code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : List[Any] = logging.get_logger(__name__) UpperCamelCase : str = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """rwkv""" lowerCAmelCase = {"""max_position_embeddings""": """context_length"""} def __init__( self : str , _lowercase : str=50_277 , _lowercase : Any=1_024 , _lowercase : List[Any]=4_096 , _lowercase : Tuple=32 , _lowercase : Optional[int]=None , _lowercase : str=None , _lowercase : Tuple=1e-5 , _lowercase : Optional[int]=0 , _lowercase : str=0 , _lowercase : int=6 , _lowercase : Tuple=False , _lowercase : Optional[Any]=True , **_lowercase : Dict , ): A = vocab_size A = context_length A = hidden_size A = num_hidden_layers A = attention_hidden_size if attention_hidden_size is not None else hidden_size A = intermediate_size if intermediate_size is not None else 4 * hidden_size A = layer_norm_epsilon A = rescale_every A = use_cache A = bos_token_id A = eos_token_id super().__init__( tie_word_embeddings=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
690
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
1
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : List[str] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """xlnet""" lowerCAmelCase = ["""mems"""] lowerCAmelCase = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , _lowercase : Optional[Any]=32_000 , _lowercase : Dict=1_024 , _lowercase : List[Any]=24 , _lowercase : Any=16 , _lowercase : Union[str, Any]=4_096 , _lowercase : Tuple="gelu" , _lowercase : Any=True , _lowercase : Dict="bi" , _lowercase : List[Any]=0.0_2 , _lowercase : str=1e-12 , _lowercase : List[Any]=0.1 , _lowercase : Optional[int]=512 , _lowercase : Tuple=None , _lowercase : Optional[Any]=True , _lowercase : Optional[int]=False , _lowercase : Optional[Any]=False , _lowercase : Optional[Any]=-1 , _lowercase : Any=False , _lowercase : Union[str, Any]="last" , _lowercase : List[Any]=True , _lowercase : Tuple="tanh" , _lowercase : Tuple=0.1 , _lowercase : int=5 , _lowercase : int=5 , _lowercase : Optional[Any]=5 , _lowercase : Any=1 , _lowercase : str=2 , **_lowercase : Any , ): A = vocab_size A = d_model A = n_layer A = n_head if d_model % n_head != 0: raise ValueError(f'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) A = d_model // n_head A = ff_activation A = d_inner A = untie_r A = attn_type A = initializer_range A = layer_norm_eps A = dropout A = mem_len A = reuse_len A = bi_data A = clamp_len A = same_length A = summary_type A = summary_use_proj A = summary_activation A = summary_last_dropout A = start_n_top A = end_n_top A = bos_token_id A = pad_token_id A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _lowercase , ) A = kwargs['use_cache'] A = use_mems_eval A = use_mems_train super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) @property def __a ( self : Optional[Any] ): logger.info(f'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __a ( self : List[Any] , _lowercase : List[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( f'The model {self.model_type} is one of the few models that has no sequence length limit.' )
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class lowerCamelCase__ ( UpperCAmelCase_ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase = field(default="""question-answering-extractive""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) lowerCAmelCase = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) lowerCAmelCase = "question" lowerCAmelCase = "context" lowerCAmelCase = "answers" @property def __a ( self : Union[str, Any] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
690
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase : Tuple = logging.get_logger(__name__) UpperCamelCase : Optional[int] = "▁" UpperCamelCase : Any = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} UpperCamelCase : List[str] = { "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } UpperCamelCase : Any = {"vinai/bartpho-syllable": 1_024} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Optional[Any]="<s>" , _lowercase : int="</s>" , _lowercase : Optional[Any]="</s>" , _lowercase : int="<s>" , _lowercase : int="<unk>" , _lowercase : Dict="<pad>" , _lowercase : List[Any]="<mask>" , _lowercase : Optional[Dict[str, Any]] = None , **_lowercase : Dict , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) A = vocab_file A = monolingual_vocab_file A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_lowercase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility A = {} A = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_lowercase ) not in self.fairseq_tokens_to_ids: A = cnt cnt += 1 with open(_lowercase , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): A = line.strip().split()[0] A = len(self.fairseq_tokens_to_ids ) if str(_lowercase ) not in self.fairseq_tokens_to_ids: A = len(self.fairseq_tokens_to_ids ) A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[Any] ): A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , _lowercase : Union[str, Any] ): A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A = [self.cls_token_id] A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : Optional[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def __a ( self : List[str] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : Union[str, Any] ): return len(self.fairseq_ids_to_tokens ) def __a ( self : int ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __a ( self : str , _lowercase : str ): return self.sp_model.encode(_lowercase , out_type=_lowercase ) def __a ( self : Dict , _lowercase : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __a ( self : int , _lowercase : Any ): return self.fairseq_ids_to_tokens[index] def __a ( self : Any , _lowercase : Dict ): A = ''.join(_lowercase ).replace(_lowercase , ' ' ).strip() return out_string def __a ( self : List[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , 'wb' ) as fi: A = self.sp_model.serialized_model_proto() fi.write(_lowercase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _lowercase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _lowercase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_lowercase , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'{str(_lowercase )} \n' ) return out_vocab_file, out_monolingual_vocab_file
690
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Union[str, Any]=3 , _lowercase : int=32 , _lowercase : List[Any]=3 , _lowercase : Dict=10 , _lowercase : List[Any]=[10, 20, 30, 40] , _lowercase : Any=[1, 1, 2, 1] , _lowercase : Tuple=True , _lowercase : int=True , _lowercase : List[str]="relu" , _lowercase : Optional[int]=3 , _lowercase : Union[str, Any]=None , ): A = parent A = batch_size A = image_size A = num_channels A = embeddings_size A = hidden_sizes A = depths A = is_training A = use_labels A = hidden_act A = num_labels A = scope A = len(_lowercase ) def __a ( self : Union[str, Any] ): A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A = None if self.use_labels: A = ids_tensor([self.batch_size] , self.num_labels ) A = self.get_config() return config, pixel_values, labels def __a ( self : Dict ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __a ( self : Union[str, Any] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Any ): A = TFRegNetModel(config=_lowercase ) A = model(_lowercase , training=_lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __a ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[Any] , _lowercase : str ): A = self.num_labels A = TFRegNetForImageClassification(_lowercase ) A = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self : Optional[Any] ): A = self.prepare_config_and_inputs() A , A , A = config_and_inputs A = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCAmelCase = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def __a ( self : int ): A = TFRegNetModelTester(self ) A = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def __a ( self : str ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __a ( self : Optional[int] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def __a ( self : Any ): super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __a ( self : Optional[int] ): pass def __a ( self : int ): A , A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A = model_class(_lowercase ) A = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A = [*signature.parameters.keys()] A = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowercase ) def __a ( self : List[Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def __a ( self : Any ): def check_hidden_states_output(_lowercase : Dict , _lowercase : Optional[int] , _lowercase : Dict ): A = model_class(_lowercase ) A = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) A = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A = self.model_tester.num_stages self.assertEqual(len(_lowercase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) A , A = self.model_tester.prepare_config_and_inputs_for_common() A = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: A = layer_type A = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def __a ( self : List[Any] ): A , A = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : int={} ): A = model(_lowercase , return_dict=_lowercase , **_lowercase ) A = model(_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : List[str] , _lowercase : int ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_lowercase , _lowercase ) ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: A = model_class(_lowercase ) A = self._prepare_for_class(_lowercase , _lowercase ) A = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) A = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) A = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) A = self._prepare_for_class(_lowercase , _lowercase ) A = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'output_hidden_states': True} ) A = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) A = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'output_hidden_states': True} ) def __a ( self : Union[str, Any] ): A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def __a ( self : int ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A = TFRegNetModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __snake_case ( ) -> Optional[int]: """simple docstring""" A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Tuple ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __a ( self : int ): A = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) A = self.default_image_processor A = prepare_img() A = image_processor(images=_lowercase , return_tensors='tf' ) # forward pass A = model(**_lowercase , training=_lowercase ) # verify the logits A = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) A = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowercase , atol=1e-4 )
690
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
1
"""simple docstring""" import string def __snake_case ( UpperCamelCase__ ) -> None: """simple docstring""" for key in range(len(string.ascii_uppercase ) ): A = '' for symbol in message: if symbol in string.ascii_uppercase: A = string.ascii_uppercase.find(UpperCamelCase__ ) A = num - key if num < 0: A = num + len(string.ascii_uppercase ) A = translated + string.ascii_uppercase[num] else: A = translated + symbol print(f'Decryption using Key #{key}: {translated}' ) def __snake_case ( ) -> None: """simple docstring""" A = input('Encrypted message: ' ) A = message.upper() decrypt(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
690
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration UpperCamelCase : Optional[Any] = "facebook/wmt19-en-de" UpperCamelCase : Optional[Any] = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model UpperCamelCase : List[str] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) UpperCamelCase : Dict = FSMTForConditionalGeneration(config) print(F"""num of params {tiny_model.num_parameters()}""") # Test UpperCamelCase : Tuple = tokenizer(["Making tiny model"], return_tensors="pt") UpperCamelCase : Tuple = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save UpperCamelCase : Any = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
690
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Dict = { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """realm""" def __init__( self : Dict , _lowercase : str=30_522 , _lowercase : List[Any]=768 , _lowercase : Any=128 , _lowercase : Any=12 , _lowercase : Union[str, Any]=12 , _lowercase : Any=8 , _lowercase : str=3_072 , _lowercase : Union[str, Any]="gelu_new" , _lowercase : Any=0.1 , _lowercase : List[str]=0.1 , _lowercase : str=512 , _lowercase : int=2 , _lowercase : str=0.0_2 , _lowercase : Optional[Any]=1e-12 , _lowercase : Tuple=256 , _lowercase : Tuple=10 , _lowercase : Union[str, Any]=1e-3 , _lowercase : Optional[Any]=5 , _lowercase : Optional[Any]=320 , _lowercase : List[str]=13_353_718 , _lowercase : Dict=5_000 , _lowercase : Any=1 , _lowercase : Dict=0 , _lowercase : Any=2 , **_lowercase : List[str] , ): super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) # Common config A = vocab_size A = max_position_embeddings A = hidden_size A = retriever_proj_size A = num_hidden_layers A = num_attention_heads A = num_candidates A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = type_vocab_size A = layer_norm_eps # Reader config A = span_hidden_size A = max_span_width A = reader_layer_norm_eps A = reader_beam_size A = reader_seq_len # Retrieval config A = num_block_records A = searcher_beam_size
690
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
1
"""simple docstring""" from collections import defaultdict def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" A = first_str.lower().strip() A = second_str.lower().strip() # Remove whitespace A = first_str.replace(' ' , '' ) A = second_str.replace(' ' , '' ) # Strings of different lengths are not anagrams if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): return False # Default values for count should be 0 A = defaultdict(UpperCamelCase__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(UpperCamelCase__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() UpperCamelCase : Dict = input("Enter the first string ").strip() UpperCamelCase : Optional[Any] = input("Enter the second string ").strip() UpperCamelCase : Tuple = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
690
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
1
"""simple docstring""" def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" A = [0 for i in range(r + 1 )] # nc0 = 1 A = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A = min(UpperCamelCase__ , UpperCamelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : Optional[Any] , _lowercase : Union[str, Any] , _lowercase : Tuple=7 , _lowercase : Optional[int]=3 , _lowercase : Tuple=30 , _lowercase : Tuple=400 , _lowercase : List[Any]=True , _lowercase : Optional[Any]=None , _lowercase : Tuple=True , _lowercase : Any=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , _lowercase : List[str]=True , _lowercase : str=1 / 255 , _lowercase : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333} A = parent A = batch_size A = num_channels A = min_resolution A = max_resolution A = do_resize A = size A = do_normalize A = image_mean A = image_std A = do_rescale A = rescale_factor A = do_pad def __a ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self : Dict , _lowercase : List[Any] , _lowercase : Tuple=False ): if not batched: A = image_inputs[0] if isinstance(_lowercase , Image.Image ): A , A = image.size else: A , A = image.shape[1], image.shape[2] if w < h: A = int(self.size['shortest_edge'] * h / w ) A = self.size['shortest_edge'] elif w > h: A = self.size['shortest_edge'] A = int(self.size['shortest_edge'] * w / h ) else: A = self.size['shortest_edge'] A = self.size['shortest_edge'] else: A = [] for image in image_inputs: A , A = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A = max(_lowercase , key=lambda _lowercase : item[0] )[0] A = max(_lowercase , key=lambda _lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = YolosImageProcessor if is_vision_available() else None def __a ( self : Optional[Any] ): A = YolosImageProcessingTester(self ) @property def __a ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) def __a ( self : Tuple ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} ) self.assertEqual(image_processor.do_pad , _lowercase ) A = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowercase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _lowercase ) def __a ( self : Union[str, Any] ): pass def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A , A = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Dict ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Any ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(_lowercase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values A , A = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self : Dict ): # Initialize image_processings A = self.image_processing_class(**self.image_processor_dict ) A = self.image_processing_class(do_resize=_lowercase , do_normalize=_lowercase , do_rescale=_lowercase ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors A = image_processing_a.pad(_lowercase , return_tensors='pt' ) A = image_processing_a(_lowercase , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def __a ( self : int ): # prepare image and target A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: A = json.loads(f.read() ) A = {'image_id': 39_769, 'annotations': target} # encode them A = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) A = image_processing(images=_lowercase , annotations=_lowercase , return_tensors='pt' ) # verify pixel values A = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , _lowercase ) A = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowercase , atol=1e-4 ) ) # verify area A = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowercase ) ) # verify boxes A = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowercase ) A = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowercase , atol=1e-3 ) ) # verify image_id A = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowercase ) ) # verify is_crowd A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowercase ) ) # verify class_labels A = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowercase ) ) # verify orig_size A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowercase ) ) # verify size A = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowercase ) ) @slow def __a ( self : int ): # prepare image, target and masks_path A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: A = json.loads(f.read() ) A = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target} A = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them A = YolosImageProcessor(format='coco_panoptic' ) A = image_processing(images=_lowercase , annotations=_lowercase , masks_path=_lowercase , return_tensors='pt' ) # verify pixel values A = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding['pixel_values'].shape , _lowercase ) A = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowercase , atol=1e-4 ) ) # verify area A = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowercase ) ) # verify boxes A = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowercase ) A = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowercase , atol=1e-3 ) ) # verify image_id A = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowercase ) ) # verify is_crowd A = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowercase ) ) # verify class_labels A = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowercase ) ) # verify masks A = 822_873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _lowercase ) # verify orig_size A = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowercase ) ) # verify size A = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowercase ) )
690
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase : str = logging.getLogger(__name__) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" return (preds == labels).mean() @dataclass class lowerCamelCase__ : lowerCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class lowerCamelCase__ : lowerCAmelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(processors.keys() )} ) lowerCAmelCase = field(metadata={"""help""": """Should contain the data files for the task."""} ) lowerCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __snake_case ( ) -> Tuple: """simple docstring""" A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCamelCase__ ) # Set seed set_seed(training_args.seed ) try: A = processors[data_args.task_name]() A = processor.get_labels() A = len(UpperCamelCase__ ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) A = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , ) # Get datasets A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) A = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCamelCase__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCamelCase__ ) -> Dict: A = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCamelCase__ , p.label_ids )} # Data collator A = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer A = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=UpperCamelCase__ , eval_dataset=UpperCamelCase__ , compute_metrics=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCamelCase__ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCamelCase__ , UpperCamelCase__ ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCamelCase__ ) return results def __snake_case ( UpperCamelCase__ ) -> Tuple: """simple docstring""" main() if __name__ == "__main__": main()
690
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
1
"""simple docstring""" from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __snake_case ( UpperCamelCase__ = "isbn/0140328726" ) -> dict: """simple docstring""" A = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: A = f'{olid} is not a valid Open Library olid' raise ValueError(UpperCamelCase__ ) return requests.get(f'https://openlibrary.org/{new_olid}.json' ).json() def __snake_case ( UpperCamelCase__ ) -> dict: """simple docstring""" A = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } A = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} A = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] A = data['First sentence']['value'] for key, value in data.items(): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A = ', '.join(UpperCamelCase__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: UpperCamelCase : int = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F"""Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.""") continue print(F"""\nSearching Open Library for ISBN: {isbn}...\n""") try: UpperCamelCase : str = summarize_book(get_openlibrary_data(F"""isbn/{isbn}""")) print("\n".join(F"""{key}: {value}""" for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F"""Sorry, there are no results for ISBN: {isbn}.""")
