code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: for param in module.parameters(): __lowerCamelCase : Dict = False def UpperCAmelCase__ ( ) -> Optional[Any]: __lowerCamelCase : List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __lowerCamelCase : str = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> List[str]: __lowerCamelCase : str = plt.imshow(UpperCAmelCase_ ) fig.axes.get_xaxis().set_visible(UpperCAmelCase_ ) fig.axes.get_yaxis().set_visible(UpperCAmelCase_ ) plt.show() def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : str = datetime.now() __lowerCamelCase : Optional[Any] = current_time.strftime('%H:%M:%S' ) return timestamp
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A__ : Optional[Any] = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": A__ : Optional[Any] = """hopper-medium-v2""" A__ : str = gym.make(env_name) A__ : Union[str, Any] = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) A__ : int = env.reset() A__ : Tuple = 0 A__ : int = 0 A__ : Tuple = 1000 A__ : str = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A__ : Any = pipeline(obs, planning_horizon=32) # execute action in environment A__ , A__ , A__ , A__ : Dict = env.step(denorm_actions) A__ : Optional[int] = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) A__ : List[Any] = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : Dict = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'time_series_transformer' lowerCamelCase : Union[str, Any] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "student_t" , SCREAMING_SNAKE_CASE_ = "nll" , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE_ = "mean" , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 32 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = 2 , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = "gelu" , SCREAMING_SNAKE_CASE_ = 64 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = 0.0_2 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Any: # time series specific configuration __lowerCamelCase : Tuple = prediction_length __lowerCamelCase : List[str] = context_length or prediction_length __lowerCamelCase : str = distribution_output __lowerCamelCase : Any = loss __lowerCamelCase : List[str] = input_size __lowerCamelCase : List[str] = num_time_features __lowerCamelCase : str = lags_sequence __lowerCamelCase : List[Any] = scaling __lowerCamelCase : Dict = num_dynamic_real_features __lowerCamelCase : Optional[Any] = num_static_real_features __lowerCamelCase : Optional[Any] = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase : Union[str, Any] = cardinality else: __lowerCamelCase : int = [0] if embedding_dimension and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __lowerCamelCase : Optional[int] = embedding_dimension else: __lowerCamelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __lowerCamelCase : List[Any] = num_parallel_samples # Transformer architecture configuration __lowerCamelCase : Dict = input_size * len(SCREAMING_SNAKE_CASE_ ) + self._number_of_features __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[str] = encoder_attention_heads __lowerCamelCase : List[Any] = decoder_attention_heads __lowerCamelCase : Dict = encoder_ffn_dim __lowerCamelCase : List[str] = decoder_ffn_dim __lowerCamelCase : List[str] = encoder_layers __lowerCamelCase : List[Any] = decoder_layers __lowerCamelCase : Any = dropout __lowerCamelCase : str = attention_dropout __lowerCamelCase : Tuple = activation_dropout __lowerCamelCase : Tuple = encoder_layerdrop __lowerCamelCase : Optional[Any] = decoder_layerdrop __lowerCamelCase : Optional[int] = activation_function __lowerCamelCase : Dict = init_std __lowerCamelCase : Any = use_cache super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def lowercase_ ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
1
'''simple docstring''' import math def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: return math.sqrt(UpperCAmelCase_ ) * math.sqrt(UpperCAmelCase_ ) == num def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: __lowerCamelCase : Tuple = 0 __lowerCamelCase : str = n while left <= right: __lowerCamelCase : int = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: __lowerCamelCase : int = mid - 1 else: __lowerCamelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Any = { """vocab_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json""" ), """distilbert-base-german-cased""": ( """https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json""" ), """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json""" ), }, } A__ : str = { """distilbert-base-uncased""": 512, """distilbert-base-uncased-distilled-squad""": 512, """distilbert-base-cased""": 512, """distilbert-base-cased-distilled-squad""": 512, """distilbert-base-german-cased""": 512, """distilbert-base-multilingual-cased""": 512, } A__ : Any = { """distilbert-base-uncased""": {"""do_lower_case""": True}, """distilbert-base-uncased-distilled-squad""": {"""do_lower_case""": True}, """distilbert-base-cased""": {"""do_lower_case""": False}, """distilbert-base-cased-distilled-squad""": {"""do_lower_case""": False}, """distilbert-base-german-cased""": {"""do_lower_case""": False}, """distilbert-base-multilingual-cased""": {"""do_lower_case""": False}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[str] = VOCAB_FILES_NAMES lowerCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Any = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Any = ['input_ids', 'attention_mask'] lowerCamelCase : Optional[Any] = DistilBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __lowerCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __lowerCamelCase : Optional[Any] = do_lower_case __lowerCamelCase : Dict = strip_accents __lowerCamelCase : Optional[Any] = tokenize_chinese_chars __lowerCamelCase : Tuple = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = do_lower_case def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Any: __lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Dict = [self.sep_token_id] __lowerCamelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = 'EncodecFeatureExtractor' lowerCamelCase : Any = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.feature_extractor __lowerCamelCase : List[str] = False def lowercase_ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ) -> List[Any]: return self.tokenizer.get_decoder_prompt_ids(task=SCREAMING_SNAKE_CASE_ , language=SCREAMING_SNAKE_CASE_ , no_timestamps=SCREAMING_SNAKE_CASE_ ) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = kwargs.pop('audio' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = kwargs.pop('sampling_rate' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = kwargs.pop('text' , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCamelCase : Union[str, Any] = args[0] __lowerCamelCase : List[str] = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: __lowerCamelCase : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is not None: __lowerCamelCase : Any = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if audio is None: return inputs elif text is None: return audio_inputs else: __lowerCamelCase : Any = audio_inputs['input_values'] if "padding_mask" in audio_inputs: __lowerCamelCase : List[Any] = audio_inputs['padding_mask'] return inputs def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : int = kwargs.pop('audio' , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = kwargs.pop('padding_mask' , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: __lowerCamelCase : Union[str, Any] = args[0] __lowerCamelCase : Any = args[1:] if audio_values is not None: return self._decode_audio(SCREAMING_SNAKE_CASE_ , padding_mask=SCREAMING_SNAKE_CASE_ ) else: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[np.ndarray]: __lowerCamelCase : Optional[Any] = to_numpy(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = audio_values.shape if padding_mask is None: return list(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = to_numpy(SCREAMING_SNAKE_CASE_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __lowerCamelCase : int = seq_len - padding_mask.shape[-1] __lowerCamelCase : Union[str, Any] = 1 - self.feature_extractor.padding_value __lowerCamelCase : str = np.pad(SCREAMING_SNAKE_CASE_ , ((0, 0), (0, difference)) , 'constant' , constant_values=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = audio_values.tolist() for i in range(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __lowerCamelCase : int = sliced_audio.reshape(SCREAMING_SNAKE_CASE_ , -1 ) return audio_values
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] ) -> List[str]: __lowerCamelCase : str = int(UpperCAmelCase_ ) assert noofclusters < len(UpperCAmelCase_ ) # Find out the dimensionality __lowerCamelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors __lowerCamelCase : Union[str, Any] = list(range(len(UpperCAmelCase_ ) ) ) shuffle(UpperCAmelCase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __lowerCamelCase : List[Any] = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __lowerCamelCase : str = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __lowerCamelCase : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCAmelCase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __lowerCamelCase : int = tf.placeholder('float64' , [dim] ) __lowerCamelCase : Union[str, Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCAmelCase_ , UpperCAmelCase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __lowerCamelCase : Dict = [tf.Variable(0 ) for i in range(len(UpperCAmelCase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __lowerCamelCase : int = tf.placeholder('int32' ) __lowerCamelCase : List[Any] = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCAmelCase_ , UpperCAmelCase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __lowerCamelCase : List[str] = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __lowerCamelCase : int = tf.reduce_mean(UpperCAmelCase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __lowerCamelCase : List[str] = tf.placeholder('float' , [dim] ) __lowerCamelCase : List[Any] = tf.placeholder('float' , [dim] ) __lowerCamelCase : Dict = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCAmelCase_ , UpperCAmelCase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __lowerCamelCase : List[Any] = tf.placeholder('float' , [noofclusters] ) __lowerCamelCase : Tuple = tf.argmin(UpperCAmelCase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __lowerCamelCase : Any = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCAmelCase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __lowerCamelCase : List[Any] = 1_00 for _ in range(UpperCAmelCase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCAmelCase_ ) ): __lowerCamelCase : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __lowerCamelCase : List[str] = [ sess.run(UpperCAmelCase_ , feed_dict={va: vect, va: sess.run(UpperCAmelCase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __lowerCamelCase : Dict = sess.run( UpperCAmelCase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCAmelCase_ ): # Collect all the vectors assigned to this cluster __lowerCamelCase : Optional[Any] = [ vectors[i] for i in range(len(UpperCAmelCase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __lowerCamelCase : Tuple = sess.run( UpperCAmelCase_ , feed_dict={mean_input: array(UpperCAmelCase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __lowerCamelCase : str = sess.run(UpperCAmelCase_ ) __lowerCamelCase : Any = sess.run(UpperCAmelCase_ ) return centroids, assignments
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
'''simple docstring''' import collections import importlib.util import os import re from pathlib import Path A__ : Dict = """src/transformers""" # Matches is_xxx_available() A__ : Union[str, Any] = re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} A__ : Tuple = re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A__ : str = re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available A__ : Union[str, Any] = re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") A__ : int = re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A__ : List[Any] = re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", A__ : Tuple = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], A__ : List[Any] = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo A__ : Any = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: A__ : str = re.compile(R"""^\s*try:""") # Catches a line with else: A__ : List[str] = re.compile(R"""^\s*else:""") def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> List[str]: if _re_test_backend.search(UpperCAmelCase_ ) is None: return None __lowerCamelCase : str = [b[0] for b in _re_backend.findall(UpperCAmelCase_ )] backends.sort() return "_and_".join(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Tuple ) -> Union[str, Any]: with open(UpperCAmelCase_ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Union[str, Any] = f.readlines() __lowerCamelCase : Any = 0 while line_index < len(UpperCAmelCase_ ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(UpperCAmelCase_ ): return None # First grab the objects without a specific backend in _import_structure __lowerCamelCase : Dict = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowerCamelCase : Optional[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(UpperCAmelCase_ ): __lowerCamelCase : Optional[int] = _re_one_line_import_struct.search(UpperCAmelCase_ ).groups()[0] __lowerCamelCase : Union[str, Any] = re.findall('\[([^\]]+)\]' , UpperCAmelCase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowerCamelCase : Tuple = _re_import_struct_key_value.search(UpperCAmelCase_ ) if single_line_import_search is not None: __lowerCamelCase : Dict = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(UpperCAmelCase_ ) > 0] objects.extend(UpperCAmelCase_ ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowerCamelCase : Tuple = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowerCamelCase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase : int = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowerCamelCase : int = lines[line_index] if _re_import_struct_add_one.search(UpperCAmelCase_ ) is not None: objects.append(_re_import_struct_add_one.search(UpperCAmelCase_ ).groups()[0] ) elif _re_import_struct_add_many.search(UpperCAmelCase_ ) is not None: __lowerCamelCase : int = _re_import_struct_add_many.search(UpperCAmelCase_ ).groups()[0].split(', ' ) __lowerCamelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(UpperCAmelCase_ ) > 0] objects.extend(UpperCAmelCase_ ) elif _re_between_brackets.search(UpperCAmelCase_ ) is not None: __lowerCamelCase : Dict = _re_between_brackets.search(UpperCAmelCase_ ).groups()[0].split(', ' ) __lowerCamelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(UpperCAmelCase_ ) > 0] objects.extend(UpperCAmelCase_ ) elif _re_quote_object.search(UpperCAmelCase_ ) is not None: objects.append(_re_quote_object.search(UpperCAmelCase_ ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowerCamelCase : Optional[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowerCamelCase : Union[str, Any] = [] while ( line_index < len(UpperCAmelCase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowerCamelCase : List[str] = lines[line_index] __lowerCamelCase : Dict = _re_import.search(UpperCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowerCamelCase : str = {'none': objects} # Let's continue with backend-specific objects while line_index < len(UpperCAmelCase_ ): # If the line is an if is_backend_available, we grab all objects associated. __lowerCamelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowerCamelCase : Optional[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowerCamelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowerCamelCase : Optional[Any] = lines[line_index] __lowerCamelCase : Optional[Any] = _re_import.search(UpperCAmelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowerCamelCase : Any = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> List[Any]: def find_duplicates(UpperCAmelCase_ : List[str] ): return [k for k, v in collections.Counter(UpperCAmelCase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowerCamelCase : Dict = [] for key in import_dict_objects.keys(): __lowerCamelCase : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) __lowerCamelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowerCamelCase : Tuple = 'base imports' if key == 'none' else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def UpperCAmelCase__ ( ) -> str: __lowerCamelCase : str = [] for root, _, files in os.walk(UpperCAmelCase_ ): if "__init__.py" in files: __lowerCamelCase : Dict = os.path.join(UpperCAmelCase_ , '__init__.py' ) __lowerCamelCase : int = parse_init(UpperCAmelCase_ ) if objects is not None: __lowerCamelCase : Optional[Any] = analyze_results(*UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: __lowerCamelCase : Optional[int] = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append('\n'.join(UpperCAmelCase_ ) ) if len(UpperCAmelCase_ ) > 0: raise ValueError('\n\n'.join(UpperCAmelCase_ ) ) def UpperCAmelCase__ ( ) -> Union[str, Any]: __lowerCamelCase : List[Any] = [] for path, directories, files in os.walk(UpperCAmelCase_ ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(UpperCAmelCase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(UpperCAmelCase_ ) / folder).glob('*.py' ) ) ) == 0: continue __lowerCamelCase : List[str] = str((Path(UpperCAmelCase_ ) / folder).relative_to(UpperCAmelCase_ ) ) __lowerCamelCase : int = short_path.replace(os.path.sep , '.' ) submodules.append(UpperCAmelCase_ ) for fname in files: if fname == "__init__.py": continue __lowerCamelCase : int = str((Path(UpperCAmelCase_ ) / fname).relative_to(UpperCAmelCase_ ) ) __lowerCamelCase : int = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(UpperCAmelCase_ ) return submodules A__ : Optional[Any] = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def UpperCAmelCase__ ( ) -> List[Any]: # This is to make sure the transformers module imported is the one in the repo. __lowerCamelCase : List[str] = importlib.util.spec_from_file_location( 'transformers' , os.path.join(UpperCAmelCase_ , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowerCamelCase : Dict = spec.loader.load_module() __lowerCamelCase : str = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(UpperCAmelCase_ ) > 0: __lowerCamelCase : List[Any] = '\n'.join(F'- {module}' for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F'{list_of_modules}\n' 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor A__ : str = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> None: warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Dict = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys A__ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig A__ : Union[str, Any] = logging.getLogger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Dict = 'masked_bert' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_="topK" , SCREAMING_SNAKE_CASE_="constant" , SCREAMING_SNAKE_CASE_=0.0 , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : Dict = hidden_size __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : str = hidden_act __lowerCamelCase : Union[str, Any] = intermediate_size __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : int = max_position_embeddings __lowerCamelCase : Any = type_vocab_size __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : List[Any] = pruning_method __lowerCamelCase : Dict = mask_init __lowerCamelCase : List[Any] = mask_scale
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> str: if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" __lowerCamelCase : Optional[int] = False if num < 0: __lowerCamelCase : Any = True __lowerCamelCase : Union[str, Any] = -num __lowerCamelCase : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(UpperCAmelCase_ ) for e in binary ) return "0b" + "".join(str(UpperCAmelCase_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' import numpy as np import datasets A__ : Tuple = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ A__ : str = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ A__ : Dict = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: # convert to numpy arrays __lowerCamelCase : Tuple = np.array(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = np.array(SCREAMING_SNAKE_CASE_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction __lowerCamelCase : List[str] = X - np.mean(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = np.cov(reference_distribution.T ) try: __lowerCamelCase : Optional[int] = np.linalg.inv(SCREAMING_SNAKE_CASE_ ) except np.linalg.LinAlgError: __lowerCamelCase : Optional[int] = np.linalg.pinv(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = np.dot(SCREAMING_SNAKE_CASE_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bool: __lowerCamelCase : Optional[int] = str(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 9 and set(UpperCAmelCase_ ) == set('123456789' ) def UpperCAmelCase__ ( ) -> int | None: for base_num in range(99_99 , 49_99 , -1 ): __lowerCamelCase : Any = 10_00_02 * base_num if is_9_pandigital(UpperCAmelCase_ ): return candidate for base_num in range(3_33 , 99 , -1 ): __lowerCamelCase : List[str] = 1_00_20_03 * base_num if is_9_pandigital(UpperCAmelCase_ ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets A__ : Any = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ A__ : Tuple = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ A__ : Union[str, Any] = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32' ), 'references': datasets.Value('int32' ), } ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[Any]: return { "matthews_correlation": float(matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sample_weight=SCREAMING_SNAKE_CASE_ ) ), }
