ) _SCREAMING_SNAKE_CASE =alt_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_a , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE =np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_cond_unet _SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a ) _SCREAMING_SNAKE_CASE =self.dummy_vae _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) _SCREAMING_SNAKE_CASE =77 _SCREAMING_SNAKE_CASE =self.dummy_image.to(_a ) # put models in fp16 _SCREAMING_SNAKE_CASE =unet.half() _SCREAMING_SNAKE_CASE =vae.half() _SCREAMING_SNAKE_CASE =bert.half() # make sure here that pndm scheduler skips prk _SCREAMING_SNAKE_CASE =AltDiffusionImgaImgPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) _SCREAMING_SNAKE_CASE =VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_a ) _SCREAMING_SNAKE_CASE =alt_pipe.to(_a ) alt_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''A painting of a squirrel eating a burger''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =alt_pipe( [prompt] , generator=_a , num_inference_steps=2 , output_type='''np''' , image=_a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 _SCREAMING_SNAKE_CASE =init_image.resize((760, 504) ) _SCREAMING_SNAKE_CASE ='''BAAI/AltDiffusion''' _SCREAMING_SNAKE_CASE =AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE ='''A fantasy landscape, trending on artstation''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] _SCREAMING_SNAKE_CASE =image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) _SCREAMING_SNAKE_CASE =np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _SCREAMING_SNAKE_CASE =init_image.resize((768, 512) ) _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) _SCREAMING_SNAKE_CASE ='''BAAI/AltDiffusion''' _SCREAMING_SNAKE_CASE =AltDiffusionImgaImgPipeline.from_pretrained( _a , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE ='''A fantasy landscape, trending on artstation''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , generator=_a , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
691
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase( a__): def wrapper(*a__ ,**a__): _SCREAMING_SNAKE_CASE =timeit.default_timer() _SCREAMING_SNAKE_CASE =func(*a__ ,**a__) _SCREAMING_SNAKE_CASE =timeit.default_timer() - starttime return delta _SCREAMING_SNAKE_CASE =func.__name__ return wrapper def lowerCamelCase( a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =seq_shapes or {} for i in range(a__): _SCREAMING_SNAKE_CASE ={} for col_id, (k, v) in enumerate(features.items()): if isinstance(a__ ,_ArrayXD): _SCREAMING_SNAKE_CASE =np.random.rand(*v.shape).astype(v.dtype) elif isinstance(a__ ,datasets.Value): if v.dtype == "string": _SCREAMING_SNAKE_CASE ='''The small grey turtle was surprisingly fast when challenged.''' else: _SCREAMING_SNAKE_CASE =np.random.randint(10 ,size=1).astype(v.dtype).item() elif isinstance(a__ ,datasets.Sequence): while isinstance(a__ ,datasets.Sequence): _SCREAMING_SNAKE_CASE =v.feature _SCREAMING_SNAKE_CASE =seq_shapes[k] _SCREAMING_SNAKE_CASE =np.random.rand(*a__).astype(v.dtype) _SCREAMING_SNAKE_CASE =data dummy_data.append((i, example)) return dummy_data def lowerCamelCase( a__ ,a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =generate_examples(a__ ,num_examples=a__ ,seq_shapes=a__) with ArrowWriter(features=a__ ,path=a__) as writer: for key, record in dummy_data: _SCREAMING_SNAKE_CASE =features.encode_example(a__) writer.write(a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.") _SCREAMING_SNAKE_CASE =datasets.Dataset.from_file(filename=a__ ,info=datasets.DatasetInfo(features=a__)) return dataset
691
1
import math import qiskit def lowerCamelCase( a__ = 1 ,a__ = 1 ,a__ = 1): if ( isinstance(a__ ,a__) or isinstance(a__ ,a__) or isinstance(a__ ,a__) ): raise TypeError('''inputs must be integers.''') if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''') if ( (math.floor(a__) != input_a) or (math.floor(a__) != input_a) or (math.floor(a__) != carry_in) ): raise ValueError('''inputs must be exact integers.''') if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''') # build registers _SCREAMING_SNAKE_CASE =qiskit.QuantumRegister(4 ,'''qr''') _SCREAMING_SNAKE_CASE =qiskit.ClassicalRegister(2 ,'''cr''') # list the entries _SCREAMING_SNAKE_CASE =[input_a, input_a, carry_in] _SCREAMING_SNAKE_CASE =qiskit.QuantumCircuit(a__ ,a__) for i in range(0 ,3): if entry[i] == 2: quantum_circuit.h(a__) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(a__) # for 1 entries elif entry[i] == 0: quantum_circuit.i(a__) # for 0 entries # build the circuit quantum_circuit.ccx(0 ,1 ,3) # ccx = toffoli gate quantum_circuit.cx(0 ,1) quantum_circuit.ccx(1 ,2 ,3) quantum_circuit.cx(1 ,2) quantum_circuit.cx(0 ,1) quantum_circuit.measure([2, 3] ,a__) # measure the last two qbits _SCREAMING_SNAKE_CASE =qiskit.Aer.get_backend('''aer_simulator''') _SCREAMING_SNAKE_CASE =qiskit.execute(a__ ,a__ ,shots=1000) return job.result().get_counts(a__) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
691
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =set() _SCREAMING_SNAKE_CASE =[] def parse_line(a__): for line in fp: if isinstance(a__ ,a__): _SCREAMING_SNAKE_CASE =line.decode('''UTF-8''') if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' '''): # process a single warning and move it to `selected_warnings`. if len(a__) > 0: _SCREAMING_SNAKE_CASE ='''\n'''.join(a__) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets): selected_warnings.add(a__) buffer.clear() continue else: _SCREAMING_SNAKE_CASE =line.strip() buffer.append(a__) if from_gh: for filename in os.listdir(a__): _SCREAMING_SNAKE_CASE =os.path.join(a__ ,a__) if not os.path.isdir(a__): # read the file if filename != "warnings.txt": continue with open(a__) as fp: parse_line(a__) else: try: with zipfile.ZipFile(a__) as z: for filename in z.namelist(): if not os.path.isdir(a__): # read the file if filename != "warnings.txt": continue with z.open(a__) as fp: parse_line(a__) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.") return selected_warnings def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =set() _SCREAMING_SNAKE_CASE =[os.path.join(a__ ,a__) for p in os.listdir(a__) if (p.endswith('''.zip''') or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(a__ ,a__)) return selected_warnings if __name__ == "__main__": def lowerCamelCase( a__): return values.split(''',''') snake_case_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) snake_case_ : Tuple = parser.parse_args() snake_case_ : List[str] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links snake_case_ : str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts snake_case_ : str = extract_warnings(args.output_dir, args.targets) snake_case_ : Dict = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
691
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] , _a : List[str] , _a : Any ) -> Dict: """simple docstring""" return f"gaussian_noise_s={seed}_shape={'_'.join([str(_a ) for s in shape] )}.npy" def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() def __UpperCamelCase ( self : Union[str, Any] , _a : Union[str, Any]=0 , _a : Union[str, Any]=(4, 4, 64, 64) , _a : List[Any]=False ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =jnp.bfloataa if fpaa else jnp.floataa _SCREAMING_SNAKE_CASE =jnp.array(load_hf_numpy(self.get_file_format(_a , _a ) ) , dtype=_a ) return image def __UpperCamelCase ( self : Dict , _a : Tuple=False , _a : Tuple="CompVis/stable-diffusion-v1-4" ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =jnp.bfloataa if fpaa else jnp.floataa _SCREAMING_SNAKE_CASE ='''bf16''' if fpaa else None _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =FlaxUNetaDConditionModel.from_pretrained( _a , subfolder='''unet''' , dtype=_a , revision=_a ) return model, params def __UpperCamelCase ( self : Dict , _a : List[str]=0 , _a : str=(4, 77, 768) , _a : str=False ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =jnp.bfloataa if fpaa else jnp.floataa _SCREAMING_SNAKE_CASE =jnp.array(load_hf_numpy(self.get_file_format(_a , _a ) ) , dtype=_a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1000, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ] ) def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : int , _a : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_a ) _SCREAMING_SNAKE_CASE =self.get_latents(_a , fpaa=_a ) _SCREAMING_SNAKE_CASE =self.get_encoder_hidden_states(_a , fpaa=_a ) _SCREAMING_SNAKE_CASE =model.apply( {'''params''': params} , _a , jnp.array(_a , dtype=jnp.intaa ) , encoder_hidden_states=_a , ).sample assert sample.shape == latents.shape _SCREAMING_SNAKE_CASE =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE =jnp.array(_a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_a , _a , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1000, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ] ) def __UpperCamelCase ( self : Optional[Any] , _a : int , _a : List[Any] , _a : Any ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_a ) _SCREAMING_SNAKE_CASE =self.get_latents(_a , shape=(4, 4, 96, 96) , fpaa=_a ) _SCREAMING_SNAKE_CASE =self.get_encoder_hidden_states(_a , shape=(4, 77, 1024) , fpaa=_a ) _SCREAMING_SNAKE_CASE =model.apply( {'''params''': params} , _a , jnp.array(_a , dtype=jnp.intaa ) , encoder_hidden_states=_a , ).sample assert sample.shape == latents.shape _SCREAMING_SNAKE_CASE =jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _SCREAMING_SNAKE_CASE =jnp.array(_a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_a , _a , atol=1E-2 )
691
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__ ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =(3, 32, 128) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) _SCREAMING_SNAKE_CASE ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[Any] , **_a : str ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Optional[int] , **_a : Tuple ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) return image_input def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.char_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) _SCREAMING_SNAKE_CASE =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 38 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 5_0257 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 3_0522 ) _SCREAMING_SNAKE_CASE =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
691
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): snake_case_ : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right snake_case_ : Tuple = 12_80_22 snake_case_ : str = 12_80_28 @require_sentencepiece class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = MaMaaaTokenizer UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) _SCREAMING_SNAKE_CASE =MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : int , **_a : Tuple ) -> int: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Any , _a : List[Any] ) -> Tuple: """simple docstring""" return ( "This is a test", "This is a test", ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ='''</s>''' _SCREAMING_SNAKE_CASE =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(_a ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [2, 3, 4, 5, 6] , ) _SCREAMING_SNAKE_CASE =tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_a , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) _SCREAMING_SNAKE_CASE =tokenizer.convert_tokens_to_string(_a ) self.assertEqual(_a , '''This is a test''' ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE ={'''input_ids''': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): UpperCAmelCase = "facebook/m2m100_418M" UpperCAmelCase = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] UpperCAmelCase = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off UpperCAmelCase = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __UpperCamelCase ( cls : Any ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) _SCREAMING_SNAKE_CASE =1 return cls def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_8063 ) def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.tokenizer.get_vocab() self.assertEqual(len(_a ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , _a ) def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''en''' _SCREAMING_SNAKE_CASE =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _a ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" self.assertIn(_a , self.tokenizer.all_special_ids ) # fmt: off _SCREAMING_SNAKE_CASE =[FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on _SCREAMING_SNAKE_CASE =self.tokenizer.decode(_a , skip_special_tokens=_a ) _SCREAMING_SNAKE_CASE =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_a ) self.assertEqual(_a , _a ) self.assertNotIn(self.tokenizer.eos_token , _a ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =MaMaaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.lang_token_to_id , _a ) @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE ='''en''' _SCREAMING_SNAKE_CASE ='''fr''' _SCREAMING_SNAKE_CASE =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_a , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _SCREAMING_SNAKE_CASE =batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _SCREAMING_SNAKE_CASE ='''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _SCREAMING_SNAKE_CASE ='''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(_a ) , { # en_XX, A, test, EOS '''input_ids''': [[12_8022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_8006, } , )
691
import requests from bsa import BeautifulSoup def lowerCamelCase( a__ = "https://www.worldometers.info/coronavirus"): _SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(a__).text ,'''html.parser''') _SCREAMING_SNAKE_CASE =soup.findAll('''h1''') _SCREAMING_SNAKE_CASE =soup.findAll('''div''' ,{'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''}) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(a__ ,a__)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
691
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging snake_case_ : Dict = logging.get_logger(__name__) class A__ ( UpperCamelCase__ ): UpperCAmelCase = ["audio_values", "audio_mask"] def __init__( self : Optional[int] , _a : Tuple=2048 , _a : Optional[Any]=1 , _a : Union[str, Any]=[16, 16] , _a : str=128 , _a : int=4_4100 , _a : Any=86 , _a : Union[str, Any]=2048 , _a : List[str]=0.0 , **_a : Dict , ) -> Optional[Any]: """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , **_a , ) _SCREAMING_SNAKE_CASE =spectrogram_length _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =feature_size // self.patch_size[1] _SCREAMING_SNAKE_CASE =n_fft _SCREAMING_SNAKE_CASE =sampling_rate // hop_length_to_sampling_rate _SCREAMING_SNAKE_CASE =sampling_rate _SCREAMING_SNAKE_CASE =padding_value _SCREAMING_SNAKE_CASE =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=_a , norm='''slaney''' , mel_scale='''slaney''' , ).T def __UpperCamelCase ( self : Dict , _a : np.array ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =spectrogram( _a , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) _SCREAMING_SNAKE_CASE =log_spec[:, :-1] _SCREAMING_SNAKE_CASE =log_spec - 20.0 _SCREAMING_SNAKE_CASE =np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[int] , _a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _a : Optional[Union[str, TensorType]] = None , _a : Optional[bool] = True , _a : Optional[int] = None , _a : bool = False , _a : bool = False , **_a : List[str] , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _SCREAMING_SNAKE_CASE =isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _SCREAMING_SNAKE_CASE =is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE =[np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): _SCREAMING_SNAKE_CASE =np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE =[np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _SCREAMING_SNAKE_CASE =[ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _a ): _SCREAMING_SNAKE_CASE =[np.asarray(_a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _SCREAMING_SNAKE_CASE =max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _SCREAMING_SNAKE_CASE =[ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _SCREAMING_SNAKE_CASE =np.array(_a ).astype(np.floataa ) # convert into correct format for padding _SCREAMING_SNAKE_CASE =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _SCREAMING_SNAKE_CASE =np.ones([len(_a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =padded_audio_features * self.padding_value for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =audio_features[i] _SCREAMING_SNAKE_CASE =feature # return as BatchFeature if return_attention_mask: _SCREAMING_SNAKE_CASE ={'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: _SCREAMING_SNAKE_CASE ={'''audio_values''': padded_audio_features} _SCREAMING_SNAKE_CASE =BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
691
def lowerCamelCase( a__ ,a__): return number | (1 << position) def lowerCamelCase( a__ ,a__): return number & ~(1 << position) def lowerCamelCase( a__ ,a__): return number ^ (1 << position) def lowerCamelCase( a__ ,a__): return ((number >> position) & 1) == 1 def lowerCamelCase( a__ ,a__): return int((number & (1 << position)) != 0) if __name__ == "__main__": import doctest doctest.testmod()
691
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A__ ( unittest.TestCase ): @property def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_uncond_unet _SCREAMING_SNAKE_CASE =PNDMScheduler() _SCREAMING_SNAKE_CASE =PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pndm(generator=_a , num_inference_steps=20 , output_type='''numpy''' ).images _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pndm(generator=_a , num_inference_steps=20 , output_type='''numpy''' , return_dict=_a )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE =np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''google/ddpm-cifar10-32''' _SCREAMING_SNAKE_CASE =UNetaDModel.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =PNDMScheduler() _SCREAMING_SNAKE_CASE =PNDMPipeline(unet=_a , scheduler=_a ) pndm.to(_a ) pndm.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pndm(generator=_a , output_type='''numpy''' ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE =np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
691
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =8 # DPR tok _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" import torch _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer() _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
691
1
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) snake_case_ : str = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE ={} state_dict.pop('''pixel_mean''' ,a__) state_dict.pop('''pixel_std''' ,a__) _SCREAMING_SNAKE_CASE =R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _SCREAMING_SNAKE_CASE =key.replace(a__ ,a__) if re.match(a__ ,a__): _SCREAMING_SNAKE_CASE =int(re.match(a__ ,a__).group(2)) if layer_nb == 0: _SCREAMING_SNAKE_CASE =key.replace('''layers.0''' ,'''proj_in''') elif layer_nb == 1: _SCREAMING_SNAKE_CASE =key.replace('''layers.1''' ,'''layers.0''') elif layer_nb == 2: _SCREAMING_SNAKE_CASE =key.replace('''layers.2''' ,'''proj_out''') _SCREAMING_SNAKE_CASE =value _SCREAMING_SNAKE_CASE =model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def lowerCamelCase( a__ ,a__ ,a__ ,a__="ybelkada/segment-anything"): _SCREAMING_SNAKE_CASE =hf_hub_download(a__ ,f"checkpoints/{model_name}.pth") if "sam_vit_b" in model_name: _SCREAMING_SNAKE_CASE =SamConfig() elif "sam_vit_l" in model_name: _SCREAMING_SNAKE_CASE =SamVisionConfig( hidden_size=1024 ,num_hidden_layers=24 ,num_attention_heads=16 ,global_attn_indexes=[5, 11, 17, 23] ,) _SCREAMING_SNAKE_CASE =SamConfig( vision_config=a__ ,) elif "sam_vit_h" in model_name: _SCREAMING_SNAKE_CASE =SamVisionConfig( hidden_size=1280 ,num_hidden_layers=32 ,num_attention_heads=16 ,global_attn_indexes=[7, 15, 23, 31] ,) _SCREAMING_SNAKE_CASE =SamConfig( vision_config=a__ ,) _SCREAMING_SNAKE_CASE =torch.load(a__ ,map_location='''cpu''') _SCREAMING_SNAKE_CASE =replace_keys(a__) _SCREAMING_SNAKE_CASE =SamImageProcessor() _SCREAMING_SNAKE_CASE =SamProcessor(image_processor=a__) _SCREAMING_SNAKE_CASE =SamModel(a__) hf_model.load_state_dict(a__) _SCREAMING_SNAKE_CASE =hf_model.to('''cuda''') _SCREAMING_SNAKE_CASE ='''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' _SCREAMING_SNAKE_CASE =Image.open(requests.get(a__ ,stream=a__).raw).convert('''RGB''') _SCREAMING_SNAKE_CASE =[[[400, 650]]] _SCREAMING_SNAKE_CASE =[[1]] _SCREAMING_SNAKE_CASE =processor(images=np.array(a__) ,return_tensors='''pt''').to('''cuda''') with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**a__) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 _SCREAMING_SNAKE_CASE =processor( images=np.array(a__) ,input_points=a__ ,input_labels=a__ ,return_tensors='''pt''').to('''cuda''') with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**a__) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 _SCREAMING_SNAKE_CASE =((75, 275, 1725, 850),) _SCREAMING_SNAKE_CASE =processor(images=np.array(a__) ,input_boxes=a__ ,return_tensors='''pt''').to('''cuda''') with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**a__) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. _SCREAMING_SNAKE_CASE =[[[400, 650], [800, 650]]] _SCREAMING_SNAKE_CASE =[[1, 1]] _SCREAMING_SNAKE_CASE =processor( images=np.array(a__) ,input_points=a__ ,input_labels=a__ ,return_tensors='''pt''').to('''cuda''') with torch.no_grad(): _SCREAMING_SNAKE_CASE =hf_model(**a__) _SCREAMING_SNAKE_CASE =output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() snake_case_ : str = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) snake_case_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
691
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = KandinskyImgaImgPipeline UpperCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] UpperCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _SCREAMING_SNAKE_CASE =MultilingualCLIP(_a ) _SCREAMING_SNAKE_CASE =text_encoder.eval() return text_encoder @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_a ) return model @property def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =self.dummy_tokenizer _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _SCREAMING_SNAKE_CASE =DDIMScheduler(**_a ) _SCREAMING_SNAKE_CASE ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : str , _a : int , _a : int=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _SCREAMING_SNAKE_CASE ='''A red cartoon frog, 4k''' _SCREAMING_SNAKE_CASE =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _SCREAMING_SNAKE_CASE =KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.Generator(device='''cpu''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =pipeline( _a , image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
691
