code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections.abc import Sequence from queue import Queue class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> int: __lowerCamelCase : str = start __lowerCamelCase : Union[str, Any] = end __lowerCamelCase : Any = val __lowerCamelCase : int = (start + end) // 2 __lowerCamelCase : str = left __lowerCamelCase : Tuple = right def __repr__( self ) -> List[str]: return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Optional[Any] = collection __lowerCamelCase : Tuple = function if self.collection: __lowerCamelCase : List[str] = self._build_tree(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: self._update_tree(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return self._query_range(self.root , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if start == end: return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.collection[start] ) __lowerCamelCase : Optional[int] = (start + end) // 2 __lowerCamelCase : str = self._build_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._build_tree(mid + 1 , SCREAMING_SNAKE_CASE_ ) return SegmentTreeNode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.fn(left.val , right.val ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: if node.start == i and node.end == i: __lowerCamelCase : Any = val return if i <= node.mid: self._update_tree(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: self._update_tree(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.fn(node.left.val , node.right.val ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , SCREAMING_SNAKE_CASE_ , node.mid ) , self._query_range(node.right , node.mid + 1 , SCREAMING_SNAKE_CASE_ ) , ) else: # range in right child tree return self._query_range(node.right , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: if self.root is not None: __lowerCamelCase : Any = Queue() queue.put(self.root ) while not queue.empty(): __lowerCamelCase : List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) A__ : List[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A__ : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Dict: if not conversation_id: __lowerCamelCase : int = uuid.uuida() if past_user_inputs is None: __lowerCamelCase : List[str] = [] if generated_responses is None: __lowerCamelCase : Any = [] __lowerCamelCase : uuid.UUID = conversation_id __lowerCamelCase : List[str] = past_user_inputs __lowerCamelCase : List[str] = generated_responses __lowerCamelCase : Optional[str] = text def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False ) -> Tuple: if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) __lowerCamelCase : Optional[Any] = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: __lowerCamelCase : List[str] = text def lowercase_ ( self ) -> str: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __lowerCamelCase : Any = None def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: self.generated_responses.append(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): __lowerCamelCase : Union[str, Any] = 'user' if is_user else 'bot' output += f'{name} >> {text} \n' return output @add_end_docstrings( _UpperCAmelCase , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.tokenizer.pad_token_id is None: __lowerCamelCase : Tuple = self.tokenizer.eos_token def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Union[str, Any] = {} __lowerCamelCase : int = {} __lowerCamelCase : Dict = {} if min_length_for_response is not None: __lowerCamelCase : Union[str, Any] = min_length_for_response if minimum_tokens is not None: __lowerCamelCase : Any = minimum_tokens if "max_length" in generate_kwargs: __lowerCamelCase : List[str] = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __lowerCamelCase : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : int = super().__call__(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1: return outputs[0] return outputs def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=32 ) -> Dict[str, Any]: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): __lowerCamelCase : Optional[Any] = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version __lowerCamelCase : Union[str, Any] = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE_ ) if self.framework == "pt": __lowerCamelCase : Optional[int] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __lowerCamelCase : Tuple = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=10 , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Dict = generate_kwargs.get('max_length' , self.model.config.max_length ) __lowerCamelCase : Optional[int] = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) __lowerCamelCase : List[Any] = max_length - minimum_tokens __lowerCamelCase : Tuple = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: __lowerCamelCase : Optional[int] = model_inputs['attention_mask'][:, -trim:] __lowerCamelCase : Tuple = model_inputs.pop('conversation' ) __lowerCamelCase : Any = max_length __lowerCamelCase : int = self.model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.model.config.is_encoder_decoder: __lowerCamelCase : int = 1 else: __lowerCamelCase : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Dict: __lowerCamelCase : Any = model_outputs['output_ids'] __lowerCamelCase : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : int = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE_ ) return conversation def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Tuple = self.tokenizer.eos_token_id __lowerCamelCase : List[str] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > self.tokenizer.model_max_length: __lowerCamelCase : Any = input_ids[-self.tokenizer.model_max_length :] return input_ids
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCAmelCase__ ( UpperCAmelCase_ : str = "AAPL" ) -> str: __lowerCamelCase : str = F'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' __lowerCamelCase : Optional[int] = BeautifulSoup(requests.get(UpperCAmelCase_ ).text , 'html.parser' ) __lowerCamelCase : Optional[Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_ ).find('span' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Tuple = FunnelTokenizer lowerCamelCase : str = FunnelTokenizerFast lowerCamelCase : Tuple = True lowerCamelCase : Dict = True def lowercase_ ( self ) -> Optional[Any]: super().setUp() __lowerCamelCase : List[str] = [ '<unk>', '<cls>', '<sep>', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str: return FunnelTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> List[str]: return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Any = 'UNwant\u00E9d,running' __lowerCamelCase : Dict = 'unwanted, running' return input_text, output_text def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.tokenizer_class(self.vocab_file ) __lowerCamelCase : Dict = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [7, 4, 5, 10, 8, 9] ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: __lowerCamelCase : Union[str, Any] = tokenizer('UNwant\u00E9d,running' ) __lowerCamelCase : Union[str, Any] = len(inputs['input_ids'] ) - 1 self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len ) __lowerCamelCase : Optional[Any] = tokenizer('UNwant\u00E9d,running' , 'UNwant\u00E9d,running' ) self.assertListEqual(inputs['token_type_ids'] , [2] + [0] * sentence_len + [1] * sentence_len )
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : list[list[int | float]] ) -> int: __lowerCamelCase : Tuple = len(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = len(matrix[0] ) __lowerCamelCase : Dict = min(UpperCAmelCase_ , UpperCAmelCase_ ) for row in range(UpperCAmelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCAmelCase_ ): __lowerCamelCase : Optional[int] = matrix[col][row] / matrix[row][row] for i in range(UpperCAmelCase_ , UpperCAmelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __lowerCamelCase : Optional[Any] = True for i in range(row + 1 , UpperCAmelCase_ ): if matrix[i][row] != 0: __lowerCamelCase , __lowerCamelCase : List[str] = matrix[i], matrix[row] __lowerCamelCase : str = False break if reduce: rank -= 1 for i in range(UpperCAmelCase_ ): __lowerCamelCase : str = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = F'Input value of [number={number}] must be an integer' raise TypeError(UpperCAmelCase_ ) if number < 0: return False __lowerCamelCase : Tuple = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' import numpy # List of input, output pairs A__ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A__ : Union[str, Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A__ : str = [2, 4, 1, 5] A__ : Dict = len(train_data) A__ : Tuple = 0.0_0_9 def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]="train" ) -> str: return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Optional[int] = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Tuple: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=m ) -> Dict: __lowerCamelCase : List[str] = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]: __lowerCamelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def UpperCAmelCase__ ( ) -> Optional[int]: global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase : List[str] = 0.000_002 __lowerCamelCase : str = 0 __lowerCamelCase : int = 0 while True: j += 1 __lowerCamelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): __lowerCamelCase : Any = get_cost_derivative(i - 1 ) __lowerCamelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break __lowerCamelCase : Tuple = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCAmelCase__ ( ) -> Tuple: for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' from math import pi, sqrt, tan def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __lowerCamelCase : int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(UpperCAmelCase_ , 2 ) * torus_radius * tube_radius def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __lowerCamelCase : List[str] = (sidea + sidea + sidea) / 2 __lowerCamelCase : Optional[int] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : float ) -> float: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(f'''Rectangle: {area_rectangle(10, 20) = }''') print(f'''Square: {area_square(10) = }''') print(f'''Triangle: {area_triangle(10, 10) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 12, 13) = }''') print(f'''Parallelogram: {area_parallelogram(10, 20) = }''') print(f'''Rhombus: {area_rhombus(10, 20) = }''') print(f'''Trapezium: {area_trapezium(10, 20, 30) = }''') print(f'''Circle: {area_circle(20) = }''') print(f'''Ellipse: {area_ellipse(10, 20) = }''') print("""\nSurface Areas of various geometric shapes: \n""") print(f'''Cube: {surface_area_cube(20) = }''') print(f'''Cuboid: {surface_area_cuboid(10, 20, 30) = }''') print(f'''Sphere: {surface_area_sphere(20) = }''') print(f'''Hemisphere: {surface_area_hemisphere(20) = }''') print(f'''Cone: {surface_area_cone(10, 20) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }''') print(f'''Cylinder: {surface_area_cylinder(10, 20) = }''') print(f'''Torus: {surface_area_torus(20, 10) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 10) = }''') print(f'''Square: {area_reg_polygon(4, 10) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 10) = }''')
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float: _validate_point(UpperCAmelCase_ ) _validate_point(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : list[float] ) -> None: if point: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for item in point: if not isinstance(UpperCAmelCase_ , (int, float) ): __lowerCamelCase : Optional[int] = ( 'Expected a list of numbers as input, found ' F'{type(UpperCAmelCase_ ).__name__}' ) raise TypeError(UpperCAmelCase_ ) else: __lowerCamelCase : int = F'Expected a list of numbers as input, found {type(UpperCAmelCase_ ).__name__}' raise TypeError(UpperCAmelCase_ ) else: raise ValueError('Missing an input' ) def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> float: _validate_point(UpperCAmelCase_ ) _validate_point(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(UpperCAmelCase_ , UpperCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __lowerCamelCase : Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : str = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __lowerCamelCase : List[Any] = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_60_00, 'return_attention_mask': False, 'do_normalize': True, } __lowerCamelCase : List[str] = tempfile.mkdtemp() __lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __lowerCamelCase : List[str] = 'hf-internal-testing/ngram-beam-search-decoder' def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> str: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Dict = self.get_feature_extractor() __lowerCamelCase : List[Any] = self.get_decoder() __lowerCamelCase : List[Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __lowerCamelCase : Dict = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def lowercase_ ( self ) -> int: __lowerCamelCase : Dict = self.get_feature_extractor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : Any = self.get_decoder() __lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = floats_list((3, 10_00) ) __lowerCamelCase : Union[str, Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Union[str, Any] = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.get_feature_extractor() __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase : Optional[Any] = self.get_decoder() __lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = 'This is a test string' __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=(2, 10, 16) , SCREAMING_SNAKE_CASE_=77 ) -> List[Any]: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = self.get_feature_extractor() __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : Optional[Any] = self.get_decoder() __lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __lowerCamelCase : Optional[int] = processor.decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Optional[int] = self.get_feature_extractor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : List[Any] = self.get_decoder() __lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __lowerCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __lowerCamelCase : str = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __lowerCamelCase : Dict = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : str = self.get_feature_extractor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Any = self.get_decoder() __lowerCamelCase : str = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self._get_dummy_logits() __lowerCamelCase : int = 15 __lowerCamelCase : Dict = -2_0.0 __lowerCamelCase : Optional[Any] = -4.0 __lowerCamelCase : List[Any] = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = decoded_processor_out.text __lowerCamelCase : Optional[int] = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __lowerCamelCase : List[Any] = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Union[str, Any] = [d[0][0] for d in decoded_decoder_out] __lowerCamelCase : Tuple = [d[0][2] for d in decoded_decoder_out] __lowerCamelCase : List[Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[Any] = self.get_feature_extractor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : int = self.get_decoder() __lowerCamelCase : Dict = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = self._get_dummy_logits() __lowerCamelCase : Union[str, Any] = 2.0 __lowerCamelCase : str = 5.0 __lowerCamelCase : int = -2_0.0 __lowerCamelCase : Optional[Any] = True __lowerCamelCase : str = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = decoded_processor_out.text __lowerCamelCase : int = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __lowerCamelCase : Union[str, Any] = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Any = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Dict = processor.decoder.model_container[processor.decoder._model_key] __lowerCamelCase : str = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowerCamelCase : Optional[int] = os.listdir(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = snapshot_download('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = processor.decoder.model_container[processor.decoder._model_key] __lowerCamelCase : int = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __lowerCamelCase : str = os.listdir(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : Optional[int] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Dict = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Tuple = floats_list((3, 10_00) ) __lowerCamelCase : Optional[Any] = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Optional[int] = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) __lowerCamelCase : int = self._get_dummy_logits() __lowerCamelCase : Tuple = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = self.get_feature_extractor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : List[Any] = self.get_decoder() __lowerCamelCase : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def lowercase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : int = [d[key] for d in offsets] return retrieved_list def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Optional[Any] = self._get_dummy_logits()[0] __lowerCamelCase : Dict = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __lowerCamelCase : Union[str, Any] = self._get_dummy_logits() __lowerCamelCase : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def lowercase_ ( self ) -> Union[str, Any]: import torch __lowerCamelCase : Optional[Any] = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_60_00 ) ) __lowerCamelCase : List[str] = iter(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = next(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __lowerCamelCase : Tuple = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __lowerCamelCase : List[Any] = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __lowerCamelCase : Optional[int] = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __lowerCamelCase : Optional[int] = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __lowerCamelCase : Optional[int] = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __lowerCamelCase : Optional[Any] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __lowerCamelCase : str = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __lowerCamelCase : Tuple = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __lowerCamelCase : Any = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __lowerCamelCase : str = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) A__ : List[str] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) A__ : Dict = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) A__ : int = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) A__ : Optional[Any] = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) A__ : Optional[int] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) A__ : str = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) A__ : Dict = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) A__ : Optional[Any] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) A__ : Optional[Any] = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) A__ : str = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) A__ : str = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) A__ : Optional[Any] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) A__ : Dict = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) A__ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) A__ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) A__ : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) A__ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) A__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) A__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) A__ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) A__ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) A__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) A__ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) A__ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) A__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) A__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) A__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Tuple = FLAX_MODEL_MAPPING A__ : str = auto_class_update(FlaxAutoModel) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[str] = FLAX_MODEL_FOR_PRETRAINING_MAPPING A__ : Optional[int] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING A__ : List[Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING A__ : str = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A__ : Any = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ : Dict = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING A__ : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING A__ : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING A__ : Optional[int] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING A__ : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING A__ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING A__ : str = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class UpperCAmelCase_ (_BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING A__ : Any = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging A__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowerCamelCase : Optional[int] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Any: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) # get prompt text embeddings __lowerCamelCase : str = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) __lowerCamelCase : Optional[int] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __lowerCamelCase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __lowerCamelCase : int = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __lowerCamelCase : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = text_embeddings.shape __lowerCamelCase : Tuple = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE_ , 1 ) __lowerCamelCase : Tuple = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowerCamelCase : Optional[Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowerCamelCase : List[str] if negative_prompt is None: __lowerCamelCase : Union[str, Any] = [''] elif type(SCREAMING_SNAKE_CASE_ ) is not type(SCREAMING_SNAKE_CASE_ ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_ )} !=' f' {type(SCREAMING_SNAKE_CASE_ )}.' ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_ )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: __lowerCamelCase : Tuple = negative_prompt __lowerCamelCase : str = text_input_ids.shape[-1] __lowerCamelCase : Optional[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding='max_length' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , ) __lowerCamelCase : Tuple = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __lowerCamelCase : int = uncond_embeddings.shape[1] __lowerCamelCase : Any = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 ) __lowerCamelCase : int = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowerCamelCase : Dict = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowerCamelCase : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __lowerCamelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __lowerCamelCase : Any = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __lowerCamelCase : Any = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to(self.device ) __lowerCamelCase : Optional[int] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device='cpu' , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: __lowerCamelCase : int = torch.randn( SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents_reference.