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt"""} A__ : Union[str, Any] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } A__ : Tuple = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } A__ : Optional[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ConvBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars ): __lowerCamelCase : Optional[Any] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('type' ) ) __lowerCamelCase : List[str] = do_lower_case __lowerCamelCase : Union[str, Any] = strip_accents __lowerCamelCase : Any = tokenize_chinese_chars __lowerCamelCase : Any = normalizer_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Dict: __lowerCamelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : List[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters A__ : Optional[Any] = (720, 1280) # Height, Width A__ : int = (0.4, 0.6) # if height or width lower than this scale, drop it. A__ : int = 1 / 100 A__ : Dict = """""" A__ : int = """""" A__ : int = """""" A__ : List[str] = 250 def UpperCAmelCase__ ( ) -> None: __lowerCamelCase , __lowerCamelCase : Any = get_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) for index in range(UpperCAmelCase_ ): __lowerCamelCase : Dict = random.sample(range(len(UpperCAmelCase_ ) ) , 4 ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = update_image_and_anno( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , filter_scale=UpperCAmelCase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __lowerCamelCase : Union[str, Any] = random_chars(32 ) __lowerCamelCase : Any = path.split(os.sep )[-1].rsplit('.' , 1 )[0] __lowerCamelCase : Union[str, Any] = F'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(F'{file_root}.jpg' , UpperCAmelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) __lowerCamelCase : List[str] = [] for anno in new_annos: __lowerCamelCase : Optional[int] = anno[3] - anno[1] __lowerCamelCase : Optional[Any] = anno[4] - anno[2] __lowerCamelCase : Optional[int] = anno[1] + width / 2 __lowerCamelCase : Optional[Any] = anno[2] + height / 2 __lowerCamelCase : List[Any] = F'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(UpperCAmelCase_ ) with open(F'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> tuple[list, list]: __lowerCamelCase : int = [] __lowerCamelCase : Union[str, Any] = [] for label_file in glob.glob(os.path.join(UpperCAmelCase_ , '*.txt' ) ): __lowerCamelCase : Tuple = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(UpperCAmelCase_ ) as in_file: __lowerCamelCase : Tuple = in_file.readlines() __lowerCamelCase : Tuple = os.path.join(UpperCAmelCase_ , F'{label_name}.jpg' ) __lowerCamelCase : List[str] = [] for obj_list in obj_lists: __lowerCamelCase : List[Any] = obj_list.rstrip('\n' ).split(' ' ) __lowerCamelCase : Dict = float(obj[1] ) - float(obj[3] ) / 2 __lowerCamelCase : Tuple = float(obj[2] ) - float(obj[4] ) / 2 __lowerCamelCase : List[Any] = float(obj[1] ) + float(obj[3] ) / 2 __lowerCamelCase : Union[str, Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCAmelCase_ ) labels.append(UpperCAmelCase_ ) return img_paths, labels def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : tuple[float, float] , UpperCAmelCase_ : float = 0.0 , ) -> tuple[list, list, str]: __lowerCamelCase : Optional[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) __lowerCamelCase : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : Union[str, Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) __lowerCamelCase : Any = int(scale_x * output_size[1] ) __lowerCamelCase : Optional[Any] = int(scale_y * output_size[0] ) __lowerCamelCase : List[str] = [] __lowerCamelCase : int = [] for i, index in enumerate(UpperCAmelCase_ ): __lowerCamelCase : int = all_img_list[index] path_list.append(UpperCAmelCase_ ) __lowerCamelCase : str = all_annos[index] __lowerCamelCase : List[Any] = cva.imread(UpperCAmelCase_ ) if i == 0: # top-left __lowerCamelCase : Union[str, Any] = cva.resize(UpperCAmelCase_ , (divid_point_x, divid_point_y) ) __lowerCamelCase : str = img for bbox in img_annos: __lowerCamelCase : Any = bbox[1] * scale_x __lowerCamelCase : Tuple = bbox[2] * scale_y __lowerCamelCase : Tuple = bbox[3] * scale_x __lowerCamelCase : List[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right __lowerCamelCase : Dict = cva.resize(UpperCAmelCase_ , (output_size[1] - divid_point_x, divid_point_y) ) __lowerCamelCase : str = img for bbox in img_annos: __lowerCamelCase : List[str] = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : Any = bbox[2] * scale_y __lowerCamelCase : str = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left __lowerCamelCase : Any = cva.resize(UpperCAmelCase_ , (divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : Dict = img for bbox in img_annos: __lowerCamelCase : str = bbox[1] * scale_x __lowerCamelCase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : Dict = bbox[3] * scale_x __lowerCamelCase : List[Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right __lowerCamelCase : List[Any] = cva.resize( UpperCAmelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) __lowerCamelCase : List[Any] = img for bbox in img_annos: __lowerCamelCase : Any = scale_x + bbox[1] * (1 - scale_x) __lowerCamelCase : int = scale_y + bbox[2] * (1 - scale_y) __lowerCamelCase : str = scale_x + bbox[3] * (1 - scale_x) __lowerCamelCase : str = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: __lowerCamelCase : Union[str, Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> str: assert number_char > 1, "The number of character should greater than 1" __lowerCamelCase : Any = ascii_lowercase + digits return "".join(random.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ) if __name__ == "__main__": main() print("""DONE ✅""")
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Optional[Any] = logging.get_logger(__name__) A__ : List[Any] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = 'poolformer' def __init__( self , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4.0 , SCREAMING_SNAKE_CASE_=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_=[64, 1_28, 3_20, 5_12] , SCREAMING_SNAKE_CASE_=[7, 3, 3, 3] , SCREAMING_SNAKE_CASE_=[4, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[2, 1, 1, 1] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0_2 , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]: __lowerCamelCase : int = num_channels __lowerCamelCase : Union[str, Any] = patch_size __lowerCamelCase : Optional[Any] = stride __lowerCamelCase : int = padding __lowerCamelCase : List[Any] = pool_size __lowerCamelCase : Dict = hidden_sizes __lowerCamelCase : str = mlp_ratio __lowerCamelCase : Tuple = depths __lowerCamelCase : Union[str, Any] = patch_sizes __lowerCamelCase : Dict = strides __lowerCamelCase : int = num_encoder_blocks __lowerCamelCase : Tuple = drop_path_rate __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : List[Any] = use_layer_scale __lowerCamelCase : Tuple = layer_scale_init_value __lowerCamelCase : int = initializer_range super().__init__(**SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = version.parse('1.11' ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ) -> float: return 2E-3
13
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin A__ : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right A__ : List[Any] = 50003 A__ : int = 50002 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = PLBartTokenizer lowerCamelCase : Optional[Any] = None lowerCamelCase : int = False def lowercase_ ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing __lowerCamelCase : List[Any] = PLBartTokenizer(SCREAMING_SNAKE_CASE_ , language_codes='base' , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Optional[Any] = PLBartTokenizer(SCREAMING_SNAKE_CASE_ , language_codes='base' , keep_accents=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase : Dict = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) __lowerCamelCase : Optional[int] = tokenizer.vocab_size __lowerCamelCase : Union[str, Any] = [tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) for x in range(end - 4 , SCREAMING_SNAKE_CASE_ )] self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['__java__', '__python__', '__en_XX__', '<mask>'] ) __lowerCamelCase : List[Any] = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' __lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual( tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> int: __lowerCamelCase : str = PLBartTokenizer(SCREAMING_SNAKE_CASE_ , language_codes='multi' , keep_accents=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __lowerCamelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCamelCase : List[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) __lowerCamelCase : Optional[Any] = tokenizer.vocab_size __lowerCamelCase : Any = [tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) for x in range(end - 7 , SCREAMING_SNAKE_CASE_ )] self.assertListEqual( SCREAMING_SNAKE_CASE_ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) __lowerCamelCase : Tuple = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' __lowerCamelCase : List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual( tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" lowerCamelCase : List[str] = 'uclanlp/plbart-python-en_XX' lowerCamelCase : List[str] = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] lowerCamelCase : List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] lowerCamelCase : int = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def lowercase_ ( cls ) -> str: __lowerCamelCase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) __lowerCamelCase : str = 1 return cls def lowercase_ ( self ) -> Dict: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_00_03 ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) __lowerCamelCase : Union[str, Any] = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] __lowerCamelCase : List[str] = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = 10 __lowerCamelCase : int = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_00_04, 5_00_01] ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Tuple = tempfile.mkdtemp() __lowerCamelCase : int = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[str] = PLBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Any = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) __lowerCamelCase : Union[str, Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase_ ( self ) -> int: __lowerCamelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) __lowerCamelCase : Dict = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) __lowerCamelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[Any] = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='pt' ) __lowerCamelCase : str = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='pt' ) __lowerCamelCase : int = targets['input_ids'] __lowerCamelCase : Union[str, Any] = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase_ ( self ) -> Dict: __lowerCamelCase : Any = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX 'input_ids': [[1_50, 2_42, 2, 5_00_03]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_00_01, } , )
13
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel A__ : Dict = logging.getLogger(__name__) def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: # save results if os.path.exists(UpperCAmelCase_ ): if os.path.exists(os.path.join(UpperCAmelCase_ , 'config.json' ) ) and os.path.isfile( os.path.join(UpperCAmelCase_ , 'config.json' ) ): os.remove(os.path.join(UpperCAmelCase_ , 'config.json' ) ) if os.path.exists(os.path.join(UpperCAmelCase_ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(UpperCAmelCase_ , 'pytorch_model.bin' ) ): os.remove(os.path.join(UpperCAmelCase_ , 'pytorch_model.bin' ) ) else: os.makedirs(UpperCAmelCase_ ) model.save_pretrained(UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str]=False ) -> Tuple: __lowerCamelCase : Any = 2 if unlogit: __lowerCamelCase : List[Any] = torch.pow(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Tuple = p * torch.log(UpperCAmelCase_ ) __lowerCamelCase : Tuple = 0 return -plogp.sum(dim=-1 ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> List[Any]: logger.info('lv, h >\t' + '\t'.join(F'{x + 1}' for x in range(len(UpperCAmelCase_ ) ) ) ) for row in range(len(UpperCAmelCase_ ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=False ) -> List[Any]: __lowerCamelCase , __lowerCamelCase : int = model.config.num_hidden_layers, model.config.num_attention_heads __lowerCamelCase : List[Any] = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ).to(args.device ) __lowerCamelCase : int = torch.zeros(UpperCAmelCase_ , UpperCAmelCase_ ).to(args.device ) if head_mask is None: __lowerCamelCase : Tuple = torch.ones(UpperCAmelCase_ , UpperCAmelCase_ ).to(args.device ) head_mask.requires_grad_(requires_grad=UpperCAmelCase_ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __lowerCamelCase : List[Any] = None __lowerCamelCase : List[Any] = 0.0 __lowerCamelCase : Tuple = 0.0 for step, inputs in enumerate(tqdm(UpperCAmelCase_ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __lowerCamelCase : Optional[int] = tuple(t.to(args.device ) for t in inputs ) ((__lowerCamelCase) , ) : int = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __lowerCamelCase : Dict = model(UpperCAmelCase_ , labels=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(UpperCAmelCase_ ): __lowerCamelCase : List[Any] = entropy(attn.detach() , UpperCAmelCase_ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(UpperCAmelCase_ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __lowerCamelCase : str = 2 __lowerCamelCase : Union[str, Any] = torch.pow(torch.pow(UpperCAmelCase_ , UpperCAmelCase_ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: __lowerCamelCase : List[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(UpperCAmelCase_ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(UpperCAmelCase_ ) logger.info('Head ranked by importance scores' ) __lowerCamelCase : Union[str, Any] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __lowerCamelCase : Dict = torch.arange( head_importance.numel() , device=args.device ) __lowerCamelCase : Any = head_ranks.view_as(UpperCAmelCase_ ) print_ad_tensor(UpperCAmelCase_ ) return attn_entropy, head_importance, total_loss def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = compute_heads_importance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ ) __lowerCamelCase : int = 1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , UpperCAmelCase_ , original_score * args.masking_threshold ) __lowerCamelCase : List[str] = torch.ones_like(UpperCAmelCase_ ) __lowerCamelCase : Tuple = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __lowerCamelCase : Union[str, Any] = original_score while current_score >= original_score * args.masking_threshold: __lowerCamelCase : str = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __lowerCamelCase : Optional[Any] = float('Inf' ) __lowerCamelCase : Union[str, Any] = head_importance.view(-1 ).sort()[1] if len(UpperCAmelCase_ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __lowerCamelCase : List[str] = current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __lowerCamelCase : List[Any] = new_head_mask.view(-1 ) __lowerCamelCase : str = 0.0 __lowerCamelCase : Optional[int] = new_head_mask.view_as(UpperCAmelCase_ ) __lowerCamelCase : List[str] = new_head_mask.clone().detach() print_ad_tensor(UpperCAmelCase_ ) # Compute metric and head importance again __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[str] = compute_heads_importance( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = 1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , UpperCAmelCase_ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(UpperCAmelCase_ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] ) -> Optional[Any]: __lowerCamelCase : Dict = datetime.now() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = compute_heads_importance( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ , compute_importance=UpperCAmelCase_ , head_mask=UpperCAmelCase_ ) __lowerCamelCase : str = 1 / loss __lowerCamelCase : Any = datetime.now() - before_time __lowerCamelCase : Optional[int] = sum(p.numel() for p in model.parameters() ) __lowerCamelCase : Optional[int] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(UpperCAmelCase_ ) ) } for k, v in heads_to_prune.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : List[Any] = [ v, ] assert sum(len(UpperCAmelCase_ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(UpperCAmelCase_ ) __lowerCamelCase : Any = sum(p.numel() for p in model.parameters() ) __lowerCamelCase : Optional[int] = datetime.now() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = compute_heads_importance( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , compute_entropy=UpperCAmelCase_ , compute_importance=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , actually_pruned=UpperCAmelCase_ , ) __lowerCamelCase : Optional[Any] = 1 / loss __lowerCamelCase : int = datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , UpperCAmelCase_ , UpperCAmelCase_ , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , UpperCAmelCase_ , UpperCAmelCase_ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(UpperCAmelCase_ , args.output_dir ) def UpperCAmelCase__ ( ) -> List[Any]: __lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=UpperCAmelCase_ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=UpperCAmelCase_ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=UpperCAmelCase_ , type=UpperCAmelCase_ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=UpperCAmelCase_ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=UpperCAmelCase_ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=UpperCAmelCase_ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=UpperCAmelCase_ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=UpperCAmelCase_ , help='Batch size.' ) parser.add_argument('--seed' , type=UpperCAmelCase_ , default=42 ) parser.add_argument('--local_rank' , type=UpperCAmelCase_ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=UpperCAmelCase_ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=UpperCAmelCase_ , default='' , help='Can be used for distant debugging.' ) __lowerCamelCase : Optional[int] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=UpperCAmelCase_ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __lowerCamelCase : Tuple = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __lowerCamelCase : Optional[int] = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __lowerCamelCase : List[str] = torch.device('cuda' , args.local_rank ) __lowerCamelCase : List[Any] = 1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __lowerCamelCase : Optional[int] = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __lowerCamelCase : List[Any] = nn.parallel.DistributedDataParallel( UpperCAmelCase_ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=UpperCAmelCase_ ) elif args.n_gpu > 1: __lowerCamelCase : Union[str, Any] = nn.DataParallel(UpperCAmelCase_ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=UpperCAmelCase_ ) torch.save(UpperCAmelCase_ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , UpperCAmelCase_ ) # Prepare dataset __lowerCamelCase : Optional[Any] = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __lowerCamelCase : int = (torch.from_numpy(UpperCAmelCase_ ),) __lowerCamelCase : int = TensorDataset(*UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = RandomSampler(UpperCAmelCase_ ) __lowerCamelCase : Optional[int] = DataLoader(UpperCAmelCase_ , sampler=UpperCAmelCase_ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __lowerCamelCase : Dict = mask_heads(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) prune_heads(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": main()
13
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' A__ : str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def UpperCAmelCase__ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) -> int: # Return True if there is node that has not iterated. __lowerCamelCase : Optional[int] = [False] * len(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = [s] __lowerCamelCase : str = True while queue: __lowerCamelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = True __lowerCamelCase : List[str] = u return visited[t] def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] ) -> List[Any]: __lowerCamelCase : str = [-1] * (len(UpperCAmelCase_ )) __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : int = [] __lowerCamelCase : str = [i[:] for i in graph] # Record original cut, copy. while bfs(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): __lowerCamelCase : Tuple = float('Inf' ) __lowerCamelCase : List[str] = sink while s != source: # Find the minimum value in select path __lowerCamelCase : Union[str, Any] = min(UpperCAmelCase_ , graph[parent[s]][s] ) __lowerCamelCase : Union[str, Any] = parent[s] max_flow += path_flow __lowerCamelCase : List[Any] = sink while v != source: __lowerCamelCase : Tuple = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowerCamelCase : List[Any] = parent[v] for i in range(len(UpperCAmelCase_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase_ : int | float | str , UpperCAmelCase_ : int | float | str ) -> list[str]: if nth_term == "": return [""] __lowerCamelCase : Dict = int(UpperCAmelCase_ ) __lowerCamelCase : List[str] = int(UpperCAmelCase_ ) __lowerCamelCase : list[str] = [] for temp in range(int(UpperCAmelCase_ ) ): series.append(F'1 / {pow(temp + 1 , int(UpperCAmelCase_ ) )}' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() A__ : Any = int(input("""Enter the last number (nth term) of the P-Series""")) A__ : List[Any] = int(input("""Enter the power for P-Series""")) print("""Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p""") print(p_series(nth_term, power))
13
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : List[str] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[str] = 'donut-swin' lowerCamelCase : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=96 , SCREAMING_SNAKE_CASE_=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=4.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = image_size __lowerCamelCase : Tuple = patch_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : List[str] = embed_dim __lowerCamelCase : Dict = depths __lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = num_heads __lowerCamelCase : Tuple = window_size __lowerCamelCase : Dict = mlp_ratio __lowerCamelCase : int = qkv_bias __lowerCamelCase : str = hidden_dropout_prob __lowerCamelCase : Any = attention_probs_dropout_prob __lowerCamelCase : Dict = drop_path_rate __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : Any = use_absolute_embeddings __lowerCamelCase : Union[str, Any] = layer_norm_eps __lowerCamelCase : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __lowerCamelCase : List[str] = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE_ ) - 1) )
13