690
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
1
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" if hor == 128: A = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A = (32, 128, 256) A = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A = (32, 64, 128, 256) A = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) A = model.state_dict() A = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A = UNetaDModel(**UpperCamelCase__ ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) A = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def __snake_case ( ) -> List[Any]: """simple docstring""" A = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A = model A = UNetaDModel(**UpperCamelCase__ ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) A = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A = state_dict.pop(UpperCamelCase__ ) hf_value_function.load_state_dict(UpperCamelCase__ ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
690
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase : str = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
690
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
1
def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Optional[Any] = 0 for ch in input_str: __magic_name__ :int = ord(snake_case ) __magic_name__ :Dict = pow(2, snake_case ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __snake_case = get_tests_dir('''fixtures/dummy-config.json''') class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = 0 def snake_case_ ( self: str ): '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec('transformers.models.auto' ) ) def snake_case_ ( self: List[Any] ): '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained('bert-base-uncased' ) self.assertIsInstance(A_,A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_,A_ ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_,A_ ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = AutoConfig.for_model('roberta' ) self.assertIsInstance(A_,A_ ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __UpperCamelCase = os.path.join(A_,'fake-roberta' ) os.makedirs(A_,exist_ok=A_ ) with open(os.path.join(A_,'config.json' ),'w' ) as f: f.write(json.dumps({} ) ) __UpperCamelCase = AutoConfig.from_pretrained(A_ ) self.assertEqual(type(A_ ),A_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' try: AutoConfig.register('custom',A_ ) # Wrong model type will raise an error with self.assertRaises(A_ ): AutoConfig.register('model',A_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A_ ): AutoConfig.register('bert',A_ ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) __UpperCamelCase = AutoConfig.from_pretrained(A_ ) self.assertIsInstance(A_,A_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def snake_case_ ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( A_,'bert-base is not a local folder and is not a valid model identifier' ): __UpperCamelCase = AutoConfig.from_pretrained('bert-base' ) def snake_case_ ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( A_,r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): __UpperCamelCase = AutoConfig.from_pretrained(A_,revision='aaaaaa' ) def snake_case_ ( self: Dict ): '''simple docstring''' with self.assertRaisesRegex( A_,'hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.',): __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/no-config-test-repo' ) def snake_case_ ( self: List[str] ): '''simple docstring''' with self.assertRaises(A_ ): __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) # If remote code is disabled, we can't load this config. with self.assertRaises(A_ ): __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model',trust_remote_code=A_ ) __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model',trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__,'NewModelConfig' ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A_ ) __UpperCamelCase = AutoConfig.from_pretrained(A_,trust_remote_code=A_ ) self.assertEqual(reloaded_config.__class__.__name__,'NewModelConfig' ) def snake_case_ ( self: str ): '''simple docstring''' class __lowerCamelCase (_a ): _lowercase = """new-model""" try: AutoConfig.register('new-model',A_ ) # If remote code is not set, the default is to use local __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model' ) self.assertEqual(config.__class__.__name__,'NewModelConfigLocal' ) # If remote code is disabled, we load the local one. __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model',trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__,'NewModelConfigLocal' ) # If remote is enabled, we load from the Hub __UpperCamelCase = AutoConfig.from_pretrained('hf-internal-testing/test_dynamic_model',trust_remote_code=A_ ) self.assertEqual(config.__class__.__name__,'NewModelConfig' ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
1
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """spiece.model"""} UpperCAmelCase_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } UpperCAmelCase_ = { """albert-base-v1""": 5_1_2, """albert-large-v1""": 5_1_2, """albert-xlarge-v1""": 5_1_2, """albert-xxlarge-v1""": 5_1_2, """albert-base-v2""": 5_1_2, """albert-large-v2""": 5_1_2, """albert-xlarge-v2""": 5_1_2, """albert-xxlarge-v2""": 5_1_2, } UpperCAmelCase_ = """▁""" class lowerCamelCase__ ( _A): """simple docstring""" a__ : Tuple = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[Any]=False , __lowerCAmelCase : Optional[Any]="[CLS]" , __lowerCAmelCase : List[Any]="[SEP]" , __lowerCAmelCase : List[str]="<unk>" , __lowerCAmelCase : str="[SEP]" , __lowerCAmelCase : Optional[Any]="<pad>" , __lowerCAmelCase : int="[CLS]" , __lowerCAmelCase : List[str]="[MASK]" , __lowerCAmelCase : Optional[Dict[str, Any]] = None , **__lowerCAmelCase : List[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def snake_case_ ( self : List[Any] ) -> int: return len(self.sp_model ) def snake_case_ ( self : Optional[int] ) -> List[str]: _A = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : str ) -> str: _A = self.__dict__.copy() _A = None return state def __setstate__( self : Dict , __lowerCAmelCase : Dict ) -> Tuple: _A = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self : str , __lowerCAmelCase : str ) -> Any: if self.remove_space: _A = ''' '''.join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: _A = unicodedata.normalize('''NFKD''' , __lowerCAmelCase ) _A = ''''''.join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : str ) -> List[str]: _A = self.preprocess_text(__lowerCAmelCase ) _A = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) _A = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def snake_case_ ( self : str , __lowerCAmelCase : Optional[int] ) -> Dict: return self.sp_model.PieceToId(__lowerCAmelCase ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Optional[int] ) -> List[Any]: return self.sp_model.IdToPiece(__lowerCAmelCase ) def snake_case_ ( self : Dict , __lowerCAmelCase : Optional[Any] ) -> Optional[Any]: _A = [] _A = '''''' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(__lowerCAmelCase ) _A = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def snake_case_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case_ ( self : Dict , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None , __lowerCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def snake_case_ ( self : str , __lowerCAmelCase : List[int] , __lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
2
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
'''simple docstring''' import os import pytest from attr import dataclass lowerCAmelCase : Dict = 'us-east-1' # defaults region @dataclass class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" lowerCAmelCase_ = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 5_00, """save_steps""": 55_00, } lowerCAmelCase_ = {**hyperparameters, """max_steps""": 10_00} @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return F'''{self.framework}-transfromers-test''' @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return F'''./tests/sagemaker/scripts/{self.framework}''' @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class') def A_( A : Optional[int]): UpperCamelCase = SageMakerTestEnvironment(framework=request.cls.framework)
3
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ): # Load checkpoint lowerCAmelCase = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: lowerCAmelCase = v else: lowerCAmelCase = v lowerCAmelCase = chkpt['params'] lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(_UpperCAmelCase , (torch.FloatTensor, numpy.ndarray) )} lowerCAmelCase = chkpt['dico_word2id'] lowerCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + '\n' ) print(F'Save vocab file to {pytorch_config_dump_path}' ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_UpperCAmelCase , indent=2 ) + '\n' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
4
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def _lowercase ( self , _lowercase=None , _lowercase=None , _lowercase=None , **_lowercase ): """simple docstring""" if tokenize_kwargs is None: _lowerCAmelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( """truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" ) _lowerCAmelCase = truncation _lowerCAmelCase = tokenize_kwargs _lowerCAmelCase = {} if return_tensors is not None: _lowerCAmelCase = return_tensors return preprocess_params, {}, postprocess_params def _lowercase ( self , _lowercase , **_lowercase ): """simple docstring""" _lowerCAmelCase = self.framework _lowerCAmelCase = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) return model_inputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.model(**_lowercase ) return model_outputs def _lowercase ( self , _lowercase , _lowercase=False ): """simple docstring""" if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *_lowercase , **_lowercase ): """simple docstring""" return super().__call__(*_lowercase , **_lowercase )
5
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowerCamelCase = ['gpt2'] _lowerCamelCase = 'gpt2' if is_tf_available(): class UpperCamelCase_ ( tf.Module ): def __init__( self :Optional[Any] , __A :Union[str, Any] ) -> List[Any]: """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE__ = tokenizer SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A ) SCREAMING_SNAKE_CASE__ = TFGPTaLMHeadModel.from_config(__A ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _snake_case ( self :Optional[int] , __A :int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.tokenizer(__A ) SCREAMING_SNAKE_CASE__ = tokenized["""input_ids"""].to_tensor() SCREAMING_SNAKE_CASE__ = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) SCREAMING_SNAKE_CASE__ = self.model(input_ids=__A , attention_mask=__A )["""logits"""] return outputs @require_tf @require_keras_nlp class UpperCamelCase_ ( unittest.TestCase ): def _snake_case ( self :List[Any] ) -> Dict: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = [GPTaTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS)] SCREAMING_SNAKE_CASE__ = [TFGPTaTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) SCREAMING_SNAKE_CASE__ = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] SCREAMING_SNAKE_CASE__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _snake_case ( self :Any ) -> Any: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE__ = tokenizer([test_inputs] , return_tensors="""tf""" ) SCREAMING_SNAKE_CASE__ = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors SCREAMING_SNAKE_CASE__ = python_outputs[key].numpy() SCREAMING_SNAKE_CASE__ = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__A , tf.intaa ) == tf_outputs_values ) ) @slow def _snake_case ( self :Any ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE__ = tf.function(__A ) for test_inputs in self.test_sentences: SCREAMING_SNAKE_CASE__ = tf.constant(__A ) SCREAMING_SNAKE_CASE__ = compiled_tokenizer(__A ) SCREAMING_SNAKE_CASE__ = tf_tokenizer(__A ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _snake_case ( self :List[Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE__ = ModelToSave(tokenizer=__A ) SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE__ = model.serving(__A ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: SCREAMING_SNAKE_CASE__ = Path(__A ) / """saved.model""" tf.saved_model.save(__A , __A , signatures={"""serving_default""": model.serving} ) SCREAMING_SNAKE_CASE__ = tf.saved_model.load(__A ) SCREAMING_SNAKE_CASE__ = loaded_model.signatures["""serving_default"""](__A )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _snake_case ( self :Dict ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE__ = tf_tokenizer(__A ) # Build model with some sample inputs SCREAMING_SNAKE_CASE__ = tf_tokenizer.get_config() SCREAMING_SNAKE_CASE__ = TFGPTaTokenizer.from_config(__A ) SCREAMING_SNAKE_CASE__ = model_from_config(__A ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _snake_case ( self :List[Any] ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run SCREAMING_SNAKE_CASE__ = 12_3123 for max_length in [3, 5, 1024]: SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor([self.test_sentences[0]] ) SCREAMING_SNAKE_CASE__ = tf_tokenizer(__A , max_length=__A ) SCREAMING_SNAKE_CASE__ = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
6
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
"""simple docstring""" import requests from bsa import BeautifulSoup def _snake_case ( _snake_case : str = "AAPL" ) -> str: '''simple docstring''' _A = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _A = BeautifulSoup(requests.get(_snake_case ).text , 'html.parser' ) _A = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
7
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowercase__ : List[str] = Mapping[str, np.ndarray] lowercase__ : Dict = Mapping[str, Any] # Is a nested dict. lowercase__ : Dict = 0.01 @dataclasses.dataclass(frozen=a__ ) class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCAmelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCAmelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCAmelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCAmelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCAmelCase = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCAmelCase = None # Templates used to generate this protein (prediction-only) lowerCAmelCase = None # Chain corresponding to each parent lowerCAmelCase = None def _lowerCAmelCase ( __snake_case : str ) -> Protein: __A : Optional[Any] = r'(\[[A-Z]+\]\n)' __A : List[str] = [tag.strip() for tag in re.split(__snake_case , __snake_case ) if len(__snake_case ) > 0] __A : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) __A : List[str] = ["N", "CA", "C"] __A : int = None __A : Dict = None __A : Tuple = None for g in groups: if "[PRIMARY]" == g[0]: __A : Optional[int] = g[1][0].strip() for i in range(len(__snake_case ) ): if seq[i] not in residue_constants.restypes: __A : Optional[int] = 'X' # FIXME: strings are immutable __A : int = np.array( [residue_constants.restype_order.get(__snake_case , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: __A : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__snake_case , g[1][axis].split() ) ) ) __A : List[str] = np.array(__snake_case ) __A : Tuple = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): __A : Dict = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: __A : Dict = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) __A : Any = np.zeros( ( len(__snake_case ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__snake_case ): __A : Tuple = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__snake_case , atom_mask=__snake_case , aatype=__snake_case , residue_index=np.arange(len(__snake_case ) ) , b_factors=__snake_case , ) def _lowerCAmelCase ( __snake_case : Protein , __snake_case : int = 0 ) -> List[str]: __A : List[str] = [] __A : Dict = prot.remark if remark is not None: pdb_headers.append(f'REMARK {remark}' ) __A : Optional[int] = prot.parents __A : List[Any] = prot.parents_chain_index if parents is not None and parents_chain_index is not None: __A : Tuple = [p for i, p in zip(__snake_case , __snake_case ) if i == chain_id] if parents is None or len(__snake_case ) == 0: __A : List[str] = ['N/A'] pdb_headers.append(f'PARENT {" ".join(__snake_case )}' ) return pdb_headers def _lowerCAmelCase ( __snake_case : Protein , __snake_case : str ) -> str: __A : List[str] = [] __A : Union[str, Any] = pdb_str.split('\n' ) __A : Tuple = prot.remark if remark is not None: out_pdb_lines.append(f'REMARK {remark}' ) __A : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: __A : List[Any] = [] if prot.parents_chain_index is not None: __A : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__snake_case ) , [] ) parent_dict[str(__snake_case )].append(__snake_case ) __A : Dict = max([int(__snake_case ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): __A : Any = parent_dict.get(str(__snake_case ) , ['N/A'] ) parents_per_chain.append(__snake_case ) else: parents_per_chain.append(list(prot.parents ) ) else: __A : Any = [['N/A']] def make_parent_line(__snake_case : Sequence[str] ) -> str: return f'PARENT {" ".join(__snake_case )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) __A : Any = 0 for i, l in enumerate(__snake_case ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__snake_case ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__snake_case ): __A : Union[str, Any] = parents_per_chain[chain_counter] else: __A : List[Any] = ['N/A'] out_pdb_lines.append(make_parent_line(__snake_case ) ) return "\n".join(__snake_case ) def _lowerCAmelCase ( __snake_case : Protein ) -> str: __A : List[str] = residue_constants.restypes + ['X'] def res_atoa(__snake_case : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) __A : List[str] = residue_constants.atom_types __A : List[str] = [] __A : Dict = prot.atom_mask __A : Any = prot.aatype __A : Tuple = prot.atom_positions __A : Any = prot.residue_index.astype(np.intaa ) __A : List[Any] = prot.b_factors __A : Any = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) __A : str = get_pdb_headers(__snake_case ) if len(__snake_case ) > 0: pdb_lines.extend(__snake_case ) __A : int = aatype.shape[0] __A : Tuple = 1 __A : int = 0 __A : Union[str, Any] = string.ascii_uppercase __A : Optional[Any] = None # Add all atom sites. for i in range(__snake_case ): __A : Union[str, Any] = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__snake_case , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue __A : Any = 'ATOM' __A : Tuple = atom_name if len(__snake_case ) == 4 else f' {atom_name}' __A : Tuple = '' __A : Tuple = '' __A : Any = 1.00 __A : Any = atom_name[0] # Protein supports only C, N, O, S, this works. __A : int = '' __A : Tuple = 'A' if chain_index is not None: __A : Tuple = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! __A : Any = ( f'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' f'{res_name_a:>3} {chain_tag:>1}' f'{residue_index[i]:>4}{insertion_code:>1} ' f'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' f'{occupancy:>6.2f}{b_factor:>6.2f} ' f'{element:>2}{charge:>2}' ) pdb_lines.append(__snake_case ) atom_index += 1 __A : str = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: __A : str = True __A : List[Any] = chain_index[i + 1] if should_terminate: # Close the chain. __A : Any = 'TER' __A : List[Any] = ( f'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(__snake_case ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__snake_case , __snake_case ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(__snake_case ) def _lowerCAmelCase ( __snake_case : Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCAmelCase ( __snake_case : FeatureDict , __snake_case : ModelOutput , __snake_case : Optional[np.ndarray] = None , __snake_case : Optional[np.ndarray] = None , __snake_case : Optional[str] = None , __snake_case : Optional[Sequence[str]] = None , __snake_case : Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=__snake_case , remark=__snake_case , parents=__snake_case , parents_chain_index=__snake_case , )
8
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
def A ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(__UpperCamelCase , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
9
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
def _snake_case ( __snake_case ): _UpperCamelCase = int(__snake_case ) if decimal in (0, 1): # Exit cases for the recursion return str(__snake_case ) _UpperCamelCase , _UpperCamelCase = divmod(__snake_case , 2 ) return binary_recursive(__snake_case ) + str(__snake_case ) def _snake_case ( __snake_case ): _UpperCamelCase = str(__snake_case ).strip() if not number: raise ValueError('''No input value was provided''' ) _UpperCamelCase = '''-''' if number.startswith('''-''' ) else '''''' _UpperCamelCase = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f"""{negative}0b{binary_recursive(int(__snake_case ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
10
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
'''simple docstring''' # Function to print upper half of diamond (pyramid) def lowerCAmelCase (__A): """simple docstring""" for i in range(0 , __A): for _ in range(0 , n - i - 1): # printing spaces print(''' ''' , end='''''') for _ in range(0 , i + 1): # printing stars print('''* ''' , end='''''') print() def lowerCAmelCase (__A): """simple docstring""" for i in range(__A , 0 , -1): for _ in range(__A , 0 , -1): # printing stars print('''* ''' , end='''''') print() for _ in range(n - i + 1 , 0 , -1): # printing spaces print(''' ''' , end='''''') def lowerCAmelCase (__A): """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''') return floyd(__A) # upper half reverse_floyd(__A) # lower half if __name__ == "__main__": print(R"| /\ | |- | |- |--| |\ /| |-") print(R"|/ \| |- |_ |_ |__| | \/ | |_") lowercase_ = 1 while K: lowercase_ = int(input("enter the number and , and see the magic : ")) print() pretty_print(user_number) lowercase_ = int(input("press 0 to exit... and 1 to continue...")) print("Good Bye...")
11
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
import numpy as np class _snake_case : def __init__( self): '''simple docstring''' lowercase__ : Optional[int] = (0, 0) lowercase__ : Optional[int] = None lowercase__ : Optional[int] = 0 lowercase__ : Optional[Any] = 0 lowercase__ : Tuple = 0 def __eq__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.position == cell.position def lowercase__ ( self): '''simple docstring''' print(self.position) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_=(5, 5)): '''simple docstring''' lowercase__ : List[Any] = np.zeros(SCREAMING_SNAKE_CASE_) lowercase__ : int = world_size[0] lowercase__ : Tuple = world_size[1] def lowercase__ ( self): '''simple docstring''' print(self.w) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Any = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] lowercase__ : int = cell.position[0] lowercase__ : Optional[Any] = cell.position[1] lowercase__ : Tuple = [] for n in neughbour_cord: lowercase__ : List[Any] = current_x + n[0] lowercase__ : List[str] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: lowercase__ : Tuple = Cell() lowercase__ : str = (x, y) lowercase__ : int = cell neighbours.append(SCREAMING_SNAKE_CASE_) return neighbours def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : List[str] = [] lowercase__ : int = [] _open.append(lowercase_ ) while _open: lowercase__ : Tuple = np.argmin([n.f for n in _open] ) lowercase__ : List[str] = _open[min_f] _closed.append(_open.pop(lowercase_ ) ) if current == goal: break for n in world.get_neigbours(lowercase_ ): for c in _closed: if c == n: continue lowercase__ : Dict = current.g + 1 lowercase__ , lowercase__ : Dict = n.position lowercase__ , lowercase__ : int = goal.position lowercase__ : Optional[int] = (ya - ya) ** 2 + (xa - xa) ** 2 lowercase__ : List[str] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(lowercase_ ) lowercase__ : Tuple = [] while current.parent is not None: path.append(current.position ) lowercase__ : Dict = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = Gridworld() # Start position and goal lowerCamelCase__ : List[Any] = Cell() lowerCamelCase__ : Dict = (0, 0) lowerCamelCase__ : Dict = Cell() lowerCamelCase__ : str = (4, 4) print(f'''path from {start.position} to {goal.position}''') lowerCamelCase__ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: lowerCamelCase__ : Union[str, Any] = 1 print(world.w)
12
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING a__ = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , **_a ) -> List[str]: super().__init__(**_a ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type(_a ) def __call__( self , _a , _a = None , **_a , ) -> List[str]: if "text_queries" in kwargs: _a : Optional[Any] = kwargs.pop('''text_queries''' ) if isinstance(_a , (str, Image.Image) ): _a : Tuple = {'''image''': image, '''candidate_labels''': candidate_labels} else: _a : str = image _a : int = super().__call__(_a , **_a ) return results def __lowercase ( self , **_a ) -> Union[str, Any]: _a : Union[str, Any] = {} if "threshold" in kwargs: _a : Dict = kwargs['''threshold'''] if "top_k" in kwargs: _a : Tuple = kwargs['''top_k'''] return {}, {}, postprocess_params def __lowercase ( self , _a ) -> List[str]: _a : int = load_image(inputs['''image'''] ) _a : Union[str, Any] = inputs['''candidate_labels'''] if isinstance(_a , _a ): _a : Tuple = candidate_labels.split(''',''' ) _a : Dict = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_a ): _a : Union[str, Any] = self.tokenizer(_a , return_tensors=self.framework ) _a : Optional[Any] = self.image_processor(_a , return_tensors=self.framework ) yield { "is_last": i == len(_a ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __lowercase ( self , _a ) -> str: _a : Optional[int] = model_inputs.pop('''target_size''' ) _a : int = model_inputs.pop('''candidate_label''' ) _a : str = model_inputs.pop('''is_last''' ) _a : Union[str, Any] = self.model(**_a ) _a : List[str] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def __lowercase ( self , _a , _a=0.1 , _a=None ) -> Any: _a : str = [] for model_output in model_outputs: _a : str = model_output['''candidate_label'''] _a : int = BaseModelOutput(_a ) _a : Tuple = self.image_processor.post_process_object_detection( outputs=_a , threshold=_a , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): _a : Optional[Any] = outputs['''scores'''][index].item() _a : List[str] = self._get_bounding_box(outputs['''boxes'''][index][0] ) _a : Dict = {'''score''': score, '''label''': label, '''box''': box} results.append(_a ) _a : str = sorted(_a , key=lambda _a : x["score"] , reverse=_a ) if top_k: _a : Any = results[:top_k] return results def __lowercase ( self , _a ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) _a , _a , _a , _a : Dict = box.int().tolist() _a : int = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
14