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) __lowerCamelCase : Optional[int] = latents_reference.to(self.device ) __lowerCamelCase : Optional[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __lowerCamelCase : List[str] = (latents_shape[3] - latents_shape_reference[3]) // 2 __lowerCamelCase : str = (latents_shape[2] - latents_shape_reference[2]) // 2 __lowerCamelCase : str = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __lowerCamelCase : Any = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __lowerCamelCase : Dict = 0 if dx < 0 else dx __lowerCamelCase : Dict = 0 if dy < 0 else dy __lowerCamelCase : int = max(-dx , 0 ) __lowerCamelCase : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() __lowerCamelCase : List[str] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __lowerCamelCase : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowerCamelCase : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowerCamelCase : str = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowerCamelCase : Any = {} if accepts_eta: __lowerCamelCase : List[Any] = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_ ) ): # expand the latents if we are doing classifier free guidance __lowerCamelCase : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCamelCase : Dict = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual __lowerCamelCase : List[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform guidance if do_classifier_free_guidance: __lowerCamelCase , __lowerCamelCase : int = noise_pred.chunk(2 ) __lowerCamelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __lowerCamelCase : int = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 1 / 0.1_8_2_1_5 * latents __lowerCamelCase : str = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample __lowerCamelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowerCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __lowerCamelCase : List[str] = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) , return_tensors='pt' ).to( self.device ) __lowerCamelCase , __lowerCamelCase : List[Any] = self.safety_checker( images=SCREAMING_SNAKE_CASE_ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __lowerCamelCase : str = None if output_type == "pil": __lowerCamelCase : Union[str, Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : str = logging.get_logger(__name__) A__ : Tuple = torch.device("""cpu""") def UpperCAmelCase__ ( ) -> Any: __lowerCamelCase : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : int = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> int: __lowerCamelCase : Optional[Any] = dct.pop(UpperCAmelCase_ ) __lowerCamelCase : List[str] = val def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Dict: __lowerCamelCase : str = [] for k in state_dict.keys(): __lowerCamelCase : Optional[Any] = k if ".pwconv" in k: __lowerCamelCase : int = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: __lowerCamelCase : Any = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: __lowerCamelCase : List[Any] = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: __lowerCamelCase : Union[str, Any] = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: __lowerCamelCase : Optional[Any] = k_new.split('.' ) if ls[2].isdigit(): __lowerCamelCase : int = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: __lowerCamelCase : List[Any] = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) -> Optional[int]: __lowerCamelCase : Any = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size __lowerCamelCase : Optional[Any] = 10_00 __lowerCamelCase : Optional[Any] = 'huggingface/label-files' __lowerCamelCase : Optional[int] = 'imagenet-1k-id2label.json' __lowerCamelCase : Any = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase : Optional[Any] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __lowerCamelCase : Any = idalabel __lowerCamelCase : Dict = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": __lowerCamelCase : Tuple = [3, 3, 6, 4] __lowerCamelCase : Optional[Any] = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": __lowerCamelCase : Any = [3, 3, 9, 6] __lowerCamelCase : Any = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": __lowerCamelCase : List[str] = [4, 3, 10, 5] __lowerCamelCase : Union[str, Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": __lowerCamelCase : Union[str, Any] = [4, 4, 12, 6] __lowerCamelCase : Dict = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): __lowerCamelCase : int = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' , check_hash=UpperCAmelCase_ ) else: __lowerCamelCase : Tuple = torch.load(UpperCAmelCase_ , map_location='cpu' ) __lowerCamelCase : Tuple = checkpoint __lowerCamelCase : Any = create_rename_keys(UpperCAmelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # load HuggingFace model __lowerCamelCase : List[str] = SwiftFormerForImageClassification(UpperCAmelCase_ ).eval() hf_model.load_state_dict(UpperCAmelCase_ ) # prepare test inputs __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : Tuple = ViTImageProcessor.from_pretrained('preprocessor_config' ) __lowerCamelCase : Any = processor(images=UpperCAmelCase_ , return_tensors='pt' ) # compare outputs from both models __lowerCamelCase : List[Any] = get_expected_output(UpperCAmelCase_ ) __lowerCamelCase : Dict = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , UpperCAmelCase_ , atol=1e-3 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") A__ : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: if num < 0: return False __lowerCamelCase : int = num __lowerCamelCase : int = 0 while num > 0: __lowerCamelCase : int = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[int] = { """configuration_electra""": ["""ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ElectraConfig""", """ElectraOnnxConfig"""], """tokenization_electra""": ["""ElectraTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ["""ElectraTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = [ """ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """ElectraForCausalLM""", """ElectraForMaskedLM""", """ElectraForMultipleChoice""", """ElectraForPreTraining""", """ElectraForQuestionAnswering""", """ElectraForSequenceClassification""", """ElectraForTokenClassification""", """ElectraModel""", """ElectraPreTrainedModel""", """load_tf_weights_in_electra""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = [ """TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFElectraForMaskedLM""", """TFElectraForMultipleChoice""", """TFElectraForPreTraining""", """TFElectraForQuestionAnswering""", """TFElectraForSequenceClassification""", """TFElectraForTokenClassification""", """TFElectraModel""", """TFElectraPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ """FlaxElectraForCausalLM""", """FlaxElectraForMaskedLM""", """FlaxElectraForMultipleChoice""", """FlaxElectraForPreTraining""", """FlaxElectraForQuestionAnswering""", """FlaxElectraForSequenceClassification""", """FlaxElectraForTokenClassification""", """FlaxElectraModel""", """FlaxElectraPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: return 1.0 / (1.0 + np.exp(-_outputs )) def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> str: __lowerCamelCase : int = np.max(_outputs , axis=-1 , keepdims=UpperCAmelCase_ ) __lowerCamelCase : Dict = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCAmelCase_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : int = 'sigmoid' lowerCamelCase : List[Any] = 'softmax' lowerCamelCase : Optional[Any] = 'none' @add_end_docstrings( _UpperCAmelCase , r'\n return_all_scores (`bool`, *optional*, defaults to `False`):\n Whether to return all prediction scores or just the one of the predicted class.\n function_to_apply (`str`, *optional*, defaults to `"default"`):\n The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:\n\n - `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model\n has several labels, will apply the softmax function on the output.\n - `"sigmoid"`: Applies the sigmoid function on the output.\n - `"softmax"`: Applies the softmax function on the output.\n - `"none"`: Does not apply any function on the output.\n ' , ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Any = False lowerCamelCase : Any = ClassificationFunction.NONE def __init__( self , **SCREAMING_SNAKE_CASE_ ) -> str: super().__init__(**SCREAMING_SNAKE_CASE_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="" , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: # Using "" as default argument because we're going to use `top_k=None` in user code to declare # "No top_k" __lowerCamelCase : Optional[Any] = tokenizer_kwargs __lowerCamelCase : Optional[int] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: __lowerCamelCase : List[Any] = self.model.config.return_all_scores if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or top_k is None: __lowerCamelCase : List[str] = top_k __lowerCamelCase : List[Any] = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , SCREAMING_SNAKE_CASE_ , ) if return_all_scores: __lowerCamelCase : List[str] = None else: __lowerCamelCase : str = 1 if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: __lowerCamelCase : Any = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. __lowerCamelCase : Dict = 'top_k' not in kwargs if isinstance(args[0] , SCREAMING_SNAKE_CASE_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict[str, GenericTensor]: __lowerCamelCase : int = self.framework if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return self.tokenizer(**SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1 and isinstance(inputs[0] , SCREAMING_SNAKE_CASE_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: return self.model(**SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=True ) -> Optional[Any]: # `_legacy` is used to determine if we're running the naked pipeline and in backward # compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running # the more natural result containing the list. # Default value before `set_parameters` if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: __lowerCamelCase : Any = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: __lowerCamelCase : Dict = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: __lowerCamelCase : int = self.model.config.function_to_apply else: __lowerCamelCase : Optional[Any] = ClassificationFunction.NONE __lowerCamelCase : Dict = model_outputs['logits'][0] __lowerCamelCase : Any = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: __lowerCamelCase : Optional[Any] = sigmoid(SCREAMING_SNAKE_CASE_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: __lowerCamelCase : int = softmax(SCREAMING_SNAKE_CASE_ ) elif function_to_apply == ClassificationFunction.NONE: __lowerCamelCase : List[str] = outputs else: raise ValueError(f'Unrecognized `function_to_apply` argument: {function_to_apply}' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} __lowerCamelCase : List[str] = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(SCREAMING_SNAKE_CASE_ ) ] if not _legacy: dict_scores.sort(key=lambda SCREAMING_SNAKE_CASE_ : x["score"] , reverse=SCREAMING_SNAKE_CASE_ ) if top_k is not None: __lowerCamelCase : int = dict_scores[:top_k] return dict_scores
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys A__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import math from datetime import datetime, timedelta def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> datetime: __lowerCamelCase : Union[str, Any] = year % 19 __lowerCamelCase : List[str] = year % 4 __lowerCamelCase : Union[str, Any] = year % 7 __lowerCamelCase : Tuple = math.floor(year / 1_00 ) __lowerCamelCase : str = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __lowerCamelCase : Dict = leap_day_inhibits / 4 __lowerCamelCase : Optional[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __lowerCamelCase : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __lowerCamelCase : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __lowerCamelCase : Union[str, Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCAmelCase_ , 4 , 18 ) else: return datetime(UpperCAmelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): A__ : Optional[int] = """will be""" if year > datetime.now().year else """was""" print(f'''Easter in {year} {tense} {gauss_easter(year)}''')
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Tuple = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Union[str, Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys A__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: __lowerCamelCase : int = {} __lowerCamelCase : int = tokenizer(example['content'] , truncation=UpperCAmelCase_ )['input_ids'] __lowerCamelCase : List[str] = len(example['content'] ) / len(output['input_ids'] ) return output A__ : Tuple = HfArgumentParser(PretokenizationArguments) A__ : Dict = parser.parse_args() if args.num_workers is None: A__ : Any = multiprocessing.cpu_count() A__ : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_dir) A__ : Union[str, Any] = time.time() A__ : List[Any] = load_dataset(args.dataset_name, split="""train""") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') A__ : Optional[Any] = time.time() A__ : Optional[Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') A__ : Optional[int] = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A__ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = ['input_values', 'padding_mask'] def __init__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 2_40_00 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> str: super().__init__(feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = chunk_length_s __lowerCamelCase : Union[str, Any] = overlap @property def lowercase_ ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase_ ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' f' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' f' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if padding and truncation: raise ValueError('Both padding and truncation were set. Make sure you only set one.' ) elif padding is None: # by default let's pad the inputs __lowerCamelCase : Tuple = True __lowerCamelCase : Tuple = bool( isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowerCamelCase : Tuple = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ): __lowerCamelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __lowerCamelCase : List[Any] = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __lowerCamelCase : str = [np.asarray(SCREAMING_SNAKE_CASE_ ).T] # verify inputs are valid for idx, example in enumerate(SCREAMING_SNAKE_CASE_ ): if example.ndim > 2: raise ValueError(f'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'Expected stereo audio but example has {example.shape[-1]} channels' ) __lowerCamelCase : Any = None __lowerCamelCase : Dict = BatchFeature({'input_values': raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __lowerCamelCase : Optional[Any] = min(array.shape[0] for array in raw_audio ) __lowerCamelCase : List[str] = int(np.floor(max_length / self.chunk_stride ) ) __lowerCamelCase : Dict = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __lowerCamelCase : List[Any] = max(array.shape[0] for array in raw_audio ) __lowerCamelCase : int = int(np.ceil(max_length / self.chunk_stride ) ) __lowerCamelCase : Union[str, Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length __lowerCamelCase : Union[str, Any] = 'max_length' else: __lowerCamelCase : Union[str, Any] = input_values # normal padding on batch if padded_inputs is None: __lowerCamelCase : Any = self.pad( SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ) if padding: __lowerCamelCase : List[str] = padded_inputs.pop('attention_mask' ) __lowerCamelCase : str = [] for example in padded_inputs.pop('input_values' ): if self.feature_size == 1: __lowerCamelCase : Any = example[..., None] input_values.append(example.T ) __lowerCamelCase : List[str] = input_values if return_tensors is not None: __lowerCamelCase : Union[str, Any] = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ ) return padded_inputs
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=7 ) -> Dict: __lowerCamelCase : Dict = None if token is not None: __lowerCamelCase : Dict = {'Accept': 'application/vnd.github+json', 'Authorization': F'Bearer {token}'} # The id of a workflow (not of a workflow run) __lowerCamelCase : List[str] = '636036' __lowerCamelCase : Optional[int] = F'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' __lowerCamelCase : List[str] = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() return result["workflow_runs"] def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> List[str]: __lowerCamelCase : Optional[Any] = get_daily_ci_runs(UpperCAmelCase_ ) __lowerCamelCase : Dict = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __lowerCamelCase : List[Any] = workflow_run['id'] break return workflow_run_id def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) -> List[str]: __lowerCamelCase : Any = get_last_daily_ci_runs(UpperCAmelCase_ ) if workflow_run_id is not None: __lowerCamelCase : Union[str, Any] = get_artifacts_links(worflow_run_id=UpperCAmelCase_ , token=UpperCAmelCase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __lowerCamelCase : Optional[int] = artifacts_links[artifact_name] download_artifact( artifact_name=UpperCAmelCase_ , artifact_url=UpperCAmelCase_ , output_dir=UpperCAmelCase_ , token=UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ) -> str: get_last_daily_ci_artifacts(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = {} for artifact_name in artifact_names: __lowerCamelCase : List[str] = os.path.join(UpperCAmelCase_ , F'{artifact_name}.zip' ) if os.path.isfile(UpperCAmelCase_ ): __lowerCamelCase : Any = {} with zipfile.ZipFile(UpperCAmelCase_ ) as z: for filename in z.namelist(): if not os.path.isdir(UpperCAmelCase_ ): # read the file with z.open(UpperCAmelCase_ ) as f: __lowerCamelCase : str = f.read().decode('UTF-8' ) return results
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ : List[Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __lowerCamelCase : Any = [1_44, 1_92, 2_40] __lowerCamelCase : str = [16, 32, 64, 96, 1_28, 1_60, 6_40] elif "mobilevit_xs" in mobilevit_name: __lowerCamelCase : int = [96, 1_20, 1_44] __lowerCamelCase : Tuple = [16, 32, 48, 64, 80, 96, 3_84] elif "mobilevit_xxs" in mobilevit_name: __lowerCamelCase : Union[str, Any] = [64, 80, 96] __lowerCamelCase : List[str] = [16, 16, 24, 48, 64, 80, 3_20] __lowerCamelCase : Union[str, Any] = 0.05 __lowerCamelCase : List[str] = 2.0 if mobilevit_name.startswith('deeplabv3_' ): __lowerCamelCase : Union[str, Any] = 5_12 __lowerCamelCase : Any = 16 __lowerCamelCase : Union[str, Any] = 21 __lowerCamelCase : Tuple = 'pascal-voc-id2label.json' else: __lowerCamelCase : Dict = 10_00 __lowerCamelCase : Union[str, Any] = 'imagenet-1k-id2label.json' __lowerCamelCase : List[Any] = 'huggingface/label-files' __lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ , repo_type='dataset' ) , 'r' ) ) __lowerCamelCase : List[str] = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __lowerCamelCase : Union[str, Any] = idalabel __lowerCamelCase : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str=False ) -> Optional[int]: for i in range(1 , 6 ): if F'layer_{i}.' in name: __lowerCamelCase : Optional[Any] = name.replace(F'layer_{i}.' , F'encoder.layer.{i - 1}.' ) if "conv_1." in name: __lowerCamelCase : int = name.replace('conv_1.' , 'conv_stem.' ) if ".block." in name: __lowerCamelCase : int = name.replace('.block.' , '.' ) if "exp_1x1" in name: __lowerCamelCase : Optional[Any] = name.replace('exp_1x1' , 'expand_1x1' ) if "red_1x1" in name: __lowerCamelCase : Tuple = name.replace('red_1x1' , 'reduce_1x1' ) if ".local_rep.conv_3x3." in name: __lowerCamelCase : List[str] = name.replace('.local_rep.conv_3x3.' , '.conv_kxk.' ) if ".local_rep.conv_1x1." in name: __lowerCamelCase : Union[str, Any] = name.replace('.local_rep.conv_1x1.' , '.conv_1x1.' ) if ".norm." in name: __lowerCamelCase : Optional[int] = name.replace('.norm.' , '.normalization.' ) if ".conv." in name: __lowerCamelCase : str = name.replace('.conv.' , '.convolution.' ) if ".conv_proj." in name: __lowerCamelCase : Optional[int] = name.replace('.conv_proj.' , '.conv_projection.' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: __lowerCamelCase : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F'.{i}.{j}.' in name: __lowerCamelCase : Tuple = name.replace(F'.{i}.{j}.' , F'.{i}.' ) if "expand_1x1" in name: __lowerCamelCase : Union[str, Any] = name.replace('expand_1x1' , 'downsampling_layer.expand_1x1' ) if "conv_3x3" in name: __lowerCamelCase : Optional[Any] = name.replace('conv_3x3' , 'downsampling_layer.conv_3x3' ) if "reduce_1x1" in name: __lowerCamelCase : Optional[Any] = name.replace('reduce_1x1' , 'downsampling_layer.reduce_1x1' ) for i in range(2 , 5 ): if F'.global_rep.{i}.weight' in name: __lowerCamelCase : List[Any] = name.replace(F'.global_rep.{i}.weight' , '.layernorm.weight' ) if F'.global_rep.{i}.bias' in name: __lowerCamelCase : Tuple = name.replace(F'.global_rep.{i}.bias' , '.layernorm.bias' ) if ".global_rep." in name: __lowerCamelCase : int = name.replace('.global_rep.' , '.transformer.' ) if ".pre_norm_mha.0." in name: __lowerCamelCase : Optional[int] = name.replace('.pre_norm_mha.0.' , '.layernorm_before.' ) if ".pre_norm_mha.1.out_proj." in name: __lowerCamelCase : Union[str, Any] = name.replace('.pre_norm_mha.1.out_proj.' , '.attention.output.dense.' ) if ".pre_norm_ffn.0." in name: __lowerCamelCase : Tuple = name.replace('.pre_norm_ffn.0.' , '.layernorm_after.' ) if ".pre_norm_ffn.1." in name: __lowerCamelCase : str = name.replace('.pre_norm_ffn.1.' , '.intermediate.dense.' ) if ".pre_norm_ffn.4." in name: __lowerCamelCase : int = name.replace('.pre_norm_ffn.4.' , '.output.dense.' ) if ".transformer." in name: __lowerCamelCase : Optional[Any] = name.replace('.transformer.' , '.transformer.layer.' ) if ".aspp_layer." in name: __lowerCamelCase : int = name.replace('.aspp_layer.' , '.' ) if ".aspp_pool." in name: __lowerCamelCase : Any = name.replace('.aspp_pool.' , '.' ) if "seg_head." in name: __lowerCamelCase : str = name.replace('seg_head.' , 'segmentation_head.' ) if "segmentation_head.classifier.classifier." in name: __lowerCamelCase : Any = name.replace('segmentation_head.classifier.classifier.' , 'segmentation_head.classifier.' ) if "classifier.fc." in name: __lowerCamelCase : Optional[Any] = name.replace('classifier.fc.' , 'classifier.' ) elif (not base_model) and ("segmentation_head." not in name): __lowerCamelCase : Tuple = 'mobilevit.' + name return name def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any=False ) -> Union[str, Any]: if base_model: __lowerCamelCase : Optional[int] = '' else: __lowerCamelCase : Union[str, Any] = 'mobilevit.' for key in orig_state_dict.copy().keys(): __lowerCamelCase : List[Any] = orig_state_dict.pop(UpperCAmelCase_ ) if key[:8] == "encoder.": __lowerCamelCase : Any = key[8:] if "qkv" in key: __lowerCamelCase : Any = key.split('.' ) __lowerCamelCase : Optional[int] = int(key_split[0][6:] ) - 1 __lowerCamelCase : Optional[Any] = int(key_split[3] ) __lowerCamelCase : Union[str, Any] = model.get_submodule(F'{model_prefix}encoder.layer.{layer_num}' ) __lowerCamelCase : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size __lowerCamelCase : Union[str, Any] = ( F'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: __lowerCamelCase : str = val[:dim, :] __lowerCamelCase : Tuple = val[dim : dim * 2, :] __lowerCamelCase : str = val[-dim:, :] else: __lowerCamelCase : str = val[:dim] __lowerCamelCase : Dict = val[dim : dim * 2] __lowerCamelCase : List[Any] = val[-dim:] else: __lowerCamelCase : List[Any] = val return orig_state_dict def UpperCAmelCase__ ( ) -> Union[str, Any]: __lowerCamelCase : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=False ) -> List[Any]: __lowerCamelCase : Tuple = get_mobilevit_config(UpperCAmelCase_ ) # load original state_dict __lowerCamelCase : Dict = torch.load(UpperCAmelCase_ , map_location='cpu' ) # load 🤗 model if mobilevit_name.startswith('deeplabv3_' ): __lowerCamelCase : int = MobileViTForSemanticSegmentation(UpperCAmelCase_ ).eval() else: __lowerCamelCase : Any = MobileViTForImageClassification(UpperCAmelCase_ ).eval() __lowerCamelCase : Any = convert_state_dict(UpperCAmelCase_ , UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor __lowerCamelCase : Union[str, Any] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) __lowerCamelCase : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) __lowerCamelCase : List[Any] = model(**UpperCAmelCase_ ) __lowerCamelCase : List[Any] = outputs.logits if mobilevit_name.startswith('deeplabv3_' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __lowerCamelCase : List[str] = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __lowerCamelCase : str = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __lowerCamelCase : int = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) else: assert logits.shape == (1, 10_00) if mobilevit_name == "mobilevit_s": __lowerCamelCase : Any = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": __lowerCamelCase : Union[str, Any] = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": __lowerCamelCase : List[Any] = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(F'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) Path(UpperCAmelCase_ ).mkdir(exist_ok=UpperCAmelCase_ ) print(F'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if push_to_hub: __lowerCamelCase : Optional[Any] = { 'mobilevit_s': 'mobilevit-small', 'mobilevit_xs': 'mobilevit-x-small', 'mobilevit_xxs': 'mobilevit-xx-small', 'deeplabv3_mobilevit_s': 'deeplabv3-mobilevit-small', 'deeplabv3_mobilevit_xs': 'deeplabv3-mobilevit-x-small', 'deeplabv3_mobilevit_xxs': 'deeplabv3-mobilevit-xx-small', } print('Pushing to the hub...' ) __lowerCamelCase : List[str] = model_mapping[mobilevit_name] image_processor.push_to_hub(UpperCAmelCase_ , organization='apple' ) model.push_to_hub(UpperCAmelCase_ , organization='apple' ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) A__ : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'megatron-bert' def __init__( self , SCREAMING_SNAKE_CASE_=2_90_56 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=24 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : Dict = hidden_size __lowerCamelCase : Optional[int] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : str = hidden_act __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Dict = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : str = position_embedding_type __lowerCamelCase : Optional[int] = use_cache