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : Tuple = value __lowerCamelCase : Node | None = None __lowerCamelCase : Node | None = None class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : List[str] = tree def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : str = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[Any] = 'xlm-roberta' def __init__( self , SCREAMING_SNAKE_CASE_=3_05_22 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : Optional[Any] = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : Dict = hidden_act __lowerCamelCase : Optional[int] = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : List[str] = attention_probs_dropout_prob __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : Union[str, Any] = type_vocab_size __lowerCamelCase : List[str] = initializer_range __lowerCamelCase : str = layer_norm_eps __lowerCamelCase : Optional[int] = position_embedding_type __lowerCamelCase : List[Any] = use_cache __lowerCamelCase : Union[str, Any] = classifier_dropout class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __lowerCamelCase : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
13
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[list[str]] , UpperCAmelCase_ : int , ) -> None: __lowerCamelCase : Tuple = len(UpperCAmelCase_ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(UpperCAmelCase_ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCAmelCase_ , UpperCAmelCase_ , ) def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> None: __lowerCamelCase : list[list[str]] = [] depth_first_search([] , [] , [] , UpperCAmelCase_ , UpperCAmelCase_ ) # Print all the boards for board in boards: for column in board: print(UpperCAmelCase_ ) print('' ) print(len(UpperCAmelCase_ ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
13
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : List[Any] = tempfile.mkdtemp() # fmt: off __lowerCamelCase : Any = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest'] # fmt: on __lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __lowerCamelCase : Tuple = { 'do_resize': True, 'size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.5, 0.5, 0.5], 'image_std': [0.5, 0.5, 0.5], } __lowerCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: return ViTImageProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowerCamelCase : List[str] = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : Union[str, Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Tuple = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Optional[Any] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCamelCase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __lowerCamelCase : Optional[int] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __lowerCamelCase : List[str] = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.get_image_processor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : int = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = self.prepare_image_inputs() __lowerCamelCase : Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __lowerCamelCase : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Dict = self.get_image_processor() __lowerCamelCase : str = self.get_tokenizer() __lowerCamelCase : Any = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = 'lower newer' __lowerCamelCase : Optional[int] = processor(text=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.get_image_processor() __lowerCamelCase : Any = self.get_tokenizer() __lowerCamelCase : int = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = 'lower newer' __lowerCamelCase : List[str] = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with self.assertRaises(SCREAMING_SNAKE_CASE_ ): processor() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Tuple = self.get_image_processor() __lowerCamelCase : int = self.get_tokenizer() __lowerCamelCase : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCamelCase : int = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = self.get_image_processor() __lowerCamelCase : List[str] = self.get_tokenizer() __lowerCamelCase : int = VisionTextDualEncoderProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = 'lower newer' __lowerCamelCase : int = self.prepare_image_inputs() __lowerCamelCase : Any = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
13
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import argparse import copy def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: __lowerCamelCase : Optional[Any] = {} with open(UpperCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowerCamelCase : str = [] _list.append([line.split()[1], line.split()[2]] ) __lowerCamelCase : Any = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowerCamelCase : List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) __lowerCamelCase : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> str: with open(UpperCAmelCase_ ) as f: __lowerCamelCase : str = f.read(1 ) __lowerCamelCase : Any = start_node __lowerCamelCase : str = [] __lowerCamelCase : Dict = start_node __lowerCamelCase : List[str] = 0 while visiting not in first_solution: __lowerCamelCase : List[str] = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCAmelCase_ ) and k[0] not in first_solution: __lowerCamelCase : Tuple = k[1] __lowerCamelCase : List[str] = k[0] first_solution.append(UpperCAmelCase_ ) __lowerCamelCase : Dict = distance_of_first_solution + int(UpperCAmelCase_ ) __lowerCamelCase : List[Any] = best_node first_solution.append(UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowerCamelCase : Union[str, Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any ) -> int: __lowerCamelCase : Optional[Any] = [] for n in solution[1:-1]: __lowerCamelCase : Optional[int] = solution.index(UpperCAmelCase_ ) for kn in solution[1:-1]: __lowerCamelCase : Any = solution.index(UpperCAmelCase_ ) if n == kn: continue __lowerCamelCase : Dict = copy.deepcopy(UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = kn __lowerCamelCase : int = n __lowerCamelCase : Tuple = 0 for k in _tmp[:-1]: __lowerCamelCase : List[Any] = _tmp[_tmp.index(UpperCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowerCamelCase : Union[str, Any] = distance + int(i[1] ) _tmp.append(UpperCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowerCamelCase : Any = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def UpperCAmelCase__ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = 1 __lowerCamelCase : Union[str, Any] = first_solution __lowerCamelCase : str = [] __lowerCamelCase : Optional[int] = distance_of_first_solution __lowerCamelCase : Union[str, Any] = solution while count <= iters: __lowerCamelCase : Any = find_neighborhood(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Optional[Any] = neighborhood[index_of_best_solution] __lowerCamelCase : List[str] = len(UpperCAmelCase_ ) - 1 __lowerCamelCase : Union[str, Any] = False while not found: __lowerCamelCase : List[Any] = 0 while i < len(UpperCAmelCase_ ): if best_solution[i] != solution[i]: __lowerCamelCase : Optional[Any] = best_solution[i] __lowerCamelCase : str = solution[i] break __lowerCamelCase : Union[str, Any] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowerCamelCase : List[Any] = True __lowerCamelCase : List[str] = best_solution[:-1] __lowerCamelCase : List[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowerCamelCase : Dict = cost __lowerCamelCase : str = solution else: __lowerCamelCase : List[Any] = index_of_best_solution + 1 __lowerCamelCase : List[Any] = neighborhood[index_of_best_solution] if len(UpperCAmelCase_ ) >= size: tabu_list.pop(0 ) __lowerCamelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def UpperCAmelCase__ ( UpperCAmelCase_ : Any=None ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = generate_neighbours(args.File ) __lowerCamelCase , __lowerCamelCase : str = generate_first_solution( args.File , UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : Optional[int] = tabu_search( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": A__ : Dict = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
13
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """google/owlvit-base-patch32""": """https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json""", """google/owlvit-base-patch16""": """https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json""", """google/owlvit-large-patch14""": """https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : str = 'owlvit_text_model' def __init__( self , SCREAMING_SNAKE_CASE_=4_94_08 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=4_94_06 , SCREAMING_SNAKE_CASE_=4_94_07 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : int = intermediate_size __lowerCamelCase : Any = num_hidden_layers __lowerCamelCase : Dict = num_attention_heads __lowerCamelCase : List[Any] = max_position_embeddings __lowerCamelCase : str = hidden_act __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : Tuple = attention_dropout __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : Optional[Any] = initializer_factor @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase : Any = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __lowerCamelCase : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'owlvit_vision_model' def __init__( self , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_="quick_gelu" , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1.0 , **SCREAMING_SNAKE_CASE_ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = hidden_size __lowerCamelCase : str = intermediate_size __lowerCamelCase : Union[str, Any] = num_hidden_layers __lowerCamelCase : Tuple = num_attention_heads __lowerCamelCase : str = num_channels __lowerCamelCase : Dict = image_size __lowerCamelCase : str = patch_size __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : List[str] = layer_norm_eps __lowerCamelCase : Tuple = attention_dropout __lowerCamelCase : Optional[int] = initializer_range __lowerCamelCase : Any = initializer_factor @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase : Optional[Any] = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type' ) == "owlvit": __lowerCamelCase : Tuple = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Optional[int] = 'owlvit' lowerCamelCase : Dict = True def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=2.6_5_9_2 , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[int]: super().__init__(**SCREAMING_SNAKE_CASE_ ) if text_config is None: __lowerCamelCase : Dict = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.' ) if vision_config is None: __lowerCamelCase : Optional[Any] = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.' ) __lowerCamelCase : List[str] = OwlViTTextConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = OwlViTVisionConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = projection_dim __lowerCamelCase : List[str] = logit_scale_init_value __lowerCamelCase : List[Any] = return_dict __lowerCamelCase : str = 1.0 @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase , __lowerCamelCase : str = cls.get_config_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Tuple = {} __lowerCamelCase : Optional[int] = text_config __lowerCamelCase : Dict = vision_config return cls.from_dict(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> str: __lowerCamelCase : int = copy.deepcopy(self.__dict__ ) __lowerCamelCase : Optional[Any] = self.text_config.to_dict() __lowerCamelCase : Any = self.vision_config.to_dict() __lowerCamelCase : str = self.__class__.model_type return output class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ] ) @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ] ) @property def lowercase_ ( self ) -> float: return 1E-4 def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = -1 , SCREAMING_SNAKE_CASE_ = None , ) -> Mapping[str, Any]: __lowerCamelCase : Optional[int] = super().generate_dummy_inputs( processor.tokenizer , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = super().generate_dummy_inputs( processor.image_processor , batch_size=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) return {**text_input_dict, **image_input_dict} @property def lowercase_ ( self ) -> int: return 14
13
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
1
'''simple docstring''' import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A__ : Dict = logging.get_logger(__name__) class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: super().__init__() __lowerCamelCase : str = nn.ModuleList(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , ) -> Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.nets ) ): __lowerCamelCase , __lowerCamelCase : str = controlnet( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) # merge samples if i == 0: __lowerCamelCase , __lowerCamelCase : Tuple = down_samples, mid_sample else: __lowerCamelCase : str = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , ) -> List[Any]: __lowerCamelCase : Any = 0 __lowerCamelCase : Union[str, Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( SCREAMING_SNAKE_CASE_ , is_main_process=SCREAMING_SNAKE_CASE_ , save_function=SCREAMING_SNAKE_CASE_ , safe_serialization=SCREAMING_SNAKE_CASE_ , variant=SCREAMING_SNAKE_CASE_ , ) idx += 1 __lowerCamelCase : List[str] = model_path_to_save + f'_{idx}' @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : str = 0 __lowerCamelCase : Any = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... __lowerCamelCase : str = pretrained_model_path while os.path.isdir(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = ControlNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) controlnets.append(SCREAMING_SNAKE_CASE_ ) idx += 1 __lowerCamelCase : Dict = pretrained_model_path + f'_{idx}' logger.info(f'{len(SCREAMING_SNAKE_CASE_ )} controlnets loaded from {pretrained_model_path}.' ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError( f'No ControlNets found under {os.path.dirname(SCREAMING_SNAKE_CASE_ )}. Expected at least {pretrained_model_path + "_0"}.' ) return cls(SCREAMING_SNAKE_CASE_ )
13
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
1
'''simple docstring''' from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration A__ : int = HfArgumentParser(InitializationArguments) A__ : Dict = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization A__ : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks A__ : Optional[int] = { """vocab_size""": len(tokenizer), """scale_attn_by_inverse_layer_idx""": True, """reorder_and_upcast_attn""": True, } # Load model config (GPT-2 large in this case) A__ : int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config A__ : Union[str, Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
13
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[int] = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: def wrapper(*UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int ): __lowerCamelCase : Tuple = timeit.default_timer() __lowerCamelCase : List[str] = func(*UpperCAmelCase_ , **UpperCAmelCase_ ) __lowerCamelCase : List[str] = timeit.default_timer() - starttime return delta __lowerCamelCase : int = func.__name__ return wrapper def UpperCAmelCase__ ( UpperCAmelCase_ : dict , UpperCAmelCase_ : Optional[Any]=1_00 , UpperCAmelCase_ : Union[str, Any]=None ) -> List[str]: __lowerCamelCase : Union[str, Any] = [] __lowerCamelCase : Any = seq_shapes or {} for i in range(UpperCAmelCase_ ): __lowerCamelCase : Dict = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase_ , _ArrayXD ): __lowerCamelCase : Tuple = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase_ , datasets.Value ): if v.dtype == "string": __lowerCamelCase : Optional[Any] = 'The small grey turtle was surprisingly fast when challenged.' else: __lowerCamelCase : Optional[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase_ , datasets.Sequence ): while isinstance(UpperCAmelCase_ , datasets.Sequence ): __lowerCamelCase : Optional[int] = v.feature __lowerCamelCase : Union[str, Any] = seq_shapes[k] __lowerCamelCase : int = np.random.rand(*UpperCAmelCase_ ).astype(v.dtype ) __lowerCamelCase : Tuple = data dummy_data.append((i, example) ) return dummy_data def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict=1_00 , UpperCAmelCase_ : Tuple=None ) -> Any: __lowerCamelCase : Optional[int] = generate_examples(UpperCAmelCase_ , num_examples=UpperCAmelCase_ , seq_shapes=UpperCAmelCase_ ) with ArrowWriter(features=UpperCAmelCase_ , path=UpperCAmelCase_ ) as writer: for key, record in dummy_data: __lowerCamelCase : Union[str, Any] = features.encode_example(UpperCAmelCase_ ) writer.write(UpperCAmelCase_ ) __lowerCamelCase , __lowerCamelCase : str = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' ) __lowerCamelCase : Dict = datasets.Dataset.from_file(filename=UpperCAmelCase_ , info=datasets.DatasetInfo(features=UpperCAmelCase_ ) ) return dataset
13
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
1
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo A__ : Any = """\ @misc{wu2016googles, title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ A__ : List[Any] = """\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the 'GLEU score'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score's range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. """ A__ : List[str] = """\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: 'google_bleu': google_bleu score Examples: Example 1: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.44 Example 2: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results[\"google_bleu\"], 2)) 0.61 Example 3: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results[\"google_bleu\"], 2)) 0.53 Example 4: >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always', ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat'] >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which', ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never', ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat'] >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never', ... 'heed', 'the', 'cat', 'commands'] >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions', ... 'of', 'the', 'cat'] >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was', ... 'interested', 'in', 'world', 'history'] >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history', ... 'because', 'he', 'read', 'the', 'book'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric(\"google_bleu\") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results[\"google_bleu\"], 2)) 0.4 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ (datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=SCREAMING_SNAKE_CASE_ , hypotheses=SCREAMING_SNAKE_CASE_ , min_len=SCREAMING_SNAKE_CASE_ , max_len=SCREAMING_SNAKE_CASE_ ) }
13
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
1
'''simple docstring''' from statistics import mean import numpy as np def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> list: __lowerCamelCase : Tuple = 0 # Number of processes finished __lowerCamelCase : Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowerCamelCase : List[Any] = [0] * no_of_process # List to include calculation results __lowerCamelCase : str = [0] * no_of_process # Sort by arrival time. __lowerCamelCase : Tuple = [burst_time[i] for i in np.argsort(UpperCAmelCase_ )] __lowerCamelCase : List[str] = [process_name[i] for i in np.argsort(UpperCAmelCase_ )] arrival_time.sort() while no_of_process > finished_process_count: __lowerCamelCase : Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowerCamelCase : Optional[Any] = arrival_time[i] __lowerCamelCase : Any = 0 # Index showing the location of the process being performed __lowerCamelCase : Tuple = 0 # Saves the current response ratio. __lowerCamelCase : List[str] = 0 for i in range(0 , UpperCAmelCase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowerCamelCase : Any = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowerCamelCase : Optional[int] = temp __lowerCamelCase : List[Any] = i # Calculate the turn around time __lowerCamelCase : Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowerCamelCase : List[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def UpperCAmelCase__ ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> list: __lowerCamelCase : Any = [0] * no_of_process for i in range(0 , UpperCAmelCase_ ): __lowerCamelCase : Dict = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": A__ : Dict = 5 A__ : str = ["""A""", """B""", """C""", """D""", """E"""] A__ : Optional[int] = [1, 2, 3, 4, 5] A__ : Optional[int] = [1, 2, 3, 4, 5] A__ : Optional[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) A__ : Union[str, Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
13
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A__ : Any = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : int = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys A__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
1
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
1
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class lowerCamelCase_ : a__ = None a__ = False a__ = False a__ = False a__ = None a__ = None a__ = False a__ = False a__ = False a__ = True a__ = None a__ = 1 a__ = None a__ = False a__ = None a__ = None def A ( self ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(__lowerCAmelCase ) for k, v in self.__dict__.items()} )
0