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class A ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase__ (self : Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = ["""a""", """b""", """c"""] # Defaults to last layer if both are None lowercase__ , lowercase__ = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ["""c"""] ) self.assertEqual(_UpperCAmelCase , [2] ) # Out indices set to match out features lowercase__ , lowercase__ = get_aligned_output_features_output_indices(["""a""", """c"""] , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ["""a""", """c"""] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features set to match out indices lowercase__ , lowercase__ = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ["""a""", """c"""] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features selected from negative indices lowercase__ , lowercase__ = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ["""a""", """c"""] ) self.assertEqual(_UpperCAmelCase , [-3, -1] ) def lowerCamelCase__ (self : Any ) -> Dict: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , _UpperCAmelCase ) # Out features must be a list with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def lowerCamelCase__ (self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = BackboneMixin() lowercase__ = ["""a""", """b""", """c"""] lowercase__ = ["""a""", """c"""] lowercase__ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase__ = ["""a""", """b"""] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase__ = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
15
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
def __a ( A__ : int , A__ : int , A__ : list[list[int]] ): def update_area_of_max_square(A__ : int , A__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE = update_area_of_max_square(A__ , col + 1 ) SCREAMING_SNAKE_CASE = update_area_of_max_square(row + 1 , col + 1 ) SCREAMING_SNAKE_CASE = update_area_of_max_square(row + 1 , A__ ) if mat[row][col]: SCREAMING_SNAKE_CASE = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE = max(largest_square_area[0] , A__ ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __a ( A__ : int , A__ : int , A__ : list[list[int]] ): def update_area_of_max_square_using_dp_array( A__ : int , A__ : int , A__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE = update_area_of_max_square_using_dp_array(A__ , col + 1 , A__ ) SCREAMING_SNAKE_CASE = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , A__ ) SCREAMING_SNAKE_CASE = update_area_of_max_square_using_dp_array(row + 1 , A__ , A__ ) if mat[row][col]: SCREAMING_SNAKE_CASE = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE = max(largest_square_area[0] , A__ ) SCREAMING_SNAKE_CASE = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE = [0] SCREAMING_SNAKE_CASE = [[-1] * cols for _ in range(A__ )] update_area_of_max_square_using_dp_array(0 , 0 , A__ ) return largest_square_area[0] def __a ( A__ : int , A__ : int , A__ : list[list[int]] ): SCREAMING_SNAKE_CASE = [[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE = dp_array[row][col + 1] SCREAMING_SNAKE_CASE = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE = 1 + min(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = max(dp_array[row][col] , A__ ) else: SCREAMING_SNAKE_CASE = 0 return largest_square_area def __a ( A__ : int , A__ : int , A__ : list[list[int]] ): SCREAMING_SNAKE_CASE = [0] * (cols + 1) SCREAMING_SNAKE_CASE = [0] * (cols + 1) SCREAMING_SNAKE_CASE = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE = current_row[col + 1] SCREAMING_SNAKE_CASE = next_row[col + 1] SCREAMING_SNAKE_CASE = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE = 1 + min(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = max(current_row[col] , A__ ) else: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
16
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ : Optional[Any] = 1.0_5457_1817e-34 # unit of ℏ : J * s UpperCAmelCase_ : Union[str, Any] = 3e8 # unit of c : m * s^-1 def __SCREAMING_SNAKE_CASE ( a__ : float ,a__ : float ,a__ : float ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: __A : List[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: __A : Tuple = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: __A : Optional[int] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
17
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : float | Decimal , SCREAMING_SNAKE_CASE_ : float = 10**-10 ): '''simple docstring''' _lowerCAmelCase = a while True: _lowerCAmelCase = Decimal(SCREAMING_SNAKE_CASE_ ) - ( Decimal(eval(SCREAMING_SNAKE_CASE_ ) ) / Decimal(eval(str(diff(SCREAMING_SNAKE_CASE_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(SCREAMING_SNAKE_CASE_ ) ) < precision: # noqa: S307 return float(SCREAMING_SNAKE_CASE_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(f'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(f'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(f'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
18
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
"""simple docstring""" import random def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = a[left_index] _UpperCamelCase = left_index + 1 for j in range(left_index + 1, __snake_case ): if a[j] < pivot: _UpperCamelCase , _UpperCamelCase = a[i], a[j] i += 1 _UpperCamelCase , _UpperCamelCase = a[i - 1], a[left_index] return i - 1 def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case ) -> Tuple: """simple docstring""" if left < right: _UpperCamelCase = random.randint(__snake_case, right - 1 ) _UpperCamelCase , _UpperCamelCase = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCamelCase = partition(__snake_case, __snake_case, __snake_case ) quick_sort_random( __snake_case, __snake_case, __snake_case ) # recursive quicksort to the left of the pivot point quick_sort_random( __snake_case, pivot_index + 1, __snake_case ) # recursive quicksort to the right of the pivot point def lowerCamelCase__ ( ) -> str: """simple docstring""" _UpperCamelCase = input('''Enter numbers separated by a comma:\n''' ).strip() _UpperCamelCase = [int(__snake_case ) for item in user_input.split(''',''' )] quick_sort_random(__snake_case, 0, len(__snake_case ) ) print(__snake_case ) if __name__ == "__main__": main()
19
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
from math import factorial def _lowercase( __a : int , __a : int , __a : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) a__ =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a__ =float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
20
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : Tuple =SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["""stage2""", """stage3""", """stage4"""] , ) __magic_name__ : Tuple =DetaConfig( backbone_config=lowerCamelCase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCamelCase , with_box_refine=lowerCamelCase , two_stage=lowerCamelCase , ) # set labels __magic_name__ : Optional[Any] ="""huggingface/label-files""" if "o365" in model_name: __magic_name__ : int =366 __magic_name__ : Any ="""object365-id2label.json""" else: __magic_name__ : Optional[int] =91 __magic_name__ : Any ="""coco-detection-id2label.json""" __magic_name__ : Union[str, Any] =num_labels __magic_name__ : Any =json.load(open(cached_download(hf_hub_url(lowerCamelCase , lowerCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __magic_name__ : Union[str, Any] ={int(lowerCamelCase ): v for k, v in idalabel.items()} __magic_name__ : Union[str, Any] =idalabel __magic_name__ : Tuple ={v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : str =[] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", F"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias") ) if i < 3: rename_keys.append((F"backbone.0.body.layers.{i}.downsample.reduction.weight", F"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.weight", F"model.backbone.model.encoder.layers.{i}.downsample.norm.weight") ) rename_keys.append((F"backbone.0.body.layers.{i}.downsample.norm.bias", F"model.backbone.model.encoder.layers.{i}.downsample.norm.bias") ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", F"model.encoder.layers.{i}.self_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", F"model.encoder.layers.{i}.self_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", F"model.encoder.layers.{i}.self_attn.attention_weights.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", F"model.encoder.layers.{i}.self_attn.attention_weights.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.weight", F"model.encoder.layers.{i}.self_attn.value_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.value_proj.bias", F"model.encoder.layers.{i}.self_attn.value_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.weight", F"model.encoder.layers.{i}.self_attn.output_proj.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.self_attn.output_proj.bias", F"model.encoder.layers.{i}.self_attn.output_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.weight", F"model.encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"model.encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"model.encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"model.encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"model.encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"model.encoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"model.encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"model.encoder.layers.{i}.final_layer_norm.bias") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", F"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", F"model.decoder.layers.{i}.encoder_attn.attention_weights.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", F"model.decoder.layers.{i}.encoder_attn.attention_weights.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", F"model.decoder.layers.{i}.encoder_attn.value_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", F"model.decoder.layers.{i}.encoder_attn.value_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", F"model.decoder.layers.{i}.encoder_attn.output_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", F"model.decoder.layers.{i}.encoder_attn.output_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.weight", F"model.decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"model.decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"model.decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"model.decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.weight", F"model.decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm2.bias", F"model.decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"model.decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"model.decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"model.decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"model.decoder.layers.{i}.fc2.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"model.decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"model.decoder.layers.{i}.final_layer_norm.bias") ) # fmt: on return rename_keys def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : str =dct.pop(lowerCamelCase ) __magic_name__ : List[str] =val def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =[int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __magic_name__ : Optional[int] =num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __magic_name__ : List[str] =state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight" ) __magic_name__ : Any =state_dict.pop(F"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : List[Any] =in_proj_weight[:dim, :] __magic_name__ : Tuple =in_proj_bias[: dim] __magic_name__ : str =in_proj_weight[ dim : dim * 2, : ] __magic_name__ : Optional[int] =in_proj_bias[ dim : dim * 2 ] __magic_name__ : Union[str, Any] =in_proj_weight[ -dim :, : ] __magic_name__ : Tuple =in_proj_bias[-dim :] # fmt: on def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): # transformer decoder self-attention layers __magic_name__ : Union[str, Any] =config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __magic_name__ : Dict =state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __magic_name__ : int =state_dict.pop(F"transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : int =in_proj_weight[:hidden_size, :] __magic_name__ : Tuple =in_proj_bias[:hidden_size] __magic_name__ : int =in_proj_weight[ hidden_size : hidden_size * 2, : ] __magic_name__ : List[Any] =in_proj_bias[hidden_size : hidden_size * 2] __magic_name__ : str =in_proj_weight[-hidden_size:, :] __magic_name__ : str =in_proj_bias[-hidden_size:] def lowerCAmelCase_ ( ): __magic_name__ : int ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : str =Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =get_deta_config(lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __magic_name__ : List[str] =hf_hub_download(repo_id="""nielsr/deta-checkpoints""" , filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __magic_name__ : Dict =hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""" , filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(F"Model name {model_name} not supported" ) __magic_name__ : int =torch.load(lowerCamelCase , map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(lowerCamelCase , param.shape ) # rename keys __magic_name__ : Any =create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) read_in_swin_q_k_v(lowerCamelCase , config.backbone_config ) read_in_decoder_q_k_v(lowerCamelCase , lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __magic_name__ : Any =state_dict.pop(lowerCamelCase ) __magic_name__ : Any =val if "input_proj" in key: __magic_name__ : List[str] =state_dict.pop(lowerCamelCase ) __magic_name__ : Optional[Any] =val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __magic_name__ : int =state_dict.pop(lowerCamelCase ) __magic_name__ : Any =val # finally, create HuggingFace model and load state dict __magic_name__ : str =DetaForObjectDetection(lowerCamelCase ) model.load_state_dict(lowerCamelCase ) model.eval() __magic_name__ : Optional[Any] ="""cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowerCamelCase ) # load image processor __magic_name__ : Any =DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __magic_name__ : Tuple =prepare_img() __magic_name__ : Optional[Any] =processor(images=lowerCamelCase , return_tensors="""pt""" ) __magic_name__ : int =encoding["""pixel_values"""] __magic_name__ : List[str] =model(pixel_values.to(lowerCamelCase ) ) # verify logits print("""Logits:""" , outputs.logits[0, :3, :3] ) print("""Boxes:""" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __magic_name__ : str =torch.tensor( [[-7.6_3_0_8, -2.8_4_8_5, -5.3_7_3_7], [-7.2_0_3_7, -4.5_5_0_5, -4.8_0_2_7], [-7.2_9_4_3, -4.2_6_1_1, -4.6_6_1_7]] ) __magic_name__ : Dict =torch.tensor([[0.4_9_8_7, 0.4_9_6_9, 0.9_9_9_9], [0.2_5_4_9, 0.5_4_9_8, 0.4_8_0_5], [0.5_4_9_8, 0.2_7_5_7, 0.0_5_6_9]] ) elif model_name == "deta-swin-large-o365": __magic_name__ : List[Any] =torch.tensor( [[-8.0_1_2_2, -3.5_7_2_0, -4.9_7_1_7], [-8.1_5_4_7, -3.6_8_8_6, -4.6_3_8_9], [-7.6_6_1_0, -3.6_1_9_4, -5.0_1_3_4]] ) __magic_name__ : Optional[Any] =torch.tensor([[0.2_5_2_3, 0.5_5_4_9, 0.4_8_8_1], [0.7_7_1_5, 0.4_1_4_9, 0.4_6_0_1], [0.5_5_0_3, 0.2_7_5_3, 0.0_5_7_5]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCamelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCamelCase ) , atol=1E-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"Saving PyTorch model and processor to {pytorch_dump_folder_path}..." ) Path(lowerCamelCase ).mkdir(exist_ok=lowerCamelCase ) model.save_pretrained(lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(F"jozhang97/{model_name}" ) processor.push_to_hub(F"jozhang97/{model_name}" ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCAmelCase_ : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
21
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : Optional[int] = logging.get_logger(__name__) _snake_case : str = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class A ( _a ): lowercase_ = 'dpr' def __init__( self : Any , lowerCAmelCase_ : Any=3_05_22 , lowerCAmelCase_ : Tuple=7_68 , lowerCAmelCase_ : Union[str, Any]=12 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : List[str]=30_72 , lowerCAmelCase_ : List[Any]="gelu" , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : Optional[Any]=5_12 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=0.0_2 , lowerCAmelCase_ : Any=1e-12 , lowerCAmelCase_ : List[Any]=0 , lowerCAmelCase_ : Optional[Any]="absolute" , lowerCAmelCase_ : int = 0 , **lowerCAmelCase_ : Any , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = projection_dim _a = position_embedding_type
22
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase): UpperCamelCase_ = cva.getAffineTransform(__lowercase , __lowercase) return cva.warpAffine(__lowercase , __lowercase , (rows, cols)) if __name__ == "__main__": # read original image snake_case__ : Optional[int] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value snake_case__ : Any = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ , snake_case__ : Optional[Any] = gray_img.shape # set different points to rotate image snake_case__ : List[Any] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) snake_case__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) snake_case__ : Optional[int] = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) snake_case__ : int = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list snake_case__ : Optional[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : Optional[int] = plt.figure(1) snake_case__ : int = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
23
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase ( __lowerCAmelCase , unittest.TestCase): __lowercase : Dict = VideoToVideoSDPipeline __lowercase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''}) - {'''image''', '''width''', '''height'''} __lowercase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''}) - {'''image'''} __lowercase : Optional[int] = PipelineTesterMixin.required_optional_params - {'''latents'''} __lowercase : Any = False # No `output_type`. __lowercase : Union[str, Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ]) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) __snake_case = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> Union[str, Any]: '''simple docstring''' __snake_case = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): __snake_case = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __snake_case = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = VideoToVideoSDPipeline(**__SCREAMING_SNAKE_CASE ) __snake_case = sd_pipe.to(__SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __snake_case = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) __snake_case = '''np''' __snake_case = sd_pipe(**__SCREAMING_SNAKE_CASE ).frames __snake_case = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __snake_case = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__SCREAMING_SNAKE_CASE , expected_max_diff=5E-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' pass def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __snake_case = torch.Generator(device='''cpu''' ).manual_seed(0 ) __snake_case = torch.randn((1, 10, 3, 1024, 576) , generator=__SCREAMING_SNAKE_CASE ) __snake_case = video.to('''cuda''' ) __snake_case = '''Spiderman is surfing''' __snake_case = pipe(__SCREAMING_SNAKE_CASE , video=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=3 , output_type='''pt''' ).frames __snake_case = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
24
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Optional[int] = [] for part_id in partition_order: SCREAMING_SNAKE_CASE : str = df.where(f"SPARK_PARTITION_ID() = {part_id}").collect() for row_idx, row in enumerate(_a): expected_row_ids_and_row_dicts.append((f"{part_id}_{row_idx}", row.asDict())) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Union[str, Any] = spark.range(100).repartition(1) SCREAMING_SNAKE_CASE : Dict = Spark(_a) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Any = spark.range(10).repartition(2) SCREAMING_SNAKE_CASE : Tuple = [1, 0] SCREAMING_SNAKE_CASE : Union[str, Any] = _generate_iterable_examples(_a , _a) # Reverse the partitions. SCREAMING_SNAKE_CASE : Optional[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , _a) for i, (row_id, row_dict) in enumerate(generate_fn()): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : List[Any] = spark.range(10).repartition(1) SCREAMING_SNAKE_CASE : Tuple = SparkExamplesIterable(_a) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_a): assert row_id == f"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : int = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : int = spark.range(30).repartition(3) # Mock the generator so that shuffle reverses the partition indices. with patch("numpy.random.Generator") as generator_mock: SCREAMING_SNAKE_CASE : int = lambda _a: x.reverse() SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [2, 1, 0]) SCREAMING_SNAKE_CASE : str = SparkExamplesIterable(_a).shuffle_data_sources(_a) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : Optional[Any] = spark.range(20).repartition(4) # Partitions 0 and 2 SCREAMING_SNAKE_CASE : int = SparkExamplesIterable(_a).shard_data_sources(worker_id=0 , num_workers=2) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : str = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [0, 2]) for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE : Any = SparkExamplesIterable(_a).shard_data_sources(worker_id=1 , num_workers=2) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_a , [1, 3]) for i, (row_id, row_dict) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def lowerCamelCase__ ( ): SCREAMING_SNAKE_CASE : str = pyspark.sql.SparkSession.builder.master("local[*]").appName("pyspark").getOrCreate() SCREAMING_SNAKE_CASE : List[str] = spark.range(100).repartition(1) SCREAMING_SNAKE_CASE : int = Spark(_a) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
25
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _A ( tf.keras.layers.Layer ): def __init__( self : Dict , __magic_name__ : Dict[str, int] , __magic_name__ : List[str] , __magic_name__ : int = None , __magic_name__ : int = None ) -> Optional[Any]: """simple docstring""" super().__init__() __snake_case : str = pad_token_id __snake_case : Tuple = max_length __snake_case : Dict = vocab __snake_case : Optional[Any] = merges __snake_case : Optional[Any] = BytePairTokenizer(__magic_name__ , __magic_name__ , sequence_length=__magic_name__ ) @classmethod def lowercase__ ( cls : int , __magic_name__ : GPTaTokenizer , *__magic_name__ : int , **__magic_name__ : int ) -> List[Any]: """simple docstring""" __snake_case : Union[str, Any] = [""" """.join(__magic_name__ ) for m in tokenizer.bpe_ranks.keys()] __snake_case : List[str] = tokenizer.get_vocab() return cls(__magic_name__ , __magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowercase__ ( cls : int , __magic_name__ : Union[str, os.PathLike] , *__magic_name__ : Dict , **__magic_name__ : str ) -> Optional[Any]: """simple docstring""" __snake_case : Optional[int] = GPTaTokenizer.from_pretrained(__magic_name__ , *__magic_name__ , **__magic_name__ ) return cls.from_tokenizer(__magic_name__ , *__magic_name__ , **__magic_name__ ) @classmethod def lowercase__ ( cls : Any , __magic_name__ : Dict ) -> List[Any]: """simple docstring""" return cls(**__magic_name__ ) def lowercase__ ( self : Optional[Any] ) -> str: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : int = None ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = self.tf_tokenizer(__magic_name__ ) __snake_case : Any = tf.ones_like(__magic_name__ ) if self.pad_token_id is not None: # pad the tokens up to max length __snake_case : Dict = max_length if max_length is not None else self.max_length if max_length is not None: __snake_case , __snake_case : Any = pad_model_inputs( __magic_name__ , max_seq_length=__magic_name__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
26
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class lowerCamelCase: '''simple docstring''' __magic_name__ = None def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) _A = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class() self.assertIsNotNone(snake_case_ )
27
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "Salesforce/codegen-350M-mono": 2_0_4_8, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = ['''input_ids''', '''attention_mask'''] A : Optional[int] = CodeGenTokenizer def __init__( self, A=None, A=None, A=None, A="<|endoftext|>", A="<|endoftext|>", A="<|endoftext|>", A=False, **A, ): '''simple docstring''' super().__init__( A, A, tokenizer_file=A, unk_token=A, bos_token=A, eos_token=A, add_prefix_space=A, **A, ) if kwargs.pop('add_bos_token', A ): SCREAMING_SNAKE_CASE : str = kwargs.pop('name_or_path', '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F"`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n" F"`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n" 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) SCREAMING_SNAKE_CASE : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space', A ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[int] = getattr(A, pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space SCREAMING_SNAKE_CASE : Optional[Any] = pre_tok_class(**A ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space def UpperCamelCase_ ( self, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('is_split_into_words', A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A, **A ) def UpperCamelCase_ ( self, *A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = kwargs.get('is_split_into_words', A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*A, **A ) def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self._tokenizer.model.save(A, name=A ) return tuple(A ) def UpperCamelCase_ ( self, A, A = False, A = None, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = super().decode( token_ids=A, skip_special_tokens=A, clean_up_tokenization_spaces=A, **A, ) if truncate_before_pattern is not None and len(A ) > 0: SCREAMING_SNAKE_CASE : List[str] = self.truncate(A, A ) return decoded_text def UpperCamelCase_ ( self, A, A ): '''simple docstring''' def find_re(A, A, A ): SCREAMING_SNAKE_CASE : Tuple = pattern.search(A, A ) return m.start() if m else -1 SCREAMING_SNAKE_CASE : List[Any] = [re.compile(A, re.MULTILINE ) for pattern in truncate_before_pattern] SCREAMING_SNAKE_CASE : str = list(re.finditer('^print', A, re.MULTILINE ) ) if len(A ) > 1: SCREAMING_SNAKE_CASE : Optional[Any] = completion[: prints[1].start()] SCREAMING_SNAKE_CASE : str = list(re.finditer('^def', A, re.MULTILINE ) ) if len(A ) > 1: SCREAMING_SNAKE_CASE : str = completion[: defs[1].start()] SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = [ pos for pos in [find_re(A, A, A ) for terminal in terminals] if pos != -1 ] if len(A ) > 0: return completion[: min(A )] else: return completion
28
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
"""simple docstring""" from math import ceil def lowercase ( lowerCAmelCase__ = 1_001 ): lowerCamelCase_ = 1 for i in range(1 ,int(ceil(n / 2.0 ) ) ): lowerCamelCase_ = 2 * i + 1 lowerCamelCase_ = 2 * i lowerCamelCase_ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
29
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a = logging.get_logger(__name__) __a = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class __a( _a , _a ): """simple docstring""" lowerCAmelCase = '''bit''' lowerCAmelCase = ['''preactivation''', '''bottleneck'''] lowerCAmelCase = ['''SAME''', '''VALID'''] def __init__( self ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=64 ,_SCREAMING_SNAKE_CASE=[256, 512, 1_024, 2_048] ,_SCREAMING_SNAKE_CASE=[3, 4, 6, 3] ,_SCREAMING_SNAKE_CASE="preactivation" ,_SCREAMING_SNAKE_CASE="relu" ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=0.0 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,**_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: super().__init__(**_SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: UpperCAmelCase_ : str = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Dict = embedding_size UpperCAmelCase_ : Union[str, Any] = hidden_sizes UpperCAmelCase_ : Optional[int] = depths UpperCAmelCase_ : Tuple = layer_type UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : int = global_padding UpperCAmelCase_ : Optional[int] = num_groups UpperCAmelCase_ : Dict = drop_path_rate UpperCAmelCase_ : List[Any] = embedding_dynamic_padding UpperCAmelCase_ : Optional[int] = output_stride UpperCAmelCase_ : int = width_factor UpperCAmelCase_ : Tuple = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 ,len(_SCREAMING_SNAKE_CASE ) + 1 )] UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE ,out_indices=_SCREAMING_SNAKE_CASE ,stage_names=self.stage_names )