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : torch.FloatTensor lowerCamelCase : Optional[torch.FloatTensor] = None def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any]=0.999 , UpperCAmelCase_ : Tuple="cosine" , ) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowerCamelCase : List[str] = [] for i in range(UpperCAmelCase_ ): __lowerCamelCase : int = i / num_diffusion_timesteps __lowerCamelCase : List[str] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = "fixed_small_log" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = "squaredcos_cap_v2" , ) -> List[str]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __lowerCamelCase : Optional[Any] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 1.0 - self.betas __lowerCamelCase : Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) __lowerCamelCase : Optional[Any] = torch.tensor(1.0 ) # standard deviation of the initial noise distribution __lowerCamelCase : Optional[Any] = 1.0 # setable values __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Optional[int] = torch.from_numpy(np.arange(0 , SCREAMING_SNAKE_CASE_ )[::-1].copy() ) __lowerCamelCase : Optional[int] = variance_type def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> torch.FloatTensor: return sample def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Optional[int]: __lowerCamelCase : Optional[int] = num_inference_steps __lowerCamelCase : Any = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __lowerCamelCase : str = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __lowerCamelCase : List[str] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Dict: if prev_timestep is None: __lowerCamelCase : Dict = t - 1 __lowerCamelCase : int = self.alphas_cumprod[t] __lowerCamelCase : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowerCamelCase : Optional[int] = 1 - alpha_prod_t __lowerCamelCase : Dict = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowerCamelCase : List[str] = self.betas[t] else: __lowerCamelCase : List[str] = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowerCamelCase : List[str] = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __lowerCamelCase : str = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __lowerCamelCase : Optional[Any] = torch.log(torch.clamp(SCREAMING_SNAKE_CASE_ , min=1E-20 ) ) __lowerCamelCase : List[Any] = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __lowerCamelCase : str = variance.log() __lowerCamelCase : Dict = beta.log() __lowerCamelCase : List[str] = (predicted_variance + 1) / 2 __lowerCamelCase : str = frac * max_log + (1 - frac) * min_log return variance def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: __lowerCamelCase : List[str] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __lowerCamelCase , __lowerCamelCase : List[Any] = torch.split(SCREAMING_SNAKE_CASE_ , sample.shape[1] , dim=1 ) else: __lowerCamelCase : Optional[int] = None # 1. compute alphas, betas if prev_timestep is None: __lowerCamelCase : str = t - 1 __lowerCamelCase : int = self.alphas_cumprod[t] __lowerCamelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowerCamelCase : int = 1 - alpha_prod_t __lowerCamelCase : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowerCamelCase : Dict = self.betas[t] __lowerCamelCase : List[Any] = self.alphas[t] else: __lowerCamelCase : Optional[Any] = 1 - alpha_prod_t / alpha_prod_t_prev __lowerCamelCase : Dict = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowerCamelCase : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowerCamelCase : Optional[Any] = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowerCamelCase : Dict = torch.clamp( SCREAMING_SNAKE_CASE_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : Any = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __lowerCamelCase : Optional[int] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowerCamelCase : Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowerCamelCase : Dict = 0 if t > 0: __lowerCamelCase : Union[str, Any] = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=SCREAMING_SNAKE_CASE_ , device=model_output.device ) __lowerCamelCase : Union[str, Any] = self._get_variance( SCREAMING_SNAKE_CASE_ , predicted_variance=SCREAMING_SNAKE_CASE_ , prev_timestep=SCREAMING_SNAKE_CASE_ , ) if self.variance_type == "fixed_small_log": __lowerCamelCase : Optional[Any] = variance elif self.variance_type == "learned_range": __lowerCamelCase : Tuple = (0.5 * variance).exp() else: raise ValueError( f'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' ' for the UnCLIPScheduler.' ) __lowerCamelCase : Tuple = variance * variance_noise __lowerCamelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples __lowerCamelCase : str = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __lowerCamelCase : Any = timesteps.to(original_samples.device ) __lowerCamelCase : Tuple = alphas_cumprod[timesteps] ** 0.5 __lowerCamelCase : List[Any] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __lowerCamelCase : Union[str, Any] = sqrt_alpha_prod.unsqueeze(-1 ) __lowerCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 __lowerCamelCase : Tuple = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __lowerCamelCase : str = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __lowerCamelCase : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
13
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Tuple = tempfile.mkdtemp() # fmt: off __lowerCamelCase : int = ['', 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCamelCase : Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __lowerCamelCase : Dict = {'unk_token': '<unk>'} __lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Any: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='!' , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> int: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='!' , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : int = self.get_rust_tokenizer() __lowerCamelCase : List[Any] = self.get_image_processor() __lowerCamelCase : Tuple = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase : int = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase : str = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : str = self.get_image_processor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() __lowerCamelCase : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : Tuple = self.get_tokenizer() __lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = 'lower newer' __lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Optional[Any] = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : List[Any] = self.get_tokenizer() __lowerCamelCase : int = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = 'lower newer' __lowerCamelCase : Dict = self.prepare_image_inputs() __lowerCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = 'google/owlvit-base-patch32' __lowerCamelCase : Any = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = ['cat', 'nasa badge'] __lowerCamelCase : Optional[Any] = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Tuple = 'google/owlvit-base-patch32' __lowerCamelCase : List[str] = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = [['cat', 'nasa badge'], ['person']] __lowerCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = 16 __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = max([len(SCREAMING_SNAKE_CASE_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = 'google/owlvit-base-patch32' __lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = ['cat', 'nasa badge'] __lowerCamelCase : int = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = 16 __lowerCamelCase : Union[str, Any] = inputs['input_ids'] __lowerCamelCase : Any = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask'] ) self.assertEqual(inputs['input_ids'].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.prepare_image_inputs() __lowerCamelCase : Tuple = self.prepare_image_inputs() __lowerCamelCase : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , query_images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['query_pixel_values', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> Any: __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : Dict = OwlViTProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : List[str] = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : int = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=UpperCAmelCase_ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=UpperCAmelCase_ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=UpperCAmelCase_ , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=UpperCAmelCase_ , default=0 , help='cuda_id.' , ) __lowerCamelCase : Union[str, Any] = parser.parse_args() return args def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ) -> Optional[Any]: if not len(UpperCAmelCase_ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) __lowerCamelCase , __lowerCamelCase : Tuple = imgs[0].size __lowerCamelCase : Any = Image.new('RGB' , size=(cols * w, rows * h) ) __lowerCamelCase , __lowerCamelCase : Dict = grid.size for i, img in enumerate(UpperCAmelCase_ ): grid.paste(UpperCAmelCase_ , box=(i % cols * w, i // cols * h) ) return grid def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any]="robotic cat with wings" , UpperCAmelCase_ : Dict=7.5 , UpperCAmelCase_ : Optional[Any]=50 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Tuple=42 , ) -> str: __lowerCamelCase : Dict = torch.Generator(pipeline.device ).manual_seed(UpperCAmelCase_ ) __lowerCamelCase : List[str] = pipeline( UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , ).images __lowerCamelCase : Dict = int(math.sqrt(UpperCAmelCase_ ) ) __lowerCamelCase : List[Any] = image_grid(UpperCAmelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images A__ : Any = parse_args() # Load models and create wrapper for stable diffusion A__ : List[str] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") A__ : Optional[int] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") A__ : List[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") A__ : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") A__ : Any = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) A__ : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): A__ : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: A__ : List[Any] = unet.to(torch.device("""cuda""", args.cuda_id)) A__ : str = pipeline.to(unet.device) A__ , A__ : int = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) A__ : Union[str, Any] = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int ) -> List[Any]: # ===== initialization ===== __lowerCamelCase : Dict = Mock() __lowerCamelCase : Union[str, Any] = conn, Mock() __lowerCamelCase : Dict = iter([1, None] ) __lowerCamelCase : Tuple = lambda UpperCAmelCase_ : next(UpperCAmelCase_ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=UpperCAmelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline A__ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , ) -> Union[AudioPipelineOutput, Tuple]: if audio_length_in_s is None: __lowerCamelCase : int = self.unet.config.sample_size / self.unet.config.sample_rate __lowerCamelCase : Any = audio_length_in_s * self.unet.config.sample_rate __lowerCamelCase : Optional[Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' f' {3 * down_scale_factor / self.unet.config.sample_rate}.' ) __lowerCamelCase : Tuple = int(SCREAMING_SNAKE_CASE_ ) if sample_size % down_scale_factor != 0: __lowerCamelCase : Dict = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' f' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ' process.' ) __lowerCamelCase : List[Any] = int(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = next(iter(self.unet.parameters() ) ).dtype __lowerCamelCase : str = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(SCREAMING_SNAKE_CASE_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __lowerCamelCase : str = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) # set step values self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=audio.device ) __lowerCamelCase : Tuple = self.scheduler.timesteps.to(SCREAMING_SNAKE_CASE_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __lowerCamelCase : Optional[Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).sample # 2. compute previous image: x_t -> t_t-1 __lowerCamelCase : Optional[Any] = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample __lowerCamelCase : List[str] = audio.clamp(-1 , 1 ).float().cpu().numpy() __lowerCamelCase : Tuple = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
'''simple docstring''' import re def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str: if len(re.findall('[ATCG]' , UpperCAmelCase_ ) ) != len(UpperCAmelCase_ ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ (metaclass=_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = ['torch', 'torchsde'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: requires_backends(self , ['torch', 'torchsde'] ) @classmethod def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: requires_backends(cls , ['torch', 'torchsde'] )
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , ) -> Tuple: __lowerCamelCase : Any = {} if train_file is not None: __lowerCamelCase : int = [train_file] if eval_file is not None: __lowerCamelCase : Any = [eval_file] if test_file is not None: __lowerCamelCase : Any = [test_file] __lowerCamelCase : Any = datasets.load_dataset('csv' , data_files=UpperCAmelCase_ ) __lowerCamelCase : Dict = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase : Union[str, Any] = features_name.pop(UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase : Union[str, Any] = {label: i for i, label in enumerate(UpperCAmelCase_ )} __lowerCamelCase : Optional[Any] = tokenizer.model_input_names __lowerCamelCase : Optional[int] = {} if len(UpperCAmelCase_ ) == 1: for k in files.keys(): __lowerCamelCase : str = ds[k].map( lambda UpperCAmelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) , batched=UpperCAmelCase_ , ) elif len(UpperCAmelCase_ ) == 2: for k in files.keys(): __lowerCamelCase : Union[str, Any] = ds[k].map( lambda UpperCAmelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) , batched=UpperCAmelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase : Any = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : int = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase : Optional[int] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : List[str] = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase : List[Any] = ( tf.data.Dataset.from_generator( UpperCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase : Optional[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase : Union[str, Any] = ( tf.data.Dataset.from_generator( UpperCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase : Optional[int] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase : List[Any] = ( tf.data.Dataset.from_generator( UpperCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase : List[str] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid A__ : int = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = field(metadata={'help': 'Which column contains the label'} ) lowerCamelCase : str = field(default=_UpperCAmelCase , metadata={'help': 'The path of the training file'} ) lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'The path of the development file'} ) lowerCamelCase : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'The path of the test file'} ) lowerCamelCase : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase : bool = field( default=_UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) lowerCamelCase : bool = field(default=_UpperCAmelCase , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCAmelCase__ ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info( F'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ' F'16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=UpperCAmelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(UpperCAmelCase_ ) , labelaid=UpperCAmelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task='text-classification' , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool('.bin' in model_args.model_name_or_path ) , config=UpperCAmelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(UpperCAmelCase_ : EvalPrediction ) -> Dict: __lowerCamelCase : Any = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase : int = TFTrainer( model=UpperCAmelCase_ , args=UpperCAmelCase_ , train_dataset=UpperCAmelCase_ , eval_dataset=UpperCAmelCase_ , compute_metrics=UpperCAmelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase : Optional[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __lowerCamelCase : List[str] = trainer.evaluate() __lowerCamelCase : Optional[Any] = os.path.join(training_args.output_dir , 'eval_results.txt' ) with open(UpperCAmelCase_ , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) results.update(UpperCAmelCase_ ) return results if __name__ == "__main__": main()
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder A__ : List[Any] = """__DUMMY_TRANSFORMERS_USER__""" A__ : Optional[int] = """Dummy User""" A__ : List[str] = """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""" A__ : Dict = """https://hub-ci.huggingface.co""" A__ : Tuple = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" A__ : Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" A__ : List[Any] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> int: monkeypatch.setattr( 'huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE' , UpperCAmelCase_ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Optional[Any]: monkeypatch.setattr('datasets.config.HF_ENDPOINT' , UpperCAmelCase_ ) monkeypatch.setattr('datasets.config.HUB_DATASETS_URL' , UpperCAmelCase_ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Any: monkeypatch.setattr('huggingface_hub.hf_api.HfFolder.path_token' , UpperCAmelCase_ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ) -> Optional[int]: HfFolder.save_token(UpperCAmelCase_ ) yield HfFolder.delete_token() @pytest.fixture(scope='session' ) def UpperCAmelCase__ ( ) -> Any: return HfApi(endpoint=UpperCAmelCase_ ) @pytest.fixture(scope='session' ) def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi ) -> Optional[Any]: __lowerCamelCase : List[Any] = HfFolder.get_token() HfFolder.save_token(UpperCAmelCase_ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(UpperCAmelCase_ ) @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> Optional[int]: def _cleanup_repo(UpperCAmelCase_ : List[str] ): hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) return _cleanup_repo @pytest.fixture def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> List[Any]: @contextmanager def _temporary_repo(UpperCAmelCase_ : Union[str, Any] ): try: yield repo_id finally: cleanup_repo(UpperCAmelCase_ ) return _temporary_repo @pytest.fixture(scope='session' ) def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]: __lowerCamelCase : int = F'repo_txt_data-{int(time.time() * 10e3 )}' __lowerCamelCase : Optional[Any] = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data/text_data.txt' , repo_id=UpperCAmelCase_ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[Any]: return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope='session' ) def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any ) -> Optional[Any]: __lowerCamelCase : List[str] = F'repo_zipped_txt_data-{int(time.time() * 10e3 )}' __lowerCamelCase : int = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data.zip' , repo_id=UpperCAmelCase_ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) -> Dict: return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope='session' ) def UpperCAmelCase__ ( UpperCAmelCase_ : HfApi , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: __lowerCamelCase : Tuple = F'repo_zipped_img_data-{int(time.time() * 10e3 )}' __lowerCamelCase : Any = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' , private=UpperCAmelCase_ ) hf_api.upload_file( token=UpperCAmelCase_ , path_or_fileobj=str(UpperCAmelCase_ ) , path_in_repo='data.zip' , repo_id=UpperCAmelCase_ , repo_type='dataset' , ) yield repo_id try: hf_api.delete_repo(UpperCAmelCase_ , token=UpperCAmelCase_ , repo_type='dataset' ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: return hf_private_dataset_repo_zipped_img_data_