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def lowerCamelCase( ): _SCREAMING_SNAKE_CASE ='''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' _SCREAMING_SNAKE_CASE =Image.open(requests.get(a__ ,stream=a__).raw).convert('''RGB''') return image def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =[] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''')) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''')) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''')) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''')) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''')) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''')) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",)) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''')) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''')) # fmt: on return rename_keys def lowerCamelCase( a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE =dct.pop(a__) _SCREAMING_SNAKE_CASE =val def lowerCamelCase( a__ ,a__): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases _SCREAMING_SNAKE_CASE =state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias") _SCREAMING_SNAKE_CASE =state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias") # next, set bias in the state dict _SCREAMING_SNAKE_CASE =torch.cat((q_bias, torch.zeros_like(a__ ,requires_grad=a__), v_bias)) _SCREAMING_SNAKE_CASE =qkv_bias def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =364 if '''coco''' in model_name else 224 _SCREAMING_SNAKE_CASE =BlipaVisionConfig(image_size=a__).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _SCREAMING_SNAKE_CASE =OPTConfig.from_pretrained('''facebook/opt-2.7b''' ,eos_token_id=a__).to_dict() elif "opt-6.7b" in model_name: _SCREAMING_SNAKE_CASE =OPTConfig.from_pretrained('''facebook/opt-6.7b''' ,eos_token_id=a__).to_dict() elif "t5-xl" in model_name: _SCREAMING_SNAKE_CASE =TaConfig.from_pretrained('''google/flan-t5-xl''' ,dense_act_fn='''gelu''' ,bos_token_id=1).to_dict() elif "t5-xxl" in model_name: _SCREAMING_SNAKE_CASE =TaConfig.from_pretrained('''google/flan-t5-xxl''' ,dense_act_fn='''gelu''' ,bos_token_id=1).to_dict() _SCREAMING_SNAKE_CASE =BlipaConfig(vision_config=a__ ,text_config=a__) return config, image_size @torch.no_grad() def lowerCamelCase( a__ ,a__=None ,a__=False): _SCREAMING_SNAKE_CASE =( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''') if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''') ) _SCREAMING_SNAKE_CASE =tokenizer('''\n''' ,add_special_tokens=a__).input_ids[0] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =get_blipa_config(a__ ,eos_token_id=a__) _SCREAMING_SNAKE_CASE =BlipaForConditionalGeneration(a__).eval() _SCREAMING_SNAKE_CASE ={ '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model_name_to_original[model_name] # load original model print('''Loading original model...''') _SCREAMING_SNAKE_CASE ='''cuda''' if torch.cuda.is_available() else '''cpu''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =load_model_and_preprocess( name=a__ ,model_type=a__ ,is_eval=a__ ,device=a__) original_model.eval() print('''Done!''') # update state dict keys _SCREAMING_SNAKE_CASE =original_model.state_dict() _SCREAMING_SNAKE_CASE =create_rename_keys(a__) for src, dest in rename_keys: rename_key(a__ ,a__ ,a__) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _SCREAMING_SNAKE_CASE =state_dict.pop(a__) if key.startswith('''Qformer.bert'''): _SCREAMING_SNAKE_CASE =key.replace('''Qformer.bert''' ,'''qformer''') if "attention.self" in key: _SCREAMING_SNAKE_CASE =key.replace('''self''' ,'''attention''') if "opt_proj" in key: _SCREAMING_SNAKE_CASE =key.replace('''opt_proj''' ,'''language_projection''') if "t5_proj" in key: _SCREAMING_SNAKE_CASE =key.replace('''t5_proj''' ,'''language_projection''') if key.startswith('''opt'''): _SCREAMING_SNAKE_CASE =key.replace('''opt''' ,'''language''') if key.startswith('''t5'''): _SCREAMING_SNAKE_CASE =key.replace('''t5''' ,'''language''') _SCREAMING_SNAKE_CASE =val # read in qv biases read_in_q_v_bias(a__ ,a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =hf_model.load_state_dict(a__ ,strict=a__) assert len(a__) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _SCREAMING_SNAKE_CASE =load_demo_image() _SCREAMING_SNAKE_CASE =vis_processors['''eval'''](a__).unsqueeze(0).to(a__) _SCREAMING_SNAKE_CASE =tokenizer(['''\n'''] ,return_tensors='''pt''').input_ids.to(a__) # create processor _SCREAMING_SNAKE_CASE =BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} ,image_mean=a__ ,image_std=a__) _SCREAMING_SNAKE_CASE =BlipaProcessor(image_processor=a__ ,tokenizer=a__) _SCREAMING_SNAKE_CASE =processor(images=a__ ,return_tensors='''pt''').pixel_values.to(a__) # make sure processor creates exact same pixel values assert torch.allclose(a__ ,a__) original_model.to(a__) hf_model.to(a__) with torch.no_grad(): if "opt" in model_name: _SCREAMING_SNAKE_CASE =original_model({'''image''': original_pixel_values, '''text_input''': ['''''']}).logits _SCREAMING_SNAKE_CASE =hf_model(a__ ,a__).logits else: _SCREAMING_SNAKE_CASE =original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']}).logits _SCREAMING_SNAKE_CASE =input_ids.masked_fill(input_ids == tokenizer.pad_token_id ,-100) _SCREAMING_SNAKE_CASE =hf_model(a__ ,a__ ,labels=a__).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' ,original_logits[0, :3, :3]) print('''First values of HF logits:''' ,logits[0, :3, :3]) # assert values if model_name == "blip2-flan-t5-xl": _SCREAMING_SNAKE_CASE =torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] ,device=a__) assert torch.allclose(logits[0, :3, :3] ,a__ ,atol=1e-4) elif model_name == "blip2-flan-t5-xl-coco": _SCREAMING_SNAKE_CASE =torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] ,device=a__) else: # cast to same type _SCREAMING_SNAKE_CASE =logits.dtype assert torch.allclose(original_logits.to(a__) ,a__ ,atol=1e-2) print('''Looks ok!''') print('''Generating a caption...''') _SCREAMING_SNAKE_CASE ='''''' _SCREAMING_SNAKE_CASE =tokenizer(a__ ,return_tensors='''pt''').input_ids.to(a__) _SCREAMING_SNAKE_CASE =original_model.generate({'''image''': original_pixel_values}) _SCREAMING_SNAKE_CASE =hf_model.generate( a__ ,a__ ,do_sample=a__ ,num_beams=5 ,max_length=30 ,min_length=1 ,top_p=0.9 ,repetition_penalty=1.0 ,length_penalty=1.0 ,temperature=1 ,) print('''Original generation:''' ,a__) _SCREAMING_SNAKE_CASE =input_ids.shape[1] _SCREAMING_SNAKE_CASE =processor.batch_decode(outputs[:, prompt_length:] ,skip_special_tokens=a__) _SCREAMING_SNAKE_CASE =[text.strip() for text in output_text] print('''HF generation:''' ,a__) if pytorch_dump_folder_path is not None: processor.save_pretrained(a__) hf_model.save_pretrained(a__) if push_to_hub: processor.push_to_hub(f"nielsr/{model_name}") hf_model.push_to_hub(f"nielsr/{model_name}") if __name__ == "__main__": snake_case_ : Optional[Any] = argparse.ArgumentParser() snake_case_ : List[Any] = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) snake_case_ : Optional[Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
691
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A__ ( unittest.TestCase ): def __init__( self : List[str] , _a : Dict , _a : Dict=7 , _a : List[str]=3 , _a : str=18 , _a : Optional[int]=30 , _a : Tuple=400 , _a : Optional[Any]=True , _a : Dict=None , _a : str=True , _a : Tuple=None , _a : Any=True , _a : Any=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _a : str=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _a : List[Any]=True , ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 224, '''width''': 224} _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_center_crop _SCREAMING_SNAKE_CASE =crop_size _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean _SCREAMING_SNAKE_CASE =image_std _SCREAMING_SNAKE_CASE =do_convert_rgb def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __UpperCamelCase ( self : Tuple , _a : Optional[Any]=False , _a : str=False , _a : Dict=False ) -> Dict: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] if torchify: _SCREAMING_SNAKE_CASE =[torch.from_numpy(_a ) for x in image_inputs] return image_inputs @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , do_center_crop=_a ) @property def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_a ) _SCREAMING_SNAKE_CASE =3 @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
691
1
from collections.abc import Generator from math import sin def lowerCamelCase( a__): if len(a__) != 32: raise ValueError('''Input must be of length 32''') _SCREAMING_SNAKE_CASE =b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCamelCase( a__): if i < 0: raise ValueError('''Input must be non-negative''') _SCREAMING_SNAKE_CASE =format(a__ ,'''08x''')[-8:] _SCREAMING_SNAKE_CASE =b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''') return little_endian_hex def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =b'''''' for char in message: bit_string += format(a__ ,'''08b''').encode('''utf-8''') _SCREAMING_SNAKE_CASE =format(len(a__) ,'''064b''').encode('''utf-8''') # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(a__) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:]) + to_little_endian(start_len[:32]) return bit_string def lowerCamelCase( a__): if len(a__) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''') for pos in range(0 ,len(a__) ,512): _SCREAMING_SNAKE_CASE =bit_string[pos : pos + 512] _SCREAMING_SNAKE_CASE =[] for i in range(0 ,512 ,32): block_words.append(int(to_little_endian(block[i : i + 32]) ,2)) yield block_words def lowerCamelCase( a__): if i < 0: raise ValueError('''Input must be non-negative''') _SCREAMING_SNAKE_CASE =format(a__ ,'''032b''') _SCREAMING_SNAKE_CASE ='''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(a__ ,2) def lowerCamelCase( a__ ,a__): return (a + b) % 2**32 def lowerCamelCase( a__ ,a__): if i < 0: raise ValueError('''Input must be non-negative''') if shift < 0: raise ValueError('''Shift must be non-negative''') return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =preprocess(a__) _SCREAMING_SNAKE_CASE =[int(2**32 * abs(sin(i + 1))) for i in range(64)] # Starting states _SCREAMING_SNAKE_CASE =0x6745_2301 _SCREAMING_SNAKE_CASE =0xefcd_ab89 _SCREAMING_SNAKE_CASE =0x98ba_dcfe _SCREAMING_SNAKE_CASE =0x1032_5476 _SCREAMING_SNAKE_CASE =[ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(a__): _SCREAMING_SNAKE_CASE =aa _SCREAMING_SNAKE_CASE =ba _SCREAMING_SNAKE_CASE =ca _SCREAMING_SNAKE_CASE =da # Hash current chunk for i in range(64): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _SCREAMING_SNAKE_CASE =d ^ (b & (c ^ d)) _SCREAMING_SNAKE_CASE =i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _SCREAMING_SNAKE_CASE =c ^ (d & (b ^ c)) _SCREAMING_SNAKE_CASE =(5 * i + 1) % 16 elif i <= 47: _SCREAMING_SNAKE_CASE =b ^ c ^ d _SCREAMING_SNAKE_CASE =(3 * i + 5) % 16 else: _SCREAMING_SNAKE_CASE =c ^ (b | not_aa(a__)) _SCREAMING_SNAKE_CASE =(7 * i) % 16 _SCREAMING_SNAKE_CASE =(f + a + added_consts[i] + block_words[g]) % 2**32 _SCREAMING_SNAKE_CASE =d _SCREAMING_SNAKE_CASE =c _SCREAMING_SNAKE_CASE =b _SCREAMING_SNAKE_CASE =sum_aa(a__ ,left_rotate_aa(a__ ,shift_amounts[i])) # Add hashed chunk to running total _SCREAMING_SNAKE_CASE =sum_aa(a__ ,a__) _SCREAMING_SNAKE_CASE =sum_aa(a__ ,a__) _SCREAMING_SNAKE_CASE =sum_aa(a__ ,a__) _SCREAMING_SNAKE_CASE =sum_aa(a__ ,a__) _SCREAMING_SNAKE_CASE =reformat_hex(a__) + reformat_hex(a__) + reformat_hex(a__) + reformat_hex(a__) return digest if __name__ == "__main__": import doctest doctest.testmod()
691
def lowerCamelCase( a__ ,a__): return int((input_a, input_a).count(0) == 0) def lowerCamelCase( ): assert and_gate(0 ,0) == 0 assert and_gate(0 ,1) == 0 assert and_gate(1 ,0) == 0 assert and_gate(1 ,1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
691
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a__ ,a__) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =list(s_dict.keys()) for key in keys: if "transformer_layers" in key: _SCREAMING_SNAKE_CASE =s_dict.pop(a__) elif "subsample" in key: _SCREAMING_SNAKE_CASE =s_dict.pop(a__) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =emb.weight.shape _SCREAMING_SNAKE_CASE =nn.Linear(a__ ,a__ ,bias=a__) _SCREAMING_SNAKE_CASE =emb.weight.data return lin_layer def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =torch.load(a__ ,map_location='''cpu''') _SCREAMING_SNAKE_CASE =mam_aaa['''args'''] _SCREAMING_SNAKE_CASE =mam_aaa['''model'''] _SCREAMING_SNAKE_CASE =state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(a__) rename_keys(a__) _SCREAMING_SNAKE_CASE =state_dict['''decoder.embed_tokens.weight'''].shape[0] _SCREAMING_SNAKE_CASE =args.share_decoder_input_output_embed _SCREAMING_SNAKE_CASE =[int(a__) for i in args.conv_kernel_sizes.split(''',''')] _SCREAMING_SNAKE_CASE =SpeechaTextConfig( vocab_size=a__ ,max_source_positions=args.max_source_positions ,max_target_positions=args.max_target_positions ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function='''relu''' ,num_conv_layers=len(a__) ,conv_channels=args.conv_channels ,conv_kernel_sizes=a__ ,input_feat_per_channel=args.input_feat_per_channel ,input_channels=args.input_channels ,tie_word_embeddings=a__ ,num_beams=5 ,max_length=200 ,use_cache=a__ ,decoder_start_token_id=2 ,early_stopping=a__ ,) _SCREAMING_SNAKE_CASE =SpeechaTextForConditionalGeneration(a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =model.model.load_state_dict(a__ ,strict=a__) if len(a__) > 0 and not set(a__) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}") if tie_embeds: _SCREAMING_SNAKE_CASE =make_linear_from_emb(model.model.decoder.embed_tokens) else: _SCREAMING_SNAKE_CASE =lm_head_weights model.save_pretrained(a__) if __name__ == "__main__": snake_case_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--fairseq_path''', type=str, help='''Path to the fairseq model (.pt) file.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case_ : Any = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
691
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json snake_case_ : Optional[int] = '''sshleifer/mar_enro_6_3_student''' class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_a , ) _SCREAMING_SNAKE_CASE =f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script _SCREAMING_SNAKE_CASE =(self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() _SCREAMING_SNAKE_CASE =bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): _SCREAMING_SNAKE_CASE =bash_script.replace(_a , str(_a ) ) _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _SCREAMING_SNAKE_CASE =f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future _SCREAMING_SNAKE_CASE =['''finetune.py'''] + bash_script.split() + args with patch.object(_a , '''argv''' , _a ): _SCREAMING_SNAKE_CASE =argparse.ArgumentParser() _SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(_a ) _SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(_a , os.getcwd() ) _SCREAMING_SNAKE_CASE =parser.parse_args() _SCREAMING_SNAKE_CASE =main(_a ) # Check metrics _SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) _SCREAMING_SNAKE_CASE =metrics['''val'''][0] _SCREAMING_SNAKE_CASE =metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _a ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _SCREAMING_SNAKE_CASE =os.listdir(_a ) _SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('''.ckpt''' )][0] _SCREAMING_SNAKE_CASE =os.path.join(args.output_dir , _a ) _SCREAMING_SNAKE_CASE =torch.load(_a , map_location='''cpu''' ) _SCREAMING_SNAKE_CASE ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _SCREAMING_SNAKE_CASE ={os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class A__ ( UpperCamelCase__ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =f"{self.test_file_dir_str}/test_data/wmt_en_ro" _SCREAMING_SNAKE_CASE ={ '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script _SCREAMING_SNAKE_CASE =( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) _SCREAMING_SNAKE_CASE =bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) _SCREAMING_SNAKE_CASE =bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): _SCREAMING_SNAKE_CASE =bash_script.replace(_a , str(_a ) ) _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE =bash_script.replace('''--fp16''' , '''''' ) _SCREAMING_SNAKE_CASE =6 _SCREAMING_SNAKE_CASE =( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(_a , '''argv''' , _a ): _SCREAMING_SNAKE_CASE =argparse.ArgumentParser() _SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(_a ) _SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) _SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _SCREAMING_SNAKE_CASE =distill_main(_a ) # Check metrics _SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) _SCREAMING_SNAKE_CASE =metrics['''val'''][0] _SCREAMING_SNAKE_CASE =metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict _SCREAMING_SNAKE_CASE =os.listdir(_a ) _SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('''.ckpt''' )][0] _SCREAMING_SNAKE_CASE =os.path.join(args.output_dir , _a ) _SCREAMING_SNAKE_CASE =torch.load(_a , map_location='''cpu''' ) _SCREAMING_SNAKE_CASE ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _SCREAMING_SNAKE_CASE ={os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
691
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
691
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A__ ( UpperCamelCase__ ): UpperCAmelCase = 0 UpperCAmelCase = False UpperCAmelCase = 3.0 class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _SCREAMING_SNAKE_CASE =Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _SCREAMING_SNAKE_CASE =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) snake_case_ : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) snake_case_ : Dict = torch.nn.Linear(1_00, 2_00) snake_case_ : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs snake_case_ : Dict = '''''' snake_case_ : str = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
691
1
from ...configuration_utils import PretrainedConfig class A__ ( UpperCamelCase__ ): UpperCAmelCase = "bert-generation" def __init__( self : Union[str, Any] , _a : int=5_0358 , _a : List[str]=1024 , _a : Dict=24 , _a : int=16 , _a : Union[str, Any]=4096 , _a : List[str]="gelu" , _a : Union[str, Any]=0.1 , _a : int=0.1 , _a : List[str]=512 , _a : Optional[Any]=0.02 , _a : Optional[Any]=1E-12 , _a : int=0 , _a : List[Any]=2 , _a : List[str]=1 , _a : str="absolute" , _a : Optional[Any]=True , **_a : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =position_embedding_type _SCREAMING_SNAKE_CASE =use_cache
691
class A__ : def __init__( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ={} def __UpperCamelCase ( self : Any , _a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if vertex not in self.adjacency: _SCREAMING_SNAKE_CASE ={} self.num_vertices += 1 def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple , _a : Dict ) -> Union[str, Any]: """simple docstring""" self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _SCREAMING_SNAKE_CASE =edges[i][2] + 1 for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __str__( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''''' for tail in self.adjacency: for head in self.adjacency[tail]: _SCREAMING_SNAKE_CASE =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _a : List[str]=None , _a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Graph() if vertices is None: _SCREAMING_SNAKE_CASE =[] if edges is None: _SCREAMING_SNAKE_CASE =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class A__ : def __init__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ={} def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] ) -> int: """simple docstring""" if item in self.parent: return self.find(_a ) _SCREAMING_SNAKE_CASE =item _SCREAMING_SNAKE_CASE =0 return item def __UpperCamelCase ( self : str , _a : Tuple ) -> Union[str, Any]: """simple docstring""" if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _SCREAMING_SNAKE_CASE =self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : List[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.find(_a ) _SCREAMING_SNAKE_CASE =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] < self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _SCREAMING_SNAKE_CASE =roota return roota return None @staticmethod def __UpperCamelCase ( _a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =graph.num_vertices _SCREAMING_SNAKE_CASE =Graph.UnionFind() _SCREAMING_SNAKE_CASE =[] while num_components > 1: _SCREAMING_SNAKE_CASE ={} for vertex in graph.get_vertices(): _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =graph.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =union_find.find(_a ) _SCREAMING_SNAKE_CASE =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _SCREAMING_SNAKE_CASE =num_components - 1 _SCREAMING_SNAKE_CASE =Graph.build(edges=_a ) return mst
691
1
from math import factorial def lowerCamelCase( a__ = 100): return sum(map(a__ ,str(factorial(a__)))) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
691
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : str = logging.getLogger(__name__) def lowerCamelCase( a__ ,a__): return (preds == labels).mean() @dataclass class A__ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,a__) # Set seed set_seed(training_args.seed) try: _SCREAMING_SNAKE_CASE =processors[data_args.task_name]() _SCREAMING_SNAKE_CASE =processor.get_labels() _SCREAMING_SNAKE_CASE =len(a__) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,) # Get datasets _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(a__) -> Dict: _SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(a__ ,p.label_ids)} # Data collator _SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer _SCREAMING_SNAKE_CASE =Trainer( model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _SCREAMING_SNAKE_CASE ={} if training_args.do_eval: logger.info('''*** Evaluate ***''') _SCREAMING_SNAKE_CASE =trainer.evaluate() _SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''') if trainer.is_world_master(): with open(a__ ,'''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' ,a__ ,a__) writer.write('''%s = %s\n''' % (key, value)) results.update(a__) return results def lowerCamelCase( a__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin snake_case_ : List[str] = get_tests_dir('''fixtures/test_sentencepiece.model''') snake_case_ : Union[str, Any] = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} snake_case_ : int = '''>>zh<<''' snake_case_ : Union[str, Any] = '''Helsinki-NLP/''' if is_torch_available(): snake_case_ : Optional[int] = '''pt''' elif is_tf_available(): snake_case_ : Optional[int] = '''tf''' else: snake_case_ : str = '''jax''' @require_sentencepiece class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = MarianTokenizer UpperCAmelCase = False UpperCAmelCase = True def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =Path(self.tmpdirname ) save_json(_a , save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_a , save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_a , save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_a , save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) _SCREAMING_SNAKE_CASE =MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self : int , **_a : Union[str, Any] ) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : List[Any] , _a : int ) -> List[str]: """simple docstring""" return ( "This is a test", "This is a test", ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''</s>''' _SCREAMING_SNAKE_CASE =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(_a ) , 9 ) def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =MarianTokenizer.from_pretrained(f"{ORG_NAME}opus-mt-en-de" ) _SCREAMING_SNAKE_CASE =en_de_tokenizer(['''I am a small frog'''] , return_tensors=_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =[38, 121, 14, 697, 3_8848, 0] self.assertListEqual(_a , batch.input_ids[0] ) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =[x.name for x in Path(_a ).glob('''*''' )] self.assertIn('''source.spm''' , _a ) MarianTokenizer.from_pretrained(_a ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =tok( ['''I am a small frog''' * 1000, '''I am a small frog'''] , padding=_a , truncation=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def __UpperCamelCase ( self : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =tok(['''I am a tiny frog''', '''I am a small frog'''] , padding=_a , return_tensors=_a ) self.assertIsInstance(_a , _a ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={'''input_ids''': [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''Helsinki-NLP/opus-mt-en-de''' , revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''' , decode_kwargs={'''use_source_tokenizer''': True} , ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) _SCREAMING_SNAKE_CASE ='''Tämä on testi''' _SCREAMING_SNAKE_CASE ='''This is a test''' _SCREAMING_SNAKE_CASE =[76, 7, 2047, 2] _SCREAMING_SNAKE_CASE =[69, 12, 11, 940, 2] _SCREAMING_SNAKE_CASE =tokenizer(_a ).input_ids self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =tokenizer(text_target=_a ).input_ids self.assertListEqual(_a , _a ) _SCREAMING_SNAKE_CASE =tokenizer.decode(_a , skip_special_tokens=_a ) self.assertEqual(_a , _a )
691
def lowerCamelCase( a__ ,a__ ,a__): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(a__ ,n - 1 ,a__) * a) % mod else: _SCREAMING_SNAKE_CASE =binary_exponentiation(a__ ,n / 2 ,a__) return (b * b) % mod # a prime number snake_case_ : Union[str, Any] = 7_01 snake_case_ : int = 10_00_00_00_00 snake_case_ : str = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
691
1
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =8 # DPR tok _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" import torch _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer() _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
691
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : def __init__( self : Optional[Any] , _a : int , _a : Optional[Any]=3 , _a : Tuple=32 , _a : Any=3 , _a : Union[str, Any]=10 , _a : Optional[int]=[8, 16, 32, 64] , _a : Union[str, Any]=[1, 1, 2, 1] , _a : Optional[Any]=True , _a : int=True , _a : Tuple="relu" , _a : Optional[Any]=3 , _a : str=None , _a : List[Any]=["stage2", "stage3", "stage4"] , _a : Union[str, Any]=[2, 3, 4] , _a : Dict=1 , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embeddings_size _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =out_features _SCREAMING_SNAKE_CASE =out_indices _SCREAMING_SNAKE_CASE =num_groups def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self : Optional[Any] , _a : Dict , _a : str , _a : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Union[str, Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =BitForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] , _a : Any , _a : str , _a : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_a : Any , _a : Optional[int] , _a : Tuple ): _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE =self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE =layer_type _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_a ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @require_torch class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitBackbone,) if is_torch_available() else () UpperCAmelCase = BitConfig UpperCAmelCase = False def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self )
691
1
from __future__ import annotations from dataclasses import dataclass @dataclass class A__ : UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None def lowerCamelCase( a__): # Validation def is_valid_tree(a__) -> bool: if node is None: return True if not isinstance(a__ ,a__): return False try: float(node.data) except (TypeError, ValueError): return False return is_valid_tree(node.left) and is_valid_tree(node.right) if not is_valid_tree(a__): raise ValueError( '''Each node should be type of TreeNode and data should be float.''') def is_binary_search_tree_recursive_check( a__ ,a__ ,a__) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left ,a__ ,node.data) and is_binary_search_tree_recursive_check( node.right ,node.data ,a__) ) return is_binary_search_tree_recursive_check(a__ ,-float('''inf''') ,float('''inf''')) if __name__ == "__main__": import doctest doctest.testmod()
691