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __snake_case , __snake_case , __snake_case = False, False, False @dataclass class __lowerCamelCase : _lowercase = None _lowercase = True _lowercase = True _lowercase = None # Automatically constructed _lowercase = "dict" _lowercase = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) _lowercase = field(default="""Audio""" , init=_a , repr=_a ) def __call__( self: Optional[int] ): '''simple docstring''' return self.pa_type def snake_case_ ( self: Tuple,A_: Union[str, bytes, dict] ): '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(A_,A_ ): return {"bytes": None, "path": value} elif isinstance(A_,A_ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __UpperCamelCase = BytesIO() sf.write(A_,value['array'],value['sampling_rate'],format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __UpperCamelCase = np.frombuffer(value['bytes'],dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __UpperCamelCase = np.memmap(value['path'],dtype='h',mode='r' ).astype(np.floataa ) / 3_2767 __UpperCamelCase = BytesIO(bytes() ) sf.write(A_,A_,value['sampling_rate'],format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def snake_case_ ( self: List[Any],A_: dict,A_: Optional[Dict[str, Union[str, bool, None]]] = None ): '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) __UpperCamelCase, __UpperCamelCase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err __UpperCamelCase = xsplitext(A_ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: __UpperCamelCase = token_per_repo_id or {} __UpperCamelCase = path.split('::' )[-1] try: __UpperCamelCase = string_to_dict(A_,config.HUB_DATASETS_URL )['repo_id'] __UpperCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): __UpperCamelCase = None with xopen(A_,'rb',use_auth_token=A_ ) as f: __UpperCamelCase, __UpperCamelCase = sf.read(A_ ) else: __UpperCamelCase, __UpperCamelCase = sf.read(A_ ) __UpperCamelCase = array.T if self.mono: __UpperCamelCase = librosa.to_mono(A_ ) if self.sampling_rate and self.sampling_rate != sampling_rate: __UpperCamelCase = librosa.resample(A_,orig_sr=A_,target_sr=self.sampling_rate ) __UpperCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case_ ( self: List[Any] ): '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def snake_case_ ( self: str,A_: Union[pa.StringArray, pa.StructArray] ): '''simple docstring''' if pa.types.is_string(storage.type ): __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.binary() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage],['bytes', 'path'],mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([storage, path_array],['bytes', 'path'],mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): __UpperCamelCase = pa.array([Audio().encode_example(A_ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __UpperCamelCase = storage.field('bytes' ) else: __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __UpperCamelCase = storage.field('path' ) else: __UpperCamelCase = pa.array([None] * len(A_ ),type=pa.string() ) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array],['bytes', 'path'],mask=storage.is_null() ) return array_cast(A_,self.pa_type ) def snake_case_ ( self: Optional[Any],A_: pa.StructArray ): '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(A_: Union[str, Any] ): with xopen(A_,'rb' ) as f: __UpperCamelCase = f.read() return bytes_ __UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ],type=pa.binary(),) __UpperCamelCase = pa.array( [os.path.basename(A_ ) if path is not None else None for path in storage.field('path' ).to_pylist()],type=pa.string(),) __UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array],['bytes', 'path'],mask=bytes_array.is_null() ) return array_cast(A_,self.pa_type )
1
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> YolosConfig: _A = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _A = 192 _A = 768 _A = 12 _A = 3 _A = [800, 1_333] _A = False elif yolos_name == "yolos_s_dWr": _A = 330 _A = 14 _A = 6 _A = 1_320 elif "yolos_s" in yolos_name: _A = 384 _A = 1_536 _A = 12 _A = 6 elif "yolos_b" in yolos_name: _A = [800, 1_344] _A = 91 _A = '''huggingface/label-files''' _A = '''coco-detection-id2label.json''' _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosConfig , _snake_case :bool = False ) -> Optional[int]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[: config.hidden_size, :] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[-config.hidden_size :, :] _A = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> str: if "backbone" in name: _A = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: _A = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: _A = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: _A = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: _A = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: _A = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _A = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: _A = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: _A = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: _A = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_snake_case ) if "qkv" in key: _A = key.split('''.''' ) _A = int(key_split[2] ) _A = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _A = val[:dim, :] _A = val[ dim : dim * 2, : ] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( ) -> torch.Tensor: _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str , _snake_case :str , _snake_case :bool = False ) -> Dict: _A = get_yolos_config(_snake_case ) # load original state_dict _A = torch.load(_snake_case , map_location='''cpu''' )['''model'''] # load 🤗 model _A = YolosForObjectDetection(_snake_case ) model.eval() _A = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor _A = 800 if yolos_name != '''yolos_ti''' else 512 _A = YolosImageProcessor(format='''coco_detection''' , size=_snake_case ) _A = image_processor(images=prepare_img() , return_tensors='''pt''' ) _A = model(**_snake_case ) _A , _A = outputs.logits, outputs.pred_boxes _A , _A = None, None if yolos_name == "yolos_ti": _A = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _A = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _A = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _A = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _A = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _A = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _A = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _A = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _A = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _A = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: _A = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) _A = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='''hustvl''' ) model.push_to_hub(_snake_case , organization='''hustvl''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
2
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , )-> List[Any]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = 13 UpperCamelCase = 7 UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 99 UpperCamelCase = 384 UpperCamelCase = 2 UpperCamelCase = 4 UpperCamelCase = 37 UpperCamelCase = 'gelu' UpperCamelCase = 0.1 UpperCamelCase = 0.1 UpperCamelCase = 512 UpperCamelCase = 16 UpperCamelCase = 2 UpperCamelCase = 0.02 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 128 UpperCamelCase = 2 UpperCamelCase = 9 UpperCamelCase = 1 UpperCamelCase = None def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase = TFConvBertModel(config=A_ ) UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> str: '''simple docstring''' UpperCamelCase = TFConvBertForMaskedLM(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = TFConvBertForSequenceClassification(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase = self.num_choices UpperCamelCase = TFConvBertForMultipleChoice(config=A_ ) UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> str: '''simple docstring''' UpperCamelCase = self.num_labels UpperCamelCase = TFConvBertForTokenClassification(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = TFConvBertForQuestionAnswering(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = TFConvBertModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = True if hasattr(A_ , 'use_cache' ): UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) for model_class in self.all_model_classes: UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = model_class(A_ ) UpperCamelCase = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) UpperCamelCase = os.path.join(A_ , 'saved_model' , '1' ) UpperCamelCase = tf.keras.models.load_model(A_ ) UpperCamelCase = model(A_ ) if self.is_encoder_decoder: UpperCamelCase = outputs['encoder_hidden_states'] UpperCamelCase = outputs['encoder_attentions'] else: UpperCamelCase = outputs['hidden_states'] UpperCamelCase = outputs['attentions'] self.assertEqual(len(A_ ) , A_ ) UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(A_ ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) def check_decoder_attentions_output(A_ ): UpperCamelCase = len(A_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): UpperCamelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @slow def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase = model(A_ )[0] UpperCamelCase = [1, 6, 768] self.assertEqual(output.shape , A_ ) UpperCamelCase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
3
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : float , _UpperCAmelCase : float ): if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(_UpperCAmelCase ) * abs(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
4
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {"""vocab_file""": """spiece.model"""} _lowercase = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } _lowercase = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } _lowercase = """▁""" class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Any = VOCAB_FILES_NAMES _lowercase : int = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _lowercase , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase="[CLS]" , _lowercase="[SEP]" , _lowercase="<unk>" , _lowercase="[SEP]" , _lowercase="<pad>" , _lowercase="[CLS]" , _lowercase="[MASK]" , _lowercase = None , **_lowercase , ): """simple docstring""" _lowerCAmelCase = ( AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase , normalized=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token ) _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) @property def _lowercase ( self ): """simple docstring""" return len(self.sp_model ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , _lowercase ): """simple docstring""" if self.remove_space: _lowerCAmelCase = """ """.join(inputs.strip().split() ) else: _lowerCAmelCase = inputs _lowerCAmelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase = unicodedata.normalize("""NFKD""" , _lowercase ) _lowerCAmelCase = """""".join([c for c in outputs if not unicodedata.combining(_lowercase )] ) if self.do_lower_case: _lowerCAmelCase = outputs.lower() return outputs def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.preprocess_text(_lowercase ) _lowerCAmelCase = self.sp_model.encode(_lowercase , out_type=_lowercase ) _lowerCAmelCase = [] for piece in pieces: if len(_lowercase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase = cur_pieces[1:] else: _lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_lowercase ) else: new_pieces.append(_lowercase ) return new_pieces def _lowercase ( self , _lowercase ): """simple docstring""" return self.sp_model.PieceToId(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" return self.sp_model.IdToPiece(_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = """""" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(_lowercase ) _lowerCAmelCase = False out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self , _lowercase , _lowercase = None , _lowercase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1] def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , _lowercase , _lowercase = None ): """simple docstring""" if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , """wb""" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
5
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int ): SCREAMING_SNAKE_CASE__ = b.T SCREAMING_SNAKE_CASE__ = np.sum(np.square(UpperCamelCase__ ) , axis=1 ) SCREAMING_SNAKE_CASE__ = np.sum(np.square(UpperCamelCase__ ) , axis=0 ) SCREAMING_SNAKE_CASE__ = np.matmul(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = aa[:, None] - 2 * ab + ba[None, :] return d def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ): SCREAMING_SNAKE_CASE__ = x.reshape(-1 , 3 ) SCREAMING_SNAKE_CASE__ = squared_euclidean_distance(UpperCamelCase__ , UpperCamelCase__ ) return np.argmin(UpperCamelCase__ , axis=1 ) class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = ["pixel_values"] def __init__( self :int , __A :Optional[Union[List[List[int]], np.ndarray]] = None , __A :bool = True , __A :Dict[str, int] = None , __A :PILImageResampling = PILImageResampling.BILINEAR , __A :bool = True , __A :bool = True , **__A :int , ) -> None: """simple docstring""" super().__init__(**__A ) SCREAMING_SNAKE_CASE__ = size if size is not None else {"""height""": 256, """width""": 256} SCREAMING_SNAKE_CASE__ = get_size_dict(__A ) SCREAMING_SNAKE_CASE__ = np.array(__A ) if clusters is not None else None SCREAMING_SNAKE_CASE__ = do_resize SCREAMING_SNAKE_CASE__ = size SCREAMING_SNAKE_CASE__ = resample SCREAMING_SNAKE_CASE__ = do_normalize SCREAMING_SNAKE_CASE__ = do_color_quantize def _snake_case ( self :str , __A :np.ndarray , __A :Dict[str, int] , __A :PILImageResampling = PILImageResampling.BILINEAR , __A :Optional[Union[str, ChannelDimension]] = None , **__A :List[str] , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( __A , size=(size["""height"""], size["""width"""]) , resample=__A , data_format=__A , **__A ) def _snake_case ( self :List[Any] , __A :np.ndarray , __A :Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: """simple docstring""" SCREAMING_SNAKE_CASE__ = rescale(image=__A , scale=1 / 1_2_7.5 , data_format=__A ) SCREAMING_SNAKE_CASE__ = image - 1 return image def _snake_case ( self :Optional[int] , __A :ImageInput , __A :bool = None , __A :Dict[str, int] = None , __A :PILImageResampling = None , __A :bool = None , __A :Optional[bool] = None , __A :Optional[Union[List[List[int]], np.ndarray]] = None , __A :Optional[Union[str, TensorType]] = None , __A :Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__A :List[str] , ) -> PIL.Image.Image: """simple docstring""" SCREAMING_SNAKE_CASE__ = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE__ = size if size is not None else self.size SCREAMING_SNAKE_CASE__ = get_size_dict(__A ) SCREAMING_SNAKE_CASE__ = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE__ = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize SCREAMING_SNAKE_CASE__ = clusters if clusters is not None else self.clusters SCREAMING_SNAKE_CASE__ = np.array(__A ) SCREAMING_SNAKE_CASE__ = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_color_quantize and clusters is None: raise ValueError("""Clusters must be specified if do_color_quantize is True.""" ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE__ = [to_numpy_array(__A ) for image in images] if do_resize: SCREAMING_SNAKE_CASE__ = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE__ = [self.normalize(image=__A ) for image in images] if do_color_quantize: SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(__A , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) SCREAMING_SNAKE_CASE__ = np.array(__A ) SCREAMING_SNAKE_CASE__ = color_quantize(__A , __A ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) SCREAMING_SNAKE_CASE__ = images.shape[0] SCREAMING_SNAKE_CASE__ = images.reshape(__A , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. SCREAMING_SNAKE_CASE__ = list(__A ) else: SCREAMING_SNAKE_CASE__ = [to_channel_dimension_format(__A , __A ) for image in images] SCREAMING_SNAKE_CASE__ = {"""input_ids""": images} return BatchFeature(data=__A , tensor_type=__A )
6
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
0
"""simple docstring""" import re import string import numpy as np import datasets a = ''' Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. ''' a = ''' Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 25.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 50.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True) >>> print(round(results["exact_match"], 1)) 75.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["the cat", "theater", "YELLING", "agent007"] >>> preds = ["cat?", "theater", "yelling", "agent"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results["exact_match"], 1)) 100.0 >>> exact_match = datasets.load_metric("exact_match") >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."] >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results["exact_match"], 1)) 33.3 ''' a = ''' ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[Any]=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: _A = np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase ) for x in predictions] ) _A = np.array([re.sub(_UpperCAmelCase , '' , _UpperCAmelCase ) for x in references] ) else: _A = np.asarray(_UpperCAmelCase ) _A = np.asarray(_UpperCAmelCase ) if ignore_case: _A = np.char.lower(_UpperCAmelCase ) _A = np.char.lower(_UpperCAmelCase ) if ignore_punctuation: _A = string.punctuation.maketrans('' , '' , string.punctuation ) _A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) _A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) if ignore_numbers: _A = string.digits.maketrans('' , '' , string.digits ) _A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) _A = np.char.translate(_UpperCAmelCase , table=_UpperCAmelCase ) _A = predictions == references return {"exact_match": np.mean(_UpperCAmelCase ) * 100}
7
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
0
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' super().__init__() __A : List[Any] = value_function __A : str = unet __A : Tuple = scheduler __A : List[Any] = env __A : List[str] = env.get_dataset() __A : List[str] = {} for key in self.data.keys(): try: __A : Optional[int] = self.data[key].mean() except: # noqa: E722 pass __A : str = {} for key in self.data.keys(): try: __A : Optional[int] = self.data[key].std() except: # noqa: E722 pass __A : Optional[Any] = env.observation_space.shape[0] __A : List[Any] = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if type(_UpperCAmelCase) is dict: return {k: self.to_torch(_UpperCAmelCase) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase): return x_in.to(self.unet.device) return torch.tensor(_UpperCAmelCase , device=self.unet.device) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' for key, val in cond.items(): __A : List[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = x.shape[0] __A : Union[str, Any] = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model __A : str = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long) for _ in range(_UpperCAmelCase): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __A : Optional[int] = self.value_function(x.permute(0 , 2 , 1) , _UpperCAmelCase).sample __A : int = torch.autograd.grad([y.sum()] , [x])[0] __A : Optional[Any] = self.scheduler._get_variance(_UpperCAmelCase) __A : int = torch.exp(0.5 * posterior_variance) __A : int = model_std * grad __A : Optional[Any] = 0 __A : List[str] = x.detach() __A : Tuple = x + scale * grad __A : Optional[Any] = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim) __A : int = self.unet(x.permute(0 , 2 , 1) , _UpperCAmelCase).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg __A : int = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase)['prev_sample'] # apply conditions to the trajectory (set the initial state) __A : Optional[int] = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim) __A : Dict = self.to_torch(_UpperCAmelCase) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1): '''simple docstring''' __A : str = self.normalize(_UpperCAmelCase , 'observations') __A : str = obs[None].repeat(_UpperCAmelCase , axis=0) __A : Any = {0: self.to_torch(_UpperCAmelCase)} __A : Any = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __A : Tuple = randn_tensor(_UpperCAmelCase , device=self.unet.device) __A : Tuple = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim) __A : Tuple = self.to_torch(_UpperCAmelCase) # run the diffusion process __A ,__A : Any = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # sort output trajectories by value __A : Any = y.argsort(0 , descending=_UpperCAmelCase).squeeze() __A : str = x[sorted_idx] __A : Dict = sorted_values[:, :, : self.action_dim] __A : Dict = actions.detach().cpu().numpy() __A : Dict = self.de_normalize(_UpperCAmelCase , key='actions') # select the action with the highest value if y is not None: __A : int = 0 else: # if we didn't run value guiding, select a random action __A : Any = np.random.randint(0 , _UpperCAmelCase) __A : str = denorm_actions[selected_index, 0] return denorm_actions
8
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
def A ( __UpperCamelCase ) -> tuple[int, int]: try: A__ = float(__UpperCamelCase ) except ValueError: raise ValueError('Please enter a valid number' ) A__ = decimal - int(__UpperCamelCase ) if fractional_part == 0: return int(__UpperCamelCase ), 1 else: A__ = len(str(__UpperCamelCase ).split('.' )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__ , A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__ , A__ = divisor, remainder A__ , A__ = numerator / divisor, denominator / divisor return int(__UpperCamelCase ), int(__UpperCamelCase ) if __name__ == "__main__": print(f'{decimal_to_fraction(2) = }') print(f'{decimal_to_fraction(89.0) = }') print(f'{decimal_to_fraction("67") = }') print(f'{decimal_to_fraction("45.0") = }') print(f'{decimal_to_fraction(1.5) = }') print(f'{decimal_to_fraction("6.25") = }') print(f'{decimal_to_fraction("78td") = }')
9
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): _UpperCamelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(__snake_case ) if number < 1: _UpperCamelCase = f"""Input value of [number={number}] must be > 0""" raise ValueError(__snake_case ) _UpperCamelCase = 1 for i in range(1 , __snake_case ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
10
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'owlvit_text_model' def __init__(self , A=49_408 , A=512 , A=2_048 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , A=0 , A=49_406 , A=49_407 , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = max_position_embeddings _a = hidden_act _a = layer_norm_eps _a = attention_dropout _a = initializer_range _a = initializer_factor @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = 'owlvit_vision_model' def __init__(self , A=768 , A=3_072 , A=12 , A=12 , A=3 , A=768 , A=32 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = image_size _a = patch_size _a = hidden_act _a = layer_norm_eps _a = attention_dropout _a = initializer_range _a = initializer_factor @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = 'owlvit' __lowerCamelCase : List[str] = True def __init__(self , A=None , A=None , A=512 , A=2.6592 , A=True , **A , ) -> Optional[int]: """simple docstring""" super().__init__(**A ) if text_config is None: _a = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a = OwlViTTextConfig(**A ) _a = OwlViTVisionConfig(**A ) _a = projection_dim _a = logit_scale_init_value _a = return_dict _a = 1.0 @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) @classmethod def a__ (cls , A , A , **A ) -> Any: """simple docstring""" _a = {} _a = text_config _a = vision_config return cls.from_dict(A , **A ) def a__ (self ) -> Tuple: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.text_config.to_dict() _a = self.vision_config.to_dict() _a = self.__class__.model_type return output class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-4 def a__ (self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _a = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def a__ (self ) -> int: """simple docstring""" return 14