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin A__ : str = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = GPTSwaTokenizer lowerCamelCase : List[str] = False lowerCamelCase : Optional[Any] = True lowerCamelCase : int = False def lowercase_ ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Tuple = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : int = 'This is a test' __lowerCamelCase : Tuple = 'This is a test' return input_text, output_text def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = '<s>' __lowerCamelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 20_00 ) def lowercase_ ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def lowercase_ ( self ) -> Any: __lowerCamelCase : int = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) __lowerCamelCase : Optional[int] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on __lowerCamelCase : Any = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) __lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # fmt: off self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = GPTSwaTokenizer(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ['This is a test', 'I was born in 92000, and this is falsé.'] __lowerCamelCase : Tuple = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertListEqual(tokenizer.encode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Test that decode_fast returns the input text for text, token_ids in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(tokenizer.decode_fast(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off __lowerCamelCase : Union[str, Any] = {'input_ids': [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='AI-Sweden/gpt-sw3-126m' , sequences=SCREAMING_SNAKE_CASE_ , )
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import torch def UpperCAmelCase__ ( ) -> Any: if torch.cuda.is_available(): __lowerCamelCase : Optional[int] = torch.cuda.device_count() else: __lowerCamelCase : Any = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: __lowerCamelCase : List[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Optional[Any] = 1 __lowerCamelCase : Any = 2 for i in range(2 , max_n + 1 ): __lowerCamelCase : Any = pre_numerator __lowerCamelCase : Union[str, Any] = 2 * i // 3 if i % 3 == 0 else 1 __lowerCamelCase : List[Any] = cur_numerator __lowerCamelCase : Union[str, Any] = e_cont * pre_numerator + temp return sum_digits(UpperCAmelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
1
'''simple docstring''' import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def UpperCAmelCase__ ( UpperCAmelCase_ : Features ) -> Optional[int]: __lowerCamelCase : int = np.inf def set_batch_size(UpperCAmelCase_ : FeatureType ) -> None: nonlocal batch_size if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : List[Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and feature.dtype == "binary": __lowerCamelCase : Optional[Any] = min(UpperCAmelCase_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(UpperCAmelCase_ , UpperCAmelCase_ ) return None if batch_size is np.inf else batch_size class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__( SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , streaming=SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = path_or_paths if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else {self.split: path_or_paths} __lowerCamelCase : List[Any] = _PACKAGED_DATASETS_MODULES['parquet'][1] __lowerCamelCase : Optional[int] = Parquet( cache_dir=SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , hash=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> int: # Build iterable dataset if self.streaming: __lowerCamelCase : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : str = None __lowerCamelCase : int = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Any = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , num_proc=self.num_proc , ) __lowerCamelCase : List[str] = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: __lowerCamelCase : Tuple = dataset __lowerCamelCase : List[Any] = path_or_buf __lowerCamelCase : Tuple = batch_size or get_writer_batch_size(dataset.features ) __lowerCamelCase : Any = parquet_writer_kwargs def lowercase_ ( self ) -> int: __lowerCamelCase : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __lowerCamelCase : Union[str, Any] = self._write(file_obj=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , **self.parquet_writer_kwargs ) else: __lowerCamelCase : Optional[int] = self._write(file_obj=self.path_or_buf , batch_size=SCREAMING_SNAKE_CASE_ , **self.parquet_writer_kwargs ) return written def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : List[Any] = 0 __lowerCamelCase : Optional[int] = parquet_writer_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.dataset.features.arrow_schema __lowerCamelCase : Any = pq.ParquetWriter(SCREAMING_SNAKE_CASE_ , schema=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , SCREAMING_SNAKE_CASE_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __lowerCamelCase : Optional[Any] = query_table( table=self.dataset._data , key=slice(SCREAMING_SNAKE_CASE_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(SCREAMING_SNAKE_CASE_ ) written += batch.nbytes writer.close() return written
13
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00_01 ) -> int: try: __lowerCamelCase : List[str] = int(UpperCAmelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) __lowerCamelCase : list[int] = [] __lowerCamelCase : int = 2 while len(UpperCAmelCase_ ) < nth: if is_prime(UpperCAmelCase_ ): primes.append(UpperCAmelCase_ ) num += 1 else: num += 1 return primes[len(UpperCAmelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 1 __lowerCamelCase : Optional[Any] = 0 for divide_by_number in range(UpperCAmelCase_ , digit + 1 ): __lowerCamelCase : list[int] = [] __lowerCamelCase : List[str] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(UpperCAmelCase_ ): __lowerCamelCase : str = len(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = divide_by_number else: has_been_divided.append(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @slow @require_torch def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) __lowerCamelCase : Tuple = BertTokenizer.from_pretrained('bert-base-uncased' ) __lowerCamelCase : Optional[int] = bertabert.config.encoder.vocab_size __lowerCamelCase : Any = tokenizer.sep_token_id __lowerCamelCase : List[Any] = tokenizer.cls_token_id __lowerCamelCase : List[str] = 1_28 __lowerCamelCase : Dict = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) __lowerCamelCase : str = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) __lowerCamelCase : Dict = train_dataset.select(range(32 ) ) __lowerCamelCase : str = val_dataset.select(range(16 ) ) __lowerCamelCase : Any = 4 def _map_to_encoder_decoder_inputs(SCREAMING_SNAKE_CASE_ ): # Tokenizer will automatically set [BOS] <text> [EOS] __lowerCamelCase : int = tokenizer(batch['article'] , padding='max_length' , truncation=SCREAMING_SNAKE_CASE_ , max_length=5_12 ) __lowerCamelCase : List[Any] = tokenizer(batch['highlights'] , padding='max_length' , truncation=SCREAMING_SNAKE_CASE_ , max_length=1_28 ) __lowerCamelCase : str = inputs.input_ids __lowerCamelCase : List[str] = inputs.attention_mask __lowerCamelCase : Optional[Any] = outputs.input_ids __lowerCamelCase : Dict = outputs.input_ids.copy() __lowerCamelCase : Tuple = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] __lowerCamelCase : Union[str, Any] = outputs.attention_mask assert all(len(SCREAMING_SNAKE_CASE_ ) == 5_12 for x in inputs.input_ids ) assert all(len(SCREAMING_SNAKE_CASE_ ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Tuple = pred.label_ids __lowerCamelCase : Optional[Any] = pred.predictions # all unnecessary tokens are removed __lowerCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = sum([int(pred_str[i] == label_str[i] ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) / len(SCREAMING_SNAKE_CASE_ ) return {"accuracy": accuracy} # map train dataset __lowerCamelCase : List[Any] = train_dataset.map( _map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset __lowerCamelCase : List[Any] = val_dataset.map( _map_to_encoder_decoder_inputs , batched=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) __lowerCamelCase : int = self.get_auto_remove_tmp_dir() __lowerCamelCase : Dict = SeqaSeqTrainingArguments( output_dir=SCREAMING_SNAKE_CASE_ , per_device_train_batch_size=SCREAMING_SNAKE_CASE_ , per_device_eval_batch_size=SCREAMING_SNAKE_CASE_ , predict_with_generate=SCREAMING_SNAKE_CASE_ , evaluation_strategy='steps' , do_train=SCREAMING_SNAKE_CASE_ , do_eval=SCREAMING_SNAKE_CASE_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __lowerCamelCase : Any = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , compute_metrics=_compute_metrics , train_dataset=SCREAMING_SNAKE_CASE_ , eval_dataset=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , ) # start training trainer.train()
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> int: __lowerCamelCase : Dict = FileLock(str(tmpdir / 'foo.lock' ) ) __lowerCamelCase : Optional[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) __lowerCamelCase : Optional[int] = 0.01 with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): __lowerCamelCase : List[str] = time.time() locka.acquire(UpperCAmelCase_ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Dict: __lowerCamelCase : List[Any] = 'a' * 10_00 + '.lock' __lowerCamelCase : Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(UpperCAmelCase_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 __lowerCamelCase : Tuple = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCAmelCase_ ): locka.acquire(0 )
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ (metaclass=_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = ['note_seq'] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> str: requires_backends(self , ['note_seq'] ) @classmethod def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]: requires_backends(cls , ['note_seq'] ) @classmethod def lowercase_ ( cls , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: requires_backends(cls , ['note_seq'] )
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = tempfile.mkdtemp() __lowerCamelCase : Dict = BlipImageProcessor() __lowerCamelCase : Tuple = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __lowerCamelCase : List[Any] = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) __lowerCamelCase : Any = InstructBlipProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Dict: return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).qformer_tokenizer def lowercase_ ( self ) -> List[Any]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> str: __lowerCamelCase : int = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase : Optional[Any] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __lowerCamelCase : Any = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor.qformer_tokenizer , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase : Any = self.get_qformer_tokenizer() __lowerCamelCase : Optional[int] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = self.prepare_image_inputs() __lowerCamelCase : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Optional[Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> int: __lowerCamelCase : List[str] = self.get_image_processor() __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : List[Any] = self.get_qformer_tokenizer() __lowerCamelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = 'lower newer' __lowerCamelCase : str = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = qformer_tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Optional[Any] = self.get_tokenizer() __lowerCamelCase : int = self.get_qformer_tokenizer() __lowerCamelCase : Optional[int] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = 'lower newer' __lowerCamelCase : Dict = self.prepare_image_inputs() __lowerCamelCase : List[Any] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : List[str] = self.get_qformer_tokenizer() __lowerCamelCase : str = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : Any = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : int = self.get_qformer_tokenizer() __lowerCamelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , qformer_tokenizer=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = 'lower newer' __lowerCamelCase : Optional[int] = self.prepare_image_inputs() __lowerCamelCase : str = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' A__ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } A__ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowerCamelCase : Union[str, Any] = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(UpperCAmelCase_ )}' ) raise ValueError(UpperCAmelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings A__ : Optional[int] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to use SortishSampler or not.'} ) lowerCamelCase : bool = field( default=_UpperCAmelCase , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) lowerCamelCase : Optional[int] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) lowerCamelCase : Optional[int] = field( default=_UpperCAmelCase , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) lowerCamelCase : Optional[Union[str, Path, GenerationConfig]] = field( default=_UpperCAmelCase , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = super().to_dict() for k, v in d.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Union[str, Any] = v.to_dict() return d
13
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right A__ : str = 256047 A__ : int = 256145 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = NllbTokenizer lowerCamelCase : Optional[int] = NllbTokenizerFast lowerCamelCase : List[Any] = True lowerCamelCase : Dict = True lowerCamelCase : int = {} def lowercase_ ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : Union[str, Any] = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = NllbTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase : Dict = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : int = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Union[str, Any] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = tempfile.mkdtemp() __lowerCamelCase : Any = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) __lowerCamelCase : List[str] = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __lowerCamelCase : Tuple = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True __lowerCamelCase : Any = tempfile.mkdtemp() __lowerCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way __lowerCamelCase : Optional[Any] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False __lowerCamelCase : Any = tempfile.mkdtemp() __lowerCamelCase : int = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __lowerCamelCase : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch def lowercase_ ( self ) -> Optional[int]: if not self.test_seqaseq: return __lowerCamelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __lowerCamelCase : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for' ' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons' ' will only worsen the violence and misery for millions of people.', ] __lowerCamelCase : List[str] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al' ' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi' ' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] try: __lowerCamelCase : Optional[Any] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __lowerCamelCase : int = tokenizer.prepare_seqaseq_batch( SCREAMING_SNAKE_CASE_ , tgt_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __lowerCamelCase : List[str] = tokenizer.prepare_seqaseq_batch( src_texts=SCREAMING_SNAKE_CASE_ , max_length=3 , max_target_length=10 , return_tensors='pt' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE_ ) @unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' ) def lowercase_ ( self ) -> Optional[Any]: pass def lowercase_ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __lowerCamelCase : Dict = [AddedToken('<special>' , lstrip=SCREAMING_SNAKE_CASE_ )] __lowerCamelCase : Dict = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer_r.encode('Hey this is a <special> token' ) __lowerCamelCase : Union[str, Any] = tokenizer_r.encode('<special>' , add_special_tokens=SCREAMING_SNAKE_CASE_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __lowerCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Dict = self.tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = tokenizer_p.encode('Hey this is a <special> token' ) __lowerCamelCase : Union[str, Any] = tokenizer_cr.encode('Hey this is a <special> token' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = 'facebook/nllb-200-distilled-600M' lowerCamelCase : List[str] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase : List[str] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase : Tuple = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def lowercase_ ( cls ) -> Union[str, Any]: __lowerCamelCase : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' ) __lowerCamelCase : Dict = 1 return cls def lowercase_ ( self ) -> List[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 25_60_57 ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) # fmt: off __lowerCamelCase : List[Any] = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __lowerCamelCase : Optional[int] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 10 __lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_62_03, 3] ) def lowercase_ ( self ) -> str: __lowerCamelCase : Dict = tempfile.mkdtemp() __lowerCamelCase : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = NllbTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def lowercase_ ( self ) -> Any: __lowerCamelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __lowerCamelCase : Dict = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __lowerCamelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : int = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) __lowerCamelCase : Tuple = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) __lowerCamelCase : Optional[int] = targets['input_ids'] __lowerCamelCase : List[Any] = shift_tokens_right( SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Tuple = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[25_60_47, 70, 73_56, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_60_57, } , ) @require_torch def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[Any] = True __lowerCamelCase : Any = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __lowerCamelCase : List[Any] = False __lowerCamelCase : Union[str, Any] = self.tokenizer( 'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=False ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __lowerCamelCase : Optional[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]=False ) -> Optional[int]: for i in range(config.num_hidden_layers ): if base_model: __lowerCamelCase : List[str] = '' else: __lowerCamelCase : List[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowerCamelCase : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) __lowerCamelCase : Optional[Any] = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase : List[Any] = in_proj_weight[ : config.hidden_size, : ] __lowerCamelCase : Dict = in_proj_bias[: config.hidden_size] __lowerCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowerCamelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowerCamelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] __lowerCamelCase : Dict = in_proj_bias[-config.hidden_size :] def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> List[str]: __lowerCamelCase : Any = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Tuple: # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __lowerCamelCase : List[Any] = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int ) -> str: __lowerCamelCase : Any = dct.pop(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = val def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ) -> str: __lowerCamelCase : Dict = ViTMSNConfig() __lowerCamelCase : Dict = 10_00 __lowerCamelCase : Optional[Any] = 'datasets/huggingface/label-files' __lowerCamelCase : Tuple = 'imagenet-1k-id2label.json' __lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase_ , UpperCAmelCase_ ) , 'r' ) ) __lowerCamelCase : Tuple = {int(UpperCAmelCase_ ): v for k, v in idalabel.items()} __lowerCamelCase : Any = idalabel __lowerCamelCase : str = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __lowerCamelCase : Union[str, Any] = 3_84 __lowerCamelCase : Tuple = 15_36 __lowerCamelCase : int = 6 elif "l16" in checkpoint_url: __lowerCamelCase : Any = 10_24 __lowerCamelCase : int = 40_96 __lowerCamelCase : int = 24 __lowerCamelCase : Any = 16 __lowerCamelCase : List[str] = 0.1 elif "b4" in checkpoint_url: __lowerCamelCase : Union[str, Any] = 4 elif "l7" in checkpoint_url: __lowerCamelCase : str = 7 __lowerCamelCase : Union[str, Any] = 10_24 __lowerCamelCase : List[Any] = 40_96 __lowerCamelCase : Union[str, Any] = 24 __lowerCamelCase : Optional[Any] = 16 __lowerCamelCase : Optional[Any] = 0.1 __lowerCamelCase : Optional[Any] = ViTMSNModel(UpperCAmelCase_ ) __lowerCamelCase : int = torch.hub.load_state_dict_from_url(UpperCAmelCase_ , map_location='cpu' )['target_encoder'] __lowerCamelCase : List[Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ , base_model=UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) read_in_q_k_v(UpperCAmelCase_ , UpperCAmelCase_ , base_model=UpperCAmelCase_ ) model.load_state_dict(UpperCAmelCase_ ) model.eval() __lowerCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCamelCase : Optional[Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ) __lowerCamelCase : str = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) __lowerCamelCase : Tuple = image_processor(images=UpperCAmelCase_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __lowerCamelCase : int = model(**UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __lowerCamelCase : Optional[Any] = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: __lowerCamelCase : List[Any] = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: __lowerCamelCase : str = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: __lowerCamelCase : int = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: __lowerCamelCase : Dict = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase_ , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ : int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A__ : int = {"""configuration_speech_encoder_decoder""": ["""SpeechEncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = ["""SpeechEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ["""FlaxSpeechEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys A__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() __lowerCamelCase : Optional[Any] = 5 # Realm tok __lowerCamelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = os.path.join(SCREAMING_SNAKE_CASE_ , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __lowerCamelCase : str = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def lowercase_ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = RealmConfig(num_block_records=self.num_block_records ) return config def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[int] = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=SCREAMING_SNAKE_CASE_ , ) return block_records def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Any = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowercase_ ( self ) -> str: __lowerCamelCase : Union[str, Any] = self.get_config() __lowerCamelCase : int = self.get_dummy_retriever() __lowerCamelCase : Any = retriever.tokenizer __lowerCamelCase : List[str] = np.array([0, 3] , dtype='long' ) __lowerCamelCase : Union[str, Any] = tokenizer(['Test question'] ).input_ids __lowerCamelCase : Optional[Any] = tokenizer( ['the fourth'] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids __lowerCamelCase : int = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Optional[Any] = self.get_config() __lowerCamelCase : Any = self.get_dummy_retriever() __lowerCamelCase : Optional[int] = retriever.tokenizer __lowerCamelCase : Any = np.array([0, 3, 5] , dtype='long' ) __lowerCamelCase : Optional[Any] = tokenizer(['Test question'] ).input_ids __lowerCamelCase : List[str] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids __lowerCamelCase : Union[str, Any] = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertEqual([False, True, True] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path __lowerCamelCase : List[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: __lowerCamelCase : Union[str, Any] = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowerCamelCase : str = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , B'This is the first record' )