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings snake_case_ : Optional[Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase__ ) class A__ ( UpperCamelCase__ ): UpperCAmelCase = "rag" UpperCAmelCase = True def __init__( self : Tuple , _a : List[Any]=None , _a : Tuple=True , _a : Optional[Any]=None , _a : int=None , _a : List[str]=None , _a : int=None , _a : Optional[int]=None , _a : str=" / " , _a : Any=" // " , _a : Optional[Any]=5 , _a : int=300 , _a : Optional[Any]=768 , _a : Any=8 , _a : List[str]="wiki_dpr" , _a : Dict="train" , _a : Union[str, Any]="compressed" , _a : str=None , _a : Union[str, Any]=None , _a : int=False , _a : Any=False , _a : Any=0.0 , _a : Any=True , _a : List[str]=False , _a : Optional[int]=False , _a : int=False , _a : Union[str, Any]=True , _a : Optional[int]=None , **_a : List[str] , ) -> List[Any]: """simple docstring""" super().__init__( bos_token_id=_a , pad_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , is_encoder_decoder=_a , prefix=_a , vocab_size=_a , **_a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _SCREAMING_SNAKE_CASE =kwargs.pop('''question_encoder''' ) _SCREAMING_SNAKE_CASE =question_encoder_config.pop('''model_type''' ) _SCREAMING_SNAKE_CASE =kwargs.pop('''generator''' ) _SCREAMING_SNAKE_CASE =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =reduce_loss _SCREAMING_SNAKE_CASE =label_smoothing _SCREAMING_SNAKE_CASE =exclude_bos_score _SCREAMING_SNAKE_CASE =do_marginalize _SCREAMING_SNAKE_CASE =title_sep _SCREAMING_SNAKE_CASE =doc_sep _SCREAMING_SNAKE_CASE =n_docs _SCREAMING_SNAKE_CASE =max_combined_length _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =dataset_split _SCREAMING_SNAKE_CASE =index_name _SCREAMING_SNAKE_CASE =retrieval_vector_size _SCREAMING_SNAKE_CASE =retrieval_batch_size _SCREAMING_SNAKE_CASE =passages_path _SCREAMING_SNAKE_CASE =index_path _SCREAMING_SNAKE_CASE =use_dummy_dataset _SCREAMING_SNAKE_CASE =output_retrieved _SCREAMING_SNAKE_CASE =do_deduplication _SCREAMING_SNAKE_CASE =use_cache if self.forced_eos_token_id is None: _SCREAMING_SNAKE_CASE =getattr(self.generator , '''forced_eos_token_id''' , _a ) @classmethod def __UpperCamelCase ( cls : Optional[int] , _a : PretrainedConfig , _a : PretrainedConfig , **_a : Dict ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.question_encoder.to_dict() _SCREAMING_SNAKE_CASE =self.generator.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
691
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE ={ '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[int] , **_a : str ) -> List[str]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : List[Any] , **_a : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : int , **_a : Optional[Any] ) -> Any: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
691
from manim import * class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.25 , width=0.25 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''CPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''GPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Model''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): rect.set_stroke(_a ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Loaded Checkpoint''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) _SCREAMING_SNAKE_CASE =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) _SCREAMING_SNAKE_CASE =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE =MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _SCREAMING_SNAKE_CASE =MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _SCREAMING_SNAKE_CASE =MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Disk''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) _SCREAMING_SNAKE_CASE =MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
691
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME snake_case_ : int = ['''small''', '''medium''', '''large'''] snake_case_ : Optional[Any] = '''lm_head.decoder.weight''' snake_case_ : Tuple = '''lm_head.weight''' def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =torch.load(a__) _SCREAMING_SNAKE_CASE =d.pop(a__) os.makedirs(a__ ,exist_ok=a__) torch.save(a__ ,os.path.join(a__ ,a__)) if __name__ == "__main__": snake_case_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) snake_case_ : Optional[Any] = parser.parse_args() for MODEL in DIALOGPT_MODELS: snake_case_ : Tuple = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""") snake_case_ : int = f"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
691
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case_ : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } snake_case_ : List[str] = {'''facebook/blenderbot-3B''': 1_28} class A__ ( UpperCamelCase__ ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = BlenderbotTokenizer def __init__( self : Dict , _a : str=None , _a : Optional[int]=None , _a : List[str]=None , _a : int="replace" , _a : Dict="<s>" , _a : Optional[Any]="</s>" , _a : Any="</s>" , _a : int="<s>" , _a : int="<unk>" , _a : Optional[int]="<pad>" , _a : Tuple="<mask>" , _a : Tuple=False , _a : Union[str, Any]=True , **_a : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) _SCREAMING_SNAKE_CASE =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space: _SCREAMING_SNAKE_CASE =getattr(_a , pre_tok_state.pop('''type''' ) ) _SCREAMING_SNAKE_CASE =add_prefix_space _SCREAMING_SNAKE_CASE =pre_tok_class(**_a ) _SCREAMING_SNAKE_CASE =add_prefix_space _SCREAMING_SNAKE_CASE ='''post_processor''' _SCREAMING_SNAKE_CASE =getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: _SCREAMING_SNAKE_CASE =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _SCREAMING_SNAKE_CASE =tuple(state['''sep'''] ) if "cls" in state: _SCREAMING_SNAKE_CASE =tuple(state['''cls'''] ) _SCREAMING_SNAKE_CASE =False if state.get('''add_prefix_space''' , _a ) != add_prefix_space: _SCREAMING_SNAKE_CASE =add_prefix_space _SCREAMING_SNAKE_CASE =True if state.get('''trim_offsets''' , _a ) != trim_offsets: _SCREAMING_SNAKE_CASE =trim_offsets _SCREAMING_SNAKE_CASE =True if changes_to_apply: _SCREAMING_SNAKE_CASE =getattr(_a , state.pop('''type''' ) ) _SCREAMING_SNAKE_CASE =component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase ( self : Optional[Any] , _a : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value _SCREAMING_SNAKE_CASE =value def __UpperCamelCase ( self : Optional[Any] , *_a : str , **_a : int ) -> BatchEncoding: """simple docstring""" _SCREAMING_SNAKE_CASE =kwargs.get('''is_split_into_words''' , _a ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def __UpperCamelCase ( self : List[Any] , *_a : Optional[int] , **_a : Union[str, Any] ) -> BatchEncoding: """simple docstring""" _SCREAMING_SNAKE_CASE =kwargs.get('''is_split_into_words''' , _a ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def __UpperCamelCase ( self : Dict , _a : str , _a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __UpperCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Any , _a : "Conversation" ) -> List[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_a ) _SCREAMING_SNAKE_CASE =''' '''.join(_a ) _SCREAMING_SNAKE_CASE =self.encode(_a ) if len(_a ) > self.model_max_length: _SCREAMING_SNAKE_CASE =input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
691
1
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
691
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE ={ '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[int] , **_a : str ) -> List[str]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : List[Any] , **_a : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : int , **_a : Optional[Any] ) -> Any: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
691
1
from ..utils import DummyObject, requires_backends class A__ ( metaclass=UpperCamelCase__ ): UpperCAmelCase = ["torch", "scipy"] def __init__( self : Optional[Any] , *_a : Union[str, Any] , **_a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def __UpperCamelCase ( cls : str , *_a : Any , **_a : Any ) -> Optional[Any]: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def __UpperCamelCase ( cls : Tuple , *_a : Any , **_a : Dict ) -> int: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
691
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _SCREAMING_SNAKE_CASE ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _SCREAMING_SNAKE_CASE =f"{src_lang}-{tgt_lang}" _SCREAMING_SNAKE_CASE =f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a__ ,exist_ok=a__) _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''README.md''') print(f"Generating {path}") with open(a__ ,'''w''' ,encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project snake_case_ : Any = Path(__file__).resolve().parent.parent.parent snake_case_ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : Union[str, Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
691
1
import enum import shutil import sys snake_case_ , snake_case_ : Any = shutil.get_terminal_size() snake_case_ : List[str] = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class A__ ( enum.Enum ): UpperCAmelCase = 0 UpperCAmelCase = 1 def lowerCamelCase( a__ ,a__=""): sys.stdout.write(str(a__) + end) sys.stdout.flush() def lowerCamelCase( a__ ,a__ ,a__=""): forceWrite(f"\u001b[{color}m{content}\u001b[0m" ,a__) def lowerCamelCase( ): forceWrite('''\r''') def lowerCamelCase( a__ ,a__): forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}") def lowerCamelCase( ): forceWrite(''' ''' * TERMINAL_WIDTH) reset_cursor() def lowerCamelCase( ): reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH)
691
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
691
1
import collections import importlib.util import os import re from pathlib import Path snake_case_ : List[Any] = '''src/transformers''' # Matches is_xxx_available() snake_case_ : Optional[int] = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} snake_case_ : Tuple = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] snake_case_ : int = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available snake_case_ : Any = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") snake_case_ : List[Any] = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] snake_case_ : List[str] = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", snake_case_ : Union[str, Any] = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], snake_case_ : Tuple = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo snake_case_ : List[str] = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: snake_case_ : Tuple = re.compile(R'''^\s*try:''') # Catches a line with else: snake_case_ : Dict = re.compile(R'''^\s*else:''') def lowerCamelCase( a__): if _re_test_backend.search(a__) is None: return None _SCREAMING_SNAKE_CASE =[b[0] for b in _re_backend.findall(a__)] backends.sort() return "_and_".join(a__) def lowerCamelCase( a__): with open(a__ ,'''r''' ,encoding='''utf-8''' ,newline='''\n''') as f: _SCREAMING_SNAKE_CASE =f.readlines() _SCREAMING_SNAKE_CASE =0 while line_index < len(a__) and not lines[line_index].startswith('''_import_structure = {'''): line_index += 1 # If this is a traditional init, just return. if line_index >= len(a__): return None # First grab the objects without a specific backend in _import_structure _SCREAMING_SNAKE_CASE =[] while not lines[line_index].startswith('''if TYPE_CHECKING''') and find_backend(lines[line_index]) is None: _SCREAMING_SNAKE_CASE =lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(a__): _SCREAMING_SNAKE_CASE =_re_one_line_import_struct.search(a__).groups()[0] _SCREAMING_SNAKE_CASE =re.findall('''\[([^\]]+)\]''' ,a__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''')]) line_index += 1 continue _SCREAMING_SNAKE_CASE =_re_import_struct_key_value.search(a__) if single_line_import_search is not None: _SCREAMING_SNAKE_CASE =[obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''') if len(a__) > 0] objects.extend(a__) elif line.startswith(''' ''' * 8 + '''"'''): objects.append(line[9:-3]) line_index += 1 _SCREAMING_SNAKE_CASE ={'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING'''): # If the line is an if not is_backend_available, we grab all objects associated. _SCREAMING_SNAKE_CASE =find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _SCREAMING_SNAKE_CASE =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _SCREAMING_SNAKE_CASE =[] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(''' ''' * 4): _SCREAMING_SNAKE_CASE =lines[line_index] if _re_import_struct_add_one.search(a__) is not None: objects.append(_re_import_struct_add_one.search(a__).groups()[0]) elif _re_import_struct_add_many.search(a__) is not None: _SCREAMING_SNAKE_CASE =_re_import_struct_add_many.search(a__).groups()[0].split(''', ''') _SCREAMING_SNAKE_CASE =[obj[1:-1] for obj in imports if len(a__) > 0] objects.extend(a__) elif _re_between_brackets.search(a__) is not None: _SCREAMING_SNAKE_CASE =_re_between_brackets.search(a__).groups()[0].split(''', ''') _SCREAMING_SNAKE_CASE =[obj[1:-1] for obj in imports if len(a__) > 0] objects.extend(a__) elif _re_quote_object.search(a__) is not None: objects.append(_re_quote_object.search(a__).groups()[0]) elif line.startswith(''' ''' * 8 + '''"'''): objects.append(line[9:-3]) elif line.startswith(''' ''' * 12 + '''"'''): objects.append(line[13:-3]) line_index += 1 _SCREAMING_SNAKE_CASE =objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _SCREAMING_SNAKE_CASE =[] while ( line_index < len(a__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith('''else''') ): _SCREAMING_SNAKE_CASE =lines[line_index] _SCREAMING_SNAKE_CASE =_re_import.search(a__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''')) elif line.startswith(''' ''' * 8): objects.append(line[8:-2]) line_index += 1 _SCREAMING_SNAKE_CASE ={'''none''': objects} # Let's continue with backend-specific objects while line_index < len(a__): # If the line is an if is_backend_available, we grab all objects associated. _SCREAMING_SNAKE_CASE =find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _SCREAMING_SNAKE_CASE =None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _SCREAMING_SNAKE_CASE =[] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(''' ''' * 8): _SCREAMING_SNAKE_CASE =lines[line_index] _SCREAMING_SNAKE_CASE =_re_import.search(a__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''')) elif line.startswith(''' ''' * 12): objects.append(line[12:-2]) line_index += 1 _SCREAMING_SNAKE_CASE =objects else: line_index += 1 return import_dict_objects, type_hint_objects def lowerCamelCase( a__ ,a__): def find_duplicates(a__): return [k for k, v in collections.Counter(a__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] _SCREAMING_SNAKE_CASE =[] for key in import_dict_objects.keys(): _SCREAMING_SNAKE_CASE =find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}") _SCREAMING_SNAKE_CASE =find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}") if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): _SCREAMING_SNAKE_CASE ='''base imports''' if key == '''none''' else f"{key} backend" errors.append(f"Differences for {name}:") for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure.") for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT.") return errors def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =[] for root, _, files in os.walk(a__): if "__init__.py" in files: _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''__init__.py''') _SCREAMING_SNAKE_CASE =parse_init(a__) if objects is not None: _SCREAMING_SNAKE_CASE =analyze_results(*a__) if len(a__) > 0: _SCREAMING_SNAKE_CASE =f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append('''\n'''.join(a__)) if len(a__) > 0: raise ValueError('''\n\n'''.join(a__)) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =[] for path, directories, files in os.walk(a__): for folder in directories: # Ignore private modules if folder.startswith('''_'''): directories.remove(a__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(a__) / folder).glob('''*.py'''))) == 0: continue _SCREAMING_SNAKE_CASE =str((Path(a__) / folder).relative_to(a__)) _SCREAMING_SNAKE_CASE =short_path.replace(os.path.sep ,'''.''') submodules.append(a__) for fname in files: if fname == "__init__.py": continue _SCREAMING_SNAKE_CASE =str((Path(a__) / fname).relative_to(a__)) _SCREAMING_SNAKE_CASE =short_path.replace('''.py''' ,'''''').replace(os.path.sep ,'''.''') if len(submodule.split('''.''')) == 1: submodules.append(a__) return submodules snake_case_ : int = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def lowerCamelCase( ): # This is to make sure the transformers module imported is the one in the repo. _SCREAMING_SNAKE_CASE =importlib.util.spec_from_file_location( '''transformers''' ,os.path.join(a__ ,'''__init__.py''') ,submodule_search_locations=[PATH_TO_TRANSFORMERS] ,) _SCREAMING_SNAKE_CASE =spec.loader.load_module() _SCREAMING_SNAKE_CASE =[ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(a__) > 0: _SCREAMING_SNAKE_CASE ='''\n'''.join(f"- {module}" for module in module_not_registered) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' f"{list_of_modules}\n" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''') if __name__ == "__main__": check_all_inits() check_submodules()
691
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase( a__): def wrapper(*a__ ,**a__): _SCREAMING_SNAKE_CASE =timeit.default_timer() _SCREAMING_SNAKE_CASE =func(*a__ ,**a__) _SCREAMING_SNAKE_CASE =timeit.default_timer() - starttime return delta _SCREAMING_SNAKE_CASE =func.__name__ return wrapper def lowerCamelCase( a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =seq_shapes or {} for i in range(a__): _SCREAMING_SNAKE_CASE ={} for col_id, (k, v) in enumerate(features.items()): if isinstance(a__ ,_ArrayXD): _SCREAMING_SNAKE_CASE =np.random.rand(*v.shape).astype(v.dtype) elif isinstance(a__ ,datasets.Value): if v.dtype == "string": _SCREAMING_SNAKE_CASE ='''The small grey turtle was surprisingly fast when challenged.''' else: _SCREAMING_SNAKE_CASE =np.random.randint(10 ,size=1).astype(v.dtype).item() elif isinstance(a__ ,datasets.Sequence): while isinstance(a__ ,datasets.Sequence): _SCREAMING_SNAKE_CASE =v.feature _SCREAMING_SNAKE_CASE =seq_shapes[k] _SCREAMING_SNAKE_CASE =np.random.rand(*a__).astype(v.dtype) _SCREAMING_SNAKE_CASE =data dummy_data.append((i, example)) return dummy_data def lowerCamelCase( a__ ,a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =generate_examples(a__ ,num_examples=a__ ,seq_shapes=a__) with ArrowWriter(features=a__ ,path=a__) as writer: for key, record in dummy_data: _SCREAMING_SNAKE_CASE =features.encode_example(a__) writer.write(a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.") _SCREAMING_SNAKE_CASE =datasets.Dataset.from_file(filename=a__ ,info=datasets.DatasetInfo(features=a__)) return dataset
691
1
def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =current_set.copy() for row_index, row in enumerate(a__): _SCREAMING_SNAKE_CASE =row[0] for column_index, column in enumerate(a__): if magnitude == 0: _SCREAMING_SNAKE_CASE =column continue _SCREAMING_SNAKE_CASE =column / magnitude # Subtract to cancel term _SCREAMING_SNAKE_CASE =current_set[0] _SCREAMING_SNAKE_CASE =[first_row] _SCREAMING_SNAKE_CASE =current_set[1::] for row in current_set: _SCREAMING_SNAKE_CASE =[] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(a__) continue for column_index in range(len(a__)): temp_row.append(first_row[column_index] - row[column_index]) final_set.append(a__) # Create next recursion iteration set if len(final_set[0]) != 3: _SCREAMING_SNAKE_CASE =final_set[0] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for row in final_set[1::]: current_first_column.append(row[0]) next_iteration.append(row[1::]) _SCREAMING_SNAKE_CASE =simplify(a__) for i in range(len(a__)): resultant[i].insert(0 ,current_first_column[i]) resultant.insert(0 ,a__) _SCREAMING_SNAKE_CASE =resultant return final_set def lowerCamelCase( a__): if len(a__) == 0: raise IndexError('''solve_simultaneous() requires n lists of length n+1''') _SCREAMING_SNAKE_CASE =len(a__) + 1 if any(len(a__) != _length for item in equations): raise IndexError('''solve_simultaneous() requires n lists of length n+1''') for row in equations: if any(not isinstance(a__ ,(int, float)) for column in row): raise ValueError('''solve_simultaneous() requires lists of integers''') if len(a__) == 1: return [equations[0][-1] / equations[0][0]] _SCREAMING_SNAKE_CASE =equations.copy() if any(0 in row for row in data_set): _SCREAMING_SNAKE_CASE =data_set.copy() _SCREAMING_SNAKE_CASE =[] for row_index, row in enumerate(a__): if 0 not in row: _SCREAMING_SNAKE_CASE =data_set.pop(a__) break if not full_row: raise ValueError('''solve_simultaneous() requires at least 1 full equation''') data_set.insert(0 ,a__) _SCREAMING_SNAKE_CASE =data_set.copy() _SCREAMING_SNAKE_CASE =simplify(a__) _SCREAMING_SNAKE_CASE =simplified[::-1] _SCREAMING_SNAKE_CASE =[] for row in simplified: _SCREAMING_SNAKE_CASE =row[-1] if not solutions: if row[-2] == 0: solutions.append(0) continue solutions.append(current_solution / row[-2]) continue _SCREAMING_SNAKE_CASE =row.copy()[: len(a__) - 1 :] while temp_row[0] == 0: temp_row.pop(0) if len(a__) == 0: solutions.append(0) continue _SCREAMING_SNAKE_CASE =temp_row[1::] _SCREAMING_SNAKE_CASE =temp_row[::-1] for column_index, column in enumerate(a__): current_solution -= column * solutions[column_index] solutions.append(a__) _SCREAMING_SNAKE_CASE =[] for item in solutions: final.append(float(round(a__ ,5))) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Tuple = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
691
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
1
def lowerCamelCase( a__): if len(a__) <= 1: return [tuple(a__)] _SCREAMING_SNAKE_CASE =[] def generate(a__ ,a__): if k == 1: res.append(tuple(arr[:])) return generate(k - 1 ,a__) for i in range(k - 1): if k % 2 == 0: # k is even _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =arr[k - 1], arr[i] else: # k is odd _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =arr[k - 1], arr[0] generate(k - 1 ,a__) generate(len(a__) ,a__) return res if __name__ == "__main__": snake_case_ : int = input('''Enter numbers separated by a comma:\n''').strip() snake_case_ : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
691
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets snake_case_ : List[Any] = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' snake_case_ : Dict = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' snake_case_ : Any = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' ), '''references''': datasets.Value('''string''' ), } ) , homepage='''https://github.com/hendrycks/math''' , codebase_urls=['''https://github.com/hendrycks/math'''] , ) def __UpperCamelCase ( self : Optional[int] , _a : Optional[Any] , _a : Optional[int] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =0.0 for i, j in zip(_a , _a ): n_correct += 1.0 if math_equivalence.is_equiv(_a , _a ) else 0.0 _SCREAMING_SNAKE_CASE =n_correct / len(_a ) return { "accuracy": accuracy, }
691
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__ ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =(3, 32, 128) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) _SCREAMING_SNAKE_CASE ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[Any] , **_a : str ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Optional[int] , **_a : Tuple ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) return image_input def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.char_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) _SCREAMING_SNAKE_CASE =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 38 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 5_0257 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 3_0522 ) _SCREAMING_SNAKE_CASE =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
691