30
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCamelCase__ : List[str] = 'platform' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Optional[Any]=None , ) -> Tuple: if attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase_ : '''simple docstring''' def __init__( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : int=13 , _lowerCAmelCase : str=7 , _lowerCAmelCase : Optional[Any]=True , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Dict=99 , _lowerCAmelCase : Tuple=16 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : int=4 , _lowerCAmelCase : int=4 , _lowerCAmelCase : str="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Tuple=0.1 , _lowerCAmelCase : Tuple=32 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[int]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Any=0.02 , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = seq_length SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = eos_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = initializer_range def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) SCREAMING_SNAKE_CASE_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = prepare_blenderbot_inputs_dict(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) def lowerCAmelCase_ ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ): SCREAMING_SNAKE_CASE_ = 20 SCREAMING_SNAKE_CASE_ = model_class_name(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) SCREAMING_SNAKE_CASE_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) SCREAMING_SNAKE_CASE_ = model.init_cache(decoder_input_ids.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, :-1] , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , past_key_values=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) SCREAMING_SNAKE_CASE_ = model.decode( decoder_input_ids[:, -1:] , _lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCAmelCase , decoder_position_ids=_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = model.decode(_lowerCAmelCase , _lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"Max diff is {diff}" ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' lowercase_ = 99 def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) SCREAMING_SNAKE_CASE_ = input_ids.shape[0] SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_config_and_data() SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): SCREAMING_SNAKE_CASE_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = lm_model(input_ids=_lowerCAmelCase , decoder_input_ids=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ = shift_tokens_right(_lowerCAmelCase , 1 , 2 ) SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE_ = np.equal(_lowerCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True lowercase_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowercase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ = FlaxBlenderbotModelTester(self ) def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) @jax.jit def encode_jitted(_lowerCAmelCase : str , _lowerCAmelCase : Optional[Any]=None , **_lowerCAmelCase : str ): return model.encode(input_ids=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = encode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) SCREAMING_SNAKE_CASE_ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict ): return model.decode( decoder_input_ids=_lowerCAmelCase , decoder_attention_mask=_lowerCAmelCase , encoder_outputs=_lowerCAmelCase , ) with self.subTest('JIT Enabled' ): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE_ = decode_jitted(**_lowerCAmelCase ).to_tuple() self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for jitted_output, output in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE_ = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE_ = model(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} SCREAMING_SNAKE_CASE_ = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} SCREAMING_SNAKE_CASE_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) SCREAMING_SNAKE_CASE_ = ['Sam'] SCREAMING_SNAKE_CASE_ = tokenizer(_lowerCAmelCase , return_tensors='jax' ) SCREAMING_SNAKE_CASE_ = model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = 'Sam is a great name. It means "sun" in Gaelic.' SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(_lowerCAmelCase , **_lowerCAmelCase ) assert generated_txt[0].strip() == tgt_text
31
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": 5_12, "facebook/dpr-ctx_encoder-multiset-base": 5_12, } UpperCAmelCase_ = { "facebook/dpr-question_encoder-single-nq-base": 5_12, "facebook/dpr-question_encoder-multiset-base": 5_12, } UpperCAmelCase_ = { "facebook/dpr-reader-single-nq-base": 5_12, "facebook/dpr-reader-multiset-base": 5_12, } UpperCAmelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase_ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCAmelCase_ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __UpperCamelCase ( A__ ): __A : Optional[int] = VOCAB_FILES_NAMES __A : int = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[int] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class __UpperCamelCase ( A__ ): __A : Dict = VOCAB_FILES_NAMES __A : List[str] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP __A : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : str = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCAmelCase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCAmelCase_ = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(A__ ) class __UpperCamelCase : def __call__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ): if titles is None and texts is None: return super().__call__( _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) elif titles is None or texts is None: _UpperCAmelCase = titles if texts is None else texts return super().__call__( _UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase , return_attention_mask=_UpperCamelCase , **_UpperCamelCase , ) _UpperCAmelCase = titles if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [titles] _UpperCAmelCase = texts if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [texts] _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = questions if not isinstance(_UpperCamelCase , _UpperCamelCase ) else [questions] * n_passages if len(_UpperCamelCase ) != len(_UpperCamelCase ): raise ValueError( f'''There should be as many titles than texts but got {len(_UpperCamelCase )} titles and {len(_UpperCamelCase )} texts.''' ) _UpperCAmelCase = super().__call__(_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids'''] _UpperCAmelCase = super().__call__(_UpperCamelCase , add_special_tokens=_UpperCamelCase , padding=_UpperCamelCase , truncation=_UpperCamelCase )['''input_ids'''] _UpperCAmelCase = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCamelCase , _UpperCamelCase ) ] } if return_attention_mask is not False: _UpperCAmelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _UpperCAmelCase = attention_mask return self.pad(_UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , return_tensors=_UpperCamelCase ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 16 , _UpperCamelCase = 64 , _UpperCamelCase = 4 , ): _UpperCAmelCase = reader_input['''input_ids'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = reader_output[:3] _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = sorted(range(_UpperCamelCase ) , reverse=_UpperCamelCase , key=relevance_logits.__getitem__ ) _UpperCAmelCase = [] for doc_id in sorted_docs: _UpperCAmelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _UpperCAmelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _UpperCAmelCase = sequence_ids.index(self.pad_token_id ) else: _UpperCAmelCase = len(_UpperCamelCase ) _UpperCAmelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCamelCase , top_spans=_UpperCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCamelCase , start_index=_UpperCamelCase , end_index=_UpperCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): _UpperCAmelCase = [] for start_index, start_score in enumerate(_UpperCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _UpperCAmelCase = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : x[1] , reverse=_UpperCamelCase ) _UpperCAmelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) _UpperCAmelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(A__ ) class __UpperCamelCase ( A__ , A__ ): __A : Dict = VOCAB_FILES_NAMES __A : Dict = READER_PRETRAINED_VOCAB_FILES_MAP __A : int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Optional[Any] = READER_PRETRAINED_INIT_CONFIGURATION __A : Tuple = ["""input_ids""", """attention_mask"""]
32
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = """▁""" lowerCamelCase__ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase__ : Union[str, Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } lowerCamelCase__ : List[Any] = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off lowerCamelCase__ : List[str] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = ['input_ids', 'attention_mask'] __lowercase : List[int] = [] __lowercase : List[int] = [] def __init__( self:List[Any] , _a:int , _a:Optional[int]="<s>" , _a:Any="</s>" , _a:int="</s>" , _a:str="<s>" , _a:Tuple="<unk>" , _a:Any="<pad>" , _a:str="<mask>" , _a:str=None , _a:Union[str, Any]=None , _a:List[Any]=None , _a:Optional[Dict[str, Any]] = None , _a:Any=None , _a:str=False , **_a:Tuple , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case__ = legacy_behaviour super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , tokenizer_file=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_a , **_a , ) snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) snake_case__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ = 1 snake_case__ = len(self.sp_model ) snake_case__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_a ) } snake_case__ = {v: k for k, v in self.lang_code_to_id.items()} snake_case__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case__ = src_lang if src_lang is not None else '''eng_Latn''' snake_case__ = self.lang_code_to_id[self._src_lang] snake_case__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self:Optional[Any] ): snake_case__ = self.__dict__.copy() snake_case__ = None snake_case__ = self.sp_model.serialized_model_proto() return state def __setstate__( self:int , _a:List[Any] ): snake_case__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE__ ( self:str ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ): snake_case__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) snake_case__ = [1] * len(self.prefix_tokens ) snake_case__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[int] , _a:Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:str , _a:Optional[str] , _a:Optional[str] , **_a:List[str] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) snake_case__ = src_lang snake_case__ = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) snake_case__ = self.convert_tokens_to_ids(_a ) snake_case__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:str ): return self.sp_model.encode(_a , out_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Any ): snake_case__ = ''''''.join(_a ).replace(_a , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[str] , _a:str = "eng_Latn" , _a:Optional[List[str]] = None , _a:str = "fra_Latn" , **_a:Union[str, Any] , ): snake_case__ = src_lang snake_case__ = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self:int ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): snake_case__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str ): snake_case__ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id]
33
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = '''unispeech-sat''' def __init__( self , lowerCamelCase_=3_2 , lowerCamelCase_=7_6_8 , lowerCamelCase_=1_2 , lowerCamelCase_=1_2 , lowerCamelCase_=3_0_7_2 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-5 , lowerCamelCase_="group" , lowerCamelCase_="gelu" , lowerCamelCase_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCamelCase_=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase_=(1_0, 3, 3, 3, 3, 2, 2) , lowerCamelCase_=False , lowerCamelCase_=1_2_8 , lowerCamelCase_=1_6 , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=0.05 , lowerCamelCase_=1_0 , lowerCamelCase_=2 , lowerCamelCase_=0.0 , lowerCamelCase_=1_0 , lowerCamelCase_=0 , lowerCamelCase_=3_2_0 , lowerCamelCase_=2 , lowerCamelCase_=0.1 , lowerCamelCase_=1_0_0 , lowerCamelCase_=2_5_6 , lowerCamelCase_=2_5_6 , lowerCamelCase_=0.1 , lowerCamelCase_="mean" , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=2_5_6 , lowerCamelCase_=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , lowerCamelCase_=(5, 3, 3, 1, 1) , lowerCamelCase_=(1, 2, 3, 1, 1) , lowerCamelCase_=5_1_2 , lowerCamelCase_=0 , lowerCamelCase_=1 , lowerCamelCase_=2 , lowerCamelCase_=5_0_4 , **lowerCamelCase_ , ) -> List[Any]: super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = list(lowerCamelCase_) UpperCamelCase = xvector_output_dim @property def UpperCAmelCase__ ( self) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1)
34
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
from __future__ import annotations def a ( A__ ) -> bool: '''simple docstring''' if len(A__ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) SCREAMING_SNAKE_CASE__ : List[str] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
35
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] = logging.get_logger(__name__) class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : List[str] = '''timm_backbone''' def __init__( self ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=True ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = backbone snake_case : Dict = num_channels snake_case : Optional[int] = features_only snake_case : Any = use_pretrained_backbone snake_case : Union[str, Any] = True snake_case : Optional[int] = out_indices if out_indices is not None else (-1,)
36
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
def UpperCamelCase_ ( __a , __a = False ) -> bool: if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_317_044_064_679_887_385_961_981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis a__ : Dict = [ 2_047, 1_373_653, 25_326_001, 3_215_031_751, 2_152_302_898_747, 3_474_749_660_383, 341_550_071_728_321, 1, 3_825_123_056_546_413_051, 1, 1, 318_665_857_834_031_151_167_461, 3_317_044_064_679_887_385_961_981, ] a__ : Dict = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__a , 1 ): if n < _p: # then we have our last prime to check a__ : Any = primes[:idx] break a__, a__ : List[str] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: a__ : List[str] = False for r in range(__a ): a__ : List[str] = pow(__a , d * 2**r , __a ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): a__ : Union[str, Any] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def UpperCamelCase_ ( ) -> None: assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838_201 ) assert miller_rabin(838_207 ) # 1_373_653 assert not miller_rabin(17_316_001 ) assert miller_rabin(17_316_017 ) # 25_326_001 assert not miller_rabin(3_078_386_641 ) assert miller_rabin(3_078_386_653 ) # 3_215_031_751 assert not miller_rabin(1_713_045_574_801 ) assert miller_rabin(1_713_045_574_819 ) # 2_152_302_898_747 assert not miller_rabin(2_779_799_728_307 ) assert miller_rabin(2_779_799_728_327 ) # 3_474_749_660_383 assert not miller_rabin(113_850_023_909_441 ) assert miller_rabin(113_850_023_909_527 ) # 341_550_071_728_321 assert not miller_rabin(1_275_041_018_848_804_351 ) assert miller_rabin(1_275_041_018_848_804_391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79_666_464_458_507_787_791_867 ) assert miller_rabin(79_666_464_458_507_787_791_951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552_840_677_446_647_897_660_333 ) assert miller_rabin(552_840_677_446_647_897_660_359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
37
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): super().__init__( features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE , streaming=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Tuple = Generator( cache_dir=__SCREAMING_SNAKE_CASE , features=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , gen_kwargs=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self ): # Build iterable dataset if self.streaming: snake_case__ : Dict = self.builder.as_streaming_dataset(split="""train""" ) # Build regular (map-style) dataset else: snake_case__ : Optional[Any] = None snake_case__ : List[Any] = None snake_case__ : Dict = None snake_case__ : int = None self.builder.download_and_prepare( download_config=__SCREAMING_SNAKE_CASE , download_mode=__SCREAMING_SNAKE_CASE , verification_mode=__SCREAMING_SNAKE_CASE , base_path=__SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) snake_case__ : Optional[int] = self.builder.as_dataset( split="""train""" , verification_mode=__SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset
38
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = "dpt" def __init__( self : Optional[Any] , _UpperCamelCase : Tuple=7_6_8 , _UpperCamelCase : Dict=1_2 , _UpperCamelCase : Union[str, Any]=1_2 , _UpperCamelCase : List[Any]=3_0_7_2 , _UpperCamelCase : Dict="gelu" , _UpperCamelCase : Union[str, Any]=0.0 , _UpperCamelCase : Optional[int]=0.0 , _UpperCamelCase : Optional[int]=0.02 , _UpperCamelCase : List[str]=1e-12 , _UpperCamelCase : Any=3_8_4 , _UpperCamelCase : int=1_6 , _UpperCamelCase : Any=3 , _UpperCamelCase : Dict=False , _UpperCamelCase : str=True , _UpperCamelCase : Union[str, Any]=[2, 5, 8, 1_1] , _UpperCamelCase : List[str]="project" , _UpperCamelCase : Optional[int]=[4, 2, 1, 0.5] , _UpperCamelCase : Dict=[9_6, 1_9_2, 3_8_4, 7_6_8] , _UpperCamelCase : Dict=2_5_6 , _UpperCamelCase : Optional[Any]=-1 , _UpperCamelCase : int=False , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : str=0.4 , _UpperCamelCase : Tuple=2_5_5 , _UpperCamelCase : Union[str, Any]=0.1 , _UpperCamelCase : Tuple=[1, 1_0_2_4, 2_4, 2_4] , _UpperCamelCase : List[str]=[0, 1] , _UpperCamelCase : List[Any]=None , **_UpperCamelCase : Dict , ) ->Any: super().__init__(**_UpperCamelCase ) snake_case_ = hidden_size snake_case_ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): logger.info('''Initializing the config with a `BiT` backbone.''' ) snake_case_ = BitConfig(**_UpperCamelCase ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) snake_case_ = backbone_featmap_shape snake_case_ = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: snake_case_ = None snake_case_ = None snake_case_ = [] snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias snake_case_ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) snake_case_ = readout_type snake_case_ = reassemble_factors snake_case_ = neck_hidden_sizes snake_case_ = fusion_hidden_size snake_case_ = head_in_index snake_case_ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = semantic_loss_ignore_index snake_case_ = semantic_classifier_dropout def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
39
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[str] = "dinat" UpperCAmelCase__ : List[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=64, SCREAMING_SNAKE_CASE_=[3, 4, 6, 5], SCREAMING_SNAKE_CASE_=[2, 4, 8, 16], SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]], SCREAMING_SNAKE_CASE_=3.0, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.0, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_=None, **SCREAMING_SNAKE_CASE_, ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = patch_size UpperCamelCase : Optional[Any] = num_channels UpperCamelCase : List[str] = embed_dim UpperCamelCase : List[Any] = depths UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = num_heads UpperCamelCase : str = kernel_size UpperCamelCase : str = dilations UpperCamelCase : Union[str, Any] = mlp_ratio UpperCamelCase : Any = qkv_bias UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : List[str] = drop_path_rate UpperCamelCase : int = hidden_act UpperCamelCase : str = layer_norm_eps UpperCamelCase : List[str] = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase : Optional[Any] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) ) UpperCamelCase : Optional[int] = layer_scale_init_value UpperCamelCase : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1, len(SCREAMING_SNAKE_CASE_ ) + 1 )] UpperCamelCase , UpperCamelCase : Optional[Any] = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_, out_indices=SCREAMING_SNAKE_CASE_, stage_names=self.stage_names )
40
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 'switch_transformers' SCREAMING_SNAKE_CASE : Union[str, Any] = ['past_key_values'] SCREAMING_SNAKE_CASE : Tuple = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Optional[Any] ,lowercase__ : Tuple=3_2_1_2_8 ,lowercase__ : str=7_6_8 ,lowercase__ : Any=6_4 ,lowercase__ : List[str]=2_0_4_8 ,lowercase__ : Union[str, Any]=6_4 ,lowercase__ : List[str]=1_2 ,lowercase__ : List[Any]=3 ,lowercase__ : str=1_2 ,lowercase__ : Optional[int]=3 ,lowercase__ : Union[str, Any]=1_2 ,lowercase__ : Any=8 ,lowercase__ : List[str]=False ,lowercase__ : Any=0.0_1 ,lowercase__ : str="float32" ,lowercase__ : List[str]=False ,lowercase__ : int=3_2 ,lowercase__ : str=1_2_8 ,lowercase__ : List[str]=0.1 ,lowercase__ : Dict=1e-6 ,lowercase__ : Dict=0.0_0_1 ,lowercase__ : Union[str, Any]=0.0_0_1 ,lowercase__ : Optional[Any]=1.0 ,lowercase__ : int="relu" ,lowercase__ : Any=True ,lowercase__ : int=False ,lowercase__ : List[Any]=True ,lowercase__ : Optional[Any]=0 ,lowercase__ : Union[str, Any]=1 ,**lowercase__ : List[Any] ,): __lowercase = vocab_size __lowercase = d_model __lowercase = d_kv __lowercase = d_ff __lowercase = num_sparse_encoder_layers __lowercase = num_layers __lowercase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowercase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowercase = self.num_layers // self.num_sparse_encoder_layers else: __lowercase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowercase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowercase = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowercase = num_heads __lowercase = num_experts __lowercase = expert_capacity __lowercase = router_bias __lowercase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase = router_dtype __lowercase = router_ignore_padding_tokens __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = feed_forward_proj __lowercase = use_cache __lowercase = add_router_probs __lowercase = router_z_loss_coef __lowercase = router_aux_loss_coef __lowercase = self.feed_forward_proj.split('''-''' ) __lowercase = act_info[-1] __lowercase = act_info[0] == '''gated''' if len(lowercase__ ) > 1 and act_info[0] != "gated" or len(lowercase__ ) > 2: raise ValueError( F"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowercase = '''gelu_new''' super().__init__( pad_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,**lowercase__ ,)
41
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> int: assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[str]: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> str: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} lowerCamelCase_ = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} lowerCamelCase_ = features.copy() lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> List[Any]: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,split=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' ,[str, list] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: if issubclass(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = jsonl_path elif issubclass(__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = [jsonl_path] lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_dataset(__UpperCamelCase ,__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=("train",) ) -> Optional[int]: assert isinstance(__UpperCamelCase ,__UpperCamelCase ) for split in splits: lowerCamelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] ) def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: if split: lowerCamelCase_ = {split: jsonl_path} else: lowerCamelCase_ = 'train' lowerCamelCase_ = {'train': jsonl_path, 'test': jsonl_path} lowerCamelCase_ = tmp_path / 'cache' lowerCamelCase_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} lowerCamelCase_ = JsonDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_json_datasetdict(__UpperCamelCase ,__UpperCamelCase ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCamelCase ( __UpperCamelCase ) -> Union[str, Any]: return json.load(__UpperCamelCase ) def _UpperCamelCase ( __UpperCamelCase ) -> List[str]: return [json.loads(__UpperCamelCase ) for line in buffer] class UpperCAmelCase : '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE_ ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert isinstance(exported_content[0] , SCREAMING_SNAKE_CASE_ ) assert len(SCREAMING_SNAKE_CASE_ ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(SCREAMING_SNAKE_CASE_ ) assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(SCREAMING_SNAKE_CASE_ , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(SCREAMING_SNAKE_CASE_ ) == 10 def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): with io.BytesIO() as buffer: JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / f'''test.json.{extension}''' lowerCamelCase_ = str(shared_datadir / f'''test_file.json.{extension}''' ) JsonDatasetWriter(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , compression=SCREAMING_SNAKE_CASE_ ).write() with fsspec.open(SCREAMING_SNAKE_CASE_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() with fsspec.open(SCREAMING_SNAKE_CASE_ , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() assert exported_content == original_content
42
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowercase__ = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowercase__ = '''''' else: lowercase__ = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowercase__ = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[ : config.hidden_size, : ] lowercase__ = in_proj_bias[: config.hidden_size] lowercase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ = in_proj_weight[ -config.hidden_size :, : ] lowercase__ = in_proj_bias[-config.hidden_size :] def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = dct.pop(SCREAMING_SNAKE_CASE ) lowercase__ = val def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): """simple docstring""" lowercase__ = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=SCREAMING_SNAKE_CASE , ) lowercase__ = ViTHybridConfig(backbone_config=SCREAMING_SNAKE_CASE , image_size=3_84 , num_labels=10_00 ) lowercase__ = False # load original model from timm lowercase__ = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ = timm_model.state_dict() if base_model: remove_classification_head_(SCREAMING_SNAKE_CASE ) lowercase__ = create_rename_keys(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) read_in_q_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = '''huggingface/label-files''' lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": lowercase__ = ViTHybridModel(SCREAMING_SNAKE_CASE ).eval() else: lowercase__ = ViTHybridForImageClassification(SCREAMING_SNAKE_CASE ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # create image processor lowercase__ = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE ) ) lowercase__ = transform.transforms lowercase__ = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } lowercase__ = ViTHybridImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowercase__ = prepare_img() lowercase__ = transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowercase__ = processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: lowercase__ = timm_model.forward_features(SCREAMING_SNAKE_CASE ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.pooler_output , atol=1E-3 ) else: lowercase__ = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(f'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(f'ybelkada/{vit_name}' ) processor.push_to_hub(f'ybelkada/{vit_name}' ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) lowerCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