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
1
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=2 , ) -> List[str]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : str = batch_size __lowerCamelCase : List[Any] = image_size __lowerCamelCase : Any = patch_size __lowerCamelCase : Tuple = num_channels __lowerCamelCase : Dict = is_training __lowerCamelCase : List[str] = use_labels __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : int = num_hidden_layers __lowerCamelCase : int = num_attention_heads __lowerCamelCase : str = intermediate_size __lowerCamelCase : Optional[int] = hidden_act __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Union[str, Any] = scope __lowerCamelCase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCamelCase : List[Any] = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 2 def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Tuple: return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Union[str, Any] = TFDeiTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = TFDeiTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = TFDeiTForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Dict = self.type_sequence_label_size __lowerCamelCase : Optional[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : Tuple = 1 __lowerCamelCase : List[Any] = TFDeiTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowerCamelCase : List[str] = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowerCamelCase : Optional[int] = False lowerCamelCase : List[Any] = False lowerCamelCase : List[str] = False lowerCamelCase : Any = False def lowercase_ ( self ) -> str: __lowerCamelCase : Any = TFDeiTModelTester(self ) __lowerCamelCase : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> int: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Any = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __lowerCamelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Dense ) ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Tuple = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> Dict: __lowerCamelCase : Optional[int] = super()._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase_ ( self ) -> Dict: for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = TFDeiTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase__ ( ) -> Optional[int]: __lowerCamelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ) -> str: return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) __lowerCamelCase : Union[str, Any] = self.default_image_processor __lowerCamelCase : Dict = prepare_img() __lowerCamelCase : Dict = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass __lowerCamelCase : Dict = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits __lowerCamelCase : Union[str, Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() A__ : Union[str, Any] = [ """word_embeddings_layernorm.weight""", """word_embeddings_layernorm.bias""", """input_layernorm.weight""", """input_layernorm.bias""", """post_attention_layernorm.weight""", """post_attention_layernorm.bias""", """self_attention.dense.bias""", """mlp.dense_4h_to_h.bias""", """ln_f.weight""", """ln_f.bias""", ] A__ : Tuple = [ """mlp.dense_4h_to_h.weight""", """self_attention.dense.weight""", ] def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int ) -> Dict: __lowerCamelCase : Optional[Any] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __lowerCamelCase : Optional[int] = int(re.match(R'.*layer_(\d*).*' , UpperCAmelCase_ )[1] ) layer_number -= 3 return F'h.{layer_number}.' + key def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> int: if dtype == torch.bool: return 1 / 8 __lowerCamelCase : Optional[Any] = re.search(R'[^\d](\d+)$' , str(UpperCAmelCase_ ) ) if bit_search is None: raise ValueError(F'`dtype` is not a valid dtype: {dtype}.' ) __lowerCamelCase : List[str] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] ) -> Dict: # Construct model if bloom_config_file == "": __lowerCamelCase : Union[str, Any] = BloomConfig() else: __lowerCamelCase : List[str] = BloomConfig.from_json_file(UpperCAmelCase_ ) if shard_model: __lowerCamelCase : Dict = os.listdir(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = sorted(filter(lambda UpperCAmelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase_ ) ) __lowerCamelCase : Any = {'weight_map': {}, 'metadata': {}} __lowerCamelCase : int = 0 __lowerCamelCase : int = None __lowerCamelCase : Dict = BloomConfig() for j, file in enumerate(UpperCAmelCase_ ): print('Processing file: {}'.format(UpperCAmelCase_ ) ) __lowerCamelCase : Optional[Any] = None for i in range(UpperCAmelCase_ ): # load all TP files __lowerCamelCase : Optional[int] = file.replace('model_00' , F'model_0{i}' ) __lowerCamelCase : Any = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names __lowerCamelCase : Dict = list(temp.keys() ) for key in keys: __lowerCamelCase : Optional[Any] = temp.pop(UpperCAmelCase_ ) if tensors is None: __lowerCamelCase : List[str] = temp else: for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCamelCase : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCamelCase : str = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCamelCase : List[str] = tensors[key] / pretraining_tp torch.save( UpperCAmelCase_ , os.path.join( UpperCAmelCase_ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __lowerCamelCase : Tuple = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __lowerCamelCase : str = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(UpperCAmelCase_ ) ).zfill(5 ) ) __lowerCamelCase : List[Any] = BloomConfig() __lowerCamelCase : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCamelCase : str = total_size with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(UpperCAmelCase_ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: __lowerCamelCase : Tuple = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + '\n' f.write(UpperCAmelCase_ ) else: __lowerCamelCase : str = BloomModel(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = os.listdir(UpperCAmelCase_ ) __lowerCamelCase : Tuple = sorted(filter(lambda UpperCAmelCase_ : s.startswith('layer' ) and "model_00" in s , UpperCAmelCase_ ) ) __lowerCamelCase : List[str] = None for i, file in enumerate(UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = None for i in range(UpperCAmelCase_ ): # load all TP files __lowerCamelCase : Optional[Any] = file.replace('model_00' , F'model_0{i}' ) __lowerCamelCase : List[str] = torch.load(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , map_location='cpu' ) # Rename keys in the transformers names __lowerCamelCase : List[Any] = list(temp.keys() ) for key in keys: __lowerCamelCase : int = temp.pop(UpperCAmelCase_ ) if tensors is None: __lowerCamelCase : List[str] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCamelCase : Any = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCamelCase : int = torch.cat([tensors[key], temp[key]] , dim=UpperCAmelCase_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(UpperCAmelCase_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCamelCase : Union[str, Any] = tensors[key] / pretraining_tp __lowerCamelCase : int = model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert not other_keys.unexpected_keys, F'The keys {other_keys.unexpected_keys} are unexpected' if missing_keys is None: __lowerCamelCase : str = set(other_keys.missing_keys ) else: __lowerCamelCase : int = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F'The keys {missing_keys} are missing' # Save pytorch-model os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCamelCase : List[str] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}' ) if config.torch_dtype is not None: __lowerCamelCase : Dict = model.to(config.torch_dtype ) torch.save(model.state_dict() , UpperCAmelCase_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bloom_checkpoint_path""", default=None, type=str, required=True, help="""Path to the Megatron-LM checkpoint path.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--bloom_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--shard_model""", action="""store_true""", help="""An optional setting to shard the output model \nThis enables sharding the converted checkpoint""", ) parser.add_argument( """--pretraining_tp""", default=4, type=int, help="""Pretraining TP rank that has been used when training the model in Megatron-LM \n""", ) A__ : List[str] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if index == number_of_items: return 0 __lowerCamelCase : List[str] = 0 __lowerCamelCase : List[str] = 0 __lowerCamelCase : Any = knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 ) if weights[index] <= max_weight: __lowerCamelCase : Tuple = values[index] + knapsack( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , max_weight - weights[index] , index + 1 ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
1
'''simple docstring''' # Imports import numpy as np class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> str: self.set_matricies(red=SCREAMING_SNAKE_CASE_ , green=SCREAMING_SNAKE_CASE_ , blue=SCREAMING_SNAKE_CASE_ , red_edge=SCREAMING_SNAKE_CASE_ , nir=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Any: if red is not None: __lowerCamelCase : Dict = red if green is not None: __lowerCamelCase : List[Any] = green if blue is not None: __lowerCamelCase : int = blue if red_edge is not None: __lowerCamelCase : Optional[int] = red_edge if nir is not None: __lowerCamelCase : Any = nir return True def lowercase_ ( self , SCREAMING_SNAKE_CASE_="" , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Optional[Any]: self.set_matricies(red=SCREAMING_SNAKE_CASE_ , green=SCREAMING_SNAKE_CASE_ , blue=SCREAMING_SNAKE_CASE_ , red_edge=SCREAMING_SNAKE_CASE_ , nir=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def lowercase_ ( self ) -> Optional[Any]: return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def lowercase_ ( self ) -> Dict: return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def lowercase_ ( self ) -> Any: return self.nir * (self.red / (self.green**2)) def lowercase_ ( self ) -> Optional[Any]: return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def lowercase_ ( self ) -> Union[str, Any]: return (self.nir - self.red) / (self.nir + self.red) def lowercase_ ( self ) -> Optional[int]: return (self.nir - self.blue) / (self.nir + self.blue) def lowercase_ ( self ) -> Optional[int]: return (self.redEdge - self.red) / (self.redEdge + self.red) def lowercase_ ( self ) -> Any: return (self.nir - self.green) / (self.nir + self.green) def lowercase_ ( self ) -> int: return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def lowercase_ ( self ) -> List[Any]: return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def lowercase_ ( self ) -> List[Any]: return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def lowercase_ ( self ) -> str: return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0.0_8 , SCREAMING_SNAKE_CASE_=1.2_2 , SCREAMING_SNAKE_CASE_=0.0_3 ) -> str: return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def lowercase_ ( self ) -> Any: return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def lowercase_ ( self ) -> Optional[Any]: return (self.nir / self.green) - 1 def lowercase_ ( self ) -> Tuple: return (self.nir / self.redEdge) - 1 def lowercase_ ( self ) -> List[Any]: return (self.red - self.blue) / self.red def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def lowercase_ ( self ) -> List[str]: return self.nir - self.green def lowercase_ ( self ) -> Tuple: return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : str = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0.1_6 ) -> Tuple: return (self.nir - self.green) / (self.nir + self.green + y) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=0.5 ) -> Optional[int]: return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def lowercase_ ( self ) -> str: return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> int: return (self.nir - b) / (a * self.red) def lowercase_ ( self ) -> Union[str, Any]: return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def lowercase_ ( self ) -> int: return (self.red + self.green + self.blue) / 3_0.5 def lowercase_ ( self ) -> Optional[int]: return self.nir / self.red def lowercase_ ( self ) -> Dict: return (self.rvi() - 1) / (self.rvi() + 1) def lowercase_ ( self ) -> Dict: return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def lowercase_ ( self ) -> Optional[int]: return self.green / (self.nir + self.red + self.green) def lowercase_ ( self ) -> List[str]: return self.nir / (self.nir + self.red + self.green) def lowercase_ ( self ) -> List[str]: return self.red / (self.nir + self.red + self.green) def lowercase_ ( self ) -> List[Any]: return (self.green - self.red) / (self.green + self.red) def lowercase_ ( self ) -> List[str]: return (self.red - self.green) / (self.red + self.green) def lowercase_ ( self ) -> Any: __lowerCamelCase : Union[str, Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __lowerCamelCase : Optional[Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def lowercase_ ( self ) -> Optional[Any]: return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def lowercase_ ( self ) -> Any: return self.nir / self.red def lowercase_ ( self ) -> str: return (self.ndvi() + 0.5) ** (1 / 2) def lowercase_ ( self ) -> Optional[int]: return (self.nir - self.redEdge) / (self.nir + self.redEdge)
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys A__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() A__ : Union[str, Any] = logging.get_logger(__name__) A__ : Union[str, Any] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ) -> Union[str, Any]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: __lowerCamelCase : List[str] = TOKENIZER_CLASSES else: __lowerCamelCase : List[Any] = {tokenizer_name: getattr(UpperCAmelCase_ , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: __lowerCamelCase : Dict = TOKENIZER_CLASSES[tokenizer_name] __lowerCamelCase : Optional[Any] = True if checkpoint_name is None: __lowerCamelCase : Dict = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowerCamelCase : int = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer __lowerCamelCase : Any = tokenizer_class.from_pretrained(UpperCAmelCase_ , force_download=UpperCAmelCase_ ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: __lowerCamelCase , __lowerCamelCase : Dict = checkpoint.split('/' ) __lowerCamelCase : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) elif add_prefix: __lowerCamelCase : int = checkpoint __lowerCamelCase : Tuple = dump_path else: __lowerCamelCase : List[str] = None __lowerCamelCase : str = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowerCamelCase : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowerCamelCase : List[Any] = file_path.split(UpperCAmelCase_ )[-1][0] if next_char == "/": __lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) __lowerCamelCase : Union[str, Any] = tokenizer.save_pretrained( UpperCAmelCase_ , legacy_format=UpperCAmelCase_ , filename_prefix=UpperCAmelCase_ ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(UpperCAmelCase_ ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( f'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) A__ : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py A__ : Any = """src/transformers""" A__ : Union[str, Any] = """docs/source/en/tasks""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) -> List[str]: with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Optional[int] = f.readlines() # Find the start prompt. __lowerCamelCase : str = 0 while not lines[start_index].startswith(UpperCAmelCase_ ): start_index += 1 start_index += 1 __lowerCamelCase : List[str] = start_index while not lines[end_index].startswith(UpperCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. A__ : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) A__ : int = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). A__ : List[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> List[str]: __lowerCamelCase : Dict = TASK_GUIDE_TO_MODELS[task_guide] __lowerCamelCase : Tuple = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase_ , set() ) __lowerCamelCase : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=False ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = _find_text_in_file( filename=os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) __lowerCamelCase : Optional[Any] = get_model_list_for_task(UpperCAmelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": A__ : Any = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A__ : Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[int] = logging.get_logger(__name__) A__ : str = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = 'camembert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Any: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Tuple = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : str = hidden_act __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Tuple = max_position_embeddings __lowerCamelCase : Dict = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : Tuple = layer_norm_eps __lowerCamelCase : Optional[int] = position_embedding_type __lowerCamelCase : Optional[Any] = use_cache __lowerCamelCase : int = classifier_dropout class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase : str = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase_ ( self ) -> Any: __lowerCamelCase : int = 1 __lowerCamelCase : List[str] = 3 __lowerCamelCase : Optional[int] = (32, 32) __lowerCamelCase : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) return image @property def lowercase_ ( self ) -> str: torch.manual_seed(0 ) __lowerCamelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=SCREAMING_SNAKE_CASE_ , only_cross_attention=(True, True, False) , num_class_embeds=1_00 , ) return model @property def lowercase_ ( self ) -> str: torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def lowercase_ ( self ) -> List[Any]: torch.manual_seed(0 ) __lowerCamelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='gelu' , projection_dim=5_12 , ) return CLIPTextModel(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Optional[Any] = self.dummy_cond_unet_upscale __lowerCamelCase : Dict = DDPMScheduler() __lowerCamelCase : List[str] = DDIMScheduler(prediction_type='v_prediction' ) __lowerCamelCase : str = self.dummy_vae __lowerCamelCase : List[Any] = self.dummy_text_encoder __lowerCamelCase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Dict = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowerCamelCase : Any = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , max_noise_level=3_50 , ) __lowerCamelCase : Optional[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = 'A painting of a squirrel eating a burger' __lowerCamelCase : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __lowerCamelCase : List[Any] = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : Union[str, Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __lowerCamelCase : int = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=SCREAMING_SNAKE_CASE_ , )[0] __lowerCamelCase : Tuple = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] __lowerCamelCase : Dict = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __lowerCamelCase : Optional[int] = np.array([0.3_1_1_3, 0.3_9_1_0, 0.4_2_7_2, 0.4_8_5_9, 0.5_0_6_1, 0.4_6_5_2, 0.5_3_6_2, 0.5_7_1_5, 0.5_6_6_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : List[Any] = self.dummy_cond_unet_upscale __lowerCamelCase : List[Any] = DDPMScheduler() __lowerCamelCase : Union[str, Any] = DDIMScheduler(prediction_type='v_prediction' ) __lowerCamelCase : Optional[Any] = self.dummy_vae __lowerCamelCase : str = self.dummy_text_encoder __lowerCamelCase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Optional[Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __lowerCamelCase : str = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , max_noise_level=3_50 , ) __lowerCamelCase : str = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = 'A painting of a squirrel eating a burger' __lowerCamelCase : List[Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __lowerCamelCase : Any = output.images assert image.shape[0] == 2 __lowerCamelCase : List[str] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __lowerCamelCase : List[Any] = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __lowerCamelCase : Union[str, Any] = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def lowercase_ ( self ) -> str: __lowerCamelCase : int = self.dummy_cond_unet_upscale __lowerCamelCase : Union[str, Any] = DDPMScheduler() __lowerCamelCase : Union[str, Any] = DDIMScheduler(prediction_type='v_prediction' ) __lowerCamelCase : Any = self.dummy_vae __lowerCamelCase : str = self.dummy_text_encoder __lowerCamelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __lowerCamelCase : Tuple = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowerCamelCase : Union[str, Any] = Image.fromarray(np.uinta(SCREAMING_SNAKE_CASE_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __lowerCamelCase : str = unet.half() __lowerCamelCase : int = text_encoder.half() # make sure here that pndm scheduler skips prk __lowerCamelCase : int = StableDiffusionUpscalePipeline( unet=SCREAMING_SNAKE_CASE_ , low_res_scheduler=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , max_noise_level=3_50 , ) __lowerCamelCase : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 'A painting of a squirrel eating a burger' __lowerCamelCase : Optional[int] = torch.manual_seed(0 ) __lowerCamelCase : Dict = sd_pipe( [prompt] , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=2 , output_type='np' , ).images __lowerCamelCase : int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Dict: __lowerCamelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __lowerCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) __lowerCamelCase : Optional[Any] = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCamelCase : List[str] = StableDiffusionUpscalePipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : Tuple = 'a cat sitting on a park bench' __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : Tuple = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __lowerCamelCase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1E-3 def lowercase_ ( self ) -> List[str]: __lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __lowerCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) __lowerCamelCase : Optional[int] = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCamelCase : Dict = StableDiffusionUpscalePipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() __lowerCamelCase : str = 'a cat sitting on a park bench' __lowerCamelCase : Dict = torch.manual_seed(0 ) __lowerCamelCase : int = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __lowerCamelCase : List[str] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowercase_ ( self ) -> Optional[Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowerCamelCase : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __lowerCamelCase : Dict = 'stabilityai/stable-diffusion-x4-upscaler' __lowerCamelCase : Any = StableDiffusionUpscalePipeline.from_pretrained( SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa , ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowerCamelCase : Union[str, Any] = 'a cat sitting on a park bench' __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) __lowerCamelCase : List[Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=5 , output_type='np' , ) __lowerCamelCase : List[Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