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A__ : def __init__( self : List[str] , _a : str , _a : List[str]=13 , _a : Tuple=30 , _a : Any=2 , _a : str=3 , _a : Tuple=True , _a : int=True , _a : List[str]=32 , _a : int=5 , _a : List[str]=4 , _a : Union[str, Any]=37 , _a : Optional[int]="gelu" , _a : str=0.1 , _a : Optional[int]=0.1 , _a : Any=10 , _a : Dict=0.02 , _a : List[Any]=3 , _a : Union[str, Any]=None , _a : List[Any]=2 , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _SCREAMING_SNAKE_CASE =(image_size // patch_size) ** 2 _SCREAMING_SNAKE_CASE =num_patches + 2 def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase ( self : Optional[Any] , _a : List[Any] , _a : Optional[int] , _a : Any ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =DeiTModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : str , _a : List[Any] , _a : int , _a : List[str] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =DeiTForMaskedImageModeling(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =DeiTForMaskedImageModeling(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase ( self : Optional[Any] , _a : List[Any] , _a : int , _a : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.type_sequence_label_size _SCREAMING_SNAKE_CASE =DeiTForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =DeiTForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : Optional[int] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =DeiTModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" pass def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_a ) def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) def __UpperCamelCase ( self : Union[str, Any] , _a : int , _a : Optional[Any] , _a : List[Any]=False ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =super()._prepare_for_class(_a , _a , return_labels=_a ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_a ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(_a , _a , return_labels=_a ) _SCREAMING_SNAKE_CASE =model(**_a ).loss loss.backward() def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =True for model_class in self.all_model_classes: if model_class in get_values(_a ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _SCREAMING_SNAKE_CASE =model_class(_a ) model.gradient_checkpointing_enable() model.to(_a ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(_a , _a , return_labels=_a ) _SCREAMING_SNAKE_CASE =model(**_a ).loss loss.backward() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =[ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_a ), *get_values(_a ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ): _SCREAMING_SNAKE_CASE =problem_type['''title'''] _SCREAMING_SNAKE_CASE =problem_type['''num_labels'''] _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.train() _SCREAMING_SNAKE_CASE =self._prepare_for_class(_a , _a , return_labels=_a ) if problem_type["num_labels"] > 1: _SCREAMING_SNAKE_CASE =inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) _SCREAMING_SNAKE_CASE =inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_a ) as warning_list: _SCREAMING_SNAKE_CASE =model(**_a ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =DeiTModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to( _a ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_a ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __UpperCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =DeiTModel.from_pretrained( '''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='''pt''' ) _SCREAMING_SNAKE_CASE =inputs.pixel_values.to(_a ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(_a )
691
import requests from bsa import BeautifulSoup def lowerCamelCase( a__ = "https://www.worldometers.info/coronavirus"): _SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(a__).text ,'''html.parser''') _SCREAMING_SNAKE_CASE =soup.findAll('''h1''') _SCREAMING_SNAKE_CASE =soup.findAll('''div''' ,{'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''}) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(a__ ,a__)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
691
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand snake_case_ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase( a__): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(a__): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}") def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =pipeline( task=args.task ,model=args.model if args.model else None ,config=args.config ,tokenizer=args.tokenizer ,device=args.device ,) _SCREAMING_SNAKE_CASE =try_infer_format_from_ext(args.input) if args.format == '''infer''' else args.format _SCREAMING_SNAKE_CASE =PipelineDataFormat.from_str( format=a__ ,output_path=args.output ,input_path=args.input ,column=args.column if args.column else nlp.default_input_names ,overwrite=args.overwrite ,) return RunCommand(a__ ,a__) class A__ ( UpperCamelCase__ ): def __init__( self : str , _a : Pipeline , _a : PipelineDataFormat ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =nlp _SCREAMING_SNAKE_CASE =reader @staticmethod def __UpperCamelCase ( _a : ArgumentParser ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =parser.add_parser('''run''' , help='''Run a pipeline through the CLI''' ) run_parser.add_argument('''--task''' , choices=get_supported_tasks() , help='''Task to run''' ) run_parser.add_argument('''--input''' , type=_a , help='''Path to the file to use for inference''' ) run_parser.add_argument('''--output''' , type=_a , help='''Path to the file that will be used post to write results.''' ) run_parser.add_argument('''--model''' , type=_a , help='''Name or path to the model to instantiate.''' ) run_parser.add_argument('''--config''' , type=_a , help='''Name or path to the model\'s config to instantiate.''' ) run_parser.add_argument( '''--tokenizer''' , type=_a , help='''Name of the tokenizer to use. (default: same as the model name)''' ) run_parser.add_argument( '''--column''' , type=_a , help='''Name of the column to use as input. (For multi columns input as QA use column1,columns2)''' , ) run_parser.add_argument( '''--format''' , type=_a , default='''infer''' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='''Input format to read from''' , ) run_parser.add_argument( '''--device''' , type=_a , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) run_parser.add_argument('''--overwrite''' , action='''store_true''' , help='''Allow overwriting the output file.''' ) run_parser.set_defaults(func=_a ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._nlp, [] for entry in self._reader: _SCREAMING_SNAKE_CASE =nlp(**_a ) if self._reader.is_multi_columns else nlp(_a ) if isinstance(_a , _a ): outputs.append(_a ) else: outputs += output # Saving data if self._nlp.binary_output: _SCREAMING_SNAKE_CASE =self._reader.save_binary(_a ) logger.warning(f"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(_a )
691
def lowerCamelCase( a__ ,a__): return number | (1 << position) def lowerCamelCase( a__ ,a__): return number & ~(1 << position) def lowerCamelCase( a__ ,a__): return number ^ (1 << position) def lowerCamelCase( a__ ,a__): return ((number >> position) & 1) == 1 def lowerCamelCase( a__ ,a__): return int((number & (1 << position)) != 0) if __name__ == "__main__": import doctest doctest.testmod()
691
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Union[str, Any] = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class A__ ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = "dinat" UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , _a : Tuple=4 , _a : Dict=3 , _a : Union[str, Any]=64 , _a : Optional[int]=[3, 4, 6, 5] , _a : List[str]=[2, 4, 8, 16] , _a : Any=7 , _a : str=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , _a : List[Any]=3.0 , _a : int=True , _a : Tuple=0.0 , _a : Tuple=0.0 , _a : Union[str, Any]=0.1 , _a : Any="gelu" , _a : List[str]=0.02 , _a : int=1E-5 , _a : Optional[int]=0.0 , _a : List[str]=None , _a : Dict=None , **_a : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**_a ) _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embed_dim _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =num_heads _SCREAMING_SNAKE_CASE =kernel_size _SCREAMING_SNAKE_CASE =dilations _SCREAMING_SNAKE_CASE =mlp_ratio _SCREAMING_SNAKE_CASE =qkv_bias _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =drop_path_rate _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _SCREAMING_SNAKE_CASE =int(embed_dim * 2 ** (len(_a ) - 1) ) _SCREAMING_SNAKE_CASE =layer_scale_init_value _SCREAMING_SNAKE_CASE =['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_a ) + 1 )] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names )
691
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =8 # DPR tok _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" import torch _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer() _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
691
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class A__ ( unittest.TestCase ): UpperCAmelCase = StableDiffusionLDMaDPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _SCREAMING_SNAKE_CASE =DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _SCREAMING_SNAKE_CASE =CLIPTextModel(_a ) _SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _SCREAMING_SNAKE_CASE ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase ( self : Dict , _a : List[str] , _a : Dict=0 ) -> Optional[int]: """simple docstring""" if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =StableDiffusionLDMaDPipeline(**_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =rgb[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _SCREAMING_SNAKE_CASE =np.array( [0.37_33_81_76, 0.7_02_47, 0.74_20_31_93, 0.51_64_36_04, 0.58_25_67_93, 0.60_93_21_36, 0.4_18_10_95, 0.48_35_58_77, 0.46_53_52_62] ) _SCREAMING_SNAKE_CASE =np.array([1_03.4_67_27, 85.81_20_04, 87.84_92_36] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =StableDiffusionLDMaDPipeline(**_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =3 * [inputs['''prompt''']] # forward _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =rgb_slice_a[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =depth_slice_a[0, -3:, -1] _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =3 * [inputs.pop('''prompt''' )] _SCREAMING_SNAKE_CASE =ldmad_pipe.tokenizer( _a , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE =text_inputs['''input_ids'''].to(_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe.text_encoder(_a )[0] _SCREAMING_SNAKE_CASE =prompt_embeds # forward _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =rgb_slice_a[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a ) _SCREAMING_SNAKE_CASE =StableDiffusionLDMaDPipeline(**_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE ='''french fries''' _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a , negative_prompt=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =rgb[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _SCREAMING_SNAKE_CASE =np.array( [0.3_70_44, 0.71_81_15_03, 0.7_22_32_51, 0.48_60_36_75, 0.5_63_83_91, 0.6_36_49_48, 0.42_83_37_04, 0.4_90_13_15, 0.47_92_62_17] ) _SCREAMING_SNAKE_CASE =np.array([1_07.8_47_38, 84.6_28_02, 89.96_21_35] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Optional[Any] , _a : int , _a : Tuple="cpu" , _a : Dict=torch.floataa , _a : Optional[Any]=0 ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE =np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).to(device=_a , dtype=_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) _SCREAMING_SNAKE_CASE =ldmad_pipe.to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_inputs(_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =rgb[0, -3:, -3:, -1].flatten() _SCREAMING_SNAKE_CASE =rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _SCREAMING_SNAKE_CASE =np.array( [0.53_80_54_65, 0.56_70_73_05, 0.5_48_65_15, 0.57_01_22_36, 0.5_81_45_11, 0.56_25_34_87, 0.54_84_30_14, 0.55_09_22_63, 0.6_45_97_06] ) _SCREAMING_SNAKE_CASE =np.array( [0.9_26_37_81, 0.6_67_86_72, 0.5_48_65_15, 0.92_20_21_45, 0.67_83_11_35, 0.56_25_34_87, 0.9_24_16_94, 0.7_55_14_78, 0.6_45_97_06] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any] , _a : int , _a : Dict="cpu" , _a : Optional[Any]=torch.floataa , _a : List[str]=0 ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE =np.random.RandomState(_a ).standard_normal((1, 4, 64, 64) ) _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).to(device=_a , dtype=_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_inputs(_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =0.49_55_86 _SCREAMING_SNAKE_CASE =0.33_79_55_15 _SCREAMING_SNAKE_CASE =1_12.4_85_18 _SCREAMING_SNAKE_CASE =98.48_97_46 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def __UpperCamelCase ( self : str ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_a ) ldmad_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_inputs(_a ) _SCREAMING_SNAKE_CASE =ldmad_pipe(**_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output.rgb, output.depth _SCREAMING_SNAKE_CASE =0.4_19_41_27 _SCREAMING_SNAKE_CASE =0.35_37_55_86 _SCREAMING_SNAKE_CASE =0.5_63_85_02 _SCREAMING_SNAKE_CASE =0.34_68_61_03 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
691
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = KandinskyImgaImgPipeline UpperCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] UpperCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _SCREAMING_SNAKE_CASE =MultilingualCLIP(_a ) _SCREAMING_SNAKE_CASE =text_encoder.eval() return text_encoder @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_a ) return model @property def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =self.dummy_tokenizer _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _SCREAMING_SNAKE_CASE =DDIMScheduler(**_a ) _SCREAMING_SNAKE_CASE ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : str , _a : int , _a : int=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _SCREAMING_SNAKE_CASE ='''A red cartoon frog, 4k''' _SCREAMING_SNAKE_CASE =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _SCREAMING_SNAKE_CASE =KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.Generator(device='''cpu''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =pipeline( _a , image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
691
1
import argparse import os import re snake_case_ : List[Any] = '''src/diffusers''' # Pattern that looks at the indentation in a line. snake_case_ : Dict = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. snake_case_ : Optional[Any] = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. snake_case_ : Optional[int] = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. snake_case_ : Any = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. snake_case_ : Optional[int] = re.compile(R'''\[([^\]]+)\]''') def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =_re_indent.search(a__) return "" if search is None else search.groups()[0] def lowerCamelCase( a__ ,a__="" ,a__=None ,a__=None): _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =code.split('''\n''') if start_prompt is not None: while not lines[index].startswith(a__): index += 1 _SCREAMING_SNAKE_CASE =['''\n'''.join(lines[:index])] else: _SCREAMING_SNAKE_CASE =[] # We split into blocks until we get to the `end_prompt` (or the end of the block). _SCREAMING_SNAKE_CASE =[lines[index]] index += 1 while index < len(a__) and (end_prompt is None or not lines[index].startswith(a__)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(a__) > 0 and get_indent(current_block[-1]).startswith(indent_level + ''' '''): current_block.append(lines[index]) blocks.append('''\n'''.join(a__)) if index < len(a__) - 1: _SCREAMING_SNAKE_CASE =[lines[index + 1]] index += 1 else: _SCREAMING_SNAKE_CASE =[] else: blocks.append('''\n'''.join(a__)) _SCREAMING_SNAKE_CASE =[lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(a__) > 0: blocks.append('''\n'''.join(a__)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(a__): blocks.append('''\n'''.join(lines[index:])) return blocks def lowerCamelCase( a__): def _inner(a__): return key(a__).lower().replace('''_''' ,'''''') return _inner def lowerCamelCase( a__ ,a__=None): # If no key is provided, we use a noop. def noop(a__): return x if key is None: _SCREAMING_SNAKE_CASE =noop # Constants are all uppercase, they go first. _SCREAMING_SNAKE_CASE =[obj for obj in objects if key(a__).isupper()] # Classes are not all uppercase but start with a capital, they go second. _SCREAMING_SNAKE_CASE =[obj for obj in objects if key(a__)[0].isupper() and not key(a__).isupper()] # Functions begin with a lowercase, they go last. _SCREAMING_SNAKE_CASE =[obj for obj in objects if not key(a__)[0].isupper()] _SCREAMING_SNAKE_CASE =ignore_underscore(a__) return sorted(a__ ,key=a__) + sorted(a__ ,key=a__) + sorted(a__ ,key=a__) def lowerCamelCase( a__): # This inner function sort imports between [ ]. def _replace(a__): _SCREAMING_SNAKE_CASE =match.groups()[0] if "," not in imports: return f"[{imports}]" _SCREAMING_SNAKE_CASE =[part.strip().replace('''"''' ,'''''') for part in imports.split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: _SCREAMING_SNAKE_CASE =keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(a__)]) + "]" _SCREAMING_SNAKE_CASE =import_statement.split('''\n''') if len(a__) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _SCREAMING_SNAKE_CASE =2 if lines[1].strip() == '''[''' else 1 _SCREAMING_SNAKE_CASE =[(i, _re_strip_line.search(a__).groups()[0]) for i, line in enumerate(lines[idx:-idx])] _SCREAMING_SNAKE_CASE =sort_objects(a__ ,key=lambda a__: x[1]) _SCREAMING_SNAKE_CASE =[lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(a__) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: _SCREAMING_SNAKE_CASE =_re_bracket_content.sub(_replace ,lines[1]) else: _SCREAMING_SNAKE_CASE =[part.strip().replace('''"''' ,'''''') for part in lines[1].split(''',''')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: _SCREAMING_SNAKE_CASE =keys[:-1] _SCREAMING_SNAKE_CASE =get_indent(lines[1]) + ''', '''.join([f"\"{k}\"" for k in sort_objects(a__)]) return "\n".join(a__) else: # Finally we have to deal with imports fitting on one line _SCREAMING_SNAKE_CASE =_re_bracket_content.sub(_replace ,a__) return import_statement def lowerCamelCase( a__ ,a__=True): with open(a__ ,'''r''') as f: _SCREAMING_SNAKE_CASE =f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _SCREAMING_SNAKE_CASE =split_code_in_indented_blocks( a__ ,start_prompt='''_import_structure = {''' ,end_prompt='''if TYPE_CHECKING:''') # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 ,len(a__) - 1): # Check if the block contains some `_import_structure`s thingy to sort. _SCREAMING_SNAKE_CASE =main_blocks[block_idx] _SCREAMING_SNAKE_CASE =block.split('''\n''') # Get to the start of the imports. _SCREAMING_SNAKE_CASE =0 while line_idx < len(a__) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _SCREAMING_SNAKE_CASE =len(a__) else: line_idx += 1 if line_idx >= len(a__): continue # Ignore beginning and last line: they don't contain anything. _SCREAMING_SNAKE_CASE ='''\n'''.join(block_lines[line_idx:-1]) _SCREAMING_SNAKE_CASE =get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. _SCREAMING_SNAKE_CASE =split_code_in_indented_blocks(a__ ,indent_level=a__) # We have two categories of import key: list or _import_structure[key].append/extend _SCREAMING_SNAKE_CASE =_re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _SCREAMING_SNAKE_CASE =[(pattern.search(a__).groups()[0] if pattern.search(a__) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _SCREAMING_SNAKE_CASE =[(i, key) for i, key in enumerate(a__) if key is not None] _SCREAMING_SNAKE_CASE =[x[0] for x in sorted(a__ ,key=lambda a__: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =[] for i in range(len(a__)): if keys[i] is None: reordered_blocks.append(internal_blocks[i]) else: _SCREAMING_SNAKE_CASE =sort_objects_in_import(internal_blocks[sorted_indices[count]]) reordered_blocks.append(a__) count += 1 # And we put our main block back together with its first and last line. _SCREAMING_SNAKE_CASE ='''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]]) if code != "\n".join(a__): if check_only: return True else: print(f"Overwriting {file}.") with open(a__ ,'''w''') as f: f.write('''\n'''.join(a__)) def lowerCamelCase( a__=True): _SCREAMING_SNAKE_CASE =[] for root, _, files in os.walk(a__): if "__init__.py" in files: _SCREAMING_SNAKE_CASE =sort_imports(os.path.join(a__ ,'''__init__.py''') ,check_only=a__) if result: _SCREAMING_SNAKE_CASE =[os.path.join(a__ ,'''__init__.py''')] if len(a__) > 0: raise ValueError(f"Would overwrite {len(a__)} files, run `make style`.") if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') snake_case_ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
691
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A__ ( unittest.TestCase ): def __init__( self : List[str] , _a : Dict , _a : Dict=7 , _a : List[str]=3 , _a : str=18 , _a : Optional[int]=30 , _a : Tuple=400 , _a : Optional[Any]=True , _a : Dict=None , _a : str=True , _a : Tuple=None , _a : Any=True , _a : Any=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _a : str=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _a : List[Any]=True , ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 224, '''width''': 224} _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_center_crop _SCREAMING_SNAKE_CASE =crop_size _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean _SCREAMING_SNAKE_CASE =image_std _SCREAMING_SNAKE_CASE =do_convert_rgb def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __UpperCamelCase ( self : Tuple , _a : Optional[Any]=False , _a : str=False , _a : Dict=False ) -> Dict: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] if torchify: _SCREAMING_SNAKE_CASE =[torch.from_numpy(_a ) for x in image_inputs] return image_inputs @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , do_center_crop=_a ) @property def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_a ) _SCREAMING_SNAKE_CASE =3 @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
691
1
def lowerCamelCase( a__ ,a__): return number | (1 << position) def lowerCamelCase( a__ ,a__): return number & ~(1 << position) def lowerCamelCase( a__ ,a__): return number ^ (1 << position) def lowerCamelCase( a__ ,a__): return ((number >> position) & 1) == 1 def lowerCamelCase( a__ ,a__): return int((number & (1 << position)) != 0) if __name__ == "__main__": import doctest doctest.testmod()
691
def lowerCamelCase( a__ ,a__): return int((input_a, input_a).count(0) == 0) def lowerCamelCase( ): assert and_gate(0 ,0) == 0 assert and_gate(0 ,1) == 0 assert and_gate(1 ,0) == 0 assert and_gate(1 ,1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
691
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase( a__ ,a__=0.999 ,a__="cosine" ,): if alpha_transform_type == "cosine": def alpha_bar_fn(a__): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a__): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") _SCREAMING_SNAKE_CASE =[] for i in range(a__): _SCREAMING_SNAKE_CASE =i / num_diffusion_timesteps _SCREAMING_SNAKE_CASE =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a__) / alpha_bar_fn(a__) ,a__)) return torch.tensor(a__ ,dtype=torch.floataa) class A__ ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase = 2 @register_to_config def __init__( self : int , _a : int = 1000 , _a : float = 0.0_00_85 , _a : float = 0.0_12 , _a : str = "linear" , _a : Optional[Union[np.ndarray, List[float]]] = None , _a : str = "epsilon" , _a : str = "linspace" , _a : int = 0 , ) -> Optional[int]: """simple docstring""" if trained_betas is not None: _SCREAMING_SNAKE_CASE =torch.tensor(_a , dtype=torch.floataa ) elif beta_schedule == "linear": _SCREAMING_SNAKE_CASE =torch.linspace(_a , _a , _a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _SCREAMING_SNAKE_CASE =( torch.linspace(beta_start**0.5 , beta_end**0.5 , _a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _SCREAMING_SNAKE_CASE =betas_for_alpha_bar(_a ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) _SCREAMING_SNAKE_CASE =1.0 - self.betas _SCREAMING_SNAKE_CASE =torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_a , _a , _a ) def __UpperCamelCase ( self : Any , _a : Tuple , _a : Optional[int]=None ) -> List[Any]: """simple docstring""" if schedule_timesteps is None: _SCREAMING_SNAKE_CASE =self.timesteps _SCREAMING_SNAKE_CASE =(schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _SCREAMING_SNAKE_CASE =1 if len(_a ) > 1 else 0 else: _SCREAMING_SNAKE_CASE =timestep.cpu().item() if torch.is_tensor(_a ) else timestep _SCREAMING_SNAKE_CASE =self._index_counter[timestep_int] return indices[pos].item() @property def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __UpperCamelCase ( self : Any , _a : torch.FloatTensor , _a : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: """simple docstring""" _SCREAMING_SNAKE_CASE =self.index_for_timestep(_a ) if self.state_in_first_order: _SCREAMING_SNAKE_CASE =self.sigmas[step_index] else: _SCREAMING_SNAKE_CASE =self.sigmas_interpol[step_index] _SCREAMING_SNAKE_CASE =sample / ((sigma**2 + 1) ** 0.5) return sample def __UpperCamelCase ( self : str , _a : int , _a : Union[str, torch.device] = None , _a : Optional[int] = None , ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =num_inference_steps _SCREAMING_SNAKE_CASE =num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _SCREAMING_SNAKE_CASE =np.linspace(0 , num_train_timesteps - 1 , _a , dtype=_a )[::-1].copy() elif self.config.timestep_spacing == "leading": _SCREAMING_SNAKE_CASE =num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _SCREAMING_SNAKE_CASE =(np.arange(0 , _a ) * step_ratio).round()[::-1].copy().astype(_a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _SCREAMING_SNAKE_CASE =num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _SCREAMING_SNAKE_CASE =(np.arange(_a , 0 , -step_ratio )).round().copy().astype(_a ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) _SCREAMING_SNAKE_CASE =np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _SCREAMING_SNAKE_CASE =torch.from_numpy(np.log(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =np.interp(_a , np.arange(0 , len(_a ) ) , _a ) _SCREAMING_SNAKE_CASE =np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).to(device=_a ) # interpolate sigmas _SCREAMING_SNAKE_CASE =sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() _SCREAMING_SNAKE_CASE =torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _SCREAMING_SNAKE_CASE =torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_a ).startswith('''mps''' ): # mps does not support float64 _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).to(_a , dtype=torch.floataa ) else: _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).to(_a ) # interpolate timesteps _SCREAMING_SNAKE_CASE =self.sigma_to_t(_a ).to(_a , dtype=timesteps.dtype ) _SCREAMING_SNAKE_CASE =torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() _SCREAMING_SNAKE_CASE =torch.cat([timesteps[:1], interleaved_timesteps] ) _SCREAMING_SNAKE_CASE =None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _SCREAMING_SNAKE_CASE =defaultdict(_a ) def __UpperCamelCase ( self : Optional[Any] , _a : List[Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =sigma.log() # get distribution _SCREAMING_SNAKE_CASE =log_sigma - self.log_sigmas[:, None] # get sigmas range _SCREAMING_SNAKE_CASE =dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _SCREAMING_SNAKE_CASE =low_idx + 1 _SCREAMING_SNAKE_CASE =self.log_sigmas[low_idx] _SCREAMING_SNAKE_CASE =self.log_sigmas[high_idx] # interpolate sigmas _SCREAMING_SNAKE_CASE =(low - log_sigma) / (low - high) _SCREAMING_SNAKE_CASE =w.clamp(0 , 1 ) # transform interpolation to time range _SCREAMING_SNAKE_CASE =(1 - w) * low_idx + w * high_idx _SCREAMING_SNAKE_CASE =t.view(sigma.shape ) return t @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" return self.sample is None def __UpperCamelCase ( self : str , _a : Union[torch.FloatTensor, np.ndarray] , _a : Union[float, torch.FloatTensor] , _a : Union[torch.FloatTensor, np.ndarray] , _a : bool = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.index_for_timestep(_a ) # advance index counter by 1 _SCREAMING_SNAKE_CASE =timestep.cpu().item() if torch.is_tensor(_a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _SCREAMING_SNAKE_CASE =self.sigmas[step_index] _SCREAMING_SNAKE_CASE =self.sigmas_interpol[step_index + 1] _SCREAMING_SNAKE_CASE =self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _SCREAMING_SNAKE_CASE =self.sigmas[step_index - 1] _SCREAMING_SNAKE_CASE =self.sigmas_interpol[step_index] _SCREAMING_SNAKE_CASE =self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _SCREAMING_SNAKE_CASE =sigma_hat if self.state_in_first_order else sigma_interpol _SCREAMING_SNAKE_CASE =sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _SCREAMING_SNAKE_CASE =sigma_hat if self.state_in_first_order else sigma_interpol _SCREAMING_SNAKE_CASE =model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _SCREAMING_SNAKE_CASE =(sample - pred_original_sample) / sigma_hat # 3. delta timestep _SCREAMING_SNAKE_CASE =sigma_interpol - sigma_hat # store for 2nd order step _SCREAMING_SNAKE_CASE =sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _SCREAMING_SNAKE_CASE =(sample - pred_original_sample) / sigma_interpol # 3. delta timestep _SCREAMING_SNAKE_CASE =sigma_next - sigma_hat _SCREAMING_SNAKE_CASE =self.sample _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def __UpperCamelCase ( self : Optional[Any] , _a : torch.FloatTensor , _a : torch.FloatTensor , _a : torch.FloatTensor , ) -> torch.FloatTensor: """simple docstring""" _SCREAMING_SNAKE_CASE =self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_a ): # mps does not support float64 _SCREAMING_SNAKE_CASE =self.timesteps.to(original_samples.device , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =timesteps.to(original_samples.device , dtype=torch.floataa ) else: _SCREAMING_SNAKE_CASE =self.timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE =timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE =[self.index_for_timestep(_a , _a ) for t in timesteps] _SCREAMING_SNAKE_CASE =sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _SCREAMING_SNAKE_CASE =sigma.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE =original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ) -> Any: """simple docstring""" return self.config.num_train_timesteps