11
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
0
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' with open(lowercase_ ) as metadata_file: lowercase__ : Any = json.load(lowercase_ ) lowercase__ : Tuple = LukeConfig(use_entity_aware_attention=lowercase_ , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path lowercase__ : List[str] = torch.load(lowercase_ , map_location="""cpu""" )["""module"""] # Load the entity vocab file lowercase__ : Any = load_original_entity_vocab(lowercase_ ) # add an entry for [MASK2] lowercase__ : int = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 lowercase__ : str = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks lowercase__ : Any = AddedToken("""<ent>""" , lstrip=lowercase_ , rstrip=lowercase_ ) lowercase__ : List[Any] = AddedToken("""<ent2>""" , lstrip=lowercase_ , rstrip=lowercase_ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(lowercase_ ) with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) , """r""" ) as f: lowercase__ : Tuple = json.load(lowercase_ ) lowercase__ : Tuple = """MLukeTokenizer""" with open(os.path.join(lowercase_ , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) with open(os.path.join(lowercase_ , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(lowercase_ , lowercase_ ) lowercase__ : str = MLukeTokenizer.from_pretrained(lowercase_ ) # Initialize the embeddings of the special tokens lowercase__ : int = tokenizer.convert_tokens_to_ids(["""@"""] )[0] lowercase__ : int = tokenizer.convert_tokens_to_ids(["""#"""] )[0] lowercase__ : int = state_dict["""embeddings.word_embeddings.weight"""] lowercase__ : Optional[Any] = word_emb[ent_init_index].unsqueeze(0 ) lowercase__ : Optional[Any] = word_emb[enta_init_index].unsqueeze(0 ) lowercase__ : int = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: lowercase__ : Any = state_dict[bias_name] lowercase__ : Union[str, Any] = decoder_bias[ent_init_index].unsqueeze(0 ) lowercase__ : List[str] = decoder_bias[enta_init_index].unsqueeze(0 ) lowercase__ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: lowercase__ : List[str] = F'encoder.layer.{layer_index}.attention.self.' lowercase__ : Any = state_dict[prefix + matrix_name] lowercase__ : int = state_dict[prefix + matrix_name] lowercase__ : Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks lowercase__ : Optional[int] = state_dict["""entity_embeddings.entity_embeddings.weight"""] lowercase__ : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase__ : Any = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' lowercase__ : List[str] = state_dict["""entity_predictions.bias"""] lowercase__ : List[Any] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) lowercase__ : List[str] = torch.cat([entity_prediction_bias, entity_mask_bias] ) lowercase__ : Dict = LukeForMaskedLM(config=lowercase_ ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) lowercase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): lowercase__ : Dict = state_dict[key] else: lowercase__ : Optional[Any] = state_dict[key] lowercase__ , lowercase__ : int = model.load_state_dict(lowercase_ , strict=lowercase_ ) if set(lowercase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(lowercase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs lowercase__ : Union[str, Any] = MLukeTokenizer.from_pretrained(lowercase_ , task="""entity_classification""" ) lowercase__ : List[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" lowercase__ : List[str] = (0, 9) lowercase__ : List[Any] = tokenizer(lowercase_ , entity_spans=[span] , return_tensors="""pt""" ) lowercase__ : Dict = model(**lowercase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ : Tuple = torch.Size((1, 33, 7_68) ) lowercase__ : Any = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base lowercase__ : List[str] = torch.Size((1, 1, 7_68) ) lowercase__ : List[str] = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase_ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction lowercase__ : Any = MLukeTokenizer.from_pretrained(lowercase_ ) lowercase__ : int = """Tokyo is the capital of <mask>.""" lowercase__ : List[str] = (24, 30) lowercase__ : Union[str, Any] = tokenizer(lowercase_ , entity_spans=[span] , return_tensors="""pt""" ) lowercase__ : str = model(**lowercase_ ) lowercase__ : Optional[int] = encoding["""input_ids"""][0].tolist() lowercase__ : Optional[int] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) lowercase__ : List[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(lowercase_ ) lowercase__ : str = outputs.entity_logits[0][0].argmax().item() lowercase__ : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(lowercase_ ) ) model.save_pretrained(lowercase_ ) def UpperCamelCase ( lowercase_ ) -> Any: '''simple docstring''' lowercase__ : Optional[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] lowercase__ : Optional[int] = [json.loads(lowercase_ ) for line in open(lowercase_ )] lowercase__ : str = {} for entry in data: lowercase__ : Tuple = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: lowercase__ : str = entity_id break lowercase__ : Dict = F'{language}:{entity_name}' lowercase__ : Dict = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCamelCase__ : List[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
12
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a__ = 8 def __UpperCAmelCase ( __a : Union[str, Any] ,__a : Tuple=BITS ) -> List[str]: """simple docstring""" _a : Optional[Any] = x.device _a : int = (x * 255).int().clamp(0 ,255 ) _a : Optional[int] = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=__a ) _a : Union[str, Any] = rearrange(__a ,'''d -> d 1 1''' ) _a : Tuple = rearrange(__a ,'''b c h w -> b c 1 h w''' ) _a : int = ((x & mask) != 0).float() _a : Dict = rearrange(__a ,'''b c d h w -> b (c d) h w''' ) _a : Any = bits * 2 - 1 return bits def __UpperCAmelCase ( __a : List[str] ,__a : List[str]=BITS ) -> Optional[Any]: """simple docstring""" _a : Any = x.device _a : Union[str, Any] = (x > 0).int() _a : Dict = 2 ** torch.arange(bits - 1 ,-1 ,-1 ,device=__a ,dtype=torch.intaa ) _a : Any = rearrange(__a ,'''d -> d 1 1''' ) _a : Dict = rearrange(__a ,'''b (c d) h w -> b c d h w''' ,d=8 ) _a : Optional[Any] = reduce(x * mask ,'''b c d h w -> b c h w''' ,'''sum''' ) return (dec / 255).clamp(0.0 ,1.0 ) def __UpperCAmelCase ( self : Optional[int] ,__a : torch.FloatTensor ,__a : int ,__a : torch.FloatTensor ,__a : float = 0.0 ,__a : bool = True ,__a : int=None ,__a : bool = True ,) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _a : List[str] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _a : str = self.alphas_cumprod[timestep] _a : str = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _a : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _a : List[str] = self.bit_scale if self.config.clip_sample: _a : Tuple = torch.clamp(__a ,-scale ,__a ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _a : List[Any] = self._get_variance(__a ,__a ) _a : List[str] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _a : Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : List[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _a : Optional[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _a : Optional[Any] = model_output.device if torch.is_tensor(__a ) else '''cpu''' _a : Tuple = torch.randn(model_output.shape ,dtype=model_output.dtype ,generator=__a ).to(__a ) _a : Any = self._get_variance(__a ,__a ) ** 0.5 * eta * noise _a : Dict = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__a ,pred_original_sample=__a ) def __UpperCAmelCase ( self : List[Any] ,__a : torch.FloatTensor ,__a : int ,__a : torch.FloatTensor ,__a : str="epsilon" ,__a : Optional[Any]=None ,__a : bool = True ,) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" _a : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _a , _a : int = torch.split(__a ,sample.shape[1] ,dim=1 ) else: _a : List[str] = None # 1. compute alphas, betas _a : Any = self.alphas_cumprod[t] _a : Dict = self.alphas_cumprod[t - 1] if t > 0 else self.one _a : int = 1 - alpha_prod_t _a : Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _a : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _a : Dict = model_output else: raise ValueError(F"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" _a : int = self.bit_scale if self.config.clip_sample: _a : Optional[Any] = torch.clamp(__a ,-scale ,__a ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a : List[Any] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _a : Optional[int] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _a : Optional[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _a : Tuple = 0 if t > 0: _a : Any = torch.randn( model_output.size() ,dtype=model_output.dtype ,layout=model_output.layout ,generator=__a ).to(model_output.device ) _a : str = (self._get_variance(__a ,predicted_variance=__a ) ** 0.5) * noise _a : str = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__a ,pred_original_sample=__a ) class UpperCAmelCase_ ( __lowercase ): """simple docstring""" def __init__( self , _a , _a , _a = 1.0 , ) -> Optional[Any]: super().__init__() _a : Optional[Any] = bit_scale _a : Dict = ( ddim_bit_scheduler_step if isinstance(_a , _a ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self , _a = 2_5_6 , _a = 2_5_6 , _a = 5_0 , _a = None , _a = 1 , _a = "pil" , _a = True , **_a , ) -> Union[Tuple, ImagePipelineOutput]: _a : Dict = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_a , ) _a : List[str] = decimal_to_bits(_a ) * self.bit_scale _a : str = latents.to(self.device ) self.scheduler.set_timesteps(_a ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _a : Any = self.unet(_a , _a ).sample # compute the previous noisy sample x_t -> x_t-1 _a : Dict = self.scheduler.step(_a , _a , _a ).prev_sample _a : str = bits_to_decimal(_a ) if output_type == "pil": _a : List[Any] = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
14
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( UpperCAmelCase__ ): '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : NestedDataStructureLike[PathLike] , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Optional[Features] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ) -> List[str]: """simple docstring""" super().__init__( _UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else {self.split: path_or_paths} lowercase__ = Text( cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , **_UpperCAmelCase , ) def lowerCamelCase__ (self : Tuple ) -> Any: """simple docstring""" if self.streaming: lowercase__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase__ = None lowercase__ = None lowercase__ = None lowercase__ = None self.builder.download_and_prepare( download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , ) lowercase__ = self.builder.as_dataset( split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
15
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
from itertools import product def __a ( A__ : int , A__ : int ): SCREAMING_SNAKE_CASE = sides_number SCREAMING_SNAKE_CASE = max_face_number * dice_number SCREAMING_SNAKE_CASE = [0] * (max_total + 1) SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = range(A__ , max_face_number + 1 ) for dice_numbers in product(A__ , repeat=A__ ): SCREAMING_SNAKE_CASE = sum(A__ ) totals_frequencies[total] += 1 return totals_frequencies def __a ( ): SCREAMING_SNAKE_CASE = total_frequency_distribution( sides_number=4 , dice_number=9 ) SCREAMING_SNAKE_CASE = total_frequency_distribution( sides_number=6 , dice_number=6 ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 9 SCREAMING_SNAKE_CASE = 4 * 9 SCREAMING_SNAKE_CASE = 6 for peter_total in range(A__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE = (4**9) * (6**6) SCREAMING_SNAKE_CASE = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE = round(A__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
16
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCAmelCase_ : Optional[int] = 16 UpperCAmelCase_ : List[Any] = 32 def __SCREAMING_SNAKE_CASE ( a__ : Accelerator ,a__ : int = 16 ,a__ : str = "bert-base-cased" ) -> Any: __A : Optional[Any] = AutoTokenizer.from_pretrained(a__ ) __A : List[str] = load_dataset("""glue""" ,"""mrpc""" ) def tokenize_function(a__ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) __A : List[Any] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=a__ ,max_length=a__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A : List[str] = datasets.map( a__ ,batched=a__ ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,load_from_cache_file=a__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A : Tuple = tokenized_datasets.rename_column("""label""" ,"""labels""" ) def collate_fn(a__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a__ ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(a__ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. __A : int = DataLoader( tokenized_datasets["""train"""] ,shuffle=a__ ,collate_fn=a__ ,batch_size=a__ ) __A : str = DataLoader( tokenized_datasets["""validation"""] ,shuffle=a__ ,collate_fn=a__ ,batch_size=a__ ) return train_dataloader, eval_dataloader def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Optional[Any] ) -> int: # Initialize accelerator __A : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A : int = config["""lr"""] __A : Union[str, Any] = int(config["""num_epochs"""] ) __A : List[Any] = int(config["""seed"""] ) __A : Optional[Any] = int(config["""batch_size"""] ) __A : Any = args.model_name_or_path set_seed(a__ ) __A , __A : Union[str, Any] = get_dataloaders(a__ ,a__ ,a__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A : List[Any] = AutoModelForSequenceClassification.from_pretrained(a__ ,return_dict=a__ ) # Instantiate optimizer __A : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __A : Optional[int] = optimizer_cls(params=model.parameters() ,lr=a__ ) if accelerator.state.deepspeed_plugin is not None: __A : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __A : List[Any] = 1 __A : Optional[Any] = (len(a__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __A : Optional[int] = get_linear_schedule_with_warmup( optimizer=a__ ,num_warmup_steps=0 ,num_training_steps=a__ ,) else: __A : List[Any] = DummyScheduler(a__ ,total_num_steps=a__ ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A , __A , __A , __A , __A : int = accelerator.prepare( a__ ,a__ ,a__ ,a__ ,a__ ) # We need to keep track of how many total steps we have iterated over __A : List[str] = 0 # We also need to keep track of the stating epoch so files are named properly __A : List[Any] = 0 # Now we train the model __A : Union[str, Any] = evaluate.load("""glue""" ,"""mrpc""" ) __A : List[str] = 0 __A : Dict = {} for epoch in range(a__ ,a__ ): model.train() for step, batch in enumerate(a__ ): __A : Tuple = model(**a__ ) __A : Tuple = outputs.loss __A : Dict = loss / gradient_accumulation_steps accelerator.backward(a__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __A : str = 0 for step, batch in enumerate(a__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __A : Optional[int] = model(**a__ ) __A : str = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __A , __A : str = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(a__ ) - 1: __A : str = predictions[: len(eval_dataloader.dataset ) - samples_seen] __A : Tuple = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=a__ ,references=a__ ,) __A : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" ,a__ ) __A : Tuple = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: __A : Tuple = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,"""all_results.json""" ) ,"""w""" ) as f: json.dump(a__ ,a__ ) def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : Tuple = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" ,type=a__ ,default="""bert-base-cased""" ,help="""Path to pretrained model or model identifier from huggingface.co/models.""" ,required=a__ ,) parser.add_argument( """--output_dir""" ,type=a__ ,default=""".""" ,help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" ,) parser.add_argument( """--performance_lower_bound""" ,type=a__ ,default=a__ ,help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" ,) parser.add_argument( """--num_epochs""" ,type=a__ ,default=3 ,help="""Number of train epochs.""" ,) __A : Dict = parser.parse_args() __A : List[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(a__ ,a__ ) if __name__ == "__main__": main()
17
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ,__magic_name__ ): __lowerCamelCase : Optional[int] = "maskformer-swin" __lowerCamelCase : Optional[Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=None , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Any: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCAmelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=_lowerCAmelCase , out_indices=_lowerCAmelCase , stage_names=self.stage_names )
18
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case = 1_00_00_00 ) -> int: """simple docstring""" _UpperCamelCase = [i - 1 for i in range(limit + 1 )] for i in range(2, limit + 1 ): if phi[i] == i - 1: for j in range(2 * i, limit + 1, __snake_case ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
19
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
0
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) _lowerCAmelCase: Optional[int] = logging.getLogger(__name__) def _lowercase( __a : Dict , __a : List[Any] ): a__ =np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def _lowercase( __a : Union[str, Any] ): with open(__a , encoding='utf_8' ) as f: a__ =csv.reader(__a ) a__ =[] next(__a ) # skip the first line for line in tqdm(__a ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _lowercase( __a : int , __a : List[Any] , __a : Dict , __a : Tuple , __a : List[Any] , __a : Tuple ): a__ =[] for dataset in encoded_datasets: a__ =len(__a ) a__ =np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) a__ =np.zeros((n_batch, 2) , dtype=np.intaa ) a__ =np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) a__ =np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): a__ =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ =[start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] a__ =with_conta a__ =with_conta a__ =len(__a ) - 1 a__ =len(__a ) - 1 a__ =with_conta a__ =with_conta a__ =mc_label a__ =(input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def _lowercase( ): a__ =argparse.ArgumentParser() parser.add_argument('--model_name' , type=__a , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__a , type=__a , required=__a , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__a , default='' ) parser.add_argument('--eval_dataset' , type=__a , default='' ) parser.add_argument('--seed' , type=__a , default=42 ) parser.add_argument('--num_train_epochs' , type=__a , default=3 ) parser.add_argument('--train_batch_size' , type=__a , default=8 ) parser.add_argument('--eval_batch_size' , type=__a , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__a , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__a , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__a , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__a , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__a , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__a , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__a , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__a , default=0.01 ) parser.add_argument('--lm_coef' , type=__a , default=0.9 ) parser.add_argument('--n_valid' , type=__a , default=374 ) parser.add_argument('--server_ip' , type=__a , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__a , default='' , help='Can be used for distant debugging.' ) a__ =parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) a__ =torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) a__ =torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset a__ =['_start_', '_delimiter_', '_classify_'] a__ =OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) a__ =tokenizer.convert_tokens_to_ids(__a ) a__ =OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a : Any ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info('Encoding dataset...' ) a__ =load_rocstories_dataset(args.train_dataset ) a__ =load_rocstories_dataset(args.eval_dataset ) a__ =(train_dataset, eval_dataset) a__ =tokenize_and_encode(__a ) # Compute the max input length for the Transformer a__ =model.config.n_positions // 2 - 2 a__ =max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) a__ =min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders a__ =pre_process_datasets(__a , __a , __a , *__a ) a__ , a__ =tensor_datasets[0], tensor_datasets[1] a__ =TensorDataset(*__a ) a__ =RandomSampler(__a ) a__ =DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) a__ =TensorDataset(*__a ) a__ =SequentialSampler(__a ) a__ =DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: a__ =args.max_steps a__ =args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: a__ =len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs a__ =list(model.named_parameters() ) a__ =['bias', 'LayerNorm.bias', 'LayerNorm.weight'] a__ =[ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] a__ =AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) a__ =get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: a__ , a__ , a__ =0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): a__ =0 a__ =0 a__ =tqdm(__a , desc='Training' ) for step, batch in enumerate(__a ): a__ =tuple(t.to(__a ) for t in batch ) a__ , a__ , a__ , a__ =batch a__ =model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) a__ =args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() a__ =( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 a__ ='Training loss: {:.2e} lr: {:.2e}'.format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer a__ =model.module if hasattr(__a , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` a__ =os.path.join(args.output_dir , __a ) a__ =os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned a__ =OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) a__ =OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() a__ , a__ =0, 0 a__ , a__ =0, 0 for batch in tqdm(__a , desc='Evaluating' ): a__ =tuple(t.to(__a ) for t in batch ) a__ , a__ , a__ , a__ =batch with torch.no_grad(): a__ , a__ , a__ , a__ =model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) a__ =mc_logits.detach().cpu().numpy() a__ =mc_labels.to('cpu' ).numpy() a__ =accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 a__ =eval_loss / nb_eval_steps a__ =eval_accuracy / nb_eval_examples a__ =tr_loss / nb_tr_steps if args.do_train else None a__ ={'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} a__ =os.path.join(args.output_dir , 'eval_results.txt' ) with open(__a , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __a , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