13
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Optional[int] = None A__ : Optional[Any] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} A__ : List[str] = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } A__ : Optional[int] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } A__ : Tuple = """▁""" # Segments (not really needed) A__ : Optional[Any] = 0 A__ : Dict = 1 A__ : Any = 2 A__ : Dict = 3 A__ : Union[str, Any] = 4 class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[Any] = 'left' lowerCamelCase : Optional[Any] = XLNetTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __lowerCamelCase : int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Tuple = 3 __lowerCamelCase : int = do_lower_case __lowerCamelCase : Dict = remove_space __lowerCamelCase : str = keep_accents __lowerCamelCase : List[Any] = vocab_file __lowerCamelCase : Optional[int] = False if not self.vocab_file else True def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCamelCase : Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=10_24 , UpperCAmelCase_ : List[Any]=10_24 , UpperCAmelCase_ : List[str]=False , **UpperCAmelCase_ : str ) -> Dict: __lowerCamelCase : str = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path='train' , **UpperCAmelCase_ ) __lowerCamelCase : List[str] = tok.pad_token_id def get_lens(UpperCAmelCase_ : Optional[Any] ): __lowerCamelCase : Union[str, Any] = tqdm( DataLoader(UpperCAmelCase_ , batch_size=5_12 , num_workers=8 , shuffle=UpperCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __lowerCamelCase : Optional[Any] = [] for batch in dl: __lowerCamelCase : int = batch['input_ids'].ne(UpperCAmelCase_ ).sum(1 ).tolist() __lowerCamelCase : Any = batch['labels'].ne(UpperCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCAmelCase_ , UpperCAmelCase_ ): max_lens.append(max(UpperCAmelCase_ , UpperCAmelCase_ ) ) else: max_lens.extend(UpperCAmelCase_ ) return max_lens __lowerCamelCase : int = get_lens(UpperCAmelCase_ ) __lowerCamelCase : Any = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path='val' , **UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = get_lens(UpperCAmelCase_ ) pickle_save(UpperCAmelCase_ , train_ds.len_file ) pickle_save(UpperCAmelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str=False ) -> Tuple: __lowerCamelCase : Optional[Any] = OmegaConf.load(UpperCAmelCase_ ) if display: print(yaml.dump(OmegaConf.to_container(UpperCAmelCase_ ) ) ) return config def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : List[Any]=None ) -> Dict: if conf_path is None: __lowerCamelCase : Union[str, Any] = './model_checkpoints/vqgan_only.yaml' __lowerCamelCase : Dict = load_config(UpperCAmelCase_ , display=UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = VQModel(**config.model.params ) if ckpt_path is None: __lowerCamelCase : Optional[int] = './model_checkpoints/vqgan_only.pt' __lowerCamelCase : Optional[int] = torch.load(UpperCAmelCase_ , map_location=UpperCAmelCase_ ) if ".ckpt" in ckpt_path: __lowerCamelCase : List[Any] = sd['state_dict'] model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) del sd return model def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = model.encode(UpperCAmelCase_ ) print(F'VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}' ) __lowerCamelCase : Optional[int] = model.decode(UpperCAmelCase_ ) return xrec def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict=False ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : Any = string.rsplit('.' , 1 ) if reload: __lowerCamelCase : Optional[Any] = importlib.import_module(UpperCAmelCase_ ) importlib.reload(UpperCAmelCase_ ) return getattr(importlib.import_module(UpperCAmelCase_ , package=UpperCAmelCase_ ) , cls ) def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=True ) -> Dict: __lowerCamelCase : Optional[Any] = instantiate_from_config(UpperCAmelCase_ ) if sd is not None: model.load_state_dict(UpperCAmelCase_ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] ) -> Any: # load the specified checkpoint if ckpt: __lowerCamelCase : int = torch.load(UpperCAmelCase_ , map_location='cpu' ) __lowerCamelCase : Union[str, Any] = pl_sd['global_step'] print(F'loaded model from global step {global_step}.' ) else: __lowerCamelCase : Any = {'state_dict': None} __lowerCamelCase : str = None __lowerCamelCase : str = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=UpperCAmelCase_ , eval_mode=UpperCAmelCase_ )['model'] return model, global_step
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Dict = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) __lowerCamelCase : Optional[int] = VideoClassificationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , top_k=2 ) __lowerCamelCase : Tuple = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: for example in examples: __lowerCamelCase : Optional[int] = video_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) @require_torch def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Union[str, Any] = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' __lowerCamelCase : Union[str, Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 10} , crop_size={'height': 10, 'width': 10} ) __lowerCamelCase : Tuple = pipeline( 'video-classification' , model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , frame_sampling_rate=4 ) __lowerCamelCase : int = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) __lowerCamelCase : str = video_classifier(SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}] , ) __lowerCamelCase : Dict = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], [{'score': 0.5_1_9_9, 'label': 'LABEL_0'}, {'score': 0.4_8_0_1, 'label': 'LABEL_1'}], ] , ) @require_tf def lowercase_ ( self ) -> str: pass
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass A__ : Any = (3, 9, -11, 0, 7, 5, 1, -1) A__ : Any = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int lowerCamelCase : Node | None class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : Node | None = None for i in sorted(SCREAMING_SNAKE_CASE_ , reverse=SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = Node(SCREAMING_SNAKE_CASE_ , self.head ) def __iter__( self ) -> Iterator[int]: __lowerCamelCase : Optional[Any] = self.head while node: yield node.data __lowerCamelCase : List[Any] = node.next_node def __len__( self ) -> int: return sum(1 for _ in self ) def __str__( self ) -> str: return " -> ".join([str(SCREAMING_SNAKE_CASE_ ) for node in self] ) def UpperCAmelCase__ ( UpperCAmelCase_ : SortedLinkedList , UpperCAmelCase_ : SortedLinkedList ) -> SortedLinkedList: return SortedLinkedList(list(UpperCAmelCase_ ) + list(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() A__ : List[str] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging A__ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = 'linear' lowerCamelCase : Optional[Any] = 'cosine' lowerCamelCase : Tuple = 'cosine_with_restarts' lowerCamelCase : int = 'polynomial' lowerCamelCase : int = 'constant' lowerCamelCase : List[str] = 'constant_with_warmup' lowerCamelCase : Union[str, Any] = 'piecewise_constant' def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int = -1 ) -> Dict: return LambdaLR(UpperCAmelCase_ , lambda UpperCAmelCase_ : 1 , last_epoch=UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int = -1 ) -> str: def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1.0 , UpperCAmelCase_ ) ) return 1.0 return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : str , UpperCAmelCase_ : int = -1 ) -> Tuple: __lowerCamelCase : Dict = {} __lowerCamelCase : Optional[int] = step_rules.split(',' ) for rule_str in rule_list[:-1]: __lowerCamelCase , __lowerCamelCase : Optional[int] = rule_str.split(':' ) __lowerCamelCase : Dict = int(UpperCAmelCase_ ) __lowerCamelCase : Tuple = float(UpperCAmelCase_ ) __lowerCamelCase : int = value __lowerCamelCase : str = float(rule_list[-1] ) def create_rules_function(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ): def rule_func(UpperCAmelCase_ : int ) -> float: __lowerCamelCase : Dict = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(UpperCAmelCase_ ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __lowerCamelCase : Optional[Any] = create_rules_function(UpperCAmelCase_ , UpperCAmelCase_ ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict=-1 ) -> Optional[int]: def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : int = -1 ) -> Any: def lr_lambda(UpperCAmelCase_ : Dict ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) __lowerCamelCase : Optional[Any] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCAmelCase_ ) * 2.0 * progress )) ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = -1 ) -> List[str]: def lr_lambda(UpperCAmelCase_ : Union[str, Any] ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) __lowerCamelCase : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCAmelCase_ ) * progress) % 1.0) )) ) return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=1e-7 , UpperCAmelCase_ : List[Any]=1.0 , UpperCAmelCase_ : Tuple=-1 ) -> List[str]: __lowerCamelCase : List[Any] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(F'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(UpperCAmelCase_ : int ): if current_step < num_warmup_steps: return float(UpperCAmelCase_ ) / float(max(1 , UpperCAmelCase_ ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __lowerCamelCase : List[Any] = lr_init - lr_end __lowerCamelCase : List[str] = num_training_steps - num_warmup_steps __lowerCamelCase : str = 1 - (current_step - num_warmup_steps) / decay_steps __lowerCamelCase : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) A__ : Any = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, SchedulerType] , UpperCAmelCase_ : Optimizer , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = -1 , ) -> List[Any]: __lowerCamelCase : List[str] = SchedulerType(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(UpperCAmelCase_ , step_rules=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , num_cycles=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , power=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ , ) return schedule_func( UpperCAmelCase_ , num_warmup_steps=UpperCAmelCase_ , num_training_steps=UpperCAmelCase_ , last_epoch=UpperCAmelCase_ )
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Optional[int]: assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str ) -> Union[str, Any]: __lowerCamelCase : List[Any] = tmp_path / 'cache' __lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : str = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]: __lowerCamelCase : Tuple = tmp_path / 'cache' __lowerCamelCase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : str = features.copy() if features else default_expected_features __lowerCamelCase : List[Any] = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Optional[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any ) -> Any: with contextlib.closing(sqlitea.connect(UpperCAmelCase_ ) ) as con: __lowerCamelCase : List[str] = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = tmp_path / 'cache' __lowerCamelCase : Any = os.path.join(UpperCAmelCase_ , 'tmp.sql' ) __lowerCamelCase : List[str] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read() SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() __lowerCamelCase : Optional[Any] = iter_sql_file(UpperCAmelCase_ ) __lowerCamelCase : int = iter_sql_file(UpperCAmelCase_ ) for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict ) -> List[Any]: __lowerCamelCase : List[str] = tmp_path / 'cache' __lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , 'tmp.sql' ) __lowerCamelCase : Union[str, Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read() SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() __lowerCamelCase : str = iter_sql_file(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = iter_sql_file(UpperCAmelCase_ ) for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] ) -> int: __lowerCamelCase : str = tmp_path / 'cache' __lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , 'tmp.sql' ) __lowerCamelCase : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=UpperCAmelCase_ ).read() with pytest.raises(UpperCAmelCase_ ): SqlDatasetWriter(UpperCAmelCase_ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' from collections import defaultdict def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: __lowerCamelCase : Any = 1 __lowerCamelCase : Dict = True for v in tree[start]: if v not in visited: ret += dfs(UpperCAmelCase_ ) if ret % 2 == 0: cuts.append(UpperCAmelCase_ ) return ret def UpperCAmelCase__ ( ) -> List[Any]: dfs(1 ) if __name__ == "__main__": A__ , A__ : Union[str, Any] = 10, 9 A__ : Union[str, Any] = defaultdict(list) A__ : dict[int, bool] = {} A__ : list[int] = [] A__ : List[str] = 0 A__ : Optional[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
'''simple docstring''' def UpperCAmelCase__ ( ) -> int: return 1 def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int = 2_00 ) -> int: return two_pound(UpperCAmelCase_ ) if __name__ == "__main__": print(solution(int(input().strip())))
13
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Dict: super().__init__( SCREAMING_SNAKE_CASE_ , split=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , keep_in_memory=SCREAMING_SNAKE_CASE_ , streaming=SCREAMING_SNAKE_CASE_ , num_proc=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Any = field __lowerCamelCase : Tuple = path_or_paths if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else {self.split: path_or_paths} __lowerCamelCase : int = Json( cache_dir=SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , features=SCREAMING_SNAKE_CASE_ , field=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> List[str]: # Build iterable dataset if self.streaming: __lowerCamelCase : str = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCamelCase : List[Any] = None __lowerCamelCase : Optional[Any] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : Dict = None self.builder.download_and_prepare( download_config=SCREAMING_SNAKE_CASE_ , download_mode=SCREAMING_SNAKE_CASE_ , verification_mode=SCREAMING_SNAKE_CASE_ , base_path=SCREAMING_SNAKE_CASE_ , num_proc=self.num_proc , ) __lowerCamelCase : List[str] = self.builder.as_dataset( split=self.split , verification_mode=SCREAMING_SNAKE_CASE_ , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> int: if num_proc is not None and num_proc <= 0: raise ValueError(f'num_proc {num_proc} must be an integer > 0.' ) __lowerCamelCase : Tuple = dataset __lowerCamelCase : Dict = path_or_buf __lowerCamelCase : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase : str = num_proc __lowerCamelCase : Union[str, Any] = 'utf-8' __lowerCamelCase : str = to_json_kwargs def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[Any] = self.to_json_kwargs.pop('path_or_buf' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = self.to_json_kwargs.pop('orient' , 'records' ) __lowerCamelCase : List[Any] = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __lowerCamelCase : List[str] = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __lowerCamelCase : Tuple = self.to_json_kwargs.pop('compression' , SCREAMING_SNAKE_CASE_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=SCREAMING_SNAKE_CASE_ ) as buffer: __lowerCamelCase : List[Any] = self._write(file_obj=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) __lowerCamelCase : Dict = self._write( file_obj=self.path_or_buf , orient=SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , **self.to_json_kwargs ) return written def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = args __lowerCamelCase : List[str] = query_table( table=self.dataset.data , key=slice(SCREAMING_SNAKE_CASE_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase : Tuple = batch.to_pandas().to_json( path_or_buf=SCREAMING_SNAKE_CASE_ , orient=SCREAMING_SNAKE_CASE_ , lines=SCREAMING_SNAKE_CASE_ , index=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) -> int: __lowerCamelCase : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __lowerCamelCase : Optional[int] = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase , __lowerCamelCase : Optional[Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(SCREAMING_SNAKE_CASE_ ) return written
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand A__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> List[str]: if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(UpperCAmelCase_ ): return ext raise Exception( F'Unable to determine file format from file extension {path}. ' F'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> List[Any]: __lowerCamelCase : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __lowerCamelCase : Tuple = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format __lowerCamelCase : List[Any] = PipelineDataFormat.from_str( format=UpperCAmelCase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(UpperCAmelCase_ , UpperCAmelCase_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Tuple = nlp __lowerCamelCase : Dict = reader @staticmethod def lowercase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : str = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=SCREAMING_SNAKE_CASE_ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=SCREAMING_SNAKE_CASE_ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=SCREAMING_SNAKE_CASE_ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=SCREAMING_SNAKE_CASE_ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=SCREAMING_SNAKE_CASE_ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=SCREAMING_SNAKE_CASE_ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=SCREAMING_SNAKE_CASE_ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=SCREAMING_SNAKE_CASE_ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self._nlp, [] for entry in self._reader: __lowerCamelCase : Tuple = nlp(**SCREAMING_SNAKE_CASE_ ) if self._reader.is_multi_columns else nlp(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): outputs.append(SCREAMING_SNAKE_CASE_ ) else: outputs += output # Saving data if self._nlp.binary_output: __lowerCamelCase : List[str] = self._reader.save_binary(SCREAMING_SNAKE_CASE_ ) logger.warning(f'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' A__ : List[Any] = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def UpperCAmelCase__ ( UpperCAmelCase_ : float ) -> float: if num <= 0: raise ValueError('math domain error' ) return quad(UpperCAmelCase_ , 0 , UpperCAmelCase_ , args=(UpperCAmelCase_) )[0] def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ) -> float: return math.pow(UpperCAmelCase_ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> str: return "\n".join( F'{number} * {i} = {number * i}' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' __lowerCamelCase : Any = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('RGB' ) return image def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Tuple: __lowerCamelCase : Optional[Any] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> int: __lowerCamelCase : List[Any] = dct.pop(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = val def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases __lowerCamelCase : Tuple = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) __lowerCamelCase : int = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict __lowerCamelCase : List[Any] = torch.cat((q_bias, torch.zeros_like(UpperCAmelCase_ , requires_grad=UpperCAmelCase_ ), v_bias) ) __lowerCamelCase : Any = qkv_bias def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str ) -> Optional[int]: __lowerCamelCase : int = 3_64 if 'coco' in model_name else 2_24 __lowerCamelCase : List[Any] = BlipaVisionConfig(image_size=UpperCAmelCase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: __lowerCamelCase : Union[str, Any] = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "opt-6.7b" in model_name: __lowerCamelCase : List[str] = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=UpperCAmelCase_ ).to_dict() elif "t5-xl" in model_name: __lowerCamelCase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: __lowerCamelCase : List[str] = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() __lowerCamelCase : Tuple = BlipaConfig(vision_config=UpperCAmelCase_ , text_config=UpperCAmelCase_ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Union[str, Any]=False ) -> Dict: __lowerCamelCase : Tuple = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) __lowerCamelCase : Union[str, Any] = tokenizer('\n' , add_special_tokens=UpperCAmelCase_ ).input_ids[0] __lowerCamelCase , __lowerCamelCase : str = get_blipa_config(UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) __lowerCamelCase : Tuple = BlipaForConditionalGeneration(UpperCAmelCase_ ).eval() __lowerCamelCase : int = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } __lowerCamelCase , __lowerCamelCase : int = model_name_to_original[model_name] # load original model print('Loading original model...' ) __lowerCamelCase : Any = 'cuda' if torch.cuda.is_available() else 'cpu' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = load_model_and_preprocess( name=UpperCAmelCase_ , model_type=UpperCAmelCase_ , is_eval=UpperCAmelCase_ , device=UpperCAmelCase_ ) original_model.eval() print('Done!' ) # update state dict keys __lowerCamelCase : Dict = original_model.state_dict() __lowerCamelCase : List[Any] = create_rename_keys(UpperCAmelCase_ ) for src, dest in rename_keys: rename_key(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): __lowerCamelCase : Optional[Any] = state_dict.pop(UpperCAmelCase_ ) if key.startswith('Qformer.bert' ): __lowerCamelCase : Dict = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: __lowerCamelCase : int = key.replace('self' , 'attention' ) if "opt_proj" in