691
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json snake_case_ : Optional[int] = '''sshleifer/mar_enro_6_3_student''' class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_a , ) _SCREAMING_SNAKE_CASE =f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script _SCREAMING_SNAKE_CASE =(self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() _SCREAMING_SNAKE_CASE =bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): _SCREAMING_SNAKE_CASE =bash_script.replace(_a , str(_a ) ) _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _SCREAMING_SNAKE_CASE =f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future _SCREAMING_SNAKE_CASE =['''finetune.py'''] + bash_script.split() + args with patch.object(_a , '''argv''' , _a ): _SCREAMING_SNAKE_CASE =argparse.ArgumentParser() _SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(_a ) _SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(_a , os.getcwd() ) _SCREAMING_SNAKE_CASE =parser.parse_args() _SCREAMING_SNAKE_CASE =main(_a ) # Check metrics _SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) _SCREAMING_SNAKE_CASE =metrics['''val'''][0] _SCREAMING_SNAKE_CASE =metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _a ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _SCREAMING_SNAKE_CASE =os.listdir(_a ) _SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('''.ckpt''' )][0] _SCREAMING_SNAKE_CASE =os.path.join(args.output_dir , _a ) _SCREAMING_SNAKE_CASE =torch.load(_a , map_location='''cpu''' ) _SCREAMING_SNAKE_CASE ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _SCREAMING_SNAKE_CASE ={os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class A__ ( UpperCamelCase__ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =f"{self.test_file_dir_str}/test_data/wmt_en_ro" _SCREAMING_SNAKE_CASE ={ '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script _SCREAMING_SNAKE_CASE =( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) _SCREAMING_SNAKE_CASE =bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) _SCREAMING_SNAKE_CASE =bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): _SCREAMING_SNAKE_CASE =bash_script.replace(_a , str(_a ) ) _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE =bash_script.replace('''--fp16''' , '''''' ) _SCREAMING_SNAKE_CASE =6 _SCREAMING_SNAKE_CASE =( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(_a , '''argv''' , _a ): _SCREAMING_SNAKE_CASE =argparse.ArgumentParser() _SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(_a ) _SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) _SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _SCREAMING_SNAKE_CASE =distill_main(_a ) # Check metrics _SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) _SCREAMING_SNAKE_CASE =metrics['''val'''][0] _SCREAMING_SNAKE_CASE =metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict _SCREAMING_SNAKE_CASE =os.listdir(_a ) _SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('''.ckpt''' )][0] _SCREAMING_SNAKE_CASE =os.path.join(args.output_dir , _a ) _SCREAMING_SNAKE_CASE =torch.load(_a , map_location='''cpu''' ) _SCREAMING_SNAKE_CASE ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _SCREAMING_SNAKE_CASE ={os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
691
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class A__ ( UpperCamelCase__ ): UpperCAmelCase = (DPMSolverSinglestepScheduler,) UpperCAmelCase = (("num_inference_steps", 25),) def __UpperCamelCase ( self : List[Any] , **_a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**_a ) return config def __UpperCamelCase ( self : Any , _a : str=0 , **_a : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE =kwargs.pop('''num_inference_steps''' , _a ) _SCREAMING_SNAKE_CASE =self.dummy_sample _SCREAMING_SNAKE_CASE =0.1 * sample _SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE =self.get_scheduler_config(**_a ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE =dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =sample, sample for t in range(_a , time_step + scheduler.config.solver_order + 1 ): _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a , **_a ).prev_sample _SCREAMING_SNAKE_CASE =new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self : Any , _a : List[str]=0 , **_a : Dict ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE =kwargs.pop('''num_inference_steps''' , _a ) _SCREAMING_SNAKE_CASE =self.dummy_sample _SCREAMING_SNAKE_CASE =0.1 * sample _SCREAMING_SNAKE_CASE =[residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE =self.get_scheduler_config() _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) _SCREAMING_SNAKE_CASE =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) _SCREAMING_SNAKE_CASE =scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) _SCREAMING_SNAKE_CASE =dummy_past_residuals[: new_scheduler.config.solver_order] _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a , **_a ).prev_sample _SCREAMING_SNAKE_CASE =new_scheduler.step(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : Any , _a : Dict=None , **_a : Optional[Any] ) -> List[str]: """simple docstring""" if scheduler is None: _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(**_a ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(**_a ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =10 _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE =model(_a , _a ) _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a ).prev_sample return sample def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _SCREAMING_SNAKE_CASE =50 _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter scheduler.set_timesteps(_a ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): _SCREAMING_SNAKE_CASE =model(_a , _a ) _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a ).prev_sample _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.25_74 ) < 1E-3 def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_a ) def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) _SCREAMING_SNAKE_CASE =self.full_loop(scheduler=_a ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 _SCREAMING_SNAKE_CASE =DEISMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =UniPCMultistepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =DPMSolverSinglestepScheduler.from_config(scheduler.config ) _SCREAMING_SNAKE_CASE =self.full_loop(scheduler=_a ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self.check_over_configs(thresholding=_a ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_a , prediction_type=_a , sample_max_value=_a , algorithm_type='''dpmsolver++''' , solver_order=_a , solver_type=_a , ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) _SCREAMING_SNAKE_CASE =self.full_loop( solver_order=_a , solver_type=_a , prediction_type=_a , algorithm_type=_a , ) assert not torch.isnan(_a ).any(), "Samples have nan numbers" def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" self.check_over_configs(lower_order_final=_a ) self.check_over_configs(lower_order_final=_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" self.check_over_configs(variance_type=_a ) self.check_over_configs(variance_type='''learned_range''' ) def __UpperCamelCase ( self : str ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_a , time_step=0 ) def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.full_loop() _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.27_91 ) < 1E-3 def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.full_loop(use_karras_sigmas=_a ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.22_48 ) < 1E-3 def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.full_loop(prediction_type='''v_prediction''' ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.14_53 ) < 1E-3 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_a ) _SCREAMING_SNAKE_CASE =torch.mean(torch.abs(_a ) ) assert abs(result_mean.item() - 0.06_49 ) < 1E-3 def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.scheduler_classes[0] _SCREAMING_SNAKE_CASE =self.get_scheduler_config(thresholding=_a , dynamic_thresholding_ratio=0 ) _SCREAMING_SNAKE_CASE =scheduler_class(**_a ) _SCREAMING_SNAKE_CASE =10 _SCREAMING_SNAKE_CASE =self.dummy_model() _SCREAMING_SNAKE_CASE =self.dummy_sample_deter.half() scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE =model(_a , _a ) _SCREAMING_SNAKE_CASE =scheduler.step(_a , _a , _a ).prev_sample assert sample.dtype == torch.floataa
691
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A__ ( UpperCamelCase__ ): UpperCAmelCase = 0 UpperCAmelCase = False UpperCAmelCase = 3.0 class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _SCREAMING_SNAKE_CASE =Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _SCREAMING_SNAKE_CASE =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) snake_case_ : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) snake_case_ : Dict = torch.nn.Linear(1_00, 2_00) snake_case_ : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs snake_case_ : Dict = '''''' snake_case_ : str = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
691
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow snake_case_ : List[Any] = False class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any] , _a : Any=32 ) -> List[Any]: """simple docstring""" set_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDModel(sample_size=_a , in_channels=3 , out_channels=3 ) _SCREAMING_SNAKE_CASE =torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable _SCREAMING_SNAKE_CASE =DDPMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_a , ) _SCREAMING_SNAKE_CASE =DDIMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_a , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) _SCREAMING_SNAKE_CASE =[torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_a ) for _ in range(4 )] _SCREAMING_SNAKE_CASE =[torch.randn((4, 3, 32, 32) ).to(_a ) for _ in range(4 )] _SCREAMING_SNAKE_CASE =[torch.randint(0 , 1000 , (4,) ).long().to(_a ) for _ in range(4 )] # train with a DDPM scheduler _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.get_model_optimizer(resolution=32 ) model.train().to(_a ) for i in range(4 ): optimizer.zero_grad() _SCREAMING_SNAKE_CASE =ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _SCREAMING_SNAKE_CASE =model(_a , timesteps[i] ).sample _SCREAMING_SNAKE_CASE =torch.nn.functional.mse_loss(_a , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.get_model_optimizer(resolution=32 ) model.train().to(_a ) for i in range(4 ): optimizer.zero_grad() _SCREAMING_SNAKE_CASE =ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) _SCREAMING_SNAKE_CASE =model(_a , timesteps[i] ).sample _SCREAMING_SNAKE_CASE =torch.nn.functional.mse_loss(_a , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_a , _a , atol=1E-5 ) ) self.assertTrue(torch.allclose(_a , _a , atol=1E-5 ) )
691
class A__ : def __init__( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ={} def __UpperCamelCase ( self : Any , _a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if vertex not in self.adjacency: _SCREAMING_SNAKE_CASE ={} self.num_vertices += 1 def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple , _a : Dict ) -> Union[str, Any]: """simple docstring""" self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _SCREAMING_SNAKE_CASE =edges[i][2] + 1 for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __str__( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''''' for tail in self.adjacency: for head in self.adjacency[tail]: _SCREAMING_SNAKE_CASE =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _a : List[str]=None , _a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Graph() if vertices is None: _SCREAMING_SNAKE_CASE =[] if edges is None: _SCREAMING_SNAKE_CASE =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class A__ : def __init__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ={} def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] ) -> int: """simple docstring""" if item in self.parent: return self.find(_a ) _SCREAMING_SNAKE_CASE =item _SCREAMING_SNAKE_CASE =0 return item def __UpperCamelCase ( self : str , _a : Tuple ) -> Union[str, Any]: """simple docstring""" if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _SCREAMING_SNAKE_CASE =self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : List[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.find(_a ) _SCREAMING_SNAKE_CASE =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] < self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _SCREAMING_SNAKE_CASE =roota return roota return None @staticmethod def __UpperCamelCase ( _a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =graph.num_vertices _SCREAMING_SNAKE_CASE =Graph.UnionFind() _SCREAMING_SNAKE_CASE =[] while num_components > 1: _SCREAMING_SNAKE_CASE ={} for vertex in graph.get_vertices(): _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =graph.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =union_find.find(_a ) _SCREAMING_SNAKE_CASE =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _SCREAMING_SNAKE_CASE =num_components - 1 _SCREAMING_SNAKE_CASE =Graph.build(edges=_a ) return mst
691
1
import string from math import logaa def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =document.translate( str.maketrans('''''' ,'''''' ,string.punctuation)).replace('''\n''' ,'''''') _SCREAMING_SNAKE_CASE =document_without_punctuation.split(''' ''') # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()]) def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation)) # strip all punctuation and replace it with '' _SCREAMING_SNAKE_CASE =corpus_without_punctuation.split('''\n''') _SCREAMING_SNAKE_CASE =term.lower() return (len([doc for doc in docs if term in doc]), len(a__)) def lowerCamelCase( a__ ,a__ ,a__=False): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''') return round(1 + logaa(n / (1 + df)) ,3) if df == 0: raise ZeroDivisionError('''df must be > 0''') elif n == 0: raise ValueError('''log10(0) is undefined.''') return round(logaa(n / df) ,3) def lowerCamelCase( a__ ,a__): return round(tf * idf ,3)
691
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : str = logging.getLogger(__name__) def lowerCamelCase( a__ ,a__): return (preds == labels).mean() @dataclass class A__ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,a__) # Set seed set_seed(training_args.seed) try: _SCREAMING_SNAKE_CASE =processors[data_args.task_name]() _SCREAMING_SNAKE_CASE =processor.get_labels() _SCREAMING_SNAKE_CASE =len(a__) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,) # Get datasets _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(a__) -> Dict: _SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(a__ ,p.label_ids)} # Data collator _SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer _SCREAMING_SNAKE_CASE =Trainer( model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _SCREAMING_SNAKE_CASE ={} if training_args.do_eval: logger.info('''*** Evaluate ***''') _SCREAMING_SNAKE_CASE =trainer.evaluate() _SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''') if trainer.is_world_master(): with open(a__ ,'''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' ,a__ ,a__) writer.write('''%s = %s\n''' % (key, value)) results.update(a__) return results def lowerCamelCase( a__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
1
import math import unittest def lowerCamelCase( a__): assert isinstance(a__ ,a__) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(a__) + 1) ,6): if number % i == 0 or number % (i + 2) == 0: return False return True class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[int] ) -> str: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __UpperCamelCase ( self : str ) -> Optional[int]: """simple docstring""" with self.assertRaises(_a ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
691
def lowerCamelCase( a__ ,a__ ,a__): if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(a__ ,n - 1 ,a__) * a) % mod else: _SCREAMING_SNAKE_CASE =binary_exponentiation(a__ ,n / 2 ,a__) return (b * b) % mod # a prime number snake_case_ : Union[str, Any] = 7_01 snake_case_ : int = 10_00_00_00_00 snake_case_ : str = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
691
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class A__ ( enum.Enum ): UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @add_end_docstrings(UpperCamelCase__ ) class A__ ( UpperCamelCase__ ): UpperCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Optional[Any] , *_a : List[Any] , **_a : int ) -> Optional[int]: """simple docstring""" super().__init__(*_a , **_a ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _SCREAMING_SNAKE_CASE =None if self.model.config.prefix is not None: _SCREAMING_SNAKE_CASE =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _SCREAMING_SNAKE_CASE =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self._sanitize_parameters(prefix=_a , **self._forward_params ) _SCREAMING_SNAKE_CASE ={**self._preprocess_params, **preprocess_params} _SCREAMING_SNAKE_CASE ={**self._forward_params, **forward_params} def __UpperCamelCase ( self : Tuple , _a : List[str]=None , _a : str=None , _a : Optional[int]=None , _a : Union[str, Any]=None , _a : Dict=None , _a : Any=None , _a : str=None , _a : str=None , **_a : int , ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} if prefix is not None: _SCREAMING_SNAKE_CASE =prefix if prefix: _SCREAMING_SNAKE_CASE =self.tokenizer( _a , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE =prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected" ''' [None, \'hole\']''' ) _SCREAMING_SNAKE_CASE =handle_long_generation preprocess_params.update(_a ) _SCREAMING_SNAKE_CASE =generate_kwargs _SCREAMING_SNAKE_CASE ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _SCREAMING_SNAKE_CASE =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _SCREAMING_SNAKE_CASE =ReturnType.TENSORS if return_type is not None: _SCREAMING_SNAKE_CASE =return_type if clean_up_tokenization_spaces is not None: _SCREAMING_SNAKE_CASE =clean_up_tokenization_spaces if stop_sequence is not None: _SCREAMING_SNAKE_CASE =self.tokenizer.encode(_a , add_special_tokens=_a ) if len(_a ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _SCREAMING_SNAKE_CASE =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCamelCase ( self : Optional[int] , *_a : int , **_a : Tuple ) -> Dict: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_a , **_a ) def __call__( self : Optional[int] , _a : int , **_a : Any ) -> int: """simple docstring""" return super().__call__(_a , **_a ) def __UpperCamelCase ( self : int , _a : Optional[int] , _a : Union[str, Any]="" , _a : Any=None , **_a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.tokenizer( prefix + prompt_text , padding=_a , add_special_tokens=_a , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE =prompt_text if handle_long_generation == "hole": _SCREAMING_SNAKE_CASE =inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _SCREAMING_SNAKE_CASE =generate_kwargs['''max_new_tokens'''] else: _SCREAMING_SNAKE_CASE =generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _SCREAMING_SNAKE_CASE =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _SCREAMING_SNAKE_CASE =inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _SCREAMING_SNAKE_CASE =inputs['''attention_mask'''][:, -keep_length:] return inputs def __UpperCamelCase ( self : List[str] , _a : Union[str, Any] , **_a : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =model_inputs['''input_ids'''] _SCREAMING_SNAKE_CASE =model_inputs.get('''attention_mask''' , _a ) # Allow empty prompts if input_ids.shape[1] == 0: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =1 else: _SCREAMING_SNAKE_CASE =input_ids.shape[0] _SCREAMING_SNAKE_CASE =model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _SCREAMING_SNAKE_CASE =generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _SCREAMING_SNAKE_CASE ='''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _SCREAMING_SNAKE_CASE =generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _SCREAMING_SNAKE_CASE ='''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _SCREAMING_SNAKE_CASE =self.model.generate(input_ids=_a , attention_mask=_a , **_a ) _SCREAMING_SNAKE_CASE =generated_sequence.shape[0] if self.framework == "pt": _SCREAMING_SNAKE_CASE =generated_sequence.reshape(_a , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _SCREAMING_SNAKE_CASE =tf.reshape(_a , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __UpperCamelCase ( self : Dict , _a : Union[str, Any] , _a : List[Any]=ReturnType.FULL_TEXT , _a : List[str]=True ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =model_outputs['''generated_sequence'''][0] _SCREAMING_SNAKE_CASE =model_outputs['''input_ids'''] _SCREAMING_SNAKE_CASE =model_outputs['''prompt_text'''] _SCREAMING_SNAKE_CASE =generated_sequence.numpy().tolist() _SCREAMING_SNAKE_CASE =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _SCREAMING_SNAKE_CASE ={'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _SCREAMING_SNAKE_CASE =self.tokenizer.decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) ) if return_type == ReturnType.FULL_TEXT: _SCREAMING_SNAKE_CASE =prompt_text + text[prompt_length:] else: _SCREAMING_SNAKE_CASE =text[prompt_length:] _SCREAMING_SNAKE_CASE ={'''generated_text''': all_text} records.append(_a ) return records
691