20
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
0
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
0
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case : Any = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _snake_case : Optional[int] = logging.get_logger(__name__) class A ( _a ): lowercase_ = 'mask2former' lowercase_ = ['swin'] lowercase_ = {'hidden_size': 'hidden_dim'} def __init__( self : Any , lowerCAmelCase_ : Optional[Dict] = None , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 2_56 , lowerCAmelCase_ : int = 10_24 , lowerCAmelCase_ : str = "relu" , lowerCAmelCase_ : int = 6 , lowerCAmelCase_ : int = 10 , lowerCAmelCase_ : int = 8 , lowerCAmelCase_ : float = 0.0 , lowerCAmelCase_ : int = 20_48 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : int = 4 , lowerCAmelCase_ : int = 2_55 , lowerCAmelCase_ : int = 1_00 , lowerCAmelCase_ : float = 0.1 , lowerCAmelCase_ : float = 2.0 , lowerCAmelCase_ : float = 5.0 , lowerCAmelCase_ : float = 5.0 , lowerCAmelCase_ : int = 1_25_44 , lowerCAmelCase_ : float = 3.0 , lowerCAmelCase_ : float = 0.7_5 , lowerCAmelCase_ : float = 0.0_2 , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : List[int] = [4, 8, 16, 32] , lowerCAmelCase_ : bool = None , **lowerCAmelCase_ : int , ) -> Optional[Any]: """simple docstring""" if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) _a = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCAmelCase_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _a = backbone_config.pop('''model_type''' ) _a = CONFIG_MAPPING[backbone_model_type] _a = config_class.from_dict(lowerCAmelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' F'Supported model types: {",".join(self.backbones_supported )}' ) _a = backbone_config _a = feature_size _a = mask_feature_size _a = hidden_dim _a = encoder_feedforward_dim _a = activation_function _a = encoder_layers _a = decoder_layers _a = num_attention_heads _a = dropout _a = dim_feedforward _a = pre_norm _a = enforce_input_projection _a = common_stride _a = ignore_value _a = num_queries _a = no_object_weight _a = class_weight _a = mask_weight _a = dice_weight _a = train_num_points _a = oversample_ratio _a = importance_sample_ratio _a = init_std _a = init_xavier_std _a = use_auxiliary_loss _a = feature_strides _a = output_auxiliary_logits _a = decoder_layers super().__init__(**lowerCAmelCase_ ) @classmethod def __lowerCAmelCase ( cls : Any , lowerCAmelCase_ : PretrainedConfig , **lowerCAmelCase_ : List[str] ) -> Optional[int]: """simple docstring""" return cls( backbone_config=lowerCAmelCase_ , **lowerCAmelCase_ , ) def __lowerCAmelCase ( self : int ) -> Dict[str, any]: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.backbone_config.to_dict() _a = self.__class__.model_type return output
22
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : str = torch.device("""cpu""") def _snake_case (): UpperCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ = Image.open(requests.get(__lowercase , stream=__lowercase).raw) return im def _snake_case (__lowercase): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03e00, 2.11_07e00, -2.08_11e00, 8.86_85e-01, 2.43_60e-01]) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36e-01, 2.34_78e-01, -1.69_63e00, -1.73_81e00, -8.63_37e-01]) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68e-01, -4.74_29e-01, -1.08_97e00, -1.02_48e00, 3.55_23e-02]) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30e-01, 2.42_11e-01, -6.01_85e-01, -8.27_89e-01, -6.04_46e-02]) def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = dct.pop(__lowercase) UpperCamelCase_ = val def _snake_case (__lowercase): UpperCamelCase_ = [] for k in state_dict.keys(): UpperCamelCase_ = k if ".pwconv" in k: UpperCamelCase_ = k_new.replace('.pwconv' , '.point_wise_conv') if ".dwconv" in k: UpperCamelCase_ = k_new.replace('.dwconv' , '.depth_wise_conv') if ".Proj." in k: UpperCamelCase_ = k_new.replace('.Proj.' , '.proj.') if "patch_embed" in k_new: UpperCamelCase_ = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding') if "network" in k_new: UpperCamelCase_ = k_new.split('.') if ls[2].isdigit(): UpperCamelCase_ = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:]) else: UpperCamelCase_ = k_new.replace('network' , 'swiftformer.encoder.network') rename_keys.append((k, k_new)) return rename_keys @torch.no_grad() def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCamelCase_ = 1000 UpperCamelCase_ = 'huggingface/label-files' UpperCamelCase_ = 'imagenet-1k-id2label.json' UpperCamelCase_ = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='dataset') , 'r')) UpperCamelCase_ = {int(__lowercase): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCamelCase_ = [3, 3, 6, 4] UpperCamelCase_ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": UpperCamelCase_ = [3, 3, 9, 6] UpperCamelCase_ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": UpperCamelCase_ = [4, 3, 10, 5] UpperCamelCase_ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": UpperCamelCase_ = [4, 4, 12, 6] UpperCamelCase_ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https'): UpperCamelCase_ = torch.hub.load_state_dict_from_url(__lowercase , map_location='cpu' , check_hash=__lowercase) else: UpperCamelCase_ = torch.load(__lowercase , map_location='cpu') UpperCamelCase_ = checkpoint UpperCamelCase_ = create_rename_keys(__lowercase) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase) # load HuggingFace model UpperCamelCase_ = SwiftFormerForImageClassification(__lowercase).eval() hf_model.load_state_dict(__lowercase) # prepare test inputs UpperCamelCase_ = prepare_img() UpperCamelCase_ = ViTImageProcessor.from_pretrained('preprocessor_config') UpperCamelCase_ = processor(images=__lowercase , return_tensors='pt') # compare outputs from both models UpperCamelCase_ = get_expected_output(__lowercase) UpperCamelCase_ = hf_model(inputs['pixel_values']).logits assert hf_logits.shape == torch.Size([1, 1000]) assert torch.allclose(hf_logits[0, 0:5] , __lowercase , atol=1e-3) Path(__lowercase).mkdir(exist_ok=__lowercase) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""") hf_model.save_pretrained(__lowercase) if __name__ == "__main__": snake_case__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") snake_case__ : Tuple = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
23
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
0
'''simple docstring''' import string from math import logaa def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : str )-> int: '''simple docstring''' __snake_case = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) __snake_case = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase (_lowerCamelCase : str , _lowerCamelCase : str )-> tuple[int, int]: '''simple docstring''' __snake_case = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' __snake_case = corpus_without_punctuation.split('''\n''' ) __snake_case = term.lower() return (len([doc for doc in docs if term in doc] ), len(_lowerCamelCase )) def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Optional[int]=False )-> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> float: '''simple docstring''' return round(tf * idf , 3 )
24
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int a_ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =None def lowerCamelCase__ ( _a , _a , ): import pyspark def generate_fn(): SCREAMING_SNAKE_CASE : str = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id")) for partition_id in partition_order: SCREAMING_SNAKE_CASE : int = df_with_partition_id.select("*").where(f"part_id = {partition_id}").drop("part_id") SCREAMING_SNAKE_CASE : Tuple = partition_df.collect() SCREAMING_SNAKE_CASE : int = 0 for row in rows: yield f"{partition_id}_{row_id}", row.asDict() row_id += 1 return generate_fn class _UpperCamelCase ( _BaseExamplesIterable ): '''simple docstring''' def __init__( self : Dict , a : "pyspark.sql.DataFrame" , a : str=None , ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = df SCREAMING_SNAKE_CASE : Any = partition_order or range(self.df.rdd.getNumPartitions() ) SCREAMING_SNAKE_CASE : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : Optional[Any] ) -> List[Any]: """simple docstring""" yield from self.generate_examples_fn() def __UpperCamelCase ( self : Optional[int] , a : np.random.Generator ) -> "SparkExamplesIterable": """simple docstring""" SCREAMING_SNAKE_CASE : str = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a ) return SparkExamplesIterable(self.df , partition_order=a ) def __UpperCamelCase ( self : List[Any] , a : int , a : int ) -> "SparkExamplesIterable": """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.split_shard_indices_by_worker(a , a ) return SparkExamplesIterable(self.df , partition_order=a ) @property def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return len(self.partition_order ) class _UpperCamelCase ( datasets.DatasetBuilder ): '''simple docstring''' lowerCamelCase__ =SparkConfig def __init__( self : Tuple , a : "pyspark.sql.DataFrame" , a : str = None , a : str = None , **a : Optional[int] , ) -> Tuple: """simple docstring""" import pyspark SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() SCREAMING_SNAKE_CASE : int = df SCREAMING_SNAKE_CASE : Optional[Any] = working_dir super().__init__( cache_dir=a , config_name=str(self.df.semanticHash() ) , **a , ) def __UpperCamelCase ( self : str ) -> Tuple: """simple docstring""" def create_cache_and_write_probe(a : Optional[int] ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a ) SCREAMING_SNAKE_CASE : Tuple = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: SCREAMING_SNAKE_CASE : Optional[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Optional[Any] , a : datasets.download.download_manager.DownloadManager ) -> Any: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __UpperCamelCase ( self : int , a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" import pyspark def get_arrow_batch_size(a : Dict ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) SCREAMING_SNAKE_CASE : Tuple = self.df.count() SCREAMING_SNAKE_CASE : int = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. SCREAMING_SNAKE_CASE : str = ( self.df.limit(a ) .repartition(1 ) .mapInArrow(a , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) SCREAMING_SNAKE_CASE : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. SCREAMING_SNAKE_CASE : Tuple = min(a , int(approx_total_size / max_shard_size ) ) SCREAMING_SNAKE_CASE : Tuple = self.df.repartition(a ) def __UpperCamelCase ( self : Any , a : str , a : str , a : int , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: """simple docstring""" import pyspark SCREAMING_SNAKE_CASE : Dict = ParquetWriter if file_format == "parquet" else ArrowWriter SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self._working_dir , os.path.basename(a ) ) if self._working_dir else fpath SCREAMING_SNAKE_CASE : List[Any] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. SCREAMING_SNAKE_CASE : List[Any] = self.config.features SCREAMING_SNAKE_CASE : Dict = self._writer_batch_size SCREAMING_SNAKE_CASE : int = self._fs.storage_options def write_arrow(a : List[Any] ): # Within the same SparkContext, no two task attempts will share the same attempt ID. SCREAMING_SNAKE_CASE : List[str] = pyspark.TaskContext().taskAttemptId() SCREAMING_SNAKE_CASE : List[str] = next(a , a ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = writer_class( features=a , path=working_fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE : Dict = pa.Table.from_batches([first_batch] ) writer.write_table(a ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 SCREAMING_SNAKE_CASE : Any = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , writer_batch_size=a , storage_options=a , embed_local_files=a , ) SCREAMING_SNAKE_CASE : str = pa.Table.from_batches([batch] ) writer.write_table(a ) if writer._num_bytes > 0: SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(os.path.dirname(a ) , os.path.basename(a ) ) shutil.move(a , a ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.df.mapInArrow(a , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __UpperCamelCase ( self : Optional[Any] , a : "datasets.SplitGenerator" , a : str = "arrow" , a : Optional[Union[str, int]] = None , a : Optional[int] = None , **a : str , ) -> str: """simple docstring""" self._validate_cache_dir() SCREAMING_SNAKE_CASE : int = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a ) SCREAMING_SNAKE_CASE : Dict = not is_remote_filesystem(self._fs ) SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join if is_local else posixpath.join SCREAMING_SNAKE_CASE : Optional[int] = "-TTTTT-SSSSS-of-NNNNN" SCREAMING_SNAKE_CASE : Dict = F"{self.name}-{split_generator.name}{SUFFIX}.{file_format}" SCREAMING_SNAKE_CASE : Dict = path_join(self._output_dir , a ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [] for task_id, content in self._prepare_split_single(a , a , a ): ( ( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) ,( SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a ) SCREAMING_SNAKE_CASE : List[str] = total_num_examples SCREAMING_SNAKE_CASE : str = total_num_bytes # should rename everything at the end logger.debug(F"Renaming {total_shards} shards." ) if total_shards > 1: SCREAMING_SNAKE_CASE : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. SCREAMING_SNAKE_CASE : Optional[Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a : int , a : int , a : int , ): rename( a , fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , fpath.replace("TTTTT-SSSSS" , F"{global_shard_id:05d}" ).replace("NNNNN" , F"{total_shards:05d}" ) , ) SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = 0 for i in range(len(a ) ): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[int] = task_id_and_num_shards[i] for shard_id in range(a ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a , len(a ) ).map(lambda a : _rename_shard(*a ) ).collect() else: # don't use any pattern SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , F"{shard_id:05d}" ).replace("TTTTT" , F"{task_id:05d}" ) , fpath.replace(a , "" ) , ) def __UpperCamelCase ( self : int , a : "datasets.SplitGenerator" , ) -> SparkExamplesIterable: """simple docstring""" return SparkExamplesIterable(self.df )
25
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase = False ) -> bool: """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( """Warning: upper bound of deterministic test is exceeded. """ """Pass allow_probable=True to allow probabilistic test. """ """A return value of True indicates a probable prime.""" ) # array bounds provided by analysis __snake_case : List[Any] = [ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] __snake_case : str = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(_lowerCamelCase , 1 ): if n < _p: # then we have our last prime to check __snake_case : Tuple = primes[:idx] break __snake_case , __snake_case : Union[str, Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __snake_case : Tuple = False for r in range(_lowerCamelCase ): __snake_case : Tuple = pow(_lowerCamelCase , d * 2**r , _lowerCamelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __snake_case : List[str] = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _a ( ) -> None: """simple docstring""" assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
26
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
0
from collections.abc import Callable def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _A = a _A = b if function(_SCREAMING_SNAKE_CASE ) == 0: # one of the a or b is a root for the function return a elif function(_SCREAMING_SNAKE_CASE ) == 0: return b elif ( function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_SCREAMING_SNAKE_CASE ) == 0: return mid elif function(_SCREAMING_SNAKE_CASE ) * function(_SCREAMING_SNAKE_CASE ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
27
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
0
'''simple docstring''' from collections.abc import Callable def lowercase__( __UpperCamelCase: Callable[[float], float] ,__UpperCamelCase: float ,__UpperCamelCase: float ): """simple docstring""" SCREAMING_SNAKE_CASE : float = a SCREAMING_SNAKE_CASE : float = b if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCamelCase ) == 0: return b elif ( function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: SCREAMING_SNAKE_CASE : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__UpperCamelCase ) == 0: return mid elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0: SCREAMING_SNAKE_CASE : Dict = mid else: SCREAMING_SNAKE_CASE : List[Any] = mid SCREAMING_SNAKE_CASE : Dict = start + (end - start) / 2.0 return mid def lowercase__( __UpperCamelCase: float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
28
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowerCamelCase ( lowerCAmelCase ): a__: torch.FloatTensor class __lowerCamelCase ( lowerCAmelCase , lowerCAmelCase ): @register_to_config def __init__( self , UpperCAmelCase = 16 , UpperCAmelCase = 88 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 32 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = True , UpperCAmelCase = True , ): super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = in_channels lowerCamelCase_ = torch.nn.GroupNorm(num_groups=UpperCAmelCase , num_channels=UpperCAmelCase , eps=1e-6 , affine=UpperCAmelCase ) lowerCamelCase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) # 3. Define transformers blocks lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , dropout=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , activation_fn=UpperCAmelCase , attention_bias=UpperCAmelCase , double_self_attention=UpperCAmelCase , norm_elementwise_affine=UpperCAmelCase , ) for d in range(UpperCAmelCase ) ] ) lowerCamelCase_ = nn.Linear(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=None , UpperCAmelCase = True , ): lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = hidden_states.shape lowerCamelCase_ = batch_frames // num_frames lowerCamelCase_ = hidden_states lowerCamelCase_ = hidden_states[None, :].reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase_ = self.norm(UpperCAmelCase ) lowerCamelCase_ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = self.proj_in(UpperCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase_ = block( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , class_labels=UpperCAmelCase , ) # 3. Output lowerCamelCase_ = self.proj_out(UpperCAmelCase ) lowerCamelCase_ = ( hidden_states[None, None, :] .reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase_ = hidden_states.reshape(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase )
29
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __a = 16 __a = 32 def lowerCamelCase__ ( _lowercase , _lowercase = 16 , _lowercase = "bert-base-cased" ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = AutoTokenizer.from_pretrained(_lowercase ) UpperCAmelCase_ : int = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : Tuple = datasets.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=_lowercase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase_ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) UpperCAmelCase_ : int = DataLoader( tokenized_datasets['''validation'''] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase ) return train_dataloader, eval_dataloader def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' model.eval() UpperCAmelCase_ : List[str] = 0 for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase_ : Any = model(**_lowercase ) UpperCAmelCase_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase_, UpperCAmelCase_ : int = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase ) - 1: UpperCAmelCase_ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase_ : Union[str, Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) UpperCAmelCase_ : Union[str, Any] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase_ : Optional[Any] = config['''lr'''] UpperCAmelCase_ : Union[str, Any] = int(config['''num_epochs'''] ) UpperCAmelCase_ : Optional[Any] = int(config['''seed'''] ) UpperCAmelCase_ : int = int(config['''batch_size'''] ) UpperCAmelCase_ : List[str] = args.model_name_or_path set_seed(_lowercase ) UpperCAmelCase_, UpperCAmelCase_ : int = get_dataloaders(_lowercase , _lowercase , _lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase_ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase ) # Instantiate optimizer UpperCAmelCase_ : List[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase_ : str = optimizer_cls(params=model.parameters() , lr=_lowercase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase_ : Optional[int] = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Optional[Any] = (len(_lowercase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase_ : List[str] = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: UpperCAmelCase_ : List[str] = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase_ : Tuple = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : str = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ : List[str] = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase_ : Union[str, Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase_ : Dict = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCAmelCase_ : int = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase_ : Union[str, Any] = int(_lowercase ) + 1 UpperCAmelCase_ : List[str] = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) accelerator.print('''resumed checkpoint performance:''' , _lowercase ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCAmelCase_ : Any = json.load(_lowercase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase_ : Union[str, Any] = {} for epoch in range(_lowercase , _lowercase ): model.train() for step, batch in enumerate(_lowercase ): UpperCAmelCase_ : List[str] = model(**_lowercase ) UpperCAmelCase_ : int = outputs.loss UpperCAmelCase_ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase_ : str = f'''epoch_{epoch}''' UpperCAmelCase_ : Optional[Any] = os.path.join(args.output_dir , _lowercase ) accelerator.save_state(_lowercase ) UpperCAmelCase_ : Any = evaluation_loop(_lowercase , _lowercase , _lowercase , _lowercase ) UpperCAmelCase_ : Union[str, Any] = accuracy UpperCAmelCase_ : List[str] = lr_scheduler.get_lr()[0] UpperCAmelCase_ : List[Any] = optimizer.param_groups[0]['''lr'''] UpperCAmelCase_ : Any = epoch UpperCAmelCase_ : Any = overall_step accelerator.print(f'''epoch {epoch}:''' , _lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(_lowercase , _lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=_lowercase , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_lowercase , ) parser.add_argument( '''--output_dir''' , type=_lowercase , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=_lowercase , default=_lowercase , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=_lowercase , default=_lowercase , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=_lowercase , default=2 , help='''Number of train epochs.''' , ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : Dict = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(_lowercase , _lowercase ) if __name__ == "__main__": main()