key: __lowerCamelCase : Any = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: __lowerCamelCase : Optional[Any] = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): __lowerCamelCase : Dict = key.replace('opt' , 'language' ) if key.startswith('t5' ): __lowerCamelCase : Optional[int] = key.replace('t5' , 'language' ) __lowerCamelCase : str = val # read in qv biases read_in_q_v_bias(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : List[str] = hf_model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] __lowerCamelCase : Optional[Any] = load_demo_image() __lowerCamelCase : Any = vis_processors['eval'](UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) __lowerCamelCase : Dict = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) # create processor __lowerCamelCase : Tuple = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=UpperCAmelCase_ , image_std=UpperCAmelCase_ ) __lowerCamelCase : List[str] = BlipaProcessor(image_processor=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ ) __lowerCamelCase : str = processor(images=UpperCAmelCase_ , return_tensors='pt' ).pixel_values.to(UpperCAmelCase_ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ ) original_model.to(UpperCAmelCase_ ) hf_model.to(UpperCAmelCase_ ) with torch.no_grad(): if "opt" in model_name: __lowerCamelCase : Optional[Any] = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits __lowerCamelCase : List[str] = hf_model(UpperCAmelCase_ , UpperCAmelCase_ ).logits else: __lowerCamelCase : Tuple = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits __lowerCamelCase : List[str] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) __lowerCamelCase : Dict = hf_model(UpperCAmelCase_ , UpperCAmelCase_ , labels=UpperCAmelCase_ ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": __lowerCamelCase : List[Any] = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=UpperCAmelCase_ ) assert torch.allclose(logits[0, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": __lowerCamelCase : Tuple = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=UpperCAmelCase_ ) else: # cast to same type __lowerCamelCase : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(UpperCAmelCase_ ) , UpperCAmelCase_ , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) __lowerCamelCase : str = '' __lowerCamelCase : str = tokenizer(UpperCAmelCase_ , return_tensors='pt' ).input_ids.to(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = original_model.generate({'image': original_pixel_values} ) __lowerCamelCase : int = hf_model.generate( UpperCAmelCase_ , UpperCAmelCase_ , do_sample=UpperCAmelCase_ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , UpperCAmelCase_ ) __lowerCamelCase : Any = input_ids.shape[1] __lowerCamelCase : Optional[int] = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCAmelCase_ ) __lowerCamelCase : Dict = [text.strip() for text in output_text] print('HF generation:' , UpperCAmelCase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": A__ : int = argparse.ArgumentParser() A__ : Optional[int] = [ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) A__ : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model A__ : Dict = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=None ) -> List[Any]: if rng is None: __lowerCamelCase : str = random.Random() __lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim __lowerCamelCase : Tuple = [] for _ in range(UpperCAmelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) __lowerCamelCase : Optional[Any] = np.array(UpperCAmelCase_ , dtype=jnp.intaa ).reshape(UpperCAmelCase_ ) return output def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]=None ) -> str: __lowerCamelCase : Tuple = ids_tensor(UpperCAmelCase_ , vocab_size=2 , rng=UpperCAmelCase_ ) # make sure that at least one token is attended to for each batch __lowerCamelCase : str = 1 return attn_mask @require_flax class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Union[str, Any] = None lowerCamelCase : Optional[Any] = () def lowercase_ ( self ) -> Dict: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = inputs['input_ids'].shape[-1] // 2 __lowerCamelCase : List[Any] = inputs['input_ids'][:max_batch_size, :sequence_length] __lowerCamelCase : Optional[int] = jnp.ones_like(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __lowerCamelCase : Tuple = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def lowercase_ ( self ) -> List[Any]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._get_input_ids_and_config() __lowerCamelCase : Any = False __lowerCamelCase : Dict = max_length __lowerCamelCase : Union[str, Any] = 0 for model_class in self.all_generative_model_classes: __lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = pt_model_class(SCREAMING_SNAKE_CASE_ ).eval() __lowerCamelCase : List[Any] = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , flax_model.params ) __lowerCamelCase : List[Any] = flax_model.generate(SCREAMING_SNAKE_CASE_ ).sequences __lowerCamelCase : Union[str, Any] = pt_model.generate(torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __lowerCamelCase : Dict = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def lowercase_ ( self ) -> str: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = self._get_input_ids_and_config() __lowerCamelCase : Optional[Any] = False __lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = jit(model.generate ) __lowerCamelCase : Optional[Any] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = self._get_input_ids_and_config() __lowerCamelCase : List[str] = True __lowerCamelCase : Dict = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = jit(model.generate ) __lowerCamelCase : Union[str, Any] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = self._get_input_ids_and_config() __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = max_length __lowerCamelCase : List[str] = 2 for model_class in self.all_generative_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jit(model.generate ) __lowerCamelCase : str = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self._get_input_ids_and_config() __lowerCamelCase : List[Any] = False __lowerCamelCase : Any = max_length __lowerCamelCase : Tuple = 2 __lowerCamelCase : List[str] = 2 for model_class in self.all_generative_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def lowercase_ ( self ) -> Dict: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self._get_input_ids_and_config() __lowerCamelCase : List[str] = True __lowerCamelCase : List[str] = max_length __lowerCamelCase : Union[str, Any] = 0.8 __lowerCamelCase : Optional[Any] = 10 __lowerCamelCase : Dict = 0.3 __lowerCamelCase : int = 1 __lowerCamelCase : int = 8 __lowerCamelCase : List[str] = 9 for model_class in self.all_generative_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = jit(model.generate ) __lowerCamelCase : int = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = self._get_input_ids_and_config() __lowerCamelCase : Optional[Any] = max_length __lowerCamelCase : Any = 1 __lowerCamelCase : List[str] = 8 __lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = jit(model.generate ) __lowerCamelCase : Union[str, Any] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() __lowerCamelCase : List[str] = max_length __lowerCamelCase : Dict = 2 __lowerCamelCase : List[str] = 1 __lowerCamelCase : Any = 8 __lowerCamelCase : Optional[int] = 9 for model_class in self.all_generative_model_classes: __lowerCamelCase : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = jit(model.generate ) __lowerCamelCase : Optional[int] = jit_generate(SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> str: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left __lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) __lowerCamelCase : Tuple = False __lowerCamelCase : List[Any] = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = jit(model.generate ) __lowerCamelCase : Any = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) __lowerCamelCase : int = True __lowerCamelCase : Dict = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = jit(model.generate ) __lowerCamelCase : Union[str, Any] = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left __lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Tuple = max_length for model_class in self.all_generative_model_classes: __lowerCamelCase : int = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertEqual(generation_outputs.shape[-1] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = jit(model.generate ) __lowerCamelCase : int = jit_generate(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) __lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) __lowerCamelCase : Tuple = 'Hello world' __lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'do_samples' ): model.generate(SCREAMING_SNAKE_CASE_ , do_samples=SCREAMING_SNAKE_CASE_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'foo' ): __lowerCamelCase : Tuple = {'foo': 'bar'} model.generate(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
1
'''simple docstring''' import os import string import sys A__ : Tuple = 1 << 8 A__ : Dict = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } A__ : Optional[int] = KEYMAP["""up"""] A__ : Optional[int] = KEYMAP["""left"""] if sys.platform == "win32": A__ : str = [] A__ : str = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): A__ : Optional[Any] = ord(str(i)) def UpperCAmelCase__ ( ) -> int: if os.name == "nt": import msvcrt __lowerCamelCase : Any = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(UpperCAmelCase_ ) == 0: # Read the keystroke __lowerCamelCase : List[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): __lowerCamelCase : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: __lowerCamelCase : str = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(UpperCAmelCase_ ) if ord(UpperCAmelCase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_26 ) ) __lowerCamelCase : List[Any] = chr(KEYMAP['esc'] ) except KeyError: __lowerCamelCase : Optional[int] = cha[1] else: __lowerCamelCase : List[str] = ch.decode(UpperCAmelCase_ ) else: __lowerCamelCase : Dict = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty __lowerCamelCase : str = sys.stdin.fileno() __lowerCamelCase : Union[str, Any] = termios.tcgetattr(UpperCAmelCase_ ) try: tty.setraw(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(UpperCAmelCase_ , termios.TCSADRAIN , UpperCAmelCase_ ) return ch def UpperCAmelCase__ ( ) -> List[str]: __lowerCamelCase : Tuple = get_raw_chars() if ord(UpperCAmelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(UpperCAmelCase_ ) == KEYMAP["esc"]: __lowerCamelCase : List[str] = get_raw_chars() if ord(UpperCAmelCase_ ) == KEYMAP["mod_int"]: __lowerCamelCase : Optional[Any] = get_raw_chars() if ord(UpperCAmelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(UpperCAmelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(UpperCAmelCase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' from ....utils import logging A__ : Tuple = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=20_48 ) -> Tuple: __lowerCamelCase : int = config.__dict__ __lowerCamelCase : Any = modal_hidden_size if num_labels: __lowerCamelCase : Dict = num_labels
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from __future__ import annotations import bisect def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> int: if hi < 0: __lowerCamelCase : List[str] = len(UpperCAmelCase_ ) while lo < hi: __lowerCamelCase : List[str] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: __lowerCamelCase : Optional[Any] = mid + 1 else: __lowerCamelCase : Optional[int] = mid return lo def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> int: if hi < 0: __lowerCamelCase : Optional[int] = len(UpperCAmelCase_ ) while lo < hi: __lowerCamelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: __lowerCamelCase : Optional[int] = mid + 1 else: __lowerCamelCase : List[str] = mid return lo def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> None: sorted_collection.insert(bisect_left(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = -1 ) -> None: sorted_collection.insert(bisect_right(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int | None: __lowerCamelCase : List[str] = 0 __lowerCamelCase : Any = len(UpperCAmelCase_ ) - 1 while left <= right: __lowerCamelCase : int = left + (right - left) // 2 __lowerCamelCase : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: __lowerCamelCase : List[str] = midpoint - 1 else: __lowerCamelCase : Tuple = midpoint + 1 return None def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int ) -> int | None: __lowerCamelCase : List[str] = bisect.bisect_left(UpperCAmelCase_ , UpperCAmelCase_ ) if index != len(UpperCAmelCase_ ) and sorted_collection[index] == item: return index return None def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int | None: if right < left: return None __lowerCamelCase : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , midpoint - 1 ) else: return binary_search_by_recursion(UpperCAmelCase_ , UpperCAmelCase_ , midpoint + 1 , UpperCAmelCase_ ) if __name__ == "__main__": A__ : List[str] = input("""Enter numbers separated by comma:\n""").strip() A__ : Optional[int] = sorted(int(item) for item in user_input.split(""",""")) A__ : str = int(input("""Enter a single number to be found in the list:\n""")) A__ : List[Any] = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import argparse import os import re A__ : Any = """src/diffusers""" # Pattern that looks at the indentation in a line. A__ : Optional[int] = re.compile(R"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. A__ : List[Any] = re.compile(R"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. A__ : Union[str, Any] = re.compile(R"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. A__ : Optional[int] = re.compile(R"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. A__ : str = re.compile(R"""\[([^\]]+)\]""") def UpperCAmelCase__ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: __lowerCamelCase : Dict = _re_indent.search(UpperCAmelCase_ ) return "" if search is None else search.groups()[0] def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]="" , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Optional[Any]=None ) -> Optional[int]: __lowerCamelCase : Dict = 0 __lowerCamelCase : Tuple = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(UpperCAmelCase_ ): index += 1 __lowerCamelCase : Union[str, Any] = ['\n'.join(lines[:index] )] else: __lowerCamelCase : Optional[int] = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCamelCase : Any = [lines[index]] index += 1 while index < len(UpperCAmelCase_ ) and (end_prompt is None or not lines[index].startswith(UpperCAmelCase_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCAmelCase_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(UpperCAmelCase_ ) ) if index < len(UpperCAmelCase_ ) - 1: __lowerCamelCase : Optional[int] = [lines[index + 1]] index += 1 else: __lowerCamelCase : List[Any] = [] else: blocks.append('\n'.join(UpperCAmelCase_ ) ) __lowerCamelCase : Any = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCAmelCase_ ) > 0: blocks.append('\n'.join(UpperCAmelCase_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCAmelCase_ ): blocks.append('\n'.join(lines[index:] ) ) return blocks def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> Union[str, Any]: def _inner(UpperCAmelCase_ : List[str] ): return key(UpperCAmelCase_ ).lower().replace('_' , '' ) return _inner def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : str=None ) -> List[str]: # If no key is provided, we use a noop. def noop(UpperCAmelCase_ : Optional[Any] ): return x if key is None: __lowerCamelCase : str = noop # Constants are all uppercase, they go first. __lowerCamelCase : List[str] = [obj for obj in objects if key(UpperCAmelCase_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCamelCase : Union[str, Any] = [obj for obj in objects if key(UpperCAmelCase_ )[0].isupper() and not key(UpperCAmelCase_ ).isupper()] # Functions begin with a lowercase, they go last. __lowerCamelCase : List[Any] = [obj for obj in objects if not key(UpperCAmelCase_ )[0].isupper()] __lowerCamelCase : Optional[Any] = ignore_underscore(UpperCAmelCase_ ) return sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) + sorted(UpperCAmelCase_ , key=UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> Dict: # This inner function sort imports between [ ]. def _replace(UpperCAmelCase_ : List[str] ): __lowerCamelCase : Dict = match.groups()[0] if "," not in imports: return F'[{imports}]' __lowerCamelCase : List[str] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase : Optional[int] = keys[:-1] return "[" + ", ".join([F'"{k}"' for k in sort_objects(UpperCAmelCase_ )] ) + "]" __lowerCamelCase : List[Any] = import_statement.split('\n' ) if len(UpperCAmelCase_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCamelCase : Tuple = 2 if lines[1].strip() == '[' else 1 __lowerCamelCase : int = [(i, _re_strip_line.search(UpperCAmelCase_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCamelCase : Dict = sort_objects(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] ) __lowerCamelCase : Union[str, Any] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCAmelCase_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCamelCase : Dict = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCamelCase : str = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCamelCase : Any = keys[:-1] __lowerCamelCase : Tuple = get_indent(lines[1] ) + ', '.join([F'"{k}"' for k in sort_objects(UpperCAmelCase_ )] ) return "\n".join(UpperCAmelCase_ ) else: # Finally we have to deal with imports fitting on one line __lowerCamelCase : Tuple = _re_bracket_content.sub(_replace , UpperCAmelCase_ ) return import_statement def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any]=True ) -> Optional[Any]: with open(UpperCAmelCase_ , 'r' ) as f: __lowerCamelCase : int = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCamelCase : Dict = split_code_in_indented_blocks( UpperCAmelCase_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCAmelCase_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCamelCase : int = main_blocks[block_idx] __lowerCamelCase : List[str] = block.split('\n' ) # Get to the start of the imports. __lowerCamelCase : Optional[Any] = 0 while line_idx < len(UpperCAmelCase_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCamelCase : Dict = len(UpperCAmelCase_ ) else: line_idx += 1 if line_idx >= len(UpperCAmelCase_ ): continue # Ignore beginning and last line: they don't contain anything. __lowerCamelCase : int = '\n'.join(block_lines[line_idx:-1] ) __lowerCamelCase : List[Any] = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCamelCase : int = split_code_in_indented_blocks(UpperCAmelCase_ , indent_level=UpperCAmelCase_ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCamelCase : Dict = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCamelCase : str = [(pattern.search(UpperCAmelCase_ ).groups()[0] if pattern.search(UpperCAmelCase_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCamelCase : Optional[Any] = [(i, key) for i, key in enumerate(UpperCAmelCase_ ) if key is not None] __lowerCamelCase : Dict = [x[0] for x in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Optional[Any] = [] for i in range(len(UpperCAmelCase_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __lowerCamelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCAmelCase_ ) count += 1 # And we put our main block back together with its first and last line. __lowerCamelCase : Dict = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCAmelCase_ ): if check_only: return True else: print(F'Overwriting {file}.' ) with open(UpperCAmelCase_ , 'w' ) as f: f.write('\n'.join(UpperCAmelCase_ ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any=True ) -> int: __lowerCamelCase : str = [] for root, _, files in os.walk(UpperCAmelCase_ ): if "__init__.py" in files: __lowerCamelCase : Dict = sort_imports(os.path.join(UpperCAmelCase_ , '__init__.py' ) , check_only=UpperCAmelCase_ ) if result: __lowerCamelCase : Dict = [os.path.join(UpperCAmelCase_ , '__init__.py' )] if len(UpperCAmelCase_ ) > 0: raise ValueError(F'Would overwrite {len(UpperCAmelCase_ )} files, run `make style`.' ) if __name__ == "__main__": A__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") A__ : Dict = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> str: return "".join(chr(ord(UpperCAmelCase_ ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Any = tempfile.mkdtemp() # fmt: off __lowerCamelCase : Optional[Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __lowerCamelCase : str = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : Tuple = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __lowerCamelCase : str = {'unk_token': '<unk>'} __lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : Union[str, Any] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], 'image_std': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Tuple: return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> Tuple: __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Any = self.get_rust_tokenizer() __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_slow.save_pretrained(self.tmpdirname ) __lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor_fast.save_pretrained(self.tmpdirname ) __lowerCamelCase : Dict = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(processor_fast.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase : Any = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __lowerCamelCase : Optional[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : Union[str, Any] = self.get_image_processor() __lowerCamelCase : Dict = self.get_tokenizer() __lowerCamelCase : Optional[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.prepare_image_inputs() __lowerCamelCase : List[Any] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Tuple = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : str = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = 'lower newer' __lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : Optional[int] = self.get_tokenizer() __lowerCamelCase : List[Any] = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = 'lower newer' __lowerCamelCase : Optional[Any] = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : Tuple = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : Tuple = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : int = self.get_image_processor() __lowerCamelCase : Union[str, Any] = self.get_tokenizer() __lowerCamelCase : int = CLIPProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = 'lower newer' __lowerCamelCase : List[str] = self.prepare_image_inputs() __lowerCamelCase : List[str] = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
13