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : def __init__( self : Optional[Any] , _a : int , _a : Optional[Any]=3 , _a : Tuple=32 , _a : Any=3 , _a : Union[str, Any]=10 , _a : Optional[int]=[8, 16, 32, 64] , _a : Union[str, Any]=[1, 1, 2, 1] , _a : Optional[Any]=True , _a : int=True , _a : Tuple="relu" , _a : Optional[Any]=3 , _a : str=None , _a : List[Any]=["stage2", "stage3", "stage4"] , _a : Union[str, Any]=[2, 3, 4] , _a : Dict=1 , ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =embeddings_size _SCREAMING_SNAKE_CASE =hidden_sizes _SCREAMING_SNAKE_CASE =depths _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =num_labels _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =out_features _SCREAMING_SNAKE_CASE =out_indices _SCREAMING_SNAKE_CASE =num_groups def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_labels ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self : Optional[Any] , _a : Dict , _a : str , _a : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModel(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self : Union[str, Any] , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =BitForImageClassification(_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self : List[str] , _a : Any , _a : str , _a : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =BitBackbone(config=_a ) model.to(_a ) model.eval() _SCREAMING_SNAKE_CASE =model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , has_text_modality=_a ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_a ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] , _a ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(config=_a ) for name, module in model.named_modules(): if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_a : Any , _a : Optional[int] , _a : Tuple ): _SCREAMING_SNAKE_CASE =model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(_a , _a ) ) _SCREAMING_SNAKE_CASE =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE =self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: _SCREAMING_SNAKE_CASE =layer_type _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE =True check_hidden_states_output(_a , _a , _a ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =BitModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_a , return_tensors='''pt''' ).to(_a ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_a ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _SCREAMING_SNAKE_CASE =torch.tensor([[-0.65_26, -0.52_63, -1.43_98]] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) ) @require_torch class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = (BitBackbone,) if is_torch_available() else () UpperCAmelCase = BitConfig UpperCAmelCase = False def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BitModelTester(self )
691
1
from __future__ import annotations class A__ : def __init__( self : Tuple , _a : Tuple=None ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =data _SCREAMING_SNAKE_CASE =None def __repr__( self : List[str] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =self while temp: string_rep.append(f"{temp.data}" ) _SCREAMING_SNAKE_CASE =temp.next return "->".join(_a ) def lowerCamelCase( a__): if not elements_list: raise Exception('''The Elements List is empty''') _SCREAMING_SNAKE_CASE =_SCREAMING_SNAKE_CASE =Node(elements_list[0]) for i in range(1 ,len(a__)): _SCREAMING_SNAKE_CASE =Node(elements_list[i]) _SCREAMING_SNAKE_CASE =current.next return head def lowerCamelCase( a__): if head_node is not None and isinstance(a__ ,a__): print_reverse(head_node.next) print(head_node.data) def lowerCamelCase( ): from doctest import testmod testmod() _SCREAMING_SNAKE_CASE =make_linked_list([14, 52, 14, 12, 43]) print('''Linked List:''') print(a__) print('''Elements in Reverse:''') print_reverse(a__) if __name__ == "__main__": main()
691
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings snake_case_ : Optional[Any] = R''' [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. ''' @add_start_docstrings(UpperCamelCase__ ) class A__ ( UpperCamelCase__ ): UpperCAmelCase = "rag" UpperCAmelCase = True def __init__( self : Tuple , _a : List[Any]=None , _a : Tuple=True , _a : Optional[Any]=None , _a : int=None , _a : List[str]=None , _a : int=None , _a : Optional[int]=None , _a : str=" / " , _a : Any=" // " , _a : Optional[Any]=5 , _a : int=300 , _a : Optional[Any]=768 , _a : Any=8 , _a : List[str]="wiki_dpr" , _a : Dict="train" , _a : Union[str, Any]="compressed" , _a : str=None , _a : Union[str, Any]=None , _a : int=False , _a : Any=False , _a : Any=0.0 , _a : Any=True , _a : List[str]=False , _a : Optional[int]=False , _a : int=False , _a : Union[str, Any]=True , _a : Optional[int]=None , **_a : List[str] , ) -> List[Any]: """simple docstring""" super().__init__( bos_token_id=_a , pad_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , forced_eos_token_id=_a , is_encoder_decoder=_a , prefix=_a , vocab_size=_a , **_a , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" _SCREAMING_SNAKE_CASE =kwargs.pop('''question_encoder''' ) _SCREAMING_SNAKE_CASE =question_encoder_config.pop('''model_type''' ) _SCREAMING_SNAKE_CASE =kwargs.pop('''generator''' ) _SCREAMING_SNAKE_CASE =decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =AutoConfig.for_model(_a , **_a ) _SCREAMING_SNAKE_CASE =reduce_loss _SCREAMING_SNAKE_CASE =label_smoothing _SCREAMING_SNAKE_CASE =exclude_bos_score _SCREAMING_SNAKE_CASE =do_marginalize _SCREAMING_SNAKE_CASE =title_sep _SCREAMING_SNAKE_CASE =doc_sep _SCREAMING_SNAKE_CASE =n_docs _SCREAMING_SNAKE_CASE =max_combined_length _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =dataset_split _SCREAMING_SNAKE_CASE =index_name _SCREAMING_SNAKE_CASE =retrieval_vector_size _SCREAMING_SNAKE_CASE =retrieval_batch_size _SCREAMING_SNAKE_CASE =passages_path _SCREAMING_SNAKE_CASE =index_path _SCREAMING_SNAKE_CASE =use_dummy_dataset _SCREAMING_SNAKE_CASE =output_retrieved _SCREAMING_SNAKE_CASE =do_deduplication _SCREAMING_SNAKE_CASE =use_cache if self.forced_eos_token_id is None: _SCREAMING_SNAKE_CASE =getattr(self.generator , '''forced_eos_token_id''' , _a ) @classmethod def __UpperCamelCase ( cls : Optional[int] , _a : PretrainedConfig , _a : PretrainedConfig , **_a : Dict ) -> PretrainedConfig: """simple docstring""" return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **_a ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.question_encoder.to_dict() _SCREAMING_SNAKE_CASE =self.generator.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output
691
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def __UpperCamelCase ( self : List[Any] , _a : List[Any]=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 128, 128) , rng=random.Random(_a ) ) _SCREAMING_SNAKE_CASE =np.random.RandomState(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _SCREAMING_SNAKE_CASE =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) # warmup pass to apply optimizations _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs() ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _SCREAMING_SNAKE_CASE =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _SCREAMING_SNAKE_CASE =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _SCREAMING_SNAKE_CASE =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs() _SCREAMING_SNAKE_CASE =pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _SCREAMING_SNAKE_CASE =np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class A__ ( unittest.TestCase ): @property def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =ort.SessionOptions() _SCREAMING_SNAKE_CASE =False return options def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _SCREAMING_SNAKE_CASE =init_image.resize((768, 512) ) # using the PNDM scheduler by default _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''A fantasy landscape, trending on artstation''' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _SCREAMING_SNAKE_CASE =np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCamelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _SCREAMING_SNAKE_CASE =init_image.resize((768, 512) ) _SCREAMING_SNAKE_CASE =LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _SCREAMING_SNAKE_CASE =OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE ='''A fantasy landscape, trending on artstation''' _SCREAMING_SNAKE_CASE =np.random.RandomState(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _SCREAMING_SNAKE_CASE =np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
691
from manim import * class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.25 , width=0.25 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''CPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''GPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Model''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): rect.set_stroke(_a ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Loaded Checkpoint''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) _SCREAMING_SNAKE_CASE =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) _SCREAMING_SNAKE_CASE =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE =MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _SCREAMING_SNAKE_CASE =MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _SCREAMING_SNAKE_CASE =MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Disk''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) _SCREAMING_SNAKE_CASE =MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
691
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) class A__ ( UpperCamelCase__ ): UpperCAmelCase = ["input_features", "attention_mask"] def __init__( self : List[Any] , _a : Any=80 , _a : Any=1_6000 , _a : Union[str, Any]=80 , _a : Optional[int]=0.0 , _a : List[Any]=True , _a : Tuple=True , _a : Tuple=True , **_a : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__(feature_size=_a , sampling_rate=_a , padding_value=_a , **_a ) _SCREAMING_SNAKE_CASE =num_mel_bins _SCREAMING_SNAKE_CASE =do_ceptral_normalize _SCREAMING_SNAKE_CASE =normalize_means _SCREAMING_SNAKE_CASE =normalize_vars _SCREAMING_SNAKE_CASE =True def __UpperCamelCase ( self : Any , _a : np.ndarray , ) -> np.ndarray: """simple docstring""" _SCREAMING_SNAKE_CASE =waveform * (2**15) # Kaldi compliance: 16-bit signed integers _SCREAMING_SNAKE_CASE =torch.from_numpy(_a ).unsqueeze(0 ) _SCREAMING_SNAKE_CASE =ta_kaldi.fbank(_a , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __UpperCamelCase ( _a : np.ndarray , _a : int , _a : Optional[bool] = True , _a : Optional[bool] = True , _a : float = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: _SCREAMING_SNAKE_CASE =x[:input_length].mean(axis=0 ) _SCREAMING_SNAKE_CASE =np.subtract(_a , _a ) if normalize_vars: _SCREAMING_SNAKE_CASE =x[:input_length].std(axis=0 ) _SCREAMING_SNAKE_CASE =np.divide(_a , _a ) if input_length < x.shape[0]: _SCREAMING_SNAKE_CASE =padding_value # make sure array is in float32 _SCREAMING_SNAKE_CASE =x.astype(np.floataa ) return x def __UpperCamelCase ( self : Optional[int] , _a : List[np.ndarray] , _a : Optional[np.ndarray] = None ) -> List[np.ndarray]: """simple docstring""" _SCREAMING_SNAKE_CASE =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_a , _a , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(_a , _a ) ] def __call__( self : List[Any] , _a : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _a : Union[bool, str, PaddingStrategy] = False , _a : Optional[int] = None , _a : bool = False , _a : Optional[int] = None , _a : Optional[Union[str, TensorType]] = None , _a : Optional[int] = None , _a : Optional[bool] = None , **_a : Tuple , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) _SCREAMING_SNAKE_CASE =isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _SCREAMING_SNAKE_CASE =is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _SCREAMING_SNAKE_CASE =[np.asarray(_a , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): _SCREAMING_SNAKE_CASE =np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _SCREAMING_SNAKE_CASE =raw_speech.astype(np.floataa ) # always return batch if not is_batched: _SCREAMING_SNAKE_CASE =[raw_speech] # extract fbank features _SCREAMING_SNAKE_CASE =[self._extract_fbank_features(_a ) for waveform in raw_speech] # convert into correct format for padding _SCREAMING_SNAKE_CASE =BatchFeature({'''input_features''': features} ) _SCREAMING_SNAKE_CASE =self.pad( _a , padding=_a , max_length=_a , truncation=_a , pad_to_multiple_of=_a , return_attention_mask=_a , **_a , ) # make sure list is in array format _SCREAMING_SNAKE_CASE =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , _a ): _SCREAMING_SNAKE_CASE =[np.asarray(_a , dtype=np.floataa ) for feature in input_features] _SCREAMING_SNAKE_CASE =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _SCREAMING_SNAKE_CASE =[np.asarray(_a , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _SCREAMING_SNAKE_CASE =( np.array(_a , dtype=np.intaa ) if self._get_padding_strategies(_a , max_length=_a ) is not PaddingStrategy.DO_NOT_PAD else None ) _SCREAMING_SNAKE_CASE =self.normalize( padded_inputs['''input_features'''] , attention_mask=_a ) if return_tensors is not None: _SCREAMING_SNAKE_CASE =padded_inputs.convert_to_tensors(_a ) return padded_inputs
691
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : str = logging.get_logger(__name__) snake_case_ : List[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case_ : Any = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } snake_case_ : List[str] = {'''facebook/blenderbot-3B''': 1_28} class A__ ( UpperCamelCase__ ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = BlenderbotTokenizer def __init__( self : Dict , _a : str=None , _a : Optional[int]=None , _a : List[str]=None , _a : int="replace" , _a : Dict="<s>" , _a : Optional[Any]="</s>" , _a : Any="</s>" , _a : int="<s>" , _a : int="<unk>" , _a : Optional[int]="<pad>" , _a : Tuple="<mask>" , _a : Tuple=False , _a : Union[str, Any]=True , **_a : List[str] , ) -> Optional[int]: """simple docstring""" super().__init__( _a , _a , tokenizer_file=_a , errors=_a , bos_token=_a , eos_token=_a , sep_token=_a , cls_token=_a , unk_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , trim_offsets=_a , **_a , ) _SCREAMING_SNAKE_CASE =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space: _SCREAMING_SNAKE_CASE =getattr(_a , pre_tok_state.pop('''type''' ) ) _SCREAMING_SNAKE_CASE =add_prefix_space _SCREAMING_SNAKE_CASE =pre_tok_class(**_a ) _SCREAMING_SNAKE_CASE =add_prefix_space _SCREAMING_SNAKE_CASE ='''post_processor''' _SCREAMING_SNAKE_CASE =getattr(self.backend_tokenizer , _a , _a ) if tokenizer_component_instance: _SCREAMING_SNAKE_CASE =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _SCREAMING_SNAKE_CASE =tuple(state['''sep'''] ) if "cls" in state: _SCREAMING_SNAKE_CASE =tuple(state['''cls'''] ) _SCREAMING_SNAKE_CASE =False if state.get('''add_prefix_space''' , _a ) != add_prefix_space: _SCREAMING_SNAKE_CASE =add_prefix_space _SCREAMING_SNAKE_CASE =True if state.get('''trim_offsets''' , _a ) != trim_offsets: _SCREAMING_SNAKE_CASE =trim_offsets _SCREAMING_SNAKE_CASE =True if changes_to_apply: _SCREAMING_SNAKE_CASE =getattr(_a , state.pop('''type''' ) ) _SCREAMING_SNAKE_CASE =component_class(**_a ) setattr(self.backend_tokenizer , _a , _a ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase ( self : Optional[Any] , _a : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else value _SCREAMING_SNAKE_CASE =value def __UpperCamelCase ( self : Optional[Any] , *_a : str , **_a : int ) -> BatchEncoding: """simple docstring""" _SCREAMING_SNAKE_CASE =kwargs.get('''is_split_into_words''' , _a ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_a , **_a ) def __UpperCamelCase ( self : List[Any] , *_a : Optional[int] , **_a : Union[str, Any] ) -> BatchEncoding: """simple docstring""" _SCREAMING_SNAKE_CASE =kwargs.get('''is_split_into_words''' , _a ) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*_a , **_a ) def __UpperCamelCase ( self : Dict , _a : str , _a : Optional[str] = None ) -> Tuple[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __UpperCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ) -> List[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[self.sep_token_id] _SCREAMING_SNAKE_CASE =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Tuple , _a : List[int] , _a : Optional[List[int]] = None ) -> Optional[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Any , _a : "Conversation" ) -> List[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(_a ) _SCREAMING_SNAKE_CASE =''' '''.join(_a ) _SCREAMING_SNAKE_CASE =self.encode(_a ) if len(_a ) > self.model_max_length: _SCREAMING_SNAKE_CASE =input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
691
1
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase( a__ ,a__ ,a__=1e-12): _SCREAMING_SNAKE_CASE =jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(a__ ,axis=1) ,a_min=a__)).T _SCREAMING_SNAKE_CASE =jnp.divide(emb_a.T ,jnp.clip(jnp.linalg.norm(a__ ,axis=1) ,a_min=a__)).T return jnp.matmul(a__ ,norm_emb_a.T) class A__ ( nn.Module ): UpperCAmelCase = 42 UpperCAmelCase = jnp.floataa def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =FlaxCLIPVisionModule(self.config.vision_config ) _SCREAMING_SNAKE_CASE =nn.Dense(self.config.projection_dim , use_bias=_a , dtype=self.dtype ) _SCREAMING_SNAKE_CASE =self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) _SCREAMING_SNAKE_CASE =self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _SCREAMING_SNAKE_CASE =self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) _SCREAMING_SNAKE_CASE =self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , _a : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.vision_model(_a )[1] _SCREAMING_SNAKE_CASE =self.visual_projection(_a ) _SCREAMING_SNAKE_CASE =jax_cosine_distance(_a , self.special_care_embeds ) _SCREAMING_SNAKE_CASE =jax_cosine_distance(_a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _SCREAMING_SNAKE_CASE =jnp.round(_a , 3 ) _SCREAMING_SNAKE_CASE =jnp.any(special_scores > 0 , axis=1 , keepdims=_a ) # Use a lower threshold if an image has any special care concept _SCREAMING_SNAKE_CASE =is_special_care * 0.01 _SCREAMING_SNAKE_CASE =cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _SCREAMING_SNAKE_CASE =jnp.round(_a , 3 ) _SCREAMING_SNAKE_CASE =jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class A__ ( UpperCamelCase__ ): UpperCAmelCase = CLIPConfig UpperCAmelCase = "clip_input" UpperCAmelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Tuple , _a : CLIPConfig , _a : Optional[Tuple] = None , _a : int = 0 , _a : jnp.dtype = jnp.floataa , _a : bool = True , **_a : Any , ) -> str: """simple docstring""" if input_shape is None: _SCREAMING_SNAKE_CASE =(1, 224, 224, 3) _SCREAMING_SNAKE_CASE =self.module_class(config=_a , dtype=_a , **_a ) super().__init__(_a , _a , input_shape=_a , seed=_a , dtype=_a , _do_init=_do_init ) def __UpperCamelCase ( self : List[Any] , _a : jax.random.KeyArray , _a : Tuple , _a : FrozenDict = None ) -> FrozenDict: """simple docstring""" _SCREAMING_SNAKE_CASE =jax.random.normal(_a , _a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =jax.random.split(_a ) _SCREAMING_SNAKE_CASE ={'''params''': params_rng, '''dropout''': dropout_rng} _SCREAMING_SNAKE_CASE =self.module.init(_a , _a )['''params'''] return random_params def __call__( self : str , _a : Union[str, Any] , _a : dict = None , ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =jnp.transpose(_a , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(_a , dtype=jnp.floataa ) , rngs={} , )
691
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE ={ '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], '''image_std''': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], '''do_convert_rgb''': True, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[int] , **_a : str ) -> List[str]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : List[Any] , **_a : Any ) -> Dict: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : int , **_a : Optional[Any] ) -> Any: """simple docstring""" return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a ) _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=_a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : Tuple ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.batch_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =ChineseCLIPProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''Alexandra,T-shirt的价格是15便士。''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
691
1
from datetime import datetime import requests def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE ='''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' _SCREAMING_SNAKE_CASE =requests.get(base_url + url).json()[0]['''urls'''][0]['''src'''] return requests.get(a__).content if __name__ == "__main__": snake_case_ : List[Any] = input('''Enter Video/IGTV url: ''').strip() snake_case_ : Union[str, Any] = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
691
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCamelCase( a__ ,a__ ,a__ ,a__): _SCREAMING_SNAKE_CASE ={ '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] _SCREAMING_SNAKE_CASE ={ '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } _SCREAMING_SNAKE_CASE =f"{src_lang}-{tgt_lang}" _SCREAMING_SNAKE_CASE =f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=a__ ,exist_ok=a__) _SCREAMING_SNAKE_CASE =os.path.join(a__ ,'''README.md''') print(f"Generating {path}") with open(a__ ,'''w''' ,encoding='''utf-8''') as f: f.write(a__) # make sure we are under the root of the project snake_case_ : Any = Path(__file__).resolve().parent.parent.parent snake_case_ : Tuple = repo_dir / '''model_cards''' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: snake_case_ : Union[str, Any] = model_cards_dir / '''allenai''' / model_name write_model_card(model_card_dir, src_lang='''en''', tgt_lang='''de''', model_name=model_name)
691
1
import socket def lowerCamelCase( ): _SCREAMING_SNAKE_CASE =socket.socket(socket.AF_INET ,socket.SOCK_STREAM) _SCREAMING_SNAKE_CASE =socket.gethostname() _SCREAMING_SNAKE_CASE =1_2312 sock.connect((host, port)) sock.send(b'''Hello server!''') with open('''Received_file''' ,'''wb''') as out_file: print('''File opened''') print('''Receiving data...''') while True: _SCREAMING_SNAKE_CASE =sock.recv(1024) if not data: break out_file.write(a__) print('''Successfully received the file''') sock.close() print('''Connection closed''') if __name__ == "__main__": main()
691
from typing import TYPE_CHECKING from ....utils import _LazyModule snake_case_ : Dict = {'''tokenization_tapex''': ['''TapexTokenizer''']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
691
1
import requests from bsa import BeautifulSoup def lowerCamelCase( a__ = "https://www.worldometers.info/coronavirus"): _SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(a__).text ,'''html.parser''') _SCREAMING_SNAKE_CASE =soup.findAll('''h1''') _SCREAMING_SNAKE_CASE =soup.findAll('''div''' ,{'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''}) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(a__ ,a__)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
691
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def lowerCamelCase( a__): def wrapper(*a__ ,**a__): _SCREAMING_SNAKE_CASE =timeit.default_timer() _SCREAMING_SNAKE_CASE =func(*a__ ,**a__) _SCREAMING_SNAKE_CASE =timeit.default_timer() - starttime return delta _SCREAMING_SNAKE_CASE =func.__name__ return wrapper def lowerCamelCase( a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =seq_shapes or {} for i in range(a__): _SCREAMING_SNAKE_CASE ={} for col_id, (k, v) in enumerate(features.items()): if isinstance(a__ ,_ArrayXD): _SCREAMING_SNAKE_CASE =np.random.rand(*v.shape).astype(v.dtype) elif isinstance(a__ ,datasets.Value): if v.dtype == "string": _SCREAMING_SNAKE_CASE ='''The small grey turtle was surprisingly fast when challenged.''' else: _SCREAMING_SNAKE_CASE =np.random.randint(10 ,size=1).astype(v.dtype).item() elif isinstance(a__ ,datasets.Sequence): while isinstance(a__ ,datasets.Sequence): _SCREAMING_SNAKE_CASE =v.feature _SCREAMING_SNAKE_CASE =seq_shapes[k] _SCREAMING_SNAKE_CASE =np.random.rand(*a__).astype(v.dtype) _SCREAMING_SNAKE_CASE =data dummy_data.append((i, example)) return dummy_data def lowerCamelCase( a__ ,a__ ,a__=100 ,a__=None): _SCREAMING_SNAKE_CASE =generate_examples(a__ ,num_examples=a__ ,seq_shapes=a__) with ArrowWriter(features=a__ ,path=a__) as writer: for key, record in dummy_data: _SCREAMING_SNAKE_CASE =features.encode_example(a__) writer.write(a__) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.") _SCREAMING_SNAKE_CASE =datasets.Dataset.from_file(filename=a__ ,info=datasets.DatasetInfo(features=a__)) return dataset
691
1
def lowerCamelCase( a__ ,a__): _SCREAMING_SNAKE_CASE =[1] for i in range(2 ,a__): factorials.append(factorials[-1] * i) assert 0 <= k < factorials[-1] * n, "k out of bounds" _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =list(range(a__)) # Find permutation while factorials: _SCREAMING_SNAKE_CASE =factorials.pop() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =divmod(a__ ,a__) permutation.append(elements[number]) elements.remove(elements[number]) permutation.append(elements[0]) return permutation if __name__ == "__main__": import doctest doctest.testmod()
691
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
1
from manim import * class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Rectangle(height=0.5 , width=0.5 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.25 , width=0.25 ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''CPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(4 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''GPU''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) gpu.move_to([-1, -1, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Model''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) model.move_to([3, -1.0, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): rect.set_stroke(_a ) _SCREAMING_SNAKE_CASE =Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_a , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_a ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_a , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_a , buff=0.0 ) self.add(_a ) model_cpu_arr.append(_a ) self.add(*_a , *_a , *_a ) _SCREAMING_SNAKE_CASE =[mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Loaded Checkpoint''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) checkpoint.move_to([3, 0.5, 0] ) self.add(_a ) _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =fill.copy().set_fill(_a , opacity=0.7 ) target.move_to(_a ) ckpt_arr.append(_a ) _SCREAMING_SNAKE_CASE =target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_a ) self.add(*_a , *_a ) _SCREAMING_SNAKE_CASE =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _SCREAMING_SNAKE_CASE =MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_a , _a ) _SCREAMING_SNAKE_CASE =MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_a , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_a ) _SCREAMING_SNAKE_CASE =MarkupText( f"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =[meta_mem.copy() for i in range(6 )] _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(*_a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =VGroup(_a , _a ).arrange(_a , buff=0 ) _SCREAMING_SNAKE_CASE =Text('''Disk''' , font_size=24 ) _SCREAMING_SNAKE_CASE =Group(_a , _a ).arrange(_a , buff=0.5 , aligned_edge=_a ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_a , run_time=3 ) , Write(_a , run_time=1 ) , Create(_a , run_time=1 ) ) _SCREAMING_SNAKE_CASE =[] for i, rect in enumerate(_a ): _SCREAMING_SNAKE_CASE =rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_a , run_time=1.5 ) ) self.play(*_a ) self.play(FadeOut(_a ) ) _SCREAMING_SNAKE_CASE =MarkupText(f"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_a , run_time=3 ) ) self.play( FadeOut(_a , _a , *_a , *_a ) , ) self.wait()