43
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase_ : Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase_ : Union[str, Any] = [0, 25, 50] UpperCAmelCase_ : int = [25, 50, 75] UpperCAmelCase_ : Dict = fuzz.membership.trimf(X, abca) UpperCAmelCase_ : Union[str, Any] = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase_ : Optional[int] = np.ones(75) UpperCAmelCase_ : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase_ : int = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase_ : List[Any] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase_ : Optional[int] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase_ : Any = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase_ : str = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase_ : str = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase_ : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase_ : List[Any] = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title('Young') plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title('Middle aged') plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title('union') plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title('intersection') plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title('complement_a') plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title('difference a/b') plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title('alg_sum') plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title('alg_product') plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title('bdd_sum') plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title('bdd_difference') plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
44
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :Union[str, Any] , ): UpperCamelCase__ :Tuple = parent UpperCamelCase__ :str = 13 UpperCamelCase__ :Union[str, Any] = 7 UpperCamelCase__ :List[Any] = 30 UpperCamelCase__ :int = self.seq_length + self.mem_len UpperCamelCase__ :Tuple = 15 UpperCamelCase__ :int = True UpperCamelCase__ :int = True UpperCamelCase__ :Union[str, Any] = 99 UpperCamelCase__ :Any = [10, 50, 80] UpperCamelCase__ :List[str] = 32 UpperCamelCase__ :Optional[Any] = 32 UpperCamelCase__ :int = 4 UpperCamelCase__ :Optional[int] = 8 UpperCamelCase__ :Tuple = 1_28 UpperCamelCase__ :List[Any] = 2 UpperCamelCase__ :Optional[int] = 2 UpperCamelCase__ :Dict = None UpperCamelCase__ :List[Any] = 1 UpperCamelCase__ :Any = 0 UpperCamelCase__ :List[str] = 3 UpperCamelCase__ :Any = self.vocab_size - 1 UpperCamelCase__ :Optional[int] = 0.01 def __a ( self :Optional[Any] ): UpperCamelCase__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :Any = None if self.use_labels: UpperCamelCase__ :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ :int = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __a ( self :Optional[int] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __a ( self :Dict , lowerCamelCase__ :str , lowerCamelCase__ :Tuple , lowerCamelCase__ :Any , lowerCamelCase__ :Optional[int] ): UpperCamelCase__ :Any = TFTransfoXLModel(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :List[str] = model(lowerCamelCase__ ).to_tuple() UpperCamelCase__ :int = {"""input_ids""": input_ids_a, """mems""": mems_a} UpperCamelCase__ , UpperCamelCase__ :str = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __a ( self :Any , lowerCamelCase__ :Tuple , lowerCamelCase__ :Tuple , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict ): UpperCamelCase__ :Union[str, Any] = TFTransfoXLLMHeadModel(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ :str = model(lowerCamelCase__ ).to_tuple() UpperCamelCase__ :Tuple = {"""input_ids""": input_ids_a, """labels""": lm_labels} UpperCamelCase__ , UpperCamelCase__ :Any = model(lowerCamelCase__ ).to_tuple() UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() UpperCamelCase__ :str = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __a ( self :Optional[int] , lowerCamelCase__ :Dict , lowerCamelCase__ :int , lowerCamelCase__ :int , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :Union[str, Any] = TFTransfoXLForSequenceClassification(lowerCamelCase__ ) UpperCamelCase__ :Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self :List[Any] ): UpperCamelCase__ :Dict = self.prepare_config_and_inputs() ((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) :int = config_and_inputs UpperCamelCase__ :List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase_ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : str = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _snake_case : List[str] = () if is_tf_available() else () _snake_case : List[str] = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _snake_case : Optional[Any] = False _snake_case : Any = False _snake_case : Tuple = False _snake_case : List[Any] = False def __a ( self :Dict , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :Optional[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :str ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __a ( self :List[str] ): UpperCamelCase__ :Any = TFTransfoXLModelTester(self ) UpperCamelCase__ :Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , d_embed=37 ) def __a ( self :str ): self.config_tester.run_common_tests() def __a ( self :List[str] ): self.model_tester.set_seed() UpperCamelCase__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase__ ) def __a ( self :str ): self.model_tester.set_seed() UpperCamelCase__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase__ ) def __a ( self :List[Any] ): UpperCamelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase__ ) def __a ( self :Dict ): UpperCamelCase__ , UpperCamelCase__ :str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ :int = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCamelCase__ :Dict = model_class(lowerCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCamelCase__ :Optional[Any] = model.get_output_embeddings() assert isinstance(lowerCamelCase__ , tf.keras.layers.Layer ) UpperCamelCase__ :List[Any] = model.get_bias() assert name is None else: UpperCamelCase__ :Union[str, Any] = model.get_output_embeddings() assert x is None UpperCamelCase__ :int = model.get_bias() assert name is None def __a ( self :int ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __a ( self :int ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ :str = TFTransfoXLModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __a ( self :Union[str, Any] ): pass @require_tf class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __a ( self :str ): UpperCamelCase__ :int = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off UpperCamelCase__ :Union[str, Any] = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCamelCase__ :Tuple = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCamelCase__ :str = model.generate(lowerCamelCase__ , max_length=2_00 , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ )
45
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : Union[str, Any] = { '''microsoft/unispeech-sat-base-100h-libri-ft''': ( '''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json''' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class A_ ( _a ): lowerCAmelCase__ = 'unispeech-sat' def __init__( self: List[str] ,__lowerCAmelCase: Any=32 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Any=12 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: str=0.0 ,__lowerCAmelCase: int=0.0 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.02 ,__lowerCAmelCase: Tuple=1e-5 ,__lowerCAmelCase: Tuple="group" ,__lowerCAmelCase: Optional[Any]="gelu" ,__lowerCAmelCase: List[Any]=(512, 512, 512, 512, 512, 512, 512) ,__lowerCAmelCase: Dict=(5, 2, 2, 2, 2, 2, 2) ,__lowerCAmelCase: Any=(10, 3, 3, 3, 3, 2, 2) ,__lowerCAmelCase: int=False ,__lowerCAmelCase: Union[str, Any]=128 ,__lowerCAmelCase: Optional[Any]=16 ,__lowerCAmelCase: Any=False ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Optional[int]=0.05 ,__lowerCAmelCase: str=10 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: Optional[int]=0.0 ,__lowerCAmelCase: Dict=10 ,__lowerCAmelCase: Dict=0 ,__lowerCAmelCase: int=320 ,__lowerCAmelCase: List[str]=2 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Any=100 ,__lowerCAmelCase: List[Any]=256 ,__lowerCAmelCase: Any=256 ,__lowerCAmelCase: Optional[int]=0.1 ,__lowerCAmelCase: List[str]="mean" ,__lowerCAmelCase: str=False ,__lowerCAmelCase: Optional[Any]=False ,__lowerCAmelCase: Any=256 ,__lowerCAmelCase: Optional[int]=(512, 512, 512, 512, 1_500) ,__lowerCAmelCase: Optional[Any]=(5, 3, 3, 1, 1) ,__lowerCAmelCase: Optional[Any]=(1, 2, 3, 1, 1) ,__lowerCAmelCase: Dict=512 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Optional[int]=504 ,**__lowerCAmelCase: Optional[Any] ,): '''simple docstring''' super().__init__(**__lowerCAmelCase ,pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : str = feat_extract_norm _lowerCamelCase : int = feat_extract_activation _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[Any] = list(__lowerCAmelCase ) _lowerCamelCase : str = list(__lowerCAmelCase ) _lowerCamelCase : Dict = conv_bias _lowerCamelCase : List[Any] = num_conv_pos_embeddings _lowerCamelCase : int = num_conv_pos_embedding_groups _lowerCamelCase : List[Any] = len(self.conv_dim ) _lowerCamelCase : List[str] = num_hidden_layers _lowerCamelCase : Dict = intermediate_size _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : List[Any] = hidden_dropout _lowerCamelCase : int = attention_dropout _lowerCamelCase : List[Any] = activation_dropout _lowerCamelCase : Union[str, Any] = feat_proj_dropout _lowerCamelCase : List[Any] = final_dropout _lowerCamelCase : Union[str, Any] = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : Any = vocab_size _lowerCamelCase : Any = num_clusters _lowerCamelCase : int = do_stable_layer_norm _lowerCamelCase : Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : List[Any] = apply_spec_augment _lowerCamelCase : List[str] = mask_time_prob _lowerCamelCase : Optional[int] = mask_time_length _lowerCamelCase : str = mask_time_min_masks _lowerCamelCase : Optional[int] = mask_feature_prob _lowerCamelCase : Any = mask_feature_length _lowerCamelCase : Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : int = num_codevectors_per_group _lowerCamelCase : List[Any] = num_codevector_groups _lowerCamelCase : List[str] = contrastive_logits_temperature _lowerCamelCase : List[Any] = feat_quantizer_dropout _lowerCamelCase : List[Any] = num_negatives _lowerCamelCase : Dict = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : int = diversity_loss_weight # ctc loss _lowerCamelCase : Tuple = ctc_loss_reduction _lowerCamelCase : List[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCamelCase : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = list(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = xvector_output_dim @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
46
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''vinvino02/glpn-kitti''': '''https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json''', # See all GLPN models at https://huggingface.co/models?filter=glpn } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = '''glpn''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : List[Any]=[8, 4, 2, 1] , SCREAMING_SNAKE_CASE__ : str=[3_2, 6_4, 1_6_0, 2_5_6] , SCREAMING_SNAKE_CASE__ : Dict=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE__ : Tuple=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[1, 2, 5, 8] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[4, 4, 4, 4] , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.02 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-6 , SCREAMING_SNAKE_CASE__ : int=6_4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1_0 , SCREAMING_SNAKE_CASE__ : Any=-1 , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a : List[str] = num_channels __a : Dict = num_encoder_blocks __a : List[str] = depths __a : Optional[int] = sr_ratios __a : int = hidden_sizes __a : str = patch_sizes __a : Union[str, Any] = strides __a : str = mlp_ratios __a : Optional[int] = num_attention_heads __a : List[Any] = hidden_act __a : Any = hidden_dropout_prob __a : List[Any] = attention_probs_dropout_prob __a : str = initializer_range __a : int = drop_path_rate __a : int = layer_norm_eps __a : Optional[Any] = decoder_hidden_size __a : Dict = max_depth __a : Union[str, Any] = head_in_index
47
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType UpperCAmelCase__ : List[str] = logging.get_logger(__name__) UpperCAmelCase__ : Optional[Any] = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :int = 'deberta-v2' def __init__( self : Tuple , __magic_name__ : List[Any]=128100 , __magic_name__ : Tuple=1536 , __magic_name__ : int=24 , __magic_name__ : List[Any]=24 , __magic_name__ : Dict=6144 , __magic_name__ : Union[str, Any]="gelu" , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Tuple=512 , __magic_name__ : Dict=0 , __magic_name__ : Optional[int]=0.02 , __magic_name__ : Union[str, Any]=1E-7 , __magic_name__ : str=False , __magic_name__ : Any=-1 , __magic_name__ : List[str]=0 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Tuple=None , __magic_name__ : Any=0 , __magic_name__ : Optional[int]="gelu" , **__magic_name__ : int , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = relative_attention lowerCAmelCase__ = max_relative_positions lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = position_biased_input # Backwards compatibility if type(__magic_name__ ) == str: lowerCAmelCase__ = [x.strip() for x in pos_att_type.lower().split("|" )] lowerCAmelCase__ = pos_att_type lowerCAmelCase__ = vocab_size lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = kwargs.get("pooler_hidden_size" , __magic_name__ ) lowerCAmelCase__ = pooler_dropout lowerCAmelCase__ = pooler_hidden_act class A ( SCREAMING_SNAKE_CASE__ ): @property def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase__ = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase__ = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)] ) @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return 12 def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : int = -1 , __magic_name__ : bool = False , __magic_name__ : Optional["TensorType"] = None , __magic_name__ : int = 3 , __magic_name__ : int = 40 , __magic_name__ : int = 40 , __magic_name__ : "PreTrainedTokenizerBase" = None , ): """simple docstring""" lowerCAmelCase__ = super().generate_dummy_inputs(preprocessor=__magic_name__ , framework=__magic_name__ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
48
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowercase : str = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowercase : Any = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowercase : int = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = len([g for position, g in enumerate(snake_case_ ) if g == main_target[position]] ) return (item, float(snake_case_ )) def lowercase__ ( snake_case_ :str , snake_case_ :str ): __UpperCAmelCase = random.randint(0 , len(snake_case_ ) - 1 ) __UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] __UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__ ( snake_case_ :str , snake_case_ :list[str] ): __UpperCAmelCase = list(snake_case_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __UpperCAmelCase = random.choice(snake_case_ ) return "".join(snake_case_ ) def lowercase__ ( snake_case_ :tuple[str, float] , snake_case_ :list[tuple[str, float]] , snake_case_ :list[str] , ): __UpperCAmelCase = [] # Generate more children proportionally to the fitness score. __UpperCAmelCase = int(parent_a[1] * 100 ) + 1 __UpperCAmelCase = 10 if child_n >= 10 else child_n for _ in range(snake_case_ ): __UpperCAmelCase = population_score[random.randint(0 , snake_case_ )][0] __UpperCAmelCase , __UpperCAmelCase = crossover(parent_a[0] , snake_case_ ) # Append new string to the population list. pop.append(mutate(snake_case_ , snake_case_ ) ) pop.append(mutate(snake_case_ , snake_case_ ) ) return pop def lowercase__ ( snake_case_ :str , snake_case_ :list[str] , snake_case_ :bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __UpperCAmelCase = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(snake_case_ ) # Verify that the target contains no genes besides the ones inside genes variable. __UpperCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __UpperCAmelCase = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(snake_case_ ) # Generate random starting population. __UpperCAmelCase = [] for _ in range(snake_case_ ): population.append(''''''.join([random.choice(snake_case_ ) for i in range(len(snake_case_ ) )] ) ) # Just some logs to know what the algorithms is doing. __UpperCAmelCase , __UpperCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(snake_case_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __UpperCAmelCase = [evaluate(snake_case_ , snake_case_ ) for item in population] # Check if there is a matching evolution. __UpperCAmelCase = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __UpperCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(snake_case_ ) # Normalize population score to be between 0 and 1. __UpperCAmelCase = [ (item, score / len(snake_case_ )) for item, score in population_score ] # This is selection for i in range(snake_case_ ): population.extend(select(population_score[int(snake_case_ )] , snake_case_ , snake_case_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(snake_case_ ) > N_POPULATION: break if __name__ == "__main__": _lowercase : Optional[int] = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _lowercase : Union[str, Any] = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) _lowercase ,_lowercase ,_lowercase : Optional[int] = basic(target_str, genes_list) print( f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
49
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
'''simple docstring''' def A__ ( __lowerCAmelCase : int = 100_0000 ): lowerCamelCase__ = limit + 1 lowerCamelCase__ = [0] * limit for first_term in range(1 , __lowerCAmelCase ): for n in range(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCamelCase__ = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'{solution() = }')
50
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =VideoToVideoSDPipeline _lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} _lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} _lowerCamelCase =PipelineTesterMixin.required_optional_params - {"latents"} _lowerCamelCase =False # No `output_type`. _lowerCamelCase =frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def __snake_case ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=a__ , set_alpha_to_one=a__ , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase = CLIPTextModel(a__ ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __snake_case ( self : Any , a__ : int , a__ : int=0 ): # 3 frames UpperCAmelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def __snake_case ( self : Dict ): UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = VideoToVideoSDPipeline(**a__ ) UpperCAmelCase = sd_pipe.to(a__ ) sd_pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = '''np''' UpperCAmelCase = sd_pipe(**a__ ).frames UpperCAmelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCAmelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __snake_case ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a__ , expected_max_diff=5e-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __snake_case ( self : List[str] ): pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def __snake_case ( self : Any ): pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def __snake_case ( self : str ): pass def __snake_case ( self : List[str] ): return super().test_progress_bar() @slow @skip_mps class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : List[str] ): UpperCAmelCase = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = torch.randn((1, 10, 3, 1024, 576) , generator=a__ ) UpperCAmelCase = video.to('''cuda''' ) UpperCAmelCase = '''Spiderman is surfing''' UpperCAmelCase = pipe(a__ , video=a__ , generator=a__ , num_inference_steps=3 , output_type='''pt''' ).frames UpperCAmelCase = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
51
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __A ( a_ :str) -> List[Any]: def decorator(a_ :List[Any]): __a : List[str] = getattr(a_ , '''handle_key''' , []) handle += [key] setattr(a_ , '''handle_key''' , a_) return func return decorator def __A ( *a_ :List[str]) -> Optional[int]: def decorator(a_ :int): __a : Tuple = getattr(a_ , '''handle_key''' , []) handle += keys setattr(a_ , '''handle_key''' , a_) return func return decorator class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __new__( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Tuple = super().__new__(cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not hasattr(_UpperCAmelCase , '''key_handler''' ): setattr(_UpperCAmelCase , '''key_handler''' , {} ) setattr(_UpperCAmelCase , '''handle_input''' , KeyHandler.handle_input ) for value in attrs.values(): __a : Dict = getattr(_UpperCAmelCase , '''handle_key''' , [] ) for key in handled_keys: __a : Union[str, Any] = value return new_cls @staticmethod def _lowerCamelCase ( cls ): __a : Dict = get_character() if char != KEYMAP["undefined"]: __a : str = ord(_UpperCAmelCase ) __a : Tuple = cls.key_handler.get(_UpperCAmelCase ) if handler: __a : Union[str, Any] = char return handler(cls ) else: return None def __A ( cls :Union[str, Any]) -> str: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy())
52
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = (UnCLIPScheduler,) def lowercase ( self : str , **lowerCAmelCase_ : str ) -> str: __lowerCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**lowerCAmelCase_ ) return config def lowercase ( self : Optional[Any] ) -> Optional[int]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def lowercase ( self : Union[str, Any] ) -> List[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def lowercase ( self : int ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def lowercase ( self : Tuple ) -> List[Any]: for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Any: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def lowercase ( self : int ) -> Tuple: for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(variance_type='fixed_small_log' ) __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_54_96_25 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.9_99_49_87 ) ) < 1e-5 def lowercase ( self : List[Any] ) -> int: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config(variance_type='learned_range' ) __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) __lowerCAmelCase = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.1_71_27_90 < 1e-5 assert scheduler._get_variance(4_8_7 , predicted_variance=lowerCAmelCase_ ) - -5.7_99_80_52 < 1e-5 assert scheduler._get_variance(9_9_9 , predicted_variance=lowerCAmelCase_ ) - -0.0_01_00_11 < 1e-5 def lowercase ( self : Dict ) -> Optional[int]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 __lowerCAmelCase = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1e-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1e-3 def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = self.scheduler_classes[0] __lowerCAmelCase = self.get_scheduler_config() __lowerCAmelCase = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(2_5 ) __lowerCAmelCase = scheduler.timesteps __lowerCAmelCase = self.dummy_model() __lowerCAmelCase = self.dummy_sample_deter __lowerCAmelCase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowerCAmelCase = model(lowerCAmelCase_ , lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: __lowerCAmelCase = None else: __lowerCAmelCase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCAmelCase = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowerCAmelCase = pred_prev_sample __lowerCAmelCase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowerCAmelCase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1e-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1e-3 def lowercase ( self : Union[str, Any] ) -> Optional[Any]: pass def lowercase ( self : Tuple ) -> Tuple: pass
53
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __lowercase : Optional[Any] =logging.get_logger(__name__) class A ( __lowercase ): def __init__( self: int , *_lowerCAmelCase: Optional[Any] , **_lowerCAmelCase: Dict ) -> None: '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , _lowerCAmelCase , ) super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
54
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def UpperCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
55
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowercase ( unittest.TestCase ): def a ( self : Any ) -> Any: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __snake_case = TextStreamer(SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Any: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.decode(greedy_ids[0] ) __snake_case = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ ) __snake_case = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __snake_case = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() __snake_case = '' for new_text in streamer: streamer_text += new_text self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[int] ) -> List[str]: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ ) __snake_case = greedy_ids[:, input_ids.shape[1] :] __snake_case = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __snake_case = TextStreamer(SCREAMING_SNAKE_CASE_ , skip_prompt=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=10 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __snake_case = cs.out[:-1] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> int: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __snake_case = AutoTokenizer.from_pretrained('distilgpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = torch.ones((1, 5) , device=SCREAMING_SNAKE_CASE_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __snake_case = TextStreamer(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) model.generate(SCREAMING_SNAKE_CASE_ , max_new_tokens=1 , do_sample=SCREAMING_SNAKE_CASE_ , streamer=SCREAMING_SNAKE_CASE_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __snake_case = cs.out[:-1] # Remove the final "\n" __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a ( self : List[Any] ) -> Union[str, Any]: __snake_case = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __snake_case = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = -1 __snake_case = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(SCREAMING_SNAKE_CASE_ ) __snake_case = TextIteratorStreamer(SCREAMING_SNAKE_CASE_ , timeout=0.0_0_1 ) __snake_case = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} __snake_case = Thread(target=model.generate , kwargs=SCREAMING_SNAKE_CASE_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(SCREAMING_SNAKE_CASE_ ): __snake_case = '' for new_text in streamer: streamer_text += new_text