30
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "" lowercase_ = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : List[str] , _lowerCAmelCase : Optional[DatasetInfo] = None , _lowerCAmelCase : Optional[str] = None , **_lowerCAmelCase : Optional[int] , ): super().__init__(self , **_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = repo_info SCREAMING_SNAKE_CASE_ = token SCREAMING_SNAKE_CASE_ = None def lowerCAmelCase_ ( self : Tuple ): if self.dir_cache is None: SCREAMING_SNAKE_CASE_ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE_ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_lowerCAmelCase ): {'name': str(_lowerCAmelCase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def lowerCAmelCase_ ( self : Dict , _lowerCAmelCase : str , _lowerCAmelCase : str = "rb" , **_lowerCAmelCase : Optional[Any] , ): if not isinstance(self.repo_info , _lowerCAmelCase ): raise NotImplementedError(F"Open is only implemented for dataset repositories, but got {self.repo_info}" ) SCREAMING_SNAKE_CASE_ = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def lowerCAmelCase_ ( self : str , _lowerCAmelCase : Optional[Any] , **_lowerCAmelCase : Any ): self._get_dirs() SCREAMING_SNAKE_CASE_ = self._strip_protocol(_lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCAmelCase ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any]=False , **_lowerCAmelCase : List[str] ): self._get_dirs() SCREAMING_SNAKE_CASE_ = PurePosixPath(path.strip('/' ) ) SCREAMING_SNAKE_CASE_ = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE_ = PurePosixPath(p.strip('/' ) ) SCREAMING_SNAKE_CASE_ = p.parent if root == path: SCREAMING_SNAKE_CASE_ = f SCREAMING_SNAKE_CASE_ = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
31
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __UpperCamelCase : def __init__( self ): _UpperCAmelCase = '''''' _UpperCAmelCase = '''''' _UpperCAmelCase = [] _UpperCAmelCase = 0 _UpperCAmelCase = 256 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 0 def UpperCamelCase( self , _UpperCamelCase ): _UpperCAmelCase = cva.imread(_UpperCamelCase , 0 ) _UpperCAmelCase = copy.deepcopy(self.img ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) _UpperCAmelCase = np.sum(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): _UpperCAmelCase = x[i] / self.k self.sk += prk _UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: _UpperCAmelCase = int(last % last ) _UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_UpperCamelCase ) _UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) _UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): _UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: _UpperCAmelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def UpperCamelCase( self ): plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCamelCase( self ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCAmelCase_ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") UpperCAmelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
32
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
class __magic_name__ : '''simple docstring''' def __init__( self:Optional[Any] ): snake_case__ = {} # Mapping from char to TrieNode snake_case__ = False def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:list[str] ): for word in words: self.insert(_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ): snake_case__ = self for char in word: if char not in curr.nodes: snake_case__ = TrieNode() snake_case__ = curr.nodes[char] snake_case__ = True def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ): snake_case__ = self for char in word: if char not in curr.nodes: return False snake_case__ = curr.nodes[char] return curr.is_leaf def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ): def _delete(_a:TrieNode , _a:str , _a:int ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False snake_case__ = False return len(curr.nodes ) == 0 snake_case__ = word[index] snake_case__ = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case__ = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> None: if node.is_leaf: print(__lowerCAmelCase , end=''' ''' ) for key, value in node.nodes.items(): print_words(__lowerCAmelCase , word + key ) def SCREAMING_SNAKE_CASE ( ) -> bool: snake_case__ = '''banana bananas bandana band apple all beast'''.split() snake_case__ = TrieNode() root.insert_many(__lowerCAmelCase ) # print_words(root, "") assert all(root.find(__lowerCAmelCase ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> None: print(str(__lowerCAmelCase ) , '''works!''' if passes else '''doesn\'t work :(''' ) def SCREAMING_SNAKE_CASE ( ) -> None: assert test_trie() def SCREAMING_SNAKE_CASE ( ) -> None: print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
33
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
0
"""simple docstring""" from random import randint from tempfile import TemporaryFile import numpy as np def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 if start < end: UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(_lowercase ,_lowercase ,_lowercase ) count += _in_place_quick_sort(_lowercase ,_lowercase ,p - 1 ) count += _in_place_quick_sort(_lowercase ,p + 1 ,_lowercase ) return count def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" UpperCamelCase = 0 UpperCamelCase = randint(_lowercase ,_lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(_lowercase ,_lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count SCREAMING_SNAKE_CASE_ = TemporaryFile() SCREAMING_SNAKE_CASE_ = 100 # 1000 elements are to be sorted SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 0, 1 # mean and standard deviation SCREAMING_SNAKE_CASE_ = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array SCREAMING_SNAKE_CASE_ = np.load(outfile) SCREAMING_SNAKE_CASE_ = len(M) - 1 SCREAMING_SNAKE_CASE_ = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
34
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Optional[int] , _lowercase : Union[str, Any] , _lowercase : Any=2 , _lowercase : str=True , _lowercase : List[Any]=False , _lowercase : Optional[Any]=10 , _lowercase : Tuple=3 , _lowercase : int=32 * 8 , _lowercase : str=32 * 8 , _lowercase : Optional[Any]=4 , _lowercase : Optional[int]=64 , ): SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : Any = use_auxiliary_loss SCREAMING_SNAKE_CASE__ : Optional[Any] = num_queries SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = min_size SCREAMING_SNAKE_CASE__ : Dict = max_size SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dim SCREAMING_SNAKE_CASE__ : str = hidden_dim def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowercase ) SCREAMING_SNAKE_CASE__ : str = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowercase ) SCREAMING_SNAKE_CASE__ : int = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowercase ) > 0.5 ).float() SCREAMING_SNAKE_CASE__ : List[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowercase ) > 0.5).long() SCREAMING_SNAKE_CASE__ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : str = MaskaFormerConfig( hidden_size=self.hidden_dim , ) SCREAMING_SNAKE_CASE__ : List[str] = self.num_queries SCREAMING_SNAKE_CASE__ : List[Any] = self.num_labels SCREAMING_SNAKE_CASE__ : Any = [1, 1, 1, 1] SCREAMING_SNAKE_CASE__ : int = self.num_channels SCREAMING_SNAKE_CASE__ : List[str] = 64 SCREAMING_SNAKE_CASE__ : Optional[int] = 1_28 SCREAMING_SNAKE_CASE__ : int = self.hidden_dim SCREAMING_SNAKE_CASE__ : int = self.hidden_dim SCREAMING_SNAKE_CASE__ : Optional[int] = self.hidden_dim return config def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = {'''pixel_values''': pixel_values, '''pixel_mask''': pixel_mask} return config, inputs_dict def lowercase__ ( self : List[Any] , _lowercase : int , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = output.encoder_hidden_states SCREAMING_SNAKE_CASE__ : Any = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE__ : Tuple = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowercase ) , config.decoder_layers ) def lowercase__ ( self : str , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : Tuple , _lowercase : Any=False ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = MaskaFormerModel(config=_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = model(_lowercase , output_hidden_states=_lowercase ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowercase , _lowercase ) def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : List[Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Any = MaskaFormerForUniversalSegmentation(config=_lowercase ) model.to(_lowercase ) model.eval() def comm_check_on_output(_lowercase : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Any = model(pixel_values=_lowercase , pixel_mask=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = model(_lowercase ) comm_check_on_output(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = model( pixel_values=_lowercase , pixel_mask=_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) comm_check_on_output(_lowercase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Any = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase : str = False lowerCamelCase : Dict = False lowerCamelCase : Dict = False lowerCamelCase : Any = False def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self , config_class=_lowercase , has_text_modality=_lowercase ) def lowercase__ ( self : str ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_lowercase ) @unittest.skip(reason='''Mask2Former does not use inputs_embeds''' ) def lowercase__ ( self : int ): pass @unittest.skip(reason='''Mask2Former does not have a get_input_embeddings method''' ) def lowercase__ ( self : List[str] ): pass @unittest.skip(reason='''Mask2Former is not a generative model''' ) def lowercase__ ( self : List[Any] ): pass @unittest.skip(reason='''Mask2Former does not use token embeddings''' ) def lowercase__ ( self : Optional[int] ): pass @require_torch_multi_gpu @unittest.skip( reason='''Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Dict ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : int = model_class(_lowercase ) SCREAMING_SNAKE_CASE__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @slow def lowercase__ ( self : Dict ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskaFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[str] = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE__ : Union[str, Any] = { '''pixel_values''': torch.randn((2, 3, *size) , device=_lowercase ), '''mask_labels''': torch.randn((2, 10, *size) , device=_lowercase ), '''class_labels''': torch.zeros(2 , 10 , device=_lowercase ).long(), } SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.get_config() SCREAMING_SNAKE_CASE__ : List[str] = MaskaFormerForUniversalSegmentation(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_lowercase , **_lowercase , output_hidden_states=_lowercase ) def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Optional[int] = model_class(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase , output_attentions=_lowercase ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self : List[Any] ): if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE__ : Optional[int] = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : str = model_class(_lowercase ) model.to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : int = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ).loss loss.backward() def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : str = self.all_model_classes[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = model_class(_lowercase ).to(_lowercase ) model.train() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_lowercase , mask_labels=_lowercase , class_labels=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Dict = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowercase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a_ :Optional[int] = 1e-4 def a ( ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @slow class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : Tuple ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self : Any ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Tuple = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_84, 3_84) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Any = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_lowercase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE__ : str = image_processor(_lowercase , return_tensors='''pt''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs['''pixel_values'''].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_lowercase , (1, 3, 3_84, 3_84) ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Tuple = model(**_lowercase ) # masks_queries_logits SCREAMING_SNAKE_CASE__ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE__ : int = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE__ : str = torch.tensor(_lowercase ).to(_lowercase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowercase , atol=_lowercase ) ) # class_queries_logits SCREAMING_SNAKE_CASE__ : Tuple = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE__ : Dict = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(_lowercase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Any = self.default_image_processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )] , segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )] , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ : Tuple = inputs['''pixel_values'''].to(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = [el.to(_lowercase ) for el in inputs['''mask_labels''']] SCREAMING_SNAKE_CASE__ : List[Any] = [el.to(_lowercase ) for el in inputs['''class_labels''']] with torch.no_grad(): SCREAMING_SNAKE_CASE__ : List[str] = model(**_lowercase ) self.assertTrue(outputs.loss is not None )
35
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __lowercase : List[str] = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __lowercase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
36
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
'''simple docstring''' from __future__ import annotations import math def UpperCamelCase__ ( __magic_name__ : float , __magic_name__ : int ) -> float: '''simple docstring''' snake_case__ : Dict = u for i in range(1 , __magic_name__ ): snake_case__ : Tuple = temp * (u - i) return temp def UpperCamelCase__ ( ) -> None: '''simple docstring''' snake_case__ : str = int(input("""enter the numbers of values: """ ) ) snake_case__ : list[list[float]] = [] for _ in range(__magic_name__ ): y.append([] ) for i in range(__magic_name__ ): for j in range(__magic_name__ ): y[i].append(__magic_name__ ) snake_case__ : List[Any] = 0 print("""enter the values of parameters in a list: """ ) snake_case__ : Tuple = list(map(__magic_name__ , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(__magic_name__ ): snake_case__ : Tuple = float(input() ) snake_case__ : Optional[Any] = int(input("""enter the value to interpolate: """ ) ) snake_case__ : Optional[int] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __magic_name__ ): for j in range(n - i ): snake_case__ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case__ : Optional[int] = y[0][0] for i in range(1 , __magic_name__ ): summ += (ucal(__magic_name__ , __magic_name__ ) * y[0][i]) / math.factorial(__magic_name__ ) print(f"the value at {value} is {summ}" ) if __name__ == "__main__": main()
38
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) lowerCAmelCase_ = logging.getLogger() def __SCREAMING_SNAKE_CASE (): snake_case_ = argparse.ArgumentParser() parser.add_argument('''-f''' ) snake_case_ = parser.parse_args() return args.f class snake_case_ ( __A ): '''simple docstring''' def snake_case__( self : Dict ) ->None: snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCamelCase ) def snake_case__( self : List[str] , _UpperCamelCase : Any ) ->Dict: snake_case_ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , '''run_glue_deebert.py''' ) with patch.object(_UpperCamelCase , '''argv''' , _UpperCamelCase ): snake_case_ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCamelCase , 0.666 ) @slow @require_torch_non_multi_gpu def snake_case__( self : Union[str, Any] ) ->Union[str, Any]: snake_case_ = ''' --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage '''.split() self.run_and_check(_UpperCamelCase ) snake_case_ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_UpperCamelCase ) snake_case_ = ''' --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 '''.split() self.run_and_check(_UpperCamelCase )
39
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer A__ : int = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast A__ : Dict = TaTokenizerFast A__ : Dict = {"""configuration_mt5""": ["""MT5Config""", """MT5OnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ """MT5EncoderModel""", """MT5ForConditionalGeneration""", """MT5ForQuestionAnswering""", """MT5Model""", """MT5PreTrainedModel""", """MT5Stack""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""TFMT5EncoderModel""", """TFMT5ForConditionalGeneration""", """TFMT5Model"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = ["""FlaxMT5EncoderModel""", """FlaxMT5ForConditionalGeneration""", """FlaxMT5Model"""] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys A__ : Union[str, Any] = _LazyModule( __name__, globals()["""__file__"""], _import_structure, extra_objects={"""MT5Tokenizer""": MTaTokenizer, """MT5TokenizerFast""": MTaTokenizerFast}, module_spec=__spec__, )
13
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __UpperCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' __UpperCAmelCase = '''======= >>>>>>> ''' __UpperCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __UpperCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def UpperCamelCase ( snake_case__ : Namespace ) -> List[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : int = parser.add_parser( 'convert', help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.', ) train_parser.add_argument( '--tfds_path', type=SCREAMING_SNAKE_CASE_, required=SCREAMING_SNAKE_CASE_, help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.', ) train_parser.add_argument( '--datasets_directory', type=SCREAMING_SNAKE_CASE_, required=SCREAMING_SNAKE_CASE_, help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, *SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase : Dict = get_logger('datasets-cli/converting' ) UpperCamelCase : Optional[Any] = tfds_path UpperCamelCase : Union[str, Any] = datasets_directory def snake_case_ ( self ) -> int: if os.path.isdir(self._tfds_path ): UpperCamelCase : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCamelCase : Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) UpperCamelCase : Optional[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCamelCase : str = [] UpperCamelCase : Any = [] UpperCamelCase : int = {} if os.path.isdir(self._tfds_path ): UpperCamelCase : str = os.listdir(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Any = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) UpperCamelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if not os.path.isfile(SCREAMING_SNAKE_CASE_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(SCREAMING_SNAKE_CASE_, encoding='utf-8' ) as f: UpperCamelCase : Any = f.readlines() UpperCamelCase : Tuple = [] UpperCamelCase : Dict = False UpperCamelCase : Tuple = False UpperCamelCase : Any = [] for line in lines: UpperCamelCase : str = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCamelCase : Tuple = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here UpperCamelCase : str = '' continue elif "from absl import logging" in out_line: UpperCamelCase : Dict = 'from datasets import logging\n' elif "getLogger" in out_line: UpperCamelCase : List[str] = out_line.replace('getLogger', 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCamelCase : str = True UpperCamelCase : List[str] = list(filter(lambda SCREAMING_SNAKE_CASE_ : e in out_line, SCREAMING_SNAKE_CASE_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(SCREAMING_SNAKE_CASE_ ) + '\n' ) out_lines.append(SCREAMING_SNAKE_CASE_ ) out_lines.append(SCREAMING_SNAKE_CASE_ ) continue else: for pattern, replacement in TO_CONVERT: UpperCamelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCamelCase : int = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)', SCREAMING_SNAKE_CASE_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) UpperCamelCase : Tuple = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCamelCase : Tuple = True out_lines.append(SCREAMING_SNAKE_CASE_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCamelCase : Optional[Any] = f_name.replace('.py', '' ) UpperCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = os.path.join(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) os.makedirs(SCREAMING_SNAKE_CASE_, exist_ok=SCREAMING_SNAKE_CASE_ ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(SCREAMING_SNAKE_CASE_ ) if needs_manual_update: with_manual_update.append(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_, 'w', encoding='utf-8' ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCamelCase : Union[str, Any] = os.path.basename(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = imports_to_builder_map[f_name.replace('.py', '' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