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar A__ : int = TypeVar("""KT""") A__ : Optional[int] = TypeVar("""VT""") class UpperCAmelCase_ (Generic[KT, VT] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = "root" , SCREAMING_SNAKE_CASE_ = None ) -> Union[str, Any]: __lowerCamelCase : int = key __lowerCamelCase : Union[str, Any] = value __lowerCamelCase : list[Node[KT, VT]] = [] def __repr__( self ) -> str: return f'Node({self.key}: {self.value})' @property def lowercase_ ( self ) -> int: return len(self.forward ) class UpperCAmelCase_ (Generic[KT, VT] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.5 , SCREAMING_SNAKE_CASE_ = 16 ) -> Optional[int]: __lowerCamelCase : Node[KT, VT] = Node[KT, VT]() __lowerCamelCase : Tuple = 0 __lowerCamelCase : List[str] = p __lowerCamelCase : Optional[int] = max_level def __str__( self ) -> str: __lowerCamelCase : int = list(self ) if len(SCREAMING_SNAKE_CASE_ ) == 0: return f'SkipList(level={self.level})' __lowerCamelCase : List[str] = max((len(str(SCREAMING_SNAKE_CASE_ ) ) for item in items) , default=4 ) __lowerCamelCase : Tuple = max(SCREAMING_SNAKE_CASE_ , 4 ) + 4 __lowerCamelCase : Optional[Any] = self.head __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : int = node.forward.copy() lines.append(f'[{node.key}]'.ljust(SCREAMING_SNAKE_CASE_ , '-' ) + '* ' * len(SCREAMING_SNAKE_CASE_ ) ) lines.append(' ' * label_size + '| ' * len(SCREAMING_SNAKE_CASE_ ) ) while len(node.forward ) != 0: __lowerCamelCase : Dict = node.forward[0] lines.append( f'[{node.key}]'.ljust(SCREAMING_SNAKE_CASE_ , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : Tuple = node.forward lines.append('None'.ljust(SCREAMING_SNAKE_CASE_ ) + '* ' * len(SCREAMING_SNAKE_CASE_ ) ) return f'SkipList(level={self.level})\n' + "\n".join(SCREAMING_SNAKE_CASE_ ) def __iter__( self ) -> int: __lowerCamelCase : Tuple = self.head while len(node.forward ) != 0: yield node.forward[0].key __lowerCamelCase : str = node.forward[0] def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[Any] = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> tuple[Node[KT, VT] | None, list[Node[KT, VT]]]: __lowerCamelCase : List[Any] = [] __lowerCamelCase : Any = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: __lowerCamelCase : Any = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(SCREAMING_SNAKE_CASE_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase , __lowerCamelCase : Any = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: for i, update_node in enumerate(SCREAMING_SNAKE_CASE_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: __lowerCamelCase : List[str] = node.forward[i] else: __lowerCamelCase : Dict = update_node.forward[:i] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: __lowerCamelCase : Tuple = value else: __lowerCamelCase : str = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , SCREAMING_SNAKE_CASE_ ): update_vector.append(self.head ) __lowerCamelCase : List[str] = level __lowerCamelCase : Optional[int] = Node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : List[str] = new_node def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> VT | None: __lowerCamelCase , __lowerCamelCase : Optional[Any] = self._locate_node(SCREAMING_SNAKE_CASE_ ) if node is not None: return node.value return None def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : Optional[int] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) __lowerCamelCase : str = skip_list.head __lowerCamelCase : str = {} while node.level != 0: __lowerCamelCase : str = node.forward[0] __lowerCamelCase : Tuple = node.value assert len(UpperCAmelCase_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : List[Any] = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) __lowerCamelCase : Dict = skip_list.head __lowerCamelCase : Optional[Any] = {} while node.level != 0: __lowerCamelCase : Tuple = node.forward[0] __lowerCamelCase : List[str] = node.value if len(UpperCAmelCase_ ) != 4: print() assert len(UpperCAmelCase_ ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : str = SkipList() assert skip_list.find('Some key' ) is None def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : List[Any] = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def UpperCAmelCase__ ( ) -> Optional[int]: __lowerCamelCase : Dict = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def UpperCAmelCase__ ( ) -> int: __lowerCamelCase : Optional[int] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def UpperCAmelCase__ ( ) -> Tuple: __lowerCamelCase : Optional[Any] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def UpperCAmelCase__ ( ) -> int: __lowerCamelCase : Optional[int] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 1_42 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(UpperCAmelCase_ : Union[str, Any] ): yield node.key for forward_node in node.forward: yield from traverse_keys(UpperCAmelCase_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def UpperCAmelCase__ ( ) -> int: def is_sorted(UpperCAmelCase_ : Optional[int] ): return all(next_item >= item for item, next_item in zip(UpperCAmelCase_ , lst[1:] ) ) __lowerCamelCase : Optional[Any] = SkipList() for i in range(10 ): skip_list.insert(UpperCAmelCase_ , UpperCAmelCase_ ) assert is_sorted(list(UpperCAmelCase_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(UpperCAmelCase_ ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(UpperCAmelCase_ ) ) def UpperCAmelCase__ ( ) -> Optional[Any]: for _ in range(1_00 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : Tuple = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from collections.abc import Sequence def UpperCAmelCase__ ( UpperCAmelCase_ : Sequence[float] , UpperCAmelCase_ : bool = False ) -> float: if not arr: return 0 __lowerCamelCase : str = 0 if allow_empty_subarrays else float('-inf' ) __lowerCamelCase : Optional[Any] = 0.0 for num in arr: __lowerCamelCase : Optional[Any] = max(0 if allow_empty_subarrays else num , curr_sum + num ) __lowerCamelCase : str = max(UpperCAmelCase_ , UpperCAmelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() A__ : Tuple = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f'''{max_subarray_sum(nums) = }''')
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import sys A__ : Tuple = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def UpperCAmelCase__ ( UpperCAmelCase_ : str ) -> int: __lowerCamelCase : Any = 1 for digit in s: product *= int(UpperCAmelCase_ ) return product def UpperCAmelCase__ ( UpperCAmelCase_ : str = N ) -> int: __lowerCamelCase : Dict = -sys.maxsize - 1 __lowerCamelCase : str = n[:13] __lowerCamelCase : List[Any] = 13 while cur_index < len(UpperCAmelCase_ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __lowerCamelCase : int = substr[1:] + n[cur_index] cur_index += 1 else: __lowerCamelCase : str = max(UpperCAmelCase_ , str_eval(UpperCAmelCase_ ) ) __lowerCamelCase : List[Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin A__ : Any = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Any = BartphoTokenizer lowerCamelCase : Union[str, Any] = False lowerCamelCase : Optional[int] = True def lowercase_ ( self ) -> Optional[Any]: super().setUp() __lowerCamelCase : Any = ['▁This', '▁is', '▁a', '▁t', 'est'] __lowerCamelCase : List[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __lowerCamelCase : Tuple = {'unk_token': '<unk>'} __lowerCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] ) with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) __lowerCamelCase : List[Any] = BartphoTokenizer(SCREAMING_SNAKE_CASE_ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> List[Any]: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = 'This is a là test' __lowerCamelCase : str = 'This is a<unk><unk> test' return input_text, output_text def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Any = BartphoTokenizer(SCREAMING_SNAKE_CASE_ , self.monolingual_vocab_file , **self.special_tokens_map ) __lowerCamelCase : Any = 'This is a là test' __lowerCamelCase : Tuple = '▁This ▁is ▁a ▁l à ▁t est'.split() __lowerCamelCase : Optional[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = tokens + [tokenizer.unk_token] __lowerCamelCase : Tuple = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int ) -> float: __lowerCamelCase : Union[str, Any] = u for i in range(1 , UpperCAmelCase_ ): __lowerCamelCase : Any = temp * (u - i) return temp def UpperCAmelCase__ ( ) -> None: __lowerCamelCase : List[Any] = int(input('enter the numbers of values: ' ) ) __lowerCamelCase : list[list[float]] = [] for _ in range(UpperCAmelCase_ ): y.append([] ) for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): y[i].append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = 0 print('enter the values of parameters in a list: ' ) __lowerCamelCase : int = list(map(UpperCAmelCase_ , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = float(input() ) __lowerCamelCase : str = int(input('enter the value to interpolate: ' ) ) __lowerCamelCase : Tuple = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , UpperCAmelCase_ ): for j in range(n - i ): __lowerCamelCase : Union[str, Any] = y[j + 1][i - 1] - y[j][i - 1] __lowerCamelCase : List[str] = y[0][0] for i in range(1 , UpperCAmelCase_ ): summ += (ucal(UpperCAmelCase_ , UpperCAmelCase_ ) * y[0][i]) / math.factorial(UpperCAmelCase_ ) print(F'the value at {value} is {summ}' ) if __name__ == "__main__": main()
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path A__ : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) A__ : list[int] = [ord(letter) for letter in string.ascii_lowercase] A__ : set[int] = {ord(char) for char in VALID_CHARS} A__ : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, ...] ) -> str | None: __lowerCamelCase : str = "" __lowerCamelCase : int __lowerCamelCase : int __lowerCamelCase : int for keychar, cipherchar in zip(cycle(UpperCAmelCase_ ) , UpperCAmelCase_ ): __lowerCamelCase : Union[str, Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCAmelCase_ ) return decoded def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[str]: __lowerCamelCase : list[str] = [] for key in product(UpperCAmelCase_ , repeat=3 ): __lowerCamelCase : int = try_key(UpperCAmelCase_ , UpperCAmelCase_ ) if encoded is not None: possibles.append(UpperCAmelCase_ ) return possibles def UpperCAmelCase__ ( UpperCAmelCase_ : list[str] , UpperCAmelCase_ : str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p059_cipher.txt" ) -> int: __lowerCamelCase : list[int] __lowerCamelCase : list[str] __lowerCamelCase : str __lowerCamelCase : str __lowerCamelCase : str = Path(UpperCAmelCase_ ).parent.joinpath(UpperCAmelCase_ ).read_text(encoding='utf-8' ) __lowerCamelCase : Tuple = [int(UpperCAmelCase_ ) for number in data.strip().split(',' )] __lowerCamelCase : Union[str, Any] = filter_valid_chars(UpperCAmelCase_ ) for common_word in COMMON_WORDS: __lowerCamelCase : Any = filter_common_word(UpperCAmelCase_ , UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: break __lowerCamelCase : int = possibles[0] return sum(ord(UpperCAmelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A__ : Union[str, Any] = 16 A__ : Dict = 32 def UpperCAmelCase__ ( UpperCAmelCase_ : Accelerator , UpperCAmelCase_ : int = 16 ) -> str: __lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) __lowerCamelCase : Any = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase_ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : Optional[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCamelCase : Union[str, Any] = datasets.map( UpperCAmelCase_ , batched=UpperCAmelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : Tuple = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase_ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCamelCase : Dict = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCamelCase : List[Any] = 16 elif accelerator.mixed_precision != "no": __lowerCamelCase : Optional[int] = 8 else: __lowerCamelCase : Any = None return tokenizer.pad( UpperCAmelCase_ , padding='longest' , max_length=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. __lowerCamelCase : Optional[int] = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) __lowerCamelCase : List[str] = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase_ , collate_fn=UpperCAmelCase_ , batch_size=UpperCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A__ : Union[str, Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] ) -> Union[str, Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCAmelCase_ ) == "1": __lowerCamelCase : Tuple = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: __lowerCamelCase : str = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: __lowerCamelCase : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : Optional[Any] = config['lr'] __lowerCamelCase : int = int(config['num_epochs'] ) __lowerCamelCase : Union[str, Any] = int(config['seed'] ) __lowerCamelCase : List[str] = int(config['batch_size'] ) set_seed(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = get_dataloaders(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : int = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __lowerCamelCase : Optional[int] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __lowerCamelCase : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE __lowerCamelCase : Optional[int] = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCamelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer __lowerCamelCase : int = AdamW(params=model.parameters() , lr=UpperCAmelCase_ ) # Instantiate scheduler __lowerCamelCase : str = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase_ , num_warmup_steps=1_00 , num_training_steps=(len(UpperCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = accelerator.prepare( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: __lowerCamelCase : List[str] = os.path.split(UpperCAmelCase_ )[-1].split('.' )[0] accelerator.init_trackers(UpperCAmelCase_ , UpperCAmelCase_ ) # Now we train the model for epoch in range(UpperCAmelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: __lowerCamelCase : Dict = 0 for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCamelCase : Union[str, Any] = model(**UpperCAmelCase_ ) __lowerCamelCase : Dict = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() __lowerCamelCase : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(UpperCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : Any = model(**UpperCAmelCase_ ) __lowerCamelCase : List[Any] = outputs.logits.argmax(dim=-1 ) __lowerCamelCase , __lowerCamelCase : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase_ , references=UpperCAmelCase_ , ) __lowerCamelCase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , UpperCAmelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCAmelCase_ ), 'epoch': epoch, } , step=UpperCAmelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def UpperCAmelCase__ ( ) -> int: __lowerCamelCase : Union[str, Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCAmelCase_ , default=UpperCAmelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCAmelCase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) __lowerCamelCase : Union[str, Any] = parser.parse_args() __lowerCamelCase : Optional[Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax A__ : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , **SCREAMING_SNAKE_CASE_ ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return super().__call__(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Dict = {} if "candidate_labels" in kwargs: __lowerCamelCase : List[str] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __lowerCamelCase : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="This is a photo of {}." ) -> Tuple: __lowerCamelCase : Union[str, Any] = load_image(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self.image_processor(images=[image] , return_tensors=self.framework ) __lowerCamelCase : Optional[Any] = candidate_labels __lowerCamelCase : int = [hypothesis_template.format(SCREAMING_SNAKE_CASE_ ) for x in candidate_labels] __lowerCamelCase : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = [text_inputs] return inputs def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Dict = model_inputs.pop('candidate_labels' ) __lowerCamelCase : int = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[Any] = text_inputs[0] else: # Batching case. __lowerCamelCase : Optional[Any] = text_inputs[0][0] __lowerCamelCase : Optional[int] = self.model(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : str = model_outputs.pop('candidate_labels' ) __lowerCamelCase : Union[str, Any] = model_outputs['logits'][0] if self.framework == "pt": __lowerCamelCase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __lowerCamelCase : Dict = probs.tolist() if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : List[Any] = [scores] elif self.framework == "tf": __lowerCamelCase : Union[str, Any] = stable_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) __lowerCamelCase : Optional[Any] = probs.numpy().tolist() else: raise ValueError(f'Unsupported framework: {self.framework}' ) __lowerCamelCase : Optional[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , key=lambda SCREAMING_SNAKE_CASE_ : -x[0] ) ] return result
13
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> str: __lowerCamelCase : int = len(UpperCAmelCase_ ) __lowerCamelCase : int = len(UpperCAmelCase_ ) __lowerCamelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __lowerCamelCase : list = [] for char_count in range(UpperCAmelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() A__ : Optional[Any] = logging.get_logger(__name__) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: __lowerCamelCase : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = downstream_dict['projector.weight'] __lowerCamelCase : List[str] = downstream_dict['projector.bias'] __lowerCamelCase : List[str] = downstream_dict['model.post_net.linear.weight'] __lowerCamelCase : List[Any] = downstream_dict['model.post_net.linear.bias'] return model def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ) -> List[str]: __lowerCamelCase : Optional[Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) __lowerCamelCase : str = downstream_dict['model.linear.weight'] __lowerCamelCase : List[str] = downstream_dict['model.linear.bias'] return model def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str ) -> Optional[int]: __lowerCamelCase : Any = UniSpeechSatForXVector.from_pretrained(UpperCAmelCase_ , config=UpperCAmelCase_ ) __lowerCamelCase : Dict = downstream_dict['connector.weight'] __lowerCamelCase : Dict = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowerCamelCase : Optional[int] = downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] __lowerCamelCase : Optional[int] = downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] __lowerCamelCase : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __lowerCamelCase : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __lowerCamelCase : Any = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __lowerCamelCase : Tuple = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __lowerCamelCase : Dict = downstream_dict['objective.W'] return model @torch.no_grad() def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Dict: __lowerCamelCase : str = torch.load(UpperCAmelCase_ , map_location='cpu' ) __lowerCamelCase : Optional[int] = checkpoint['Downstream'] __lowerCamelCase : str = UniSpeechSatConfig.from_pretrained(UpperCAmelCase_ ) __lowerCamelCase : str = WavaVecaFeatureExtractor.from_pretrained( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , do_normalize=UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __lowerCamelCase : Optional[Any] = convert_classification(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('ForAudioFrameClassification' ): __lowerCamelCase : str = convert_diarization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif arch.endswith('ForXVector' ): __lowerCamelCase : Any = convert_xvector(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: __lowerCamelCase : Optional[Any] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(UpperCAmelCase_ ) hf_model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument( """--base_model_name""", default=None, type=str, help="""Name of the huggingface pretrained base model.""" ) parser.add_argument("""--config_path""", default=None, type=str, help="""Path to the huggingface classifier config.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to the s3prl checkpoint.""") parser.add_argument("""--model_dump_path""", default=None, type=str, help="""Path to the final converted model.""") A__ : Optional[int] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="None" , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=None , ) -> Optional[int]: __lowerCamelCase : List[str] = parent __lowerCamelCase : List[Any] = batch_size __lowerCamelCase : Dict = seq_length __lowerCamelCase : int = is_training __lowerCamelCase : Any = use_input_mask __lowerCamelCase : int = use_token_type_ids __lowerCamelCase : Optional[int] = use_labels __lowerCamelCase : str = vocab_size __lowerCamelCase : List[str] = hidden_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : int = intermediate_size __lowerCamelCase : int = hidden_act __lowerCamelCase : List[Any] = hidden_dropout_prob __lowerCamelCase : Optional[Any] = attention_probs_dropout_prob __lowerCamelCase : int = max_position_embeddings __lowerCamelCase : Dict = type_vocab_size __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : Any = initializer_range __lowerCamelCase : List[Any] = num_labels __lowerCamelCase : int = num_choices __lowerCamelCase : Union[str, Any] = relative_attention __lowerCamelCase : Optional[int] = position_biased_input __lowerCamelCase : Union[str, Any] = pos_att_type __lowerCamelCase : Optional[int] = scope def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : List[str] = None if self.use_input_mask: __lowerCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCamelCase : Union[str, Any] = None if self.use_token_type_ids: __lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase : List[Any] = None __lowerCamelCase : Union[str, Any] = None __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ) -> Optional[int]: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Union[str, Any] = DebertaVaModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )[0] __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )[0] __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Tuple = DebertaVaForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : List[str] = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Union[str, Any] = self.num_labels __lowerCamelCase : Dict = DebertaVaForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = self.num_labels __lowerCamelCase : int = DebertaVaForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Tuple = DebertaVaForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : List[str] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : List[str] = DebertaVaForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowerCamelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Tuple = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : Optional[Any] = config_and_inputs __lowerCamelCase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase : Any = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : Any = True lowerCamelCase : List[Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Optional[int] = False lowerCamelCase : Dict = False def lowercase_ ( self ) -> str: __lowerCamelCase : Optional[int] = DebertaVaModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Any: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : str = DebertaVaModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ) -> int: pass @slow def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __lowerCamelCase : Optional[Any] = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __lowerCamelCase : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCamelCase : Tuple = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. __lowerCamelCase : Any = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
1