56
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="resnet50" , _lowerCamelCase=3 , _lowerCamelCase=3_2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , ): UpperCamelCase_: str = parent UpperCamelCase_: Optional[Any] = out_indices if out_indices is not None else [4] UpperCamelCase_: int = stage_names UpperCamelCase_: Tuple = out_features UpperCamelCase_: Tuple = backbone UpperCamelCase_: Union[str, Any] = batch_size UpperCamelCase_: int = image_size UpperCamelCase_: Dict = num_channels UpperCamelCase_: Optional[Any] = use_pretrained_backbone UpperCamelCase_: Optional[int] = is_training def _a ( self ): UpperCamelCase_: Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: Optional[int] = self.get_config() return config, pixel_values def _a ( self ): return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = TimmBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): UpperCamelCase_: int = model(_lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , ) def _a ( self ): UpperCamelCase_: Optional[int] = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_: Optional[int] = config_and_inputs UpperCamelCase_: Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Any =(TimmBackbone,) if is_torch_available() else () a : Any ={'''feature-extraction''': TimmBackbone} if is_torch_available() else {} a : Dict =False a : Optional[int] =False a : List[Any] =False a : int =False def _a ( self ): UpperCamelCase_: int = TimmBackboneModelTester(self ) UpperCamelCase_: Optional[int] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): UpperCamelCase_: str = 'resnet18' UpperCamelCase_: Union[str, Any] = 'microsoft/resnet-18' UpperCamelCase_: List[Any] = AutoBackbone.from_pretrained(_lowerCamelCase , use_timm_backbone=_lowerCamelCase ) UpperCamelCase_: Tuple = AutoBackbone.from_pretrained(_lowerCamelCase ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCamelCase_: Any = AutoBackbone.from_pretrained(_lowerCamelCase , use_timm_backbone=_lowerCamelCase , out_indices=[1, 2, 3] ) UpperCamelCase_: Union[str, Any] = AutoBackbone.from_pretrained(_lowerCamelCase , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def _a ( self ): pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def _a ( self ): pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def _a ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def _a ( self ): pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def _a ( self ): pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def _a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def _a ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def _a ( self ): pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def _a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def _a ( self ): pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def _a ( self ): pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def _a ( self ): pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def _a ( self ): pass @unittest.skip('Safetensors is not supported by timm.' ) def _a ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: str = [*signature.parameters.keys()] UpperCamelCase_: int = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_: Optional[Any] = True UpperCamelCase_: Optional[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCamelCase_: Union[str, Any] = self.all_model_classes[0] UpperCamelCase_: Tuple = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_: Tuple = model(**_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = outputs[0][-1] # Encoder-/Decoder-only models UpperCamelCase_: List[str] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCamelCase_: List[str] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: List[str] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[str] = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCamelCase_: Dict = copy.deepcopy(_lowerCamelCase ) UpperCamelCase_: Union[str, Any] = None UpperCamelCase_: Union[str, Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: Dict = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCamelCase_: Union[str, Any] = copy.deepcopy(_lowerCamelCase ) UpperCamelCase_: List[Any] = False UpperCamelCase_: Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCamelCase_: List[Any] = model(**_lowerCamelCase )
57
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0
"""simple docstring""" import random def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float , __UpperCamelCase : bool = False ): '''simple docstring''' snake_case_ : dict = {i: [] for i in range(__UpperCamelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__UpperCamelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__UpperCamelCase ): for j in range(i + 1 , __UpperCamelCase ): if random.random() < probability: graph[i].append(__UpperCamelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__UpperCamelCase ) return graph def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' return { i: [j for j in range(__UpperCamelCase ) if i != j] for i in range(__UpperCamelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
58
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __snake_case ( UpperCamelCase__ = "laptop" ) -> DataFrame: """simple docstring""" A = f'https://www.amazon.in/laptop/s?k={product}' A = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36', 'Accept-Language': 'en-US, en;q=0.5', } A = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ 'Product Title', 'Product Link', 'Current Price of the product', 'Product Rating', 'MRP of the product', 'Discount', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( 'div' , attrs={'class': 's-result-item', 'data-component-type': 's-search-result'} , ) , soup.find_all('div' , attrs={'class': 'a-row a-size-base a-color-base'} ) , ): try: A = item.ha.text A = 'https://www.amazon.in/' + item.ha.a['href'] A = item.find('span' , attrs={'class': 'a-offscreen'} ).text try: A = item.find('span' , attrs={'class': 'a-icon-alt'} ).text except AttributeError: A = 'Not available' try: A = ( '₹' + item.find( 'span' , attrs={'class': 'a-price a-text-price'} ).text.split('₹' )[1] ) except AttributeError: A = '' try: A = float( ( ( float(product_mrp.strip('₹' ).replace(',' , '' ) ) - float(product_price.strip('₹' ).replace(',' , '' ) ) ) / float(product_mrp.strip('₹' ).replace(',' , '' ) ) ) * 100 ) except ValueError: A = float('nan' ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = ' ' A = ' ' data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCamelCase : Any = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
690
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "Salesforce/blip-image-captioning-base" lowercase_ = ( "This is a tool that generates a description of an image. It takes an input named `image` which should be the " "image to caption, and returns a text that contains the description in English." ) lowercase_ = "image_captioner" lowercase_ = AutoModelForVisionaSeq lowercase_ = ["image"] lowercase_ = ["text"] def __init__(self : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->int: '''simple docstring''' requires_backends(self , ["vision"]) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : "Image") ->Optional[Any]: '''simple docstring''' return self.pre_processor(images=UpperCAmelCase_ , return_tensors="pt") def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Any) ->int: '''simple docstring''' return self.model.generate(**UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : Dict) ->List[Any]: '''simple docstring''' return self.pre_processor.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_)[0].strip()
59
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
0
import warnings from ..trainer import Trainer from ..utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( _a ): def __init__(self , __magic_name__=None , **__magic_name__ ) -> Dict: '''simple docstring''' warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , __magic_name__ , ) super().__init__(args=__magic_name__ , **__magic_name__ )
60
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ : def __init__( self : Optional[Any] , _lowercase : int=2 , _lowercase : Optional[Any]=3 , _lowercase : Any=64 , _lowercase : Tuple=None ): A = np.random.default_rng(_lowercase ) A = length A = rng.normal(size=(length,) ).astype(np.floataa ) A = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : str ): return self.length def __getitem__( self : List[str] , _lowercase : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[int] , _lowercase : Any=0 , _lowercase : List[Any]=0 , _lowercase : Optional[int]=False ): super().__init__() A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) A = True def __a ( self : Optional[Any] , _lowercase : str=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a[0] + self.b[0] class lowerCamelCase__ ( torch.nn.Module ): def __init__( self : Optional[Any] , _lowercase : Any=0 , _lowercase : List[str]=0 , _lowercase : str=False ): super().__init__() A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = torch.nn.Parameter(torch.tensor(_lowercase ).float() ) A = True def __a ( self : int , _lowercase : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) A = False return x * self.a + self.b def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 16 ) -> Optional[Any]: """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer A = AutoTokenizer.from_pretrained('bert-base-cased' ) A = {'train': 'tests/test_samples/MRPC/train.csv', 'validation': 'tests/test_samples/MRPC/dev.csv'} A = load_dataset('csv' , data_files=UpperCamelCase__ ) A = datasets['train'].unique('label' ) A = {v: i for i, v in enumerate(UpperCamelCase__ )} def tokenize_function(UpperCamelCase__ ): # max_length=None => use the model max length (it's actually the default) A = tokenizer( examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) if "label" in examples: A = [label_to_id[l] for l in examples['label']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A = datasets.map( UpperCamelCase__ , batched=UpperCamelCase__ , remove_columns=['sentence1', 'sentence2', 'label'] , ) def collate_fn(UpperCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. A = DataLoader(tokenized_datasets['train'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=2 ) A = DataLoader(tokenized_datasets['validation'] , shuffle=UpperCamelCase__ , collate_fn=UpperCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
690
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter UpperCamelCase = True except ImportError: UpperCamelCase = False UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def _A ( lowerCAmelCase_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" @staticmethod def a ( SCREAMING_SNAKE_CASE__ : ArgumentParser ) -> int: lowerCAmelCase__ = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=SCREAMING_SNAKE_CASE__ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=SCREAMING_SNAKE_CASE__ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : bool , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , *SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: lowerCAmelCase__ = testing lowerCAmelCase__ = testing_file lowerCAmelCase__ = path def a ( self : Union[str, Any] ) -> Tuple: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowerCAmelCase__ = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(SCREAMING_SNAKE_CASE__ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowerCAmelCase__ = ( Path(SCREAMING_SNAKE_CASE__ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowerCAmelCase__ = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(SCREAMING_SNAKE_CASE__ ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE__ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=SCREAMING_SNAKE_CASE__ , extra_context=SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowerCAmelCase__ = json.load(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = configuration["lowercase_modelname"] lowerCAmelCase__ = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'{directory}/configuration.json' ) lowerCAmelCase__ = "PyTorch" in generate_tensorflow_pytorch_and_flax lowerCAmelCase__ = "TensorFlow" in generate_tensorflow_pytorch_and_flax lowerCAmelCase__ = "Flax" in generate_tensorflow_pytorch_and_flax lowerCAmelCase__ = f'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) os.makedirs(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}' , exist_ok=SCREAMING_SNAKE_CASE__ ) # Tests require submodules as they have parent imports with open(f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' , "w" ): pass shutil.move( f'{directory}/__init__.py' , f'{model_dir}/__init__.py' , ) shutil.move( f'{directory}/configuration_{lowercase_model_name}.py' , f'{model_dir}/configuration_{lowercase_model_name}.py' , ) def remove_copy_lines(SCREAMING_SNAKE_CASE__ : Dict ): with open(SCREAMING_SNAKE_CASE__ , "r" ) as f: lowerCAmelCase__ = f.readlines() with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(SCREAMING_SNAKE_CASE__ ) if output_pytorch: if not self._testing: remove_copy_lines(f'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_{lowercase_model_name}.py' , f'{model_dir}/modeling_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_tf_{lowercase_model_name}.py' , f'{model_dir}/modeling_tf_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_tf_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/modeling_flax_{lowercase_model_name}.py' , f'{model_dir}/modeling_flax_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/test_modeling_flax_{lowercase_model_name}.py' , f'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' , ) else: os.remove(f'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(f'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( f'{directory}/{lowercase_model_name}.md' , f'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' , ) shutil.move( f'{directory}/tokenization_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}.py' , ) shutil.move( f'{directory}/tokenization_fast_{lowercase_model_name}.py' , f'{model_dir}/tokenization_{lowercase_model_name}_fast.py' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): # Create temp file lowerCAmelCase__ , lowerCAmelCase__ = mkstemp() lowerCAmelCase__ = False with fdopen(SCREAMING_SNAKE_CASE__ , "w" ) as new_file: with open(SCREAMING_SNAKE_CASE__ ) as old_file: for line in old_file: new_file.write(SCREAMING_SNAKE_CASE__ ) if line_to_copy_below in line: lowerCAmelCase__ = True for line_to_copy in lines_to_copy: new_file.write(SCREAMING_SNAKE_CASE__ ) if not line_found: raise ValueError(f'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Remove original file remove(SCREAMING_SNAKE_CASE__ ) # Move new file move(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def skip_units(SCREAMING_SNAKE_CASE__ : List[Any] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(SCREAMING_SNAKE_CASE__ : List[Any] ): with open(SCREAMING_SNAKE_CASE__ ) as datafile: lowerCAmelCase__ = [] lowerCAmelCase__ = False lowerCAmelCase__ = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowerCAmelCase__ = line.split("\"" )[1] lowerCAmelCase__ = skip_units(SCREAMING_SNAKE_CASE__ ) elif "# Below: " in line and "##" not in line: lowerCAmelCase__ = line.split("\"" )[1] lowerCAmelCase__ = skip_units(SCREAMING_SNAKE_CASE__ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = [] elif "# Replace with" in line and "##" not in line: lowerCAmelCase__ = [] elif "##" not in line: lines_to_copy.append(SCREAMING_SNAKE_CASE__ ) remove(SCREAMING_SNAKE_CASE__ ) replace_in_files(f'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(SCREAMING_SNAKE_CASE__ )
61
"""simple docstring""" from __future__ import annotations def __snake_case ( UpperCamelCase__ ) -> list[int]: # This function is recursive """simple docstring""" A = len(UpperCamelCase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else A = array[0] A = False A = 1 A = [] while not is_found and i < array_length: if array[i] < pivot: A = True A = [element for element in array[i:] if element >= array[i]] A = longest_subsequence(UpperCamelCase__ ) if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): A = temp_array else: i += 1 A = [element for element in array[1:] if element >= pivot] A = [pivot, *longest_subsequence(UpperCamelCase__ )] if len(UpperCamelCase__ ) > len(UpperCamelCase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
690
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowerCamelCase__ ( lowercase , lowercase , lowercase=8 ): """simple docstring""" SCREAMING_SNAKE_CASE : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE : List[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : VQModel , ): super().__init__() self.register_modules( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , movq=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _A ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] ): if latents is None: SCREAMING_SNAKE_CASE : List[str] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=UpperCAmelCase_ , dtype=UpperCAmelCase_ ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) SCREAMING_SNAKE_CASE : Tuple = latents.to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = latents * scheduler.init_noise_sigma return latents def _A ( self : List[str] , UpperCAmelCase_ : Optional[int]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE : Tuple = torch.device(f'''cuda:{gpu_id}''' ) SCREAMING_SNAKE_CASE : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_ ) def _A ( self : int , UpperCAmelCase_ : str=0 ): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) SCREAMING_SNAKE_CASE : Tuple = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=UpperCAmelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE : Optional[Any] = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = cpu_offload_with_hook(UpperCAmelCase_ , UpperCAmelCase_ , prev_module_hook=UpperCAmelCase_ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _A ( self : List[Any] ): if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase_ ) def __call__( self : int , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 4.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ): SCREAMING_SNAKE_CASE : str = self._execution_device SCREAMING_SNAKE_CASE : str = guidance_scale > 1.0 if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : Dict = torch.cat(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[str] = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = torch.cat(UpperCAmelCase_ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : Dict = image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Any = negative_image_embeds.repeat_interleave(UpperCAmelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase_ ) self.scheduler.set_timesteps(UpperCAmelCase_ , device=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = self.unet.config.in_channels SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = downscale_height_and_width(UpperCAmelCase_ , UpperCAmelCase_ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase_ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : List[str] = {"image_embeds": image_embeds} SCREAMING_SNAKE_CASE : Union[str, Any] = self.unet( sample=UpperCAmelCase_ , timestep=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , added_cond_kwargs=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.step( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_ , )[0] # post-processing SCREAMING_SNAKE_CASE : List[str] = self.movq.decode(UpperCAmelCase_ , force_not_quantize=UpperCAmelCase_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE : Dict = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : Dict = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : List[Any] = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
62
"""simple docstring""" from __future__ import annotations import typing from collections.abc import Iterable import numpy as np UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCamelCase__ ) - np.asarray(UpperCamelCase__ )) ** 2 ) ) def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> VectorOut: """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCamelCase__ , UpperCamelCase__ ) ) ** (1 / 2) if __name__ == "__main__": def __snake_case ( ) -> None: """simple docstring""" from timeit import timeit print('Without Numpy' ) print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) print('With Numpy' ) print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , ) ) benchmark()
690
0
import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a : Optional[int] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : Tuple = 'linear' a : int = 'cosine' a : Optional[Any] = 'cosine_with_restarts' a : Dict = 'polynomial' a : Tuple = 'constant' a : Dict = 'constant_with_warmup' a : Any = 'piecewise_constant' def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int = -1 ): return LambdaLR(__lowerCamelCase , lambda __lowerCamelCase : 1 , last_epoch=__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int , __lowerCamelCase : int = -1 ): def lr_lambda(__lowerCamelCase : int ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1.0 , __lowerCamelCase ) ) return 1.0 return LambdaLR(__lowerCamelCase , __lowerCamelCase , last_epoch=__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : str , __lowerCamelCase : int = -1 ): __UpperCAmelCase : Union[str, Any] = {} __UpperCAmelCase : Tuple = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __UpperCAmelCase , __UpperCAmelCase : List[str] = rule_str.split(""":""" ) __UpperCAmelCase : Any = int(__lowerCamelCase ) __UpperCAmelCase : List[str] = float(__lowerCamelCase ) __UpperCAmelCase : int = value __UpperCAmelCase : Any = float(rule_list[-1] ) def create_rules_function(__lowerCamelCase : Dict , __lowerCamelCase : List[Any] ): def rule_func(__lowerCamelCase : int ) -> float: __UpperCAmelCase : Tuple = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__lowerCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __UpperCAmelCase : str = create_rules_function(__lowerCamelCase , __lowerCamelCase ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , last_epoch=__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=-1 ): def lr_lambda(__lowerCamelCase : int ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float = 0.5 , __lowerCamelCase : int = -1 ): def lr_lambda(__lowerCamelCase : Dict ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) __UpperCAmelCase : Tuple = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__lowerCamelCase ) * 2.0 * progress )) ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : Optimizer , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 ): def lr_lambda(__lowerCamelCase : Union[str, Any] ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__lowerCamelCase ) * progress) % 1.0) )) ) return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=1E-7 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : int=-1 ): __UpperCAmelCase : Tuple = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__lowerCamelCase : int ): if current_step < num_warmup_steps: return float(__lowerCamelCase ) / float(max(1 , __lowerCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __UpperCAmelCase : Optional[Any] = lr_init - lr_end __UpperCAmelCase : Union[str, Any] = num_training_steps - num_warmup_steps __UpperCAmelCase : int = 1 - (current_step - num_warmup_steps) / decay_steps __UpperCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) a : int = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowerCamelCase__ ( __lowerCamelCase : Union[str, SchedulerType] , __lowerCamelCase : Optimizer , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int = 1 , __lowerCamelCase : float = 1.0 , __lowerCamelCase : int = -1 , ): __UpperCAmelCase : Union[str, Any] = SchedulerType(__lowerCamelCase ) __UpperCAmelCase : int = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__lowerCamelCase , last_epoch=__lowerCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__lowerCamelCase , step_rules=__lowerCamelCase , last_epoch=__lowerCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__lowerCamelCase , num_warmup_steps=__lowerCamelCase , last_epoch=__lowerCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , num_cycles=__lowerCamelCase , last_epoch=__lowerCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , power=__lowerCamelCase , last_epoch=__lowerCamelCase , ) return schedule_func( __lowerCamelCase , num_warmup_steps=__lowerCamelCase , num_training_steps=__lowerCamelCase , last_epoch=__lowerCamelCase )
63
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline UpperCamelCase : List[Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , ) -> Any: """simple docstring""" output_path.parent.mkdir(parents=UpperCamelCase__ , exist_ok=UpperCamelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , enable_onnx_checker=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) else: export( UpperCamelCase__ , UpperCamelCase__ , f=output_path.as_posix() , input_names=UpperCamelCase__ , output_names=UpperCamelCase__ , dynamic_axes=UpperCamelCase__ , do_constant_folding=UpperCamelCase__ , opset_version=UpperCamelCase__ , ) @torch.no_grad() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> str: """simple docstring""" A = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): A = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: A = 'cpu' A = StableDiffusionPipeline.from_pretrained(UpperCamelCase__ , torch_dtype=UpperCamelCase__ ).to(UpperCamelCase__ ) A = Path(UpperCamelCase__ ) # TEXT ENCODER A = pipeline.text_encoder.config.max_position_embeddings A = pipeline.text_encoder.config.hidden_size A = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=UpperCamelCase__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , ) del pipeline.text_encoder # UNET A = pipeline.unet.config.in_channels A = pipeline.unet.config.sample_size A = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(2 , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=UpperCamelCase__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=UpperCamelCase__ , use_external_data_format=UpperCamelCase__ , ) A = str(unet_path.absolute().as_posix() ) A = os.path.dirname(UpperCamelCase__ ) A = onnx.load(UpperCamelCase__ ) # clean up existing tensor files shutil.rmtree(UpperCamelCase__ ) os.mkdir(UpperCamelCase__ ) # collate external tensor files into one onnx.save_model( UpperCamelCase__ , UpperCamelCase__ , save_as_external_data=UpperCamelCase__ , all_tensors_to_one_file=UpperCamelCase__ , location='weights.pb' , convert_attribute=UpperCamelCase__ , ) del pipeline.unet # VAE ENCODER A = pipeline.vae A = vae_encoder.config.in_channels A = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder A = lambda UpperCamelCase__ , UpperCamelCase__ : vae_encoder.encode(UpperCamelCase__ , UpperCamelCase__ )[0].sample() onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) # VAE DECODER A = pipeline.vae A = vae_decoder.config.latent_channels A = vae_decoder.config.out_channels # forward only through the decoder part A = vae_encoder.decode onnx_export( UpperCamelCase__ , model_args=( torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=UpperCamelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: A = pipeline.safety_checker A = safety_checker.config.vision_config.num_channels A = safety_checker.config.vision_config.image_size A = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), torch.randn(1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=UpperCamelCase__ , ) del pipeline.safety_checker A = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) A = pipeline.feature_extractor else: A = None A = None A = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(UpperCamelCase__ ) print('ONNX pipeline saved to' , UpperCamelCase__ ) del pipeline del onnx_pipeline A = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : str = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