691
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ : str = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys snake_case_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
691
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : Any = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } snake_case_ : List[Any] = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } snake_case_ : Optional[Any] = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } snake_case_ : Tuple = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } snake_case_ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } snake_case_ : Union[str, Any] = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } snake_case_ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } snake_case_ : Optional[Any] = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } snake_case_ : str = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class A__ ( UpperCamelCase__ ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class A__ ( UpperCamelCase__ ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION snake_case_ : Any = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) snake_case_ : Tuple = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) snake_case_ : Optional[Any] = R''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(UpperCamelCase__ ) class A__ : def __call__( self : int , _a : Union[str, Any] , _a : Optional[str] = None , _a : Optional[str] = None , _a : Union[bool, str] = False , _a : Union[bool, str] = False , _a : Optional[int] = None , _a : Optional[Union[str, TensorType]] = None , _a : Optional[bool] = None , **_a : Dict , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _SCREAMING_SNAKE_CASE =titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _SCREAMING_SNAKE_CASE =titles if not isinstance(_a , _a ) else [titles] _SCREAMING_SNAKE_CASE =texts if not isinstance(_a , _a ) else [texts] _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( f"There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts." ) _SCREAMING_SNAKE_CASE =super().__call__(_a , _a , padding=_a , truncation=_a )['''input_ids'''] _SCREAMING_SNAKE_CASE =super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )['''input_ids'''] _SCREAMING_SNAKE_CASE ={ '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _SCREAMING_SNAKE_CASE =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _SCREAMING_SNAKE_CASE =attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def __UpperCamelCase ( self : int , _a : BatchEncoding , _a : DPRReaderOutput , _a : int = 16 , _a : int = 64 , _a : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" _SCREAMING_SNAKE_CASE =reader_input['''input_ids'''] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =reader_output[:3] _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _SCREAMING_SNAKE_CASE =[] for doc_id in sorted_docs: _SCREAMING_SNAKE_CASE =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _SCREAMING_SNAKE_CASE =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _SCREAMING_SNAKE_CASE =sequence_ids.index(self.pad_token_id ) else: _SCREAMING_SNAKE_CASE =len(_a ) _SCREAMING_SNAKE_CASE =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCamelCase ( self : str , _a : List[int] , _a : List[int] , _a : int , _a : int , ) -> List[DPRSpanPrediction]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _SCREAMING_SNAKE_CASE =sorted(_a , key=lambda _a : x[1] , reverse=_a ) _SCREAMING_SNAKE_CASE =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) _SCREAMING_SNAKE_CASE =end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class A__ ( UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = ["input_ids", "attention_mask"]
691
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class A__ ( unittest.TestCase ): UpperCAmelCase = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =(3, 32, 128) _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() # fmt: off _SCREAMING_SNAKE_CASE =['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) _SCREAMING_SNAKE_CASE ={ '''do_normalize''': False, '''do_resize''': True, '''image_processor_type''': '''ViTImageProcessor''', '''resample''': 3, '''size''': {'''height''': 32, '''width''': 128}, } _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_a , _a ) def __UpperCamelCase ( self : Optional[Any] , **_a : str ) -> int: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Optional[int] , **_a : Tuple ) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) return image_input def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _SCREAMING_SNAKE_CASE =self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _SCREAMING_SNAKE_CASE =self.get_image_processor(do_normalize=_a , padding_value=1.0 ) _SCREAMING_SNAKE_CASE =MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =image_processor(_a , return_tensors='''np''' ) _SCREAMING_SNAKE_CASE =processor(images=_a , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =processor(text=_a ) _SCREAMING_SNAKE_CASE =tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE ='''test''' _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''labels'''] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _SCREAMING_SNAKE_CASE =processor.char_decode(_a ) _SCREAMING_SNAKE_CASE =tokenizer.batch_decode(_a ) _SCREAMING_SNAKE_CASE =[seq.replace(''' ''' , '''''' ) for seq in decoded_tok] self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =self.prepare_image_inputs() _SCREAMING_SNAKE_CASE =processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_image_processor() _SCREAMING_SNAKE_CASE =self.get_tokenizer() _SCREAMING_SNAKE_CASE =MgpstrProcessor(tokenizer=_a , image_processor=_a ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 38 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 5_0257 ) _SCREAMING_SNAKE_CASE =torch.randn(1 , 27 , 3_0522 ) _SCREAMING_SNAKE_CASE =processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ['''generated_text''', '''scores''', '''char_preds''', '''bpe_preds''', '''wp_preds'''] )
691
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class A__ ( UpperCamelCase__ ): def __init__( self : Tuple , _a : Any=0.01 , _a : int=1000 ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =p_stop _SCREAMING_SNAKE_CASE =max_length def __iter__( self : Optional[Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =False while not stop and count < self.max_length: yield count count += 1 _SCREAMING_SNAKE_CASE =random.random() < self.p_stop class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Tuple , _a : int , _a : Union[str, Any] , _a : Optional[int]=False , _a : Any=True ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =[ BatchSamplerShard(_a , 2 , _a , split_batches=_a , even_batches=_a ) for i in range(2 ) ] _SCREAMING_SNAKE_CASE =[list(_a ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_a ) for shard in batch_sampler_shards] , [len(_a ) for e in expected] ) self.assertListEqual(_a , _a ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_a , _a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=3 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_a , _a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_a , _a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _SCREAMING_SNAKE_CASE =BatchSampler(range(20 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_a , _a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(20 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a ) # Check the shards when the dataset is very small. _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_a , _a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[], []] self.check_batch_sampler_shards(_a , _a ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=4 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size. _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) # Check the shards when the dataset is very small. _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a ) def __UpperCamelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=3 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _SCREAMING_SNAKE_CASE =BatchSampler(range(20 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(20 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) # Check the shards when the dataset is very small. _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[[0, 1]], []] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=3 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[], []] self.check_batch_sampler_shards(_a , _a , even_batches=_a ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(24 ) , batch_size=4 , drop_last=_a ) # Expected shouldn't change self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size. _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(22 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(21 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) # Check the shards when the dataset is very small. _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[[0, 1]], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) _SCREAMING_SNAKE_CASE =BatchSampler(range(2 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =[[], []] self.check_batch_sampler_shards(_a , _a , split_batches=_a , even_batches=_a ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =[[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _SCREAMING_SNAKE_CASE =[BatchSamplerShard(_a , 2 , _a , even_batches=_a ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __UpperCamelCase ( self : Any , _a : Any , _a : str , _a : Any , _a : Tuple=False , _a : List[str]=2 , _a : Dict=False ) -> List[str]: """simple docstring""" random.seed(_a ) _SCREAMING_SNAKE_CASE =list(_a ) _SCREAMING_SNAKE_CASE =[ IterableDatasetShard( _a , batch_size=_a , drop_last=_a , num_processes=_a , process_index=_a , split_batches=_a , ) for i in range(_a ) ] _SCREAMING_SNAKE_CASE =[] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_a ) iterable_dataset_lists.append(list(_a ) ) _SCREAMING_SNAKE_CASE =batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _SCREAMING_SNAKE_CASE =iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_a ) , len(_a ) ) self.assertTrue(len(_a ) % shard_batch_size == 0 ) _SCREAMING_SNAKE_CASE =[] for idx in range(0 , len(_a ) , _a ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_a ) < len(_a ): reference += reference self.assertListEqual(_a , reference[: len(_a )] ) def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =RandomIterableDataset() self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) # Edge case with a very small dataset _SCREAMING_SNAKE_CASE =RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) self.check_iterable_dataset_shards(_a , _a , batch_size=4 , drop_last=_a , split_batches=_a ) def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =BatchSampler(range(16 ) , batch_size=4 , drop_last=_a ) _SCREAMING_SNAKE_CASE =SkipBatchSampler(_a , 2 ) self.assertListEqual(list(_a ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =DataLoader(list(range(16 ) ) , batch_size=4 ) _SCREAMING_SNAKE_CASE =skip_first_batches(_a , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __UpperCamelCase ( self : str ) -> int: """simple docstring""" Accelerator() _SCREAMING_SNAKE_CASE =DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_a ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
691
import requests from bsa import BeautifulSoup def lowerCamelCase( a__ = "https://www.worldometers.info/coronavirus"): _SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(a__).text ,'''html.parser''') _SCREAMING_SNAKE_CASE =soup.findAll('''h1''') _SCREAMING_SNAKE_CASE =soup.findAll('''div''' ,{'''class''': '''maincounter-number'''}) keys += soup.findAll('''span''' ,{'''class''': '''panel-title'''}) values += soup.findAll('''div''' ,{'''class''': '''number-table-main'''}) return {key.text.strip(): value.text.strip() for key, value in zip(a__ ,a__)} if __name__ == "__main__": print('''\033[1m''' + '''COVID-19 Status of the World''' + '''\033[0m\n''') for key, value in world_covidaa_stats().items(): print(f"""{key}\n{value}\n""")
691
1
import torch from torch import nn class A__ ( nn.Module ): def __init__( self : int , _a : Tuple , _a : Any , _a : Dict , _a : List[Any] , _a : Tuple=1 , _a : int=False ) -> str: """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE =n_token _SCREAMING_SNAKE_CASE =d_embed _SCREAMING_SNAKE_CASE =d_proj _SCREAMING_SNAKE_CASE =cutoffs + [n_token] _SCREAMING_SNAKE_CASE =[0] + self.cutoffs _SCREAMING_SNAKE_CASE =div_val _SCREAMING_SNAKE_CASE =self.cutoffs[0] _SCREAMING_SNAKE_CASE =len(self.cutoffs ) - 1 _SCREAMING_SNAKE_CASE =self.shortlist_size + self.n_clusters if self.n_clusters > 0: _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _SCREAMING_SNAKE_CASE =nn.Parameter(torch.zeros(self.n_clusters ) ) _SCREAMING_SNAKE_CASE =nn.ModuleList() _SCREAMING_SNAKE_CASE =nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_a , _a ) ) ) else: self.out_projs.append(_a ) self.out_layers.append(nn.Linear(_a , _a ) ) else: for i in range(len(self.cutoffs ) ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.cutoff_ends[i], self.cutoff_ends[i + 1] _SCREAMING_SNAKE_CASE =d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_a , _a ) ) ) self.out_layers.append(nn.Linear(_a , r_idx - l_idx ) ) _SCREAMING_SNAKE_CASE =keep_order def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : int , _a : List[str] , _a : Tuple ) -> Tuple: """simple docstring""" if proj is None: _SCREAMING_SNAKE_CASE =nn.functional.linear(_a , _a , bias=_a ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _SCREAMING_SNAKE_CASE =nn.functional.linear(_a , proj.t().contiguous() ) _SCREAMING_SNAKE_CASE =nn.functional.linear(_a , _a , bias=_a ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def __UpperCamelCase ( self : List[Any] , _a : Union[str, Any] , _a : List[Any]=None , _a : List[Any]=False ) -> Dict: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _SCREAMING_SNAKE_CASE =hidden[..., :-1, :].contiguous() _SCREAMING_SNAKE_CASE =labels[..., 1:].contiguous() _SCREAMING_SNAKE_CASE =hidden.view(-1 , hidden.size(-1 ) ) _SCREAMING_SNAKE_CASE =labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('''Input and labels should have the same size in the batch dimension.''' ) else: _SCREAMING_SNAKE_CASE =hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _SCREAMING_SNAKE_CASE =self._compute_logit(_a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _SCREAMING_SNAKE_CASE =labels != -100 _SCREAMING_SNAKE_CASE =torch.zeros_like(_a , dtype=hidden.dtype , device=hidden.device ) _SCREAMING_SNAKE_CASE =( -nn.functional.log_softmax(_a , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _SCREAMING_SNAKE_CASE =nn.functional.log_softmax(_a , dim=-1 ) else: # construct weights and biases _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.cutoff_ends[i], self.cutoff_ends[i + 1] _SCREAMING_SNAKE_CASE =self.out_layers[0].weight[l_idx:r_idx] _SCREAMING_SNAKE_CASE =self.out_layers[0].bias[l_idx:r_idx] else: _SCREAMING_SNAKE_CASE =self.out_layers[i].weight _SCREAMING_SNAKE_CASE =self.out_layers[i].bias if i == 0: _SCREAMING_SNAKE_CASE =torch.cat([weight_i, self.cluster_weight] , dim=0 ) _SCREAMING_SNAKE_CASE =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_a ) biases.append(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =weights[0], biases[0], self.out_projs[0] _SCREAMING_SNAKE_CASE =self._compute_logit(_a , _a , _a , _a ) _SCREAMING_SNAKE_CASE =nn.functional.log_softmax(_a , dim=1 ) if labels is None: _SCREAMING_SNAKE_CASE =hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _SCREAMING_SNAKE_CASE =torch.zeros_like(_a , dtype=hidden.dtype , device=hidden.device ) _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =[0] + self.cutoffs for i in range(len(_a ) - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cutoff_values[i], cutoff_values[i + 1] if labels is not None: _SCREAMING_SNAKE_CASE =(labels >= l_idx) & (labels < r_idx) _SCREAMING_SNAKE_CASE =mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _SCREAMING_SNAKE_CASE =labels.index_select(0 , _a ) - l_idx _SCREAMING_SNAKE_CASE =head_logprob.index_select(0 , _a ) _SCREAMING_SNAKE_CASE =hidden.index_select(0 , _a ) else: _SCREAMING_SNAKE_CASE =hidden if i == 0: if labels is not None: _SCREAMING_SNAKE_CASE =head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _SCREAMING_SNAKE_CASE =head_logprob[:, : self.cutoffs[0]] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =weights[i], biases[i], self.out_projs[i] _SCREAMING_SNAKE_CASE =self._compute_logit(_a , _a , _a , _a ) _SCREAMING_SNAKE_CASE =nn.functional.log_softmax(_a , dim=1 ) _SCREAMING_SNAKE_CASE =self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _SCREAMING_SNAKE_CASE =head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _SCREAMING_SNAKE_CASE =head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _SCREAMING_SNAKE_CASE =logprob_i if labels is not None: if (hasattr(self , '''keep_order''' ) and self.keep_order) or keep_order: out.index_copy_(0 , _a , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def __UpperCamelCase ( self : int , _a : str ) -> Optional[int]: """simple docstring""" if self.n_clusters == 0: _SCREAMING_SNAKE_CASE =self._compute_logit(_a , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(_a , dim=-1 ) else: # construct weights and biases _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =[], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.cutoff_ends[i], self.cutoff_ends[i + 1] _SCREAMING_SNAKE_CASE =self.out_layers[0].weight[l_idx:r_idx] _SCREAMING_SNAKE_CASE =self.out_layers[0].bias[l_idx:r_idx] else: _SCREAMING_SNAKE_CASE =self.out_layers[i].weight _SCREAMING_SNAKE_CASE =self.out_layers[i].bias if i == 0: _SCREAMING_SNAKE_CASE =torch.cat([weight_i, self.cluster_weight] , dim=0 ) _SCREAMING_SNAKE_CASE =torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(_a ) biases.append(_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =weights[0], biases[0], self.out_projs[0] _SCREAMING_SNAKE_CASE =self._compute_logit(_a , _a , _a , _a ) _SCREAMING_SNAKE_CASE =hidden.new_empty((head_logit.size(0 ), self.n_token) ) _SCREAMING_SNAKE_CASE =nn.functional.log_softmax(_a , dim=1 ) _SCREAMING_SNAKE_CASE =[0] + self.cutoffs for i in range(len(_a ) - 1 ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cutoff_values[i], cutoff_values[i + 1] if i == 0: _SCREAMING_SNAKE_CASE =head_logprob[:, : self.cutoffs[0]] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =weights[i], biases[i], self.out_projs[i] _SCREAMING_SNAKE_CASE =self._compute_logit(_a , _a , _a , _a ) _SCREAMING_SNAKE_CASE =nn.functional.log_softmax(_a , dim=1 ) _SCREAMING_SNAKE_CASE =head_logprob[:, -i] + tail_logprob_i _SCREAMING_SNAKE_CASE =logprob_i return out
691
def lowerCamelCase( a__ ,a__): return number | (1 << position) def lowerCamelCase( a__ ,a__): return number & ~(1 << position) def lowerCamelCase( a__ ,a__): return number ^ (1 << position) def lowerCamelCase( a__ ,a__): return ((number >> position) & 1) == 1 def lowerCamelCase( a__ ,a__): return int((number & (1 << position)) != 0) if __name__ == "__main__": import doctest doctest.testmod()
691
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( UpperCamelCase__ ): @staticmethod @abstractmethod def __UpperCamelCase ( _a : ArgumentParser ) -> List[Any]: """simple docstring""" raise NotImplementedError() @abstractmethod def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" raise NotImplementedError()
691
import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Tuple ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =8 # DPR tok _SCREAMING_SNAKE_CASE =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) # BART tok _SCREAMING_SNAKE_CASE =[ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _SCREAMING_SNAKE_CASE =dict(zip(_a , range(len(_a ) ) ) ) _SCREAMING_SNAKE_CASE =['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _SCREAMING_SNAKE_CASE ={'''unk_token''': '''<unk>'''} _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''bart_tokenizer''' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''vocab_file'''] ) _SCREAMING_SNAKE_CASE =os.path.join(_a , BART_VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_a ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCamelCase ( self : List[str] ) -> DPRQuestionEncoderTokenizer: """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Dict ) -> DPRContextEncoderTokenizer: """simple docstring""" return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> BartTokenizer: """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def __UpperCamelCase ( self : Optional[int] , _a : bool ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''custom''' , ) if from_disk: _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''dataset''' ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''index.faiss''' ) dataset.get_index('''embeddings''' ).save(os.path.join(self.tmpdirname , '''index.faiss''' ) ) dataset.drop_index('''embeddings''' ) dataset.save_to_disk(os.path.join(self.tmpdirname , '''dataset''' ) ) del dataset _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _a ) , ) return retriever def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''text''': ['''foo''', '''bar'''], '''title''': ['''Foo''', '''Bar'''], '''embeddings''': [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index('''embeddings''' , string_factory='''Flat''' , metric_type=faiss.METRIC_INNER_PRODUCT ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''hf_bert_base.hnswSQ8_correct_phi_128.c_index''' ) dataset.save_faiss_index('''embeddings''' , index_file_name + '''.index.dpr''' ) pickle.dump(dataset['''id'''] , open(index_file_name + '''.index_meta.dpr''' , '''wb''' ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , '''psgs_w100.tsv.pkl''' ) _SCREAMING_SNAKE_CASE ={sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_a , open(_a , '''wb''' ) ) _SCREAMING_SNAKE_CASE =RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name='''legacy''' , index_path=self.tmpdirname , ) _SCREAMING_SNAKE_CASE =RagRetriever( _a , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch('''transformers.models.rag.retrieval_rag.load_dataset''' ) as mock_load_dataset: _SCREAMING_SNAKE_CASE =self.get_dummy_dataset() retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''embeddings''', '''id''', '''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''id'''] ) , _a ) self.assertEqual(doc_dicts[0]['''id'''][0] , '''1''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''id'''][0] , '''0''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=_a ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ['''text''', '''title'''] ) self.assertEqual(len(doc_dicts[0]['''text'''] ) , _a ) self.assertEqual(doc_dicts[0]['''text'''][0] , '''bar''' ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]['''text'''][0] , '''foo''' ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def __UpperCamelCase ( self : Dict ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_a ) _SCREAMING_SNAKE_CASE =RagRetriever.from_pretrained(_a ) self.assertIsInstance(_a , _a ) _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever.retrieve(_a , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" import torch _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_canonical_hf_index_retriever() _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , _a ) self.assertIsInstance(_a , np.ndarray ) _SCREAMING_SNAKE_CASE =retriever( _a , _a , prefix=retriever.config.generator.prefix , n_docs=_a , return_tensors='''pt''' , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) self.assertIsInstance(_a , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def __UpperCamelCase ( self : str ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_dpr_ctx_encoder_tokenizer() _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =self.get_dummy_custom_hf_index_retriever(from_disk=_a ) retriever.set_ctx_encoder_tokenizer(_a ) _SCREAMING_SNAKE_CASE =[[5, 7], [10, 11]] _SCREAMING_SNAKE_CASE =np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =retriever(_a , _a , prefix=retriever.config.generator.prefix , n_docs=_a ) self.assertEqual( len(_a ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ('''tokenized_doc_ids''', '''tokenized_doc_attention_mask''') ) , _a ) # check for doc token related keys in dictionary.