690
0
def A__ ( snake_case_ : list ): if len(snake_case_ ) <= 1: return [tuple(snake_case_ )] SCREAMING_SNAKE_CASE__: Union[str, Any]= [] def generate(snake_case_ : int , snake_case_ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case_ ) for i in range(k - 1 ): if k % 2 == 0: # k is even SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Union[str, Any]= arr[k - 1], arr[i] else: # k is odd SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Optional[int]= arr[k - 1], arr[0] generate(k - 1 , snake_case_ ) generate(len(snake_case_ ) , snake_case_ ) return res if __name__ == "__main__": lowercase_ : Any = input('Enter numbers separated by a comma:\n').strip() lowercase_ : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
64
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time UpperCamelCase : List[str] = Lock() def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() A = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left A = min(UpperCamelCase__ , UpperCamelCase__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(UpperCamelCase__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() A = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right A = max(UpperCamelCase__ , UpperCamelCase__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(UpperCamelCase__ ) def __snake_case ( UpperCamelCase__ ) -> List[str]: """simple docstring""" A = [] A = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) A = temp_rs A = temp_rr for i in range(1 , len(UpperCamelCase__ ) - 1 ): A = Pipe() A = Pipe() process_array_.append( Process( target=UpperCamelCase__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) A = temp_rs A = temp_rr process_array_.append( Process( target=UpperCamelCase__ , args=( len(UpperCamelCase__ ) - 1, arr[len(UpperCamelCase__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(UpperCamelCase__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(UpperCamelCase__ ) ): A = result_pipe[p][0].recv() process_array_[p].join() return arr def __snake_case ( ) -> Optional[Any]: """simple docstring""" A = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*UpperCamelCase__ ) A = odd_even_transposition(UpperCamelCase__ ) print('Sorted List\n' ) print(*UpperCamelCase__ ) if __name__ == "__main__": main()
690
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowercase ( __lowerCamelCase ): snake_case_ = """""" snake_case_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) snake_case_ = None # compression type in fsspec. ex: "gzip" snake_case_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Optional[int] ,A : str = "" ,A : Optional[str] = None ,A : Optional[dict] = None ,**A : Any ): '''simple docstring''' super().__init__(self ,**A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ : Optional[int] = fsspec.open( A ,mode="""rb""" ,protocol=A ,compression=self.compression ,client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" ,{} ), # To avoid issues if it was already passed. } ,**(target_options or {}) ,) UpperCAmelCase__ : int = os.path.basename(self.file.path.split("""::""" )[0] ) UpperCAmelCase__ : List[Any] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) UpperCAmelCase__ : Optional[int] = None @classmethod def __lowercase ( cls : Optional[Any] ,A : Any ): '''simple docstring''' # compressed file paths are always relative to the archive root return super()._strip_protocol(A ).lstrip("""/""" ) def __lowercase ( self : str ): '''simple docstring''' if self.dir_cache is None: UpperCAmelCase__ : List[str] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} UpperCAmelCase__ : List[str] = {f["""name"""]: f} def __lowercase ( self : Dict ,A : str ): '''simple docstring''' return self.file.open().read() def __lowercase ( self : Optional[int] ,A : str ,A : str = "rb" ,A : str=None ,A : List[Any]=True ,A : List[str]=None ,**A : Tuple ,): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self._strip_protocol(A ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __lowercase ( __lowerCamelCase ): snake_case_ = """bz2""" snake_case_ = """bz2""" snake_case_ = """.bz2""" class __lowercase ( __lowerCamelCase ): snake_case_ = """gzip""" snake_case_ = """gzip""" snake_case_ = """.gz""" class __lowercase ( __lowerCamelCase ): snake_case_ = """lz4""" snake_case_ = """lz4""" snake_case_ = """.lz4""" class __lowercase ( __lowerCamelCase ): snake_case_ = """xz""" snake_case_ = """xz""" snake_case_ = """.xz""" class __lowercase ( __lowerCamelCase ): snake_case_ = """zstd""" snake_case_ = """zstd""" snake_case_ = """.zst""" def __init__( self : Union[str, Any] ,A : str ,A : str = "rb" ,A : Optional[str] = None ,A : Optional[dict] = None ,A : int = DEFAULT_BLOCK_SIZE ,**A : List[str] ,): '''simple docstring''' super().__init__( fo=A ,mode=A ,target_protocol=A ,target_options=A ,block_size=A ,**A ,) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ : str = self.file.__enter__ class __lowercase : def __init__( self : Tuple ,A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = file_ def __enter__( self : List[Any] ): '''simple docstring''' self._file.__enter__() return self def __exit__( self : List[Any] ,*A : Union[str, Any] ,**A : Tuple ): '''simple docstring''' self._file.__exit__(*A ,**A ) def __iter__( self : Tuple ): '''simple docstring''' return iter(self._file ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' return next(self._file ) def __getattr__( self : Tuple ,A : Any ): '''simple docstring''' return getattr(self._file ,A ) def fixed_enter(*A : List[Any] ,**A : List[str] ): return WrappedFile(_enter(*A ,**A ) ) UpperCAmelCase__ : str = fixed_enter
65
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset UpperCamelCase : int = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) UpperCamelCase : List[Any] = dataset.iloc[:, 1:2].values UpperCamelCase : Any = dataset.iloc[:, 2].values UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = train_test_split(X, y, test_size=0.2, random_state=0) UpperCamelCase : List[str] = PolynomialFeatures(degree=4) UpperCamelCase : Optional[int] = poly_reg.fit_transform(X) UpperCamelCase : List[Any] = LinearRegression() pol_reg.fit(X_poly, y) def __snake_case ( ) -> Optional[int]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
690
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase_ ( unittest.TestCase ): def __a ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : str = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowercase : Any = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) _lowercase : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowercase : List[str] = {'unk_token': '<unk>'} _lowercase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_lowerCAmelCase ) ) _lowercase : int = { 'do_resize': True, 'size': 2_0, 'do_center_crop': True, 'crop_size': 1_8, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } _lowercase : str = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self , **_lowerCAmelCase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self ): shutil.rmtree(self.tmpdirname ) def __a ( self ): _lowercase : Dict = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowercase : int = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __a ( self ): _lowercase : Dict = self.get_tokenizer() _lowercase : Any = self.get_rust_tokenizer() _lowercase : List[str] = self.get_image_processor() _lowercase : List[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) _lowercase : Dict = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : int = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowercase : List[str] = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) _lowercase : List[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def __a ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Any = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : Any = self.prepare_image_inputs() _lowercase : int = image_processor(_lowerCAmelCase , return_tensors='np' ) _lowercase : List[Any] = processor(images=_lowerCAmelCase , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __a ( self ): _lowercase : Any = self.get_image_processor() _lowercase : Any = self.get_tokenizer() _lowercase : str = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : Dict = 'lower newer' _lowercase : Any = processor(text=_lowerCAmelCase ) _lowercase : Tuple = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __a ( self ): _lowercase : int = self.get_image_processor() _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : int = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : int = 'lower newer' _lowercase : Optional[Any] = self.prepare_image_inputs() _lowercase : List[str] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def __a ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Tuple = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(_lowerCAmelCase ) _lowercase : Dict = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self ): _lowercase : List[str] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Any = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) _lowercase : List[Any] = 'lower newer' _lowercase : List[str] = self.prepare_image_inputs() _lowercase : Dict = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : List[str] , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : Tuple , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , default_to_square=_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A = image_std if image_std is not None else OPENAI_CLIP_STD A = do_convert_rgb def __a ( self : str , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : int = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , **_lowercase : int , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , param_name='size' , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' , default_to_square=_lowercase ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: A = [convert_to_rgb(_lowercase ) for image in images] # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
690
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
"""simple docstring""" import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowercase ) try: pickle.loads(pickle.dumps(_lowercase ) ) except Exception as e: self.fail(f'Accelerated optimizer pickling failed with {e}' ) AcceleratorState._reset_state()
690
0
import math import os import sys def lowercase__ ( A_: str ) -> str: """simple docstring""" __UpperCAmelCase ="""""" try: with open(A_ , """rb""" ) as binary_file: __UpperCAmelCase =binary_file.read() for dat in data: __UpperCAmelCase =F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def lowercase__ ( A_: dict[str, str] , A_: str , A_: int , A_: str ) -> None: """simple docstring""" lexicon.pop(A_ ) __UpperCAmelCase =last_match_id if math.loga(A_ ).is_integer(): for curr_key in lexicon: __UpperCAmelCase ="""0""" + lexicon[curr_key] __UpperCAmelCase =bin(A_ )[2:] def lowercase__ ( A_: str ) -> str: """simple docstring""" __UpperCAmelCase ={"""0""": """0""", """1""": """1"""} __UpperCAmelCase , __UpperCAmelCase ="""""", """""" __UpperCAmelCase =len(A_ ) for i in range(len(A_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCAmelCase =lexicon[curr_string] result += last_match_id add_key_to_lexicon(A_ , A_ , A_ , A_ ) index += 1 __UpperCAmelCase ="""""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __UpperCAmelCase =lexicon[curr_string] result += last_match_id return result def lowercase__ ( A_: str , A_: str ) -> str: """simple docstring""" __UpperCAmelCase =os.path.getsize(A_ ) __UpperCAmelCase =bin(A_ )[2:] __UpperCAmelCase =len(A_ ) return "0" * (length_length - 1) + file_length_binary + compressed def lowercase__ ( A_: str , A_: str ) -> None: """simple docstring""" __UpperCAmelCase =8 try: with open(A_ , """wb""" ) as opened_file: __UpperCAmelCase =[ to_write[i : i + byte_length] for i in range(0 , len(A_ ) , A_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(A_ , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def lowercase__ ( A_: str , A_: str ) -> None: """simple docstring""" __UpperCAmelCase =read_file_binary(A_ ) __UpperCAmelCase =compress_data(A_ ) __UpperCAmelCase =add_file_length(A_ , A_ ) write_file_binary(A_ , A_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
68
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = """convbert""" def __init__( self : Optional[int] , _lowercase : List[Any]=30_522 , _lowercase : List[str]=768 , _lowercase : Optional[Any]=12 , _lowercase : Any=12 , _lowercase : str=3_072 , _lowercase : List[str]="gelu" , _lowercase : Dict=0.1 , _lowercase : Dict=0.1 , _lowercase : Any=512 , _lowercase : List[str]=2 , _lowercase : Tuple=0.0_2 , _lowercase : List[Any]=1e-12 , _lowercase : List[str]=1 , _lowercase : Tuple=0 , _lowercase : Any=2 , _lowercase : Union[str, Any]=768 , _lowercase : str=2 , _lowercase : Any=9 , _lowercase : Union[str, Any]=1 , _lowercase : Dict=None , **_lowercase : Union[str, Any] , ): super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = embedding_size A = head_ratio A = conv_kernel_size A = num_groups A = classifier_dropout class lowerCamelCase__ ( UpperCAmelCase_ ): @property def __a ( self : str ): if self.task == "multiple-choice": A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
690
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ConsistencyModelPipeline __SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt __SCREAMING_SNAKE_CASE = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def A ( self : int ): """simple docstring""" __snake_case = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def A ( self : List[str] ): """simple docstring""" __snake_case = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def A ( self : Union[str, Any] , a_ : Dict=False ): """simple docstring""" if class_cond: __snake_case = self.dummy_cond_unet else: __snake_case = self.dummy_uncond_unet # Default to CM multistep sampler __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = { "unet": unet, "scheduler": scheduler, } return components def A ( self : List[Any] , a_ : Tuple , a_ : Dict=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def A ( self : List[str] ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = ConsistencyModelPipeline(**a_ ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = pipe(**a_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components(class_cond=a_ ) __snake_case = ConsistencyModelPipeline(**a_ ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = 0 __snake_case = pipe(**a_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Optional[Any] ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = ConsistencyModelPipeline(**a_ ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = 1 __snake_case = None __snake_case = pipe(**a_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Dict ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components(class_cond=a_ ) __snake_case = ConsistencyModelPipeline(**a_ ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = 1 __snake_case = None __snake_case = 0 __snake_case = pipe(**a_ ).images assert image.shape == (1, 32, 32, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int , a_ : Dict=0 , a_ : int=False , a_ : Dict="cpu" , a_ : Any=torch.floataa , a_ : Optional[int]=(1, 3, 64, 64) ): """simple docstring""" __snake_case = torch.manual_seed(a_ ) __snake_case = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __snake_case = self.get_fixed_latents(seed=a_ , device=a_ , dtype=a_ , shape=a_ ) __snake_case = latents return inputs def A ( self : Any , a_ : Optional[int]=0 , a_ : Tuple="cpu" , a_ : List[Any]=torch.floataa , a_ : Optional[Any]=(1, 3, 64, 64) ): """simple docstring""" if type(a_ ) == str: __snake_case = torch.device(a_ ) __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = randn_tensor(a_ , generator=a_ , device=a_ , dtype=a_ ) return latents def A ( self : Optional[Any] ): """simple docstring""" __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=a_ , scheduler=a_ ) pipe.to(torch_device=a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_inputs() __snake_case = pipe(**a_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=a_ , scheduler=a_ ) pipe.to(torch_device=a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_inputs() __snake_case = 1 __snake_case = None __snake_case = pipe(**a_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def A ( self : str ): """simple docstring""" __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=a_ , scheduler=a_ ) pipe.to(torch_device=a_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_inputs(get_fixed_latents=a_ , device=a_ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a_ , enable_math=a_ , enable_mem_efficient=a_ ): __snake_case = pipe(**a_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __snake_case = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) __snake_case = ConsistencyModelPipeline(unet=a_ , scheduler=a_ ) pipe.to(torch_device=a_ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_inputs(get_fixed_latents=a_ , device=a_ ) __snake_case = 1 __snake_case = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a_ , enable_math=a_ , enable_mem_efficient=a_ ): __snake_case = pipe(**a_ ).images assert image.shape == (1, 64, 64, 3) __snake_case = image[0, -3:, -3:, -1] __snake_case = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
69
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
690
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _SCREAMING_SNAKE_CASE ( *lowercase : Any ): '''simple docstring''' if not isinstance(lowercase , lowercase ): lowerCamelCase_ = list(lowercase ) for i in range(len(lowercase ) ): lowerCamelCase_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _SCREAMING_SNAKE_CASE ( lowercase : Exception ): '''simple docstring''' lowerCamelCase_ = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(lowercase , lowercase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _SCREAMING_SNAKE_CASE ( lowercase : callable = None , lowercase : int = 1_28 ): '''simple docstring''' if function is None: return functools.partial(lowercase , starting_batch_size=lowercase ) lowerCamelCase_ = starting_batch_size def decorator(*lowercase : Optional[int] , **lowercase : Any ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowerCamelCase_ = list(inspect.signature(lowercase ).parameters.keys() ) # Guard against user error if len(lowercase ) < (len(lowercase ) + 1): lowerCamelCase_ = ', '.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(lowercase , *lowercase , **lowercase ) except Exception as e: if should_reduce_batch_size(lowercase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
70
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Any = (1 - _cos) / 2 UpperCAmelCase_ : int = 1 - _cos UpperCAmelCase_ : str = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : Optional[int] = 1 - alpha UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tau * frequency / samplerate UpperCAmelCase_ : Dict = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = (1 + _cos) / 2 UpperCAmelCase_ : str = -1 - _cos UpperCAmelCase_ : List[str] = 1 + alpha UpperCAmelCase_ : List[str] = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : Optional[int] = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = _sin / (2 * q_factor) UpperCAmelCase_ : str = _sin / 2 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = -ba UpperCAmelCase_ : Dict = 1 + alpha UpperCAmelCase_ : Any = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha UpperCAmelCase_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Tuple = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = _sin / (2 * q_factor) UpperCAmelCase_ : Tuple = 1 - alpha UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Optional[Any] = 1 + alpha UpperCAmelCase_ : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[Any] = tau * frequency / samplerate UpperCAmelCase_ : int = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : Dict = 1 + alpha * big_a UpperCAmelCase_ : Dict = -2 * _cos UpperCAmelCase_ : Tuple = 1 - alpha * big_a UpperCAmelCase_ : Any = 1 + alpha / big_a UpperCAmelCase_ : str = -2 * _cos UpperCAmelCase_ : List[str] = 1 - alpha / big_a UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : List[str] = tau * frequency / samplerate UpperCAmelCase_ : Dict = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = _sin / (2 * q_factor) UpperCAmelCase_ : Union[str, Any] = 10 ** (gain_db / 40) UpperCAmelCase_ : str = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : str = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : int = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha UpperCAmelCase_ : Optional[Any] = big_a * (pmc + aaa) UpperCAmelCase_ : Any = 2 * big_a * mpc UpperCAmelCase_ : Any = big_a * (pmc - aaa) UpperCAmelCase_ : Tuple = ppmc + aaa UpperCAmelCase_ : int = -2 * pmpc UpperCAmelCase_ : Any = ppmc - aaa UpperCAmelCase_ : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float = 1 / sqrt(2 ) , ) -> IIRFilter: """simple docstring""" UpperCAmelCase_ : Any = tau * frequency / samplerate UpperCAmelCase_ : int = sin(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = cos(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = _sin / (2 * q_factor) UpperCAmelCase_ : Optional[int] = 10 ** (gain_db / 40) UpperCAmelCase_ : List[str] = (big_a + 1) - (big_a - 1) * _cos UpperCAmelCase_ : str = (big_a + 1) + (big_a - 1) * _cos UpperCAmelCase_ : List[str] = (big_a - 1) - (big_a + 1) * _cos UpperCAmelCase_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos UpperCAmelCase_ : Optional[Any] = 2 * sqrt(_SCREAMING_SNAKE_CASE ) * alpha UpperCAmelCase_ : int = big_a * (ppmc + aaa) UpperCAmelCase_ : Tuple = -2 * big_a * pmpc UpperCAmelCase_ : Tuple = big_a * (ppmc - aaa) UpperCAmelCase_ : List[Any] = pmc + aaa UpperCAmelCase_ : List[str] = 2 * mpc UpperCAmelCase_ : Dict = pmc - aaa UpperCAmelCase_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
71
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: UpperCamelCase : Any = None UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} UpperCamelCase : str = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } UpperCamelCase : Optional[int] = { "xlnet-base-cased": None, "xlnet-large-cased": None, } UpperCamelCase : str = "▁" # Segments (not really needed) UpperCamelCase : str = 0 UpperCamelCase : int = 1 UpperCamelCase : List[Any] = 2 UpperCamelCase : Union[str, Any] = 3 UpperCamelCase : Optional[Any] = 4 class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = """left""" lowerCAmelCase = XLNetTokenizer def __init__( self : Tuple , _lowercase : List[Any]=None , _lowercase : Any=None , _lowercase : int=False , _lowercase : Tuple=True , _lowercase : Union[str, Any]=False , _lowercase : int="<s>" , _lowercase : Optional[int]="</s>" , _lowercase : Dict="<unk>" , _lowercase : Optional[int]="<sep>" , _lowercase : int="<pad>" , _lowercase : Dict="<cls>" , _lowercase : str="<mask>" , _lowercase : List[str]=["<eop>", "<eod>"] , **_lowercase : Any , ): # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) A = 3 A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = False if not self.vocab_file else True def __a ( self : List[Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Dict = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'canine' def __init__( self , snake_case_=7_68 , snake_case_=12 , snake_case_=12 , snake_case_=30_72 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1_63_84 , snake_case_=16 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=0 , snake_case_=0XE000 , snake_case_=0XE001 , snake_case_=4 , snake_case_=4 , snake_case_=8 , snake_case_=1_63_84 , snake_case_=1_28 , **snake_case_ , ): super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) lowercase =max_position_embeddings lowercase =hidden_size lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =intermediate_size lowercase =hidden_act lowercase =hidden_dropout_prob lowercase =attention_probs_dropout_prob lowercase =initializer_range lowercase =type_vocab_size lowercase =layer_norm_eps # Character config: lowercase =downsampling_rate lowercase =upsampling_kernel_size lowercase =num_hash_functions lowercase =num_hash_buckets lowercase =local_transformer_stride
72
"""simple docstring""" from __future__ import annotations UpperCamelCase : Any = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the reference grid A = 1 A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase__ ) ) ] # the action grid A = init[0] A = init[1] A = 0 A = g + heuristic[x][y] # cost from starting cell to destination cell A = [[f, g, x, y]] A = False # flag that is set when search is complete A = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase__ ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A = cell.pop() A = next_cell[2] A = next_cell[3] A = next_cell[1] if x == goal[0] and y == goal[1]: A = True else: for i in range(len(UpperCamelCase__ ) ): # to try out different valid actions A = x + DIRECTIONS[i][0] A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A = g + cost A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A = 1 A = i A = [] A = goal[0] A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A = x - DIRECTIONS[action[x][y]][0] A = y - DIRECTIONS[action[x][y]][1] A = xa A = ya invpath.append([x, y] ) A = [] for i in range(len(UpperCamelCase__ ) ): path.append(invpath[len(UpperCamelCase__ ) - 1 - i] ) return path, action if __name__ == "__main__": UpperCamelCase : Any = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] UpperCamelCase : List[Any] = [0, 0] # all coordinates are given in format [y,x] UpperCamelCase : int = [len(grid) - 1, len(grid[0]) - 1] UpperCamelCase : Tuple = 1 # the cost map which pushes the path closer to the goal UpperCamelCase : Union[str, Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): UpperCamelCase : List[str] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map UpperCamelCase : Dict = 99 UpperCamelCase , UpperCamelCase : Optional[Any] = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
690