691
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) snake_case_ : Optional[Any] = logging.getLogger(__name__) class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Optional[int] , _a : Union[str, Any] , _a : List[str] , _a : List[Any]=None , _a : Optional[Any]=None ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.layer[current_layer](_a , _a , head_mask[current_layer] ) _SCREAMING_SNAKE_CASE =layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : List[str] , _a : Union[str, Any] ) -> Tuple: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =BertEncoderWithPabee(_a ) self.init_weights() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : List[str] , _a : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =threshold def __UpperCamelCase ( self : Dict , _a : int ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =patience def __UpperCamelCase ( self : Optional[Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.inference_layers_num / self.inference_instances_num _SCREAMING_SNAKE_CASE =( f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(_a ) @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[Any] , _a : Optional[Any]=None , _a : Optional[int]=None , _a : Any=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : Union[str, Any]=None , _a : str=None , _a : Any=None , _a : str=None , _a : Optional[Any]=None , _a : Dict=False , ) -> Union[str, Any]: """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: _SCREAMING_SNAKE_CASE =input_ids.size() elif inputs_embeds is not None: _SCREAMING_SNAKE_CASE =inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) _SCREAMING_SNAKE_CASE =input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) if token_type_ids is None: _SCREAMING_SNAKE_CASE =torch.zeros(_a , dtype=torch.long , device=_a ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _SCREAMING_SNAKE_CASE =self.get_extended_attention_mask(_a , _a , _a ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =encoder_hidden_states.size() _SCREAMING_SNAKE_CASE =(encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _SCREAMING_SNAKE_CASE =torch.ones(_a , device=_a ) _SCREAMING_SNAKE_CASE =self.invert_attention_mask(_a ) else: _SCREAMING_SNAKE_CASE =None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _SCREAMING_SNAKE_CASE =self.get_head_mask(_a , self.config.num_hidden_layers ) _SCREAMING_SNAKE_CASE =self.embeddings( input_ids=_a , position_ids=_a , token_type_ids=_a , inputs_embeds=_a ) _SCREAMING_SNAKE_CASE =embedding_output if self.training: _SCREAMING_SNAKE_CASE =[] for i in range(self.config.num_hidden_layers ): _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](output_dropout(_a ) ) res.append(_a ) elif self.patience == 0: # Use all layers for inference _SCREAMING_SNAKE_CASE =self.encoder( _a , attention_mask=_a , head_mask=_a , encoder_hidden_states=_a , encoder_attention_mask=_a , ) _SCREAMING_SNAKE_CASE =self.pooler(encoder_outputs[0] ) _SCREAMING_SNAKE_CASE =[output_layers[self.config.num_hidden_layers - 1](_a )] else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _SCREAMING_SNAKE_CASE =self.encoder.adaptive_forward( _a , current_layer=_a , attention_mask=_a , head_mask=_a ) _SCREAMING_SNAKE_CASE =self.pooler(_a ) _SCREAMING_SNAKE_CASE =output_layers[i](_a ) if regression: _SCREAMING_SNAKE_CASE =logits.detach() if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 else: _SCREAMING_SNAKE_CASE =logits.detach().argmax(dim=1 ) if patient_result is not None: _SCREAMING_SNAKE_CASE =patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_a ) ): patient_counter += 1 else: _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =logits if patient_counter == self.patience: break _SCREAMING_SNAKE_CASE =[patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase__ , ) class A__ ( UpperCamelCase__ ): def __init__( self : Optional[int] , _a : List[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__(_a ) _SCREAMING_SNAKE_CASE =config.num_labels _SCREAMING_SNAKE_CASE =BertModelWithPabee(_a ) _SCREAMING_SNAKE_CASE =nn.Dropout(config.hidden_dropout_prob ) _SCREAMING_SNAKE_CASE =nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_a ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any]=None , _a : List[Any]=None , _a : Union[str, Any]=None , _a : List[str]=None , _a : Dict=None , _a : Optional[Any]=None , _a : Optional[Any]=None , ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.bert( input_ids=_a , attention_mask=_a , token_type_ids=_a , position_ids=_a , head_mask=_a , inputs_embeds=_a , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _SCREAMING_SNAKE_CASE =(logits[-1],) if labels is not None: _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =0 for ix, logits_item in enumerate(_a ): if self.num_labels == 1: # We are doing regression _SCREAMING_SNAKE_CASE =MSELoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _SCREAMING_SNAKE_CASE =CrossEntropyLoss() _SCREAMING_SNAKE_CASE =loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _SCREAMING_SNAKE_CASE =loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _SCREAMING_SNAKE_CASE =(total_loss / total_weights,) + outputs return outputs
691
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = KandinskyImgaImgPipeline UpperCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] UpperCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase = False @property def __UpperCamelCase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return 32 @property def __UpperCamelCase ( self : int ) -> Tuple: """simple docstring""" return self.time_input_dim @property def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" return 100 @property def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def __UpperCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _SCREAMING_SNAKE_CASE =MultilingualCLIP(_a ) _SCREAMING_SNAKE_CASE =text_encoder.eval() return text_encoder @property def __UpperCamelCase ( self : List[Any] ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE ={ '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _SCREAMING_SNAKE_CASE =UNetaDConditionModel(**_a ) return model @property def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase ( self : str ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.dummy_text_encoder _SCREAMING_SNAKE_CASE =self.dummy_tokenizer _SCREAMING_SNAKE_CASE =self.dummy_unet _SCREAMING_SNAKE_CASE =self.dummy_movq _SCREAMING_SNAKE_CASE ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _SCREAMING_SNAKE_CASE =DDIMScheduler(**_a ) _SCREAMING_SNAKE_CASE ={ '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCamelCase ( self : str , _a : int , _a : int=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_a ) # create init_image _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((256, 256) ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __UpperCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =self.pipeline_class(**_a ) _SCREAMING_SNAKE_CASE =pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =pipe(**self.get_dummy_inputs(_a ) ) _SCREAMING_SNAKE_CASE =output.images _SCREAMING_SNAKE_CASE =pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array( [0.61_47_49_43, 0.6_07_35_39, 0.43_30_85_44, 0.5_92_82_69, 0.47_49_35_95, 0.46_75_59_73, 0.4_61_38_38, 0.45_36_87_97, 0.50_11_92_33] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _SCREAMING_SNAKE_CASE ='''A red cartoon frog, 4k''' _SCREAMING_SNAKE_CASE =KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _SCREAMING_SNAKE_CASE =KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE =pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =torch.Generator(device='''cpu''' ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _SCREAMING_SNAKE_CASE =pipeline( _a , image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
691
1
def lowerCamelCase( a__ ,a__): if b == 0: return 1 if (b % 2) == 0: return actual_power(a__ ,int(b / 2)) * actual_power(a__ ,int(b / 2)) else: return a * actual_power(a__ ,int(b / 2)) * actual_power(a__ ,int(b / 2)) def lowerCamelCase( a__ ,a__): if b < 0: return 1 / actual_power(a__ ,a__) return actual_power(a__ ,a__) if __name__ == "__main__": print(power(-2, -3))
691
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A__ ( unittest.TestCase ): def __init__( self : List[str] , _a : Dict , _a : Dict=7 , _a : List[str]=3 , _a : str=18 , _a : Optional[int]=30 , _a : Tuple=400 , _a : Optional[Any]=True , _a : Dict=None , _a : str=True , _a : Tuple=None , _a : Any=True , _a : Any=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _a : str=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _a : List[Any]=True , ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =size if size is not None else {'''height''': 224, '''width''': 224} _SCREAMING_SNAKE_CASE =crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =min_resolution _SCREAMING_SNAKE_CASE =max_resolution _SCREAMING_SNAKE_CASE =do_resize _SCREAMING_SNAKE_CASE =size _SCREAMING_SNAKE_CASE =do_center_crop _SCREAMING_SNAKE_CASE =crop_size _SCREAMING_SNAKE_CASE =do_normalize _SCREAMING_SNAKE_CASE =image_mean _SCREAMING_SNAKE_CASE =image_std _SCREAMING_SNAKE_CASE =do_convert_rgb def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def __UpperCamelCase ( self : Tuple , _a : Optional[Any]=False , _a : str=False , _a : Dict=False ) -> Dict: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _SCREAMING_SNAKE_CASE =[] for i in range(self.batch_size ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _SCREAMING_SNAKE_CASE =[Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] if torchify: _SCREAMING_SNAKE_CASE =[torch.from_numpy(_a ) for x in image_inputs] return image_inputs @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , do_center_crop=_a ) @property def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : List[str] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _SCREAMING_SNAKE_CASE =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" pass def __UpperCamelCase ( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class A__ ( UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : int ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=_a ) _SCREAMING_SNAKE_CASE =3 @property def __UpperCamelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , '''do_resize''' ) ) self.assertTrue(hasattr(_a , '''size''' ) ) self.assertTrue(hasattr(_a , '''do_center_crop''' ) ) self.assertTrue(hasattr(_a , '''center_crop''' ) ) self.assertTrue(hasattr(_a , '''do_normalize''' ) ) self.assertTrue(hasattr(_a , '''image_mean''' ) ) self.assertTrue(hasattr(_a , '''image_std''' ) ) self.assertTrue(hasattr(_a , '''do_convert_rgb''' ) ) def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" pass def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE =self.image_processor_tester.prepare_inputs(equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _SCREAMING_SNAKE_CASE =image_processing(_a , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
691
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor snake_case_ : List[str] = logging.get_logger(__name__) class A__ ( UpperCamelCase__ ): def __init__( self : str , *_a : int , **_a : List[Any] ) -> None: """simple docstring""" warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _a , ) super().__init__(*_a , **_a )
691
def lowerCamelCase( a__ ,a__): return int((input_a, input_a).count(0) == 0) def lowerCamelCase( ): assert and_gate(0 ,0) == 0 assert and_gate(0 ,1) == 0 assert and_gate(1 ,0) == 0 assert and_gate(1 ,1) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
691
1
def lowerCamelCase( a__): if not isinstance(a__ ,a__): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''') if len(a__) == 0: raise ValueError('''Input list must be a non empty list''') if len(a__) == 1: return True _SCREAMING_SNAKE_CASE =series[1] - series[0] for index in range(len(a__) - 1): if series[index + 1] - series[index] != common_diff: return False return True def lowerCamelCase( a__): if not isinstance(a__ ,a__): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''') if len(a__) == 0: raise ValueError('''Input list must be a non empty list''') _SCREAMING_SNAKE_CASE =0 for val in series: answer += val return answer / len(a__) if __name__ == "__main__": import doctest doctest.testmod()
691
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json snake_case_ : Optional[int] = '''sshleifer/mar_enro_6_3_student''' class A__ ( UpperCamelCase__ ): def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" super().setUp() _SCREAMING_SNAKE_CASE =cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=_a , ) _SCREAMING_SNAKE_CASE =f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def __UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" MarianMTModel.from_pretrained(_a ) @slow @require_torch_gpu def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''$MAX_LEN''': 64, '''$BS''': 64, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script _SCREAMING_SNAKE_CASE =(self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() _SCREAMING_SNAKE_CASE =bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): _SCREAMING_SNAKE_CASE =bash_script.replace(_a , str(_a ) ) _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") _SCREAMING_SNAKE_CASE =f"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future _SCREAMING_SNAKE_CASE =['''finetune.py'''] + bash_script.split() + args with patch.object(_a , '''argv''' , _a ): _SCREAMING_SNAKE_CASE =argparse.ArgumentParser() _SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(_a ) _SCREAMING_SNAKE_CASE =SummarizationModule.add_model_specific_args(_a , os.getcwd() ) _SCREAMING_SNAKE_CASE =parser.parse_args() _SCREAMING_SNAKE_CASE =main(_a ) # Check metrics _SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) _SCREAMING_SNAKE_CASE =metrics['''val'''][0] _SCREAMING_SNAKE_CASE =metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _a ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict _SCREAMING_SNAKE_CASE =os.listdir(_a ) _SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('''.ckpt''' )][0] _SCREAMING_SNAKE_CASE =os.path.join(args.output_dir , _a ) _SCREAMING_SNAKE_CASE =torch.load(_a , map_location='''cpu''' ) _SCREAMING_SNAKE_CASE ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _SCREAMING_SNAKE_CASE ={os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class A__ ( UpperCamelCase__ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE =f"{self.test_file_dir_str}/test_data/wmt_en_ro" _SCREAMING_SNAKE_CASE ={ '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 128, '''$BS''': 16, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script _SCREAMING_SNAKE_CASE =( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) _SCREAMING_SNAKE_CASE =bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) _SCREAMING_SNAKE_CASE =bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): _SCREAMING_SNAKE_CASE =bash_script.replace(_a , str(_a ) ) _SCREAMING_SNAKE_CASE =self.get_auto_remove_tmp_dir() _SCREAMING_SNAKE_CASE =bash_script.replace('''--fp16''' , '''''' ) _SCREAMING_SNAKE_CASE =6 _SCREAMING_SNAKE_CASE =( ['''distillation.py'''] + bash_script.split() + [ f"--output_dir={output_dir}", '''--gpus=1''', '''--learning_rate=1e-3''', f"--num_train_epochs={epochs}", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(_a , '''argv''' , _a ): _SCREAMING_SNAKE_CASE =argparse.ArgumentParser() _SCREAMING_SNAKE_CASE =pl.Trainer.add_argparse_args(_a ) _SCREAMING_SNAKE_CASE =SummarizationDistiller.add_model_specific_args(_a , os.getcwd() ) _SCREAMING_SNAKE_CASE =parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu _SCREAMING_SNAKE_CASE =distill_main(_a ) # Check metrics _SCREAMING_SNAKE_CASE =load_json(model.metrics_save_path ) _SCREAMING_SNAKE_CASE =metrics['''val'''][0] _SCREAMING_SNAKE_CASE =metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"] , _a ) # check lightning ckpt can be loaded and has a reasonable statedict _SCREAMING_SNAKE_CASE =os.listdir(_a ) _SCREAMING_SNAKE_CASE =[x for x in contents if x.endswith('''.ckpt''' )][0] _SCREAMING_SNAKE_CASE =os.path.join(args.output_dir , _a ) _SCREAMING_SNAKE_CASE =torch.load(_a , map_location='''cpu''' ) _SCREAMING_SNAKE_CASE ='''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: _SCREAMING_SNAKE_CASE ={os.path.basename(_a ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
691
1
import numpy # List of input, output pairs snake_case_ : Tuple = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) snake_case_ : List[str] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) snake_case_ : Union[str, Any] = [2, 4, 1, 5] snake_case_ : Dict = len(train_data) snake_case_ : List[Any] = 0.009 def lowerCamelCase( a__ ,a__="train"): return calculate_hypothesis_value(a__ ,a__) - output( a__ ,a__) def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =0 for i in range(len(a__) - 1): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCamelCase( a__ ,a__): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCamelCase( a__ ,a__): if data_set == "train": return _hypothesis_value(train_data[example_no][0]) elif data_set == "test": return _hypothesis_value(test_data[example_no][0]) return None def lowerCamelCase( a__ ,a__=m): _SCREAMING_SNAKE_CASE =0 for i in range(a__): if index == -1: summation_value += _error(a__) else: summation_value += _error(a__) * train_data[i][0][index] return summation_value def lowerCamelCase( a__): _SCREAMING_SNAKE_CASE =summation_of_cost_derivative(a__ ,a__) / m return cost_derivative_value def lowerCamelCase( ): global parameter_vector # Tune these values to set a tolerance value for predicted output _SCREAMING_SNAKE_CASE =0.00_0002 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 while True: j += 1 _SCREAMING_SNAKE_CASE =[0, 0, 0, 0] for i in range(0 ,len(a__)): _SCREAMING_SNAKE_CASE =get_cost_derivative(i - 1) _SCREAMING_SNAKE_CASE =( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( a__ ,a__ ,atol=a__ ,rtol=a__ ,): break _SCREAMING_SNAKE_CASE =temp_parameter_vector print(('''Number of iterations:''', j)) def lowerCamelCase( ): for i in range(len(a__)): print(('''Actual output value:''', output(a__ ,'''test'''))) print(('''Hypothesis output:''', calculate_hypothesis_value(a__ ,'''test'''))) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
691
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A__ ( UpperCamelCase__ ): UpperCAmelCase = 0 UpperCAmelCase = False UpperCAmelCase = 3.0 class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _SCREAMING_SNAKE_CASE =Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _SCREAMING_SNAKE_CASE =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) snake_case_ : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) snake_case_ : Dict = torch.nn.Linear(1_00, 2_00) snake_case_ : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs snake_case_ : Dict = '''''' snake_case_ : str = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
691
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class A__ ( UpperCamelCase__ ): UpperCAmelCase = 0 UpperCAmelCase = False UpperCAmelCase = 3.0 class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCamelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _SCREAMING_SNAKE_CASE =Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _SCREAMING_SNAKE_CASE =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =['''torchrun''', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": snake_case_ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) snake_case_ : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) snake_case_ : Dict = torch.nn.Linear(1_00, 2_00) snake_case_ : List[Any] = accelerator.prepare(model) # Check the values changed in kwargs snake_case_ : Dict = '''''' snake_case_ : str = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
691
class A__ : def __init__( self : List[str] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE ={} def __UpperCamelCase ( self : Any , _a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if vertex not in self.adjacency: _SCREAMING_SNAKE_CASE ={} self.num_vertices += 1 def __UpperCamelCase ( self : Optional[int] , _a : Tuple , _a : Tuple , _a : Dict ) -> Union[str, Any]: """simple docstring""" self.add_vertex(_a ) self.add_vertex(_a ) if head == tail: return _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __UpperCamelCase ( self : Dict ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for i in range(len(_a ) ): _SCREAMING_SNAKE_CASE =list(edges[i] ) edges.sort(key=lambda _a : e[2] ) for i in range(len(_a ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _SCREAMING_SNAKE_CASE =edges[i][2] + 1 for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =weight _SCREAMING_SNAKE_CASE =weight def __str__( self : str ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''''' for tail in self.adjacency: for head in self.adjacency[tail]: _SCREAMING_SNAKE_CASE =self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip('''\n''' ) def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ) -> Any: """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _a : List[str]=None , _a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Graph() if vertices is None: _SCREAMING_SNAKE_CASE =[] if edges is None: _SCREAMING_SNAKE_CASE =[] for vertex in vertices: g.add_vertex(_a ) for edge in edges: g.add_edge(*_a ) return g class A__ : def __init__( self : List[Any] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE ={} def __len__( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Dict , _a : Optional[Any] ) -> int: """simple docstring""" if item in self.parent: return self.find(_a ) _SCREAMING_SNAKE_CASE =item _SCREAMING_SNAKE_CASE =0 return item def __UpperCamelCase ( self : str , _a : Tuple ) -> Union[str, Any]: """simple docstring""" if item not in self.parent: return self.make_set(_a ) if item != self.parent[item]: _SCREAMING_SNAKE_CASE =self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Dict , _a : Optional[int] , _a : List[Any] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.find(_a ) _SCREAMING_SNAKE_CASE =self.find(_a ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] < self.rank[roota]: _SCREAMING_SNAKE_CASE =roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _SCREAMING_SNAKE_CASE =roota return roota return None @staticmethod def __UpperCamelCase ( _a : int ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =graph.num_vertices _SCREAMING_SNAKE_CASE =Graph.UnionFind() _SCREAMING_SNAKE_CASE =[] while num_components > 1: _SCREAMING_SNAKE_CASE ={} for vertex in graph.get_vertices(): _SCREAMING_SNAKE_CASE =-1 _SCREAMING_SNAKE_CASE =graph.get_edges() for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge edges.remove((tail, head, weight) ) for edge in edges: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =edge _SCREAMING_SNAKE_CASE =union_find.find(_a ) _SCREAMING_SNAKE_CASE =union_find.find(_a ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _SCREAMING_SNAKE_CASE =[head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cheap_edge[vertex] if union_find.find(_a ) != union_find.find(_a ): union_find.union(_a , _a ) mst_edges.append(cheap_edge[vertex] ) _SCREAMING_SNAKE_CASE =num_components - 1 _SCREAMING_SNAKE_CASE =Graph.build(edges=_a ) return mst
691
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCAmelCase = StableDiffusionInpaintPipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase = frozenset([] ) def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) _SCREAMING_SNAKE_CASE =PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) _SCREAMING_SNAKE_CASE =CLIPTextModel(_a ) _SCREAMING_SNAKE_CASE =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _SCREAMING_SNAKE_CASE ={ '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCamelCase ( self : Tuple , _a : List[Any] , _a : Any=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) _SCREAMING_SNAKE_CASE =image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) _SCREAMING_SNAKE_CASE =Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): _SCREAMING_SNAKE_CASE =torch.manual_seed(_a ) else: _SCREAMING_SNAKE_CASE =torch.Generator(device=_a ).manual_seed(_a ) _SCREAMING_SNAKE_CASE ={ '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ='''cpu''' # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE =self.get_dummy_components() _SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline(**_a ) _SCREAMING_SNAKE_CASE =sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _SCREAMING_SNAKE_CASE =self.get_dummy_inputs(_a ) _SCREAMING_SNAKE_CASE =sd_pipe(**_a ).images _SCREAMING_SNAKE_CASE =image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE =np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) _SCREAMING_SNAKE_CASE ='''stabilityai/stable-diffusion-2-inpainting''' _SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE ='''Face of a yellow cat, high resolution, sitting on a park bench''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _SCREAMING_SNAKE_CASE =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) _SCREAMING_SNAKE_CASE ='''stabilityai/stable-diffusion-2-inpainting''' _SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _SCREAMING_SNAKE_CASE ='''Face of a yellow cat, high resolution, sitting on a park bench''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCamelCase ( self : List[str] ) -> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) _SCREAMING_SNAKE_CASE =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) _SCREAMING_SNAKE_CASE ='''stabilityai/stable-diffusion-2-inpainting''' _SCREAMING_SNAKE_CASE =PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) _SCREAMING_SNAKE_CASE =StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _SCREAMING_SNAKE_CASE ='''Face of a yellow cat, high resolution, sitting on a park bench''' _SCREAMING_SNAKE_CASE =torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE =pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) _SCREAMING_SNAKE_CASE =torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
691
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case_ : str = logging.getLogger(__name__) def lowerCamelCase( a__ ,a__): return (preds == labels).mean() @dataclass class A__ : UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class A__ : UpperCAmelCase = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) UpperCAmelCase = field(metadata={"help": "Should contain the data files for the task."} ) UpperCAmelCase = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) UpperCAmelCase = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCamelCase( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _SCREAMING_SNAKE_CASE =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" ''' --overwrite_output_dir to overcome.''') # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' ,a__) # Set seed set_seed(training_args.seed) try: _SCREAMING_SNAKE_CASE =processors[data_args.task_name]() _SCREAMING_SNAKE_CASE =processor.get_labels() _SCREAMING_SNAKE_CASE =len(a__) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name)) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _SCREAMING_SNAKE_CASE =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a__ ,finetuning_task=data_args.task_name ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) _SCREAMING_SNAKE_CASE =AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path ,from_tf=bool('''.ckpt''' in model_args.model_name_or_path) ,config=a__ ,cache_dir=model_args.cache_dir ,) # Get datasets _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.train ,) if training_args.do_train else None ) _SCREAMING_SNAKE_CASE =( MultipleChoiceDataset( data_dir=data_args.data_dir ,tokenizer=a__ ,task=data_args.task_name ,max_seq_length=data_args.max_seq_length ,overwrite_cache=data_args.overwrite_cache ,mode=Split.dev ,) if training_args.do_eval else None ) def compute_metrics(a__) -> Dict: _SCREAMING_SNAKE_CASE =np.argmax(p.predictions ,axis=1) return {"acc": simple_accuracy(a__ ,p.label_ids)} # Data collator _SCREAMING_SNAKE_CASE =DataCollatorWithPadding(a__ ,pad_to_multiple_of=8) if training_args.fpaa else None # Initialize our Trainer _SCREAMING_SNAKE_CASE =Trainer( model=a__ ,args=a__ ,train_dataset=a__ ,eval_dataset=a__ ,compute_metrics=a__ ,data_collator=a__ ,) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation _SCREAMING_SNAKE_CASE ={} if training_args.do_eval: logger.info('''*** Evaluate ***''') _SCREAMING_SNAKE_CASE =trainer.evaluate() _SCREAMING_SNAKE_CASE =os.path.join(training_args.output_dir ,'''eval_results.txt''') if trainer.is_world_master(): with open(a__ ,'''w''') as writer: logger.info('''***** Eval results *****''') for key, value in result.items(): logger.info(''' %s = %s''' ,a__ ,a__) writer.write('''%s = %s\n''' % (key, value)) results.update(a__) return results def lowerCamelCase( a__): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
691
1