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING a_ : int = logging.get_logger(__name__) @add_end_docstrings(A__ ) class _snake_case ( A__ ): def __init__( self , **a) -> Dict: super().__init__(**a) requires_backends(self , 'vision') requires_backends(self , 'torch') if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') self.check_model_type(a) def SCREAMING_SNAKE_CASE__ ( self , **a) -> Tuple: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = {} # preprocess args if "points_per_batch" in kwargs: SCREAMING_SNAKE_CASE = kwargs['points_per_batch'] if "points_per_crop" in kwargs: SCREAMING_SNAKE_CASE = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: SCREAMING_SNAKE_CASE = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: SCREAMING_SNAKE_CASE = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: SCREAMING_SNAKE_CASE = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: SCREAMING_SNAKE_CASE = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: SCREAMING_SNAKE_CASE = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: SCREAMING_SNAKE_CASE = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: SCREAMING_SNAKE_CASE = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: SCREAMING_SNAKE_CASE = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: SCREAMING_SNAKE_CASE = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: SCREAMING_SNAKE_CASE = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , a , *a , a=None , a=None , **a) -> List[str]: return super().__call__(a , *a , num_workers=a , batch_size=a , **a) def SCREAMING_SNAKE_CASE__ ( self , a , a=64 , a = 0 , a = 512 / 1500 , a = 32 , a = 1 , ) -> List[Any]: SCREAMING_SNAKE_CASE = load_image(a) SCREAMING_SNAKE_CASE = self.image_processor.size['longest_edge'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor.generate_crop_boxes( a , a , a , a , a , a) SCREAMING_SNAKE_CASE = self.image_processor(images=a , return_tensors='pt') with self.device_placement(): if self.framework == "pt": SCREAMING_SNAKE_CASE = self.get_inference_context() with inference_context(): SCREAMING_SNAKE_CASE = self._ensure_tensor_on_device(a , device=self.device) SCREAMING_SNAKE_CASE = self.model.get_image_embeddings(model_inputs.pop('pixel_values')) SCREAMING_SNAKE_CASE = image_embeddings SCREAMING_SNAKE_CASE = grid_points.shape[1] SCREAMING_SNAKE_CASE = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None') for i in range(0 , a , a): SCREAMING_SNAKE_CASE = grid_points[:, i : i + points_per_batch, :, :] SCREAMING_SNAKE_CASE = input_labels[:, i : i + points_per_batch] SCREAMING_SNAKE_CASE = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def SCREAMING_SNAKE_CASE__ ( self , a , a=0.88 , a=0.95 , a=0 , a=1 , ) -> Tuple: SCREAMING_SNAKE_CASE = model_inputs.pop('input_boxes') SCREAMING_SNAKE_CASE = model_inputs.pop('is_last') SCREAMING_SNAKE_CASE = model_inputs.pop('original_sizes').tolist() SCREAMING_SNAKE_CASE = model_inputs.pop('reshaped_input_sizes').tolist() SCREAMING_SNAKE_CASE = self.model(**a) # post processing happens here in order to avoid CPU GPU copies of ALL the masks SCREAMING_SNAKE_CASE = model_outputs['pred_masks'] SCREAMING_SNAKE_CASE = self.image_processor.post_process_masks( a , a , a , a , binarize=a) SCREAMING_SNAKE_CASE = model_outputs['iou_scores'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , a , a , a , a , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def SCREAMING_SNAKE_CASE__ ( self , a , a=False , a=False , a=0.7 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores')) all_masks.extend(model_output.pop('masks')) all_boxes.append(model_output.pop('boxes')) SCREAMING_SNAKE_CASE = torch.cat(a) SCREAMING_SNAKE_CASE = torch.cat(a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor.post_process_for_mask_generation( a , a , a , a) SCREAMING_SNAKE_CASE = defaultdict(a) for output in model_outputs: for k, v in output.items(): extra[k].append(a) SCREAMING_SNAKE_CASE = {} if output_rle_mask: SCREAMING_SNAKE_CASE = rle_mask if output_bboxes_mask: SCREAMING_SNAKE_CASE = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
73
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase : Optional[int] = logging.get_logger(__name__) UpperCamelCase : int = {"vocab_file": "sentencepiece.model"} UpperCamelCase : Union[str, Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } UpperCamelCase : Union[str, Any] = { "google/rembert": 256, } class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , _lowercase : Optional[Any] , _lowercase : Optional[Any]=False , _lowercase : Dict=True , _lowercase : List[str]=True , _lowercase : int="[CLS]" , _lowercase : str="[SEP]" , _lowercase : List[str]="[UNK]" , _lowercase : List[Any]="[SEP]" , _lowercase : Union[str, Any]="[PAD]" , _lowercase : List[str]="[CLS]" , _lowercase : Any="[MASK]" , **_lowercase : Optional[Any] , ): super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , **_lowercase , ) A = do_lower_case A = remove_space A = keep_accents A = vocab_file A = spm.SentencePieceProcessor() self.sp_model.Load(_lowercase ) @property def __a ( self : Tuple ): return len(self.sp_model ) def __a ( self : List[str] ): A = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): A = self.__dict__.copy() A = None return state def __setstate__( self : List[str] , _lowercase : int ): A = d A = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def __a ( self : Dict , _lowercase : Union[str, Any] , _lowercase : Dict=False ): A = self.sp_model.EncodeAsPieces(_lowercase ) return pieces def __a ( self : Dict , _lowercase : Tuple ): return self.sp_model.PieceToId(_lowercase ) def __a ( self : str , _lowercase : Optional[int] ): return self.sp_model.IdToPiece(_lowercase ) def __a ( self : Optional[int] , _lowercase : Optional[int] ): A = self.sp_model.decode_pieces(_lowercase ) return out_string def __a ( self : Optional[int] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def __a ( self : str , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error('Vocabulary path ({}) should be a directory'.format(_lowercase ) ) return A = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
690
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''swin''' lowerCAmelCase_ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : int , _A : int=224 , _A : Any=4 , _A : List[Any]=3 , _A : int=96 , _A : Dict=[2, 2, 6, 2] , _A : Optional[int]=[3, 6, 12, 24] , _A : int=7 , _A : Optional[Any]=4.0 , _A : Optional[int]=True , _A : Optional[int]=0.0 , _A : int=0.0 , _A : Tuple=0.1 , _A : Tuple="gelu" , _A : List[Any]=False , _A : Optional[int]=0.02 , _A : Optional[int]=1e-5 , _A : Any=32 , _A : int=None , _A : Dict=None , **_A : Dict , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Any = image_size __SCREAMING_SNAKE_CASE : List[str] = patch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : List[str] = len(_A ) __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : Optional[int] = window_size __SCREAMING_SNAKE_CASE : Tuple = mlp_ratio __SCREAMING_SNAKE_CASE : Tuple = qkv_bias __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : int = drop_path_rate __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Dict = use_absolute_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __SCREAMING_SNAKE_CASE : Any = int(embed_dim * 2 ** (len(_A ) - 1) ) __SCREAMING_SNAKE_CASE : Optional[int] = ['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(_A ) + 1 )] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = version.parse('''1.11''' ) @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return 1e-4
74
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : List[Any] = { "vocab_file": {"mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt"}, "tokenizer_file": { "mobilebert-uncased": "https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json" }, } UpperCamelCase : Any = {"mobilebert-uncased": 512} UpperCamelCase : Any = {} class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = MobileBertTokenizer def __init__( self : Optional[int] , _lowercase : Optional[int]=None , _lowercase : Any=None , _lowercase : Optional[int]=True , _lowercase : int="[UNK]" , _lowercase : Dict="[SEP]" , _lowercase : Any="[PAD]" , _lowercase : str="[CLS]" , _lowercase : Union[str, Any]="[MASK]" , _lowercase : List[Any]=True , _lowercase : Any=None , **_lowercase : Optional[Any] , ): super().__init__( _lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , tokenize_chinese_chars=_lowercase , strip_accents=_lowercase , **_lowercase , ) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowercase ) != tokenize_chinese_chars ): A = getattr(_lowercase , normalizer_state.pop('type' ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**_lowercase ) A = do_lower_case def __a ( self : List[Any] , _lowercase : Tuple , _lowercase : Any=None ): A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self : Dict , _lowercase : str , _lowercase : Optional[str] = None ): A = self._tokenizer.model.save(_lowercase , name=_lowercase ) return tuple(_lowercase )
690
0
'''simple docstring''' def a__ ( lowerCAmelCase__ = 50 ) -> int: UpperCAmelCase__ : int = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
75
"""simple docstring""" def __snake_case ( UpperCamelCase__ ) -> list[int]: """simple docstring""" A = [0 for i in range(len(UpperCamelCase__ ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(UpperCamelCase__ ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> bool: """simple docstring""" return i + z_result[i] < len(UpperCamelCase__ ) and s[z_result[i]] == s[i + z_result[i]] def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ) -> int: """simple docstring""" A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(UpperCamelCase__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
690
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ ( snake_case ): def __init__( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> List[Any]: super().__init__( UpperCamelCase_ , split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , num_proc=UpperCamelCase_ , **UpperCamelCase_ , ) __lowercase : List[Any] = field __lowercase : List[str] = path_or_paths if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else {self.split: path_or_paths} __lowercase : Dict = Json( cache_dir=UpperCamelCase_ , data_files=UpperCamelCase_ , features=UpperCamelCase_ , field=UpperCamelCase_ , **UpperCamelCase_ , ) def _lowerCamelCase ( self ) -> str: # Build iterable dataset if self.streaming: __lowercase : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowercase : List[Any] = None __lowercase : Any = None __lowercase : Union[str, Any] = None __lowercase : Optional[int] = None self.builder.download_and_prepare( download_config=UpperCamelCase_ , download_mode=UpperCamelCase_ , verification_mode=UpperCamelCase_ , base_path=UpperCamelCase_ , num_proc=self.num_proc , ) __lowercase : str = self.builder.as_dataset( split=self.split , verification_mode=UpperCamelCase_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , **UpperCamelCase_ , ) -> str: if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) __lowercase : Any = dataset __lowercase : Dict = path_or_buf __lowercase : Any = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowercase : List[str] = num_proc __lowercase : Optional[Any] = '''utf-8''' __lowercase : Tuple = to_json_kwargs def _lowerCamelCase ( self ) -> int: __lowercase : str = self.to_json_kwargs.pop('''path_or_buf''' , UpperCamelCase_ ) __lowercase : str = self.to_json_kwargs.pop('''orient''' , '''records''' ) __lowercase : List[Any] = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) __lowercase : Any = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) __lowercase : Tuple = self.to_json_kwargs.pop('''compression''' , UpperCamelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=UpperCamelCase_ ) as buffer: __lowercase : List[str] = self._write(file_obj=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ''' was passed. Please provide a local path instead.''' ) __lowercase : Tuple = self._write( file_obj=self.path_or_buf , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **self.to_json_kwargs ) return written def _lowerCamelCase ( self , UpperCamelCase_ ) -> List[str]: __lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase : Dict = args __lowercase : Union[str, Any] = query_table( table=self.dataset.data , key=slice(UpperCamelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowercase : Optional[Any] = batch.to_pandas().to_json( path_or_buf=UpperCamelCase_ , orient=UpperCamelCase_ , lines=UpperCamelCase_ , index=UpperCamelCase_ , **UpperCamelCase_ ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ , ) -> int: __lowercase : Dict = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): __lowercase : str = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCamelCase_ ) else: __lowercase ,__lowercase : Dict = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCamelCase_ , UpperCamelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(UpperCamelCase_ ) return written
76
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a__ ( __magic_name__ ): def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCamelCase_ , "width_multiplier")) class a__ : def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : str=13 , UpperCamelCase_ : Optional[Any]=64 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Dict="swish" , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Union[str, Any]=10 , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[int]=0.25 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , ): """simple docstring""" __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Union[str, Any] = image_size __UpperCAmelCase : Any = patch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8) __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Union[str, Any] = conv_kernel_size __UpperCAmelCase : List[Any] = output_stride __UpperCAmelCase : int = classifier_dropout_prob __UpperCAmelCase : Any = use_labels __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : Any = num_labels __UpperCAmelCase : str = initializer_range __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : int = width_multiplier __UpperCAmelCase : Optional[int] = ffn_dropout __UpperCAmelCase : Optional[int] = attn_dropout def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase : str = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels) __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __UpperCAmelCase : Any = self.get_config() return config, pixel_values, labels, pixel_labels def a_ ( self : Union[str, Any]): """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def a_ ( self : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : str = MobileViTVaModel(config=UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Dict = self.num_labels __UpperCAmelCase : int = MobileViTVaForImageClassification(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Any = model(UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def a_ ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple): """simple docstring""" __UpperCAmelCase : Any = self.num_labels __UpperCAmelCase : List[str] = MobileViTVaForSemanticSegmentation(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __UpperCAmelCase : Union[str, Any] = model(UpperCamelCase_ , labels=UpperCamelCase_) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : str = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): lowercase_ = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Dict = MobileViTVaModelTester(self) __UpperCAmelCase : List[Any] = MobileViTVaConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds") def a_ ( self : Optional[int]): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings") def a_ ( self : List[Any]): """simple docstring""" pass @unittest.skip(reason="MobileViTV2 does not output attentions") def a_ ( self : List[Any]): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run.") def a_ ( self : str): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def a_ ( self : List[str]): """simple docstring""" pass def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = model_class(UpperCamelCase_) __UpperCAmelCase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase_) def a_ ( self : Any): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" def check_hidden_states_output(UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int]): __UpperCAmelCase : str = model_class(UpperCamelCase_) model.to(UpperCamelCase_) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_)) __UpperCAmelCase : Tuple = outputs.hidden_states __UpperCAmelCase : Tuple = 5 self.assertEqual(len(UpperCamelCase_) , UpperCamelCase_) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __UpperCAmelCase : Dict = 2 for i in range(len(UpperCamelCase_)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_) @slow def a_ ( self : Dict): """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = MobileViTVaModel.from_pretrained(UpperCamelCase_) self.assertIsNotNone(UpperCamelCase_) def _UpperCamelCase ( ) -> Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def a_ ( self : Optional[int]): """simple docstring""" return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256") if is_vision_available() else None ) @slow def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : Optional[Any] = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256").to( UpperCamelCase_) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt").to(UpperCamelCase_) # forward pass with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**UpperCamelCase_) # verify the logits __UpperCAmelCase : str = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , UpperCamelCase_) __UpperCAmelCase : List[str] = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01]).to(UpperCamelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1e-4)) @slow def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Optional[Any] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : int = model.to(UpperCamelCase_) __UpperCAmelCase : Dict = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : Dict = prepare_img() __UpperCAmelCase : Optional[Any] = image_processor(images=UpperCamelCase_ , return_tensors="pt").to(UpperCamelCase_) # forward pass with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**UpperCamelCase_) __UpperCAmelCase : Tuple = outputs.logits # verify the logits __UpperCAmelCase : int = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , UpperCamelCase_) __UpperCAmelCase : List[str] = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=UpperCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase_ , atol=1e-4)) @slow def a_ ( self : Dict): """simple docstring""" __UpperCAmelCase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : Union[str, Any] = model.to(UpperCamelCase_) __UpperCAmelCase : int = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3") __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=UpperCamelCase_ , return_tensors="pt").to(UpperCamelCase_) # forward pass with torch.no_grad(): __UpperCAmelCase : List[str] = model(**UpperCamelCase_) __UpperCAmelCase : int = outputs.logits.detach().cpu() __UpperCAmelCase : int = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_ , target_sizes=[(50, 60)]) __UpperCAmelCase : Tuple = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , UpperCamelCase_) __UpperCAmelCase : Any = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase_) __UpperCAmelCase : Tuple = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , UpperCamelCase_)
77
"""simple docstring""" import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase , cache_dir=_lowercase ) A = [t[-1] for t in os.walk(os.path.join(_lowercase , os.listdir(_lowercase )[0] , 'snapshots' ) )] A = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 4 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_5_1_4_7_4_5 ) < 1e-3 assert np.abs(np.abs(_lowercase , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 A = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_lowercase ) == num_samples def __a ( self : Dict ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_5_6_5_2_4_0_1) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def __a ( self : List[str] ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : str ): A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_0_0_3_9_0_6) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def __a ( self : Any ): A = FlaxDDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , set_alpha_to_one=_lowercase , steps_offset=1 , ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_lowercase , safety_checker=_lowercase , ) A = scheduler.create_state() A = scheduler_state A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.random.PRNGKey(0 ) A = 50 A = jax.device_count() A = num_samples * [prompt] A = pipeline.prepare_inputs(_lowercase ) # shard inputs and rng A = replicate(_lowercase ) A = jax.random.split(_lowercase , _lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_4_5_0_4_3_9_4_5) ) < 1e-3 assert np.abs((np.abs(_lowercase , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def __a ( self : List[str] ): A = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) A = jax.device_count() A = num_samples * [prompt] A = jax.random.split(jax.random.PRNGKey(0 ) , _lowercase ) A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # With memory efficient attention A , A = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_lowercase , use_memory_efficient_attention=_lowercase , ) A = replicate(_lowercase ) A = pipeline.prepare_inputs(_lowercase ) A = shard(_lowercase ) A = pipeline(_lowercase , _lowercase , _lowercase , jit=_lowercase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
690
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Union[str, Any] ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ) if weight_type is not None: UpperCAmelCase_ = getattr(snake_case_ , snake_case_ ).shape else: UpperCAmelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ = value elif weight_type == "weight_g": UpperCAmelCase_ = value elif weight_type == "weight_v": UpperCAmelCase_ = value elif weight_type == "bias": UpperCAmelCase_ = value else: UpperCAmelCase_ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = fairseq_model.state_dict() UpperCAmelCase_ = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase_ = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): UpperCAmelCase_ = True if "*" in mapped_key: UpperCAmelCase_ = name.split(snake_case_ )[0].split("." )[-2] UpperCAmelCase_ = mapped_key.replace("*" , snake_case_ ) if "weight_g" in name: UpperCAmelCase_ = "weight_g" elif "weight_v" in name: UpperCAmelCase_ = "weight_v" elif "weight" in name: UpperCAmelCase_ = "weight" elif "bias" in name: UpperCAmelCase_ = "bias" else: UpperCAmelCase_ = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : Optional[int] ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = full_name.split("conv_layers." )[-1] UpperCAmelCase_ = name.split("." ) UpperCAmelCase_ = int(items[0] ) UpperCAmelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : str=None , snake_case_ : Tuple=None , snake_case_ : Dict=True ) -> Optional[int]: '''simple docstring''' if config_path is not None: UpperCAmelCase_ = HubertConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase_ = Dictionary.load(snake_case_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ = target_dict.pad_index UpperCAmelCase_ = target_dict.bos_index UpperCAmelCase_ = target_dict.eos_index UpperCAmelCase_ = len(target_dict.symbols ) UpperCAmelCase_ = os.path.join(snake_case_ , "vocab.json" ) if not os.path.isdir(snake_case_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case_ ) ) return os.makedirs(snake_case_ , exist_ok=snake_case_ ) with open(snake_case_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , snake_case_ ) UpperCAmelCase_ = WavaVecaCTCTokenizer( snake_case_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=snake_case_ , ) UpperCAmelCase_ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=snake_case_ , return_attention_mask=snake_case_ , ) UpperCAmelCase_ = WavaVecaProcessor(feature_extractor=snake_case_ , tokenizer=snake_case_ ) processor.save_pretrained(snake_case_ ) UpperCAmelCase_ = HubertForCTC(snake_case_ ) else: UpperCAmelCase_ = HubertModel(snake_case_ ) if is_finetuned: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase_ = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) SCREAMING_SNAKE_CASE_: Optional[Any] =parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
78
"""simple docstring""" import os import sys UpperCamelCase : Optional[int] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase : Dict = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Dict: """simple docstring""" return AutoConfig.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> str: """simple docstring""" return AutoModel.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: """simple docstring""" return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> Optional[Any]: """simple docstring""" return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __snake_case ( *UpperCamelCase__ , **UpperCamelCase__ ) -> int: """simple docstring""" return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__ , **UpperCamelCase__ )
690
0
import requests SCREAMING_SNAKE_CASE__ : Optional[Any] = """""" # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE__ : Optional[int] = """https://api.openweathermap.org/data/2.5/""" def _lowerCamelCase ( __lowerCamelCase = "Chicago" , __lowerCamelCase = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + """weather""" , params=locals() ).json() def _lowerCamelCase ( __lowerCamelCase = "Kolkata, India" , __lowerCamelCase = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def _lowerCamelCase ( __lowerCamelCase = 55.68 , __lowerCamelCase = 12.57 , __lowerCamelCase = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE__ : int = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
79
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = ["""pixel_values"""] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = PILImageResampling.BILINEAR , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 255 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : List[str] , ): super().__init__(**_lowercase ) A = size if size is not None else {'shortest_edge': 256} A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = crop_size if crop_size is not None else {'height': 224, 'width': 224} A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_resize A = size A = resample A = do_center_crop A = crop_size A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self : Any , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): A = get_size_dict(_lowercase , default_to_square=_lowercase ) if "shortest_edge" not in size: raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) A = get_resize_output_image_size(_lowercase , size=size['shortest_edge'] , default_to_square=_lowercase ) return resize(_lowercase , size=_lowercase , resample=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): A = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(_lowercase , size=(size['height'], size['width']) , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : float , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : int , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def __a ( self : Any , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **_lowercase : Any , ): A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(_lowercase , default_to_square=_lowercase ) A = resample if resample is not None else self.resample A = do_center_crop if do_center_crop is not None else self.do_center_crop A = crop_size if crop_size is not None else self.crop_size A = get_size_dict(_lowercase , param_name='crop_size' ) A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(_lowercase ) for image in images] if do_resize: A = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: A = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: A = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: A = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] A = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] A = {'pixel_values': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase ) def __a ( self : int , _lowercase : List[str] , _lowercase : List[Tuple] = None ): A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_lowercase ) != len(_lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(_lowercase ): A = target_sizes.numpy() A = [] for idx in range(len(_lowercase ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=_lowercase ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_lowercase ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
690
0