40
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
0
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort lowerCAmelCase__ = '''1''' lowerCAmelCase__ = '''0''' lowerCAmelCase__ = '''1''' lowerCAmelCase__ = ort.SessionOptions() lowerCAmelCase__ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('''Create inference session...''') lowerCAmelCase__ = ['''TensorrtExecutionProvider''', '''CUDAExecutionProvider'''] lowerCAmelCase__ = ort.InferenceSession('''model.onnx''', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase__ = ort.RunOptions() lowerCAmelCase__ = 128 lowerCAmelCase__ = 1 lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase__ = np.ones((batch, sequence), dtype=np.intaa) print('''Warm up phase...''') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Start inference...''') lowerCAmelCase__ = time.time() lowerCAmelCase__ = 2000 lowerCAmelCase__ = {} for iter in range(max_iters): lowerCAmelCase__ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('''Average Inference Time = {:.3f} ms'''.format((time.time() - start_time) * 1000 / max_iters))
41
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=[1, 2, 1] , SCREAMING_SNAKE_CASE_=[2, 2, 4] , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=2.0 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=["stage1", "stage2", "stage3"] , SCREAMING_SNAKE_CASE_=[1, 2, 3] , ) -> Any: __lowerCamelCase : Optional[Any] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Optional[int] = image_size __lowerCamelCase : Optional[int] = patch_size __lowerCamelCase : Optional[Any] = num_channels __lowerCamelCase : Dict = embed_dim __lowerCamelCase : List[Any] = depths __lowerCamelCase : int = num_heads __lowerCamelCase : Optional[Any] = window_size __lowerCamelCase : Optional[Any] = mlp_ratio __lowerCamelCase : List[str] = qkv_bias __lowerCamelCase : List[str] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : List[Any] = drop_path_rate __lowerCamelCase : Any = hidden_act __lowerCamelCase : Union[str, Any] = use_absolute_embeddings __lowerCamelCase : Any = patch_norm __lowerCamelCase : Optional[Any] = layer_norm_eps __lowerCamelCase : str = initializer_range __lowerCamelCase : Dict = is_training __lowerCamelCase : Optional[Any] = scope __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[str] = type_sequence_label_size __lowerCamelCase : Dict = encoder_stride __lowerCamelCase : Union[str, Any] = out_features __lowerCamelCase : str = out_indices def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : List[str] = None if self.use_labels: __lowerCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase_ ( self ) -> Optional[int]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Dict = MaskFormerSwinModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __lowerCamelCase : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Tuple = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Any = model(SCREAMING_SNAKE_CASE_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : str = ['stem'] __lowerCamelCase : Optional[Any] = MaskFormerSwinBackbone(config=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = config_and_inputs __lowerCamelCase : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) lowerCamelCase : int = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} lowerCamelCase : int = False lowerCamelCase : int = False lowerCamelCase : str = False lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = MaskFormerSwinModelTester(self ) __lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with' ' `nn.DataParallel`' ) ) def lowercase_ ( self ) -> int: pass def lowercase_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ) -> Tuple: return def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[str]: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('Swin does not use inputs_embeds' ) def lowercase_ ( self ) -> Optional[int]: pass @unittest.skip('Swin does not support feedforward chunking' ) def lowercase_ ( self ) -> Dict: pass def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Dict = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase , __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[str] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : str = [*signature.parameters.keys()] __lowerCamelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='MaskFormerSwin is only used as backbone and doesn\'t support output_attentions' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='MaskFormerSwin is only used as an internal backbone' ) def lowercase_ ( self ) -> List[Any]: pass def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : int = outputs.hidden_states __lowerCamelCase : Tuple = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # Swin has a different seq_length __lowerCamelCase : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __lowerCamelCase : Dict = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Optional[int] = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __lowerCamelCase : str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __lowerCamelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __lowerCamelCase : str = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __lowerCamelCase : str = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : Tuple = True self.check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (padded_height, padded_width) ) @unittest.skip(reason='MaskFormerSwin doesn\'t have pretrained checkpoints' ) def lowercase_ ( self ) -> Optional[Any]: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Any: pass @unittest.skip(reason='This will be fixed once MaskFormerSwin is replaced by native Swin' ) def lowercase_ ( self ) -> Union[str, Any]: pass def lowercase_ ( self ) -> Tuple: __lowerCamelCase , __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = 0 return t def check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_={} ): with torch.no_grad(): __lowerCamelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = model(**SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).to_tuple() def recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , set_nan_tensor_to_zero(SCREAMING_SNAKE_CASE_ ) , atol=1E-5 ) , msg=( 'Tuple and dict output are not equal. Difference:' f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}. Dict has' f' `nan`: {torch.isnan(SCREAMING_SNAKE_CASE_ ).any()} and `inf`: {torch.isinf(SCREAMING_SNAKE_CASE_ )}.' ) , ) recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: __lowerCamelCase : str = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() __lowerCamelCase : Optional[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) __lowerCamelCase : Any = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) check_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , {'output_hidden_states': True} ) @require_torch class UpperCAmelCase_ (unittest.TestCase , _UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () lowerCamelCase : List[str] = MaskFormerSwinConfig def lowercase_ ( self ) -> Tuple: __lowerCamelCase : List[str] = MaskFormerSwinModelTester(self ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Any = inputs_dict['pixel_values'].shape[0] for backbone_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = backbone_class(SCREAMING_SNAKE_CASE_ ) backbone.to(SCREAMING_SNAKE_CASE_ ) backbone.eval() __lowerCamelCase : int = backbone(**SCREAMING_SNAKE_CASE_ ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , SCREAMING_SNAKE_CASE_ ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __lowerCamelCase : Union[str, Any] = backbone(**SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __lowerCamelCase : Optional[int] = backbone(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(outputs.attentions )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
42
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
0
from math import ceil def _a ( SCREAMING_SNAKE_CASE = 10_01 ): """simple docstring""" lowercase__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowercase__ = 2 * i + 1 lowercase__ = 2 * i lowercase__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
43
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys A__ : List[str] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
13
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase__ : @staticmethod def lowerCamelCase_ ( *__A : Optional[Any],**__A : int ): pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.array(_lowerCAmelCase ) _lowerCamelCase : str = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowerCAmelCase_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def lowerCamelCase_ ( self : int,__A : Any,__A : Optional[int],__A : Optional[int] ): _lowerCamelCase : Tuple = MaskGenerationPipeline(model=__A,image_processor=__A ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Tuple,__A : List[Any],__A : Union[str, Any] ): pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def lowerCamelCase_ ( self : str ): pass @slow @require_torch def lowerCamelCase_ ( self : int ): _lowerCamelCase : int = pipeline("mask-generation",model="facebook/sam-vit-huge" ) _lowerCamelCase : Tuple = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg",points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : Optional[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (4_8_0, 6_4_0)}, "scores": 0.9967}, {"mask": {"hash": "453c7844bd", "shape": (4_8_0, 6_4_0)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (4_8_0, 6_4_0)}, "scores": 0.9909}, {"mask": {"hash": "64033ddc3f", "shape": (4_8_0, 6_4_0)}, "scores": 0.9879}, {"mask": {"hash": "801064ff79", "shape": (4_8_0, 6_4_0)}, "scores": 0.9834}, {"mask": {"hash": "6172f276ef", "shape": (4_8_0, 6_4_0)}, "scores": 0.9716}, {"mask": {"hash": "b49e60e084", "shape": (4_8_0, 6_4_0)}, "scores": 0.9612}, {"mask": {"hash": "a811e775fd", "shape": (4_8_0, 6_4_0)}, "scores": 0.9599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (4_8_0, 6_4_0)}, "scores": 0.9552}, {"mask": {"hash": "9d8257e080", "shape": (4_8_0, 6_4_0)}, "scores": 0.9532}, {"mask": {"hash": "32de6454a8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9516}, {"mask": {"hash": "af3d4af2c8", "shape": (4_8_0, 6_4_0)}, "scores": 0.9499}, {"mask": {"hash": "3c6db475fb", "shape": (4_8_0, 6_4_0)}, "scores": 0.9483}, {"mask": {"hash": "c290813fb9", "shape": (4_8_0, 6_4_0)}, "scores": 0.9464}, {"mask": {"hash": "b6f0b8f606", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (4_8_0, 6_4_0)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (4_8_0, 6_4_0)}, "scores": 0.9408}, {"mask": {"hash": "efb6cab859", "shape": (4_8_0, 6_4_0)}, "scores": 0.9335}, {"mask": {"hash": "1ff2eafb30", "shape": (4_8_0, 6_4_0)}, "scores": 0.9326}, {"mask": {"hash": "788b798e24", "shape": (4_8_0, 6_4_0)}, "scores": 0.9262}, {"mask": {"hash": "abea804f0e", "shape": (4_8_0, 6_4_0)}, "scores": 0.8999}, {"mask": {"hash": "7b9e8ddb73", "shape": (4_8_0, 6_4_0)}, "scores": 0.8986}, {"mask": {"hash": "cd24047c8a", "shape": (4_8_0, 6_4_0)}, "scores": 0.8984}, {"mask": {"hash": "6943e6bcbd", "shape": (4_8_0, 6_4_0)}, "scores": 0.8873}, {"mask": {"hash": "b5f47c9191", "shape": (4_8_0, 6_4_0)}, "scores": 0.8871} ],) # fmt: on @require_torch @slow def lowerCamelCase_ ( self : Optional[Any] ): _lowerCamelCase : Union[str, Any] = "facebook/sam-vit-huge" _lowerCamelCase : Tuple = pipeline("mask-generation",model=__A ) _lowerCamelCase : Union[str, Any] = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg",pred_iou_thresh=1,points_per_batch=2_5_6 ) # Shortening by hashing _lowerCamelCase : List[Any] = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(__A ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__A,decimals=4 ),[ {"mask": {"hash": "115ad19f5f", "shape": (4_8_0, 6_4_0)}, "scores": 1.0444}, {"mask": {"hash": "6affa964c6", "shape": (4_8_0, 6_4_0)}, "scores": 1.0210}, {"mask": {"hash": "dfe28a0388", "shape": (4_8_0, 6_4_0)}, "scores": 1.0167}, {"mask": {"hash": "c0a5f4a318", "shape": (4_8_0, 6_4_0)}, "scores": 1.0132}, {"mask": {"hash": "fe8065c197", "shape": (4_8_0, 6_4_0)}, "scores": 1.0053}, ],)
44
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore A__ : Tuple = namedtuple("""covid_data""", """cases deaths recovered""") def UpperCAmelCase__ ( UpperCAmelCase_ : str = "https://www.worldometers.info/coronavirus/" ) -> covid_data: __lowerCamelCase : Union[str, Any] = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(UpperCAmelCase_ ).content ).xpath(UpperCAmelCase_ ) ) A__ : str = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
13
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt") @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[str] = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """The column name of the images in the files."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the training data."""} ) _snake_case : Optional[str] = field(default=lowercase , metadata={"""help""": """A folder containing the validation data."""} ) _snake_case : Optional[float] = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _snake_case : Optional[int] = field( default=lowercase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def __a ( self :List[str] ): UpperCamelCase__ :Optional[Any] = {} if self.train_dir is not None: UpperCamelCase__ :int = self.train_dir if self.validation_dir is not None: UpperCamelCase__ :List[str] = self.validation_dir UpperCamelCase__ :Optional[int] = data_files if data_files else None @dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : str = field( default=lowercase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) _snake_case : Optional[str] = field( default=lowercase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) _snake_case : Optional[str] = field( default=lowercase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) _snake_case : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) _snake_case : str = field(default=lowercase , metadata={"""help""": """Name or path of preprocessor config."""} ) _snake_case : bool = field( default=lowercase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) _snake_case : float = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) _snake_case : bool = field( default=lowercase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : float = field( default=1e-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def A ( lowercase__ : Union[str, Any] ) -> Dict: UpperCamelCase__ :Union[str, Any] = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ :Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :str = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowercase__ , lowercase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ :List[str] = training_args.get_process_log_level() logger.setLevel(lowercase__ ) transformers.utils.logging.set_verbosity(lowercase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ :List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCamelCase__ :Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase__ :int = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowercase__ ) and data_args.train_val_split > 0.0: UpperCamelCase__ :Optional[Any] = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCamelCase__ :Union[str, Any] = split["""train"""] UpperCamelCase__ :Any = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ :Optional[int] = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: UpperCamelCase__ :Any = ViTMAEConfig.from_pretrained(model_args.config_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Union[str, Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Optional[Any] = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(f"""New config: {config}""" ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: UpperCamelCase__ :str = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowercase__ ) elif model_args.model_name_or_path: UpperCamelCase__ :Dict = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowercase__ ) else: UpperCamelCase__ :Tuple = ViTImageProcessor() # create model if model_args.model_name_or_path: UpperCamelCase__ :Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowercase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCamelCase__ :Optional[int] = ViTMAEForPreTraining(lowercase__ ) if training_args.do_train: UpperCamelCase__ :Optional[Any] = ds["""train"""].column_names else: UpperCamelCase__ :Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCamelCase__ :Union[str, Any] = data_args.image_column_name elif "image" in column_names: UpperCamelCase__ :Optional[Any] = """image""" elif "img" in column_names: UpperCamelCase__ :List[str] = """img""" else: UpperCamelCase__ :List[Any] = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: UpperCamelCase__ :List[str] = image_processor.size["""shortest_edge"""] else: UpperCamelCase__ :int = (image_processor.size["""height"""], image_processor.size["""width"""]) UpperCamelCase__ :Any = Compose( [ Lambda(lambda lowercase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowercase__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : Tuple ): UpperCamelCase__ :List[Any] = [transforms(lowercase__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCamelCase__ :Optional[int] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowercase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCamelCase__ :Optional[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowercase__ ) # Compute absolute learning rate UpperCamelCase__ :Tuple = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: UpperCamelCase__ :Any = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer UpperCamelCase__ :Union[str, Any] = Trainer( model=lowercase__ , args=lowercase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowercase__ , data_collator=lowercase__ , ) # Training if training_args.do_train: UpperCamelCase__ :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ :int = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ :Dict = last_checkpoint UpperCamelCase__ :Union[str, Any] = trainer.train(resume_from_checkpoint=lowercase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase__ :int = trainer.evaluate() trainer.log_metrics("""eval""" , lowercase__ ) trainer.save_metrics("""eval""" , lowercase__ ) # Write model card and (optionally) push to hub UpperCamelCase__ :Optional[int] = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowercase__ ) else: trainer.create_model_card(**lowercase__ ) def A ( lowercase__ : Union[str, Any] ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
45
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping A__ : Optional[Any] = tuple[int, int] class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: __lowerCamelCase : set[int] = vertices __lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )): weight for edge, weight in edges.items() } def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) __lowerCamelCase : Union[str, Any] = weight def lowercase_ ( self ) -> Graph: __lowerCamelCase : Graph = Graph({min(self.vertices )} , {} ) __lowerCamelCase : EdgeT __lowerCamelCase : int __lowerCamelCase : EdgeT __lowerCamelCase : int while len(subgraph.vertices ) < len(self.vertices ): __lowerCamelCase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: __lowerCamelCase : Optional[int] = edge __lowerCamelCase : List[str] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return subgraph def UpperCAmelCase__ ( UpperCAmelCase_ : str = "p107_network.txt" ) -> int: __lowerCamelCase : str = os.path.abspath(os.path.dirname(UpperCAmelCase_ ) ) __lowerCamelCase : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : dict[EdgeT, int] = {} __lowerCamelCase : list[str] __lowerCamelCase : int __lowerCamelCase : int with open(UpperCAmelCase_ ) as f: __lowerCamelCase : Any = f.read().strip().split('\n' ) __lowerCamelCase : Any = [line.split(',' ) for line in data] for edgea in range(1 , len(UpperCAmelCase_ ) ): for edgea in range(UpperCAmelCase_ ): if adjaceny_matrix[edgea][edgea] != "-": __lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) __lowerCamelCase : Graph = Graph(set(range(len(UpperCAmelCase_ ) ) ) , UpperCAmelCase_ ) __lowerCamelCase : Graph = graph.prims_algorithm() __lowerCamelCase : int = sum(graph.edges.values() ) __lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
13
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowerCamelCase_( ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Optional[Any] = ArgumentParser( description=( "PyTorch TPU distributed training launch " "helper utility that will spawn up " "multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=_lowerCamelCase , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=_lowerCamelCase , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=_lowerCamelCase ) return parser.parse_args() def lowerCamelCase_( ) -> List[Any]: '''simple docstring''' _lowerCamelCase : Tuple = parse_args() # Import training_script as a module. _lowerCamelCase : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCamelCase : Any = script_fpath.stem _lowerCamelCase : str = importlib.import_module(_lowerCamelCase ) # Patch sys.argv _lowerCamelCase : Dict = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
46
'''simple docstring''' from collections.abc import Generator from math import sin def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: if len(UpperCAmelCase_ ) != 32: raise ValueError('Input must be of length 32' ) __lowerCamelCase : Dict = B'' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> bytes: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : Union[str, Any] = format(UpperCAmelCase_ , '08x' )[-8:] __lowerCamelCase : str = B'' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('utf-8' ) return little_endian_hex def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = B'' for char in message: bit_string += format(UpperCAmelCase_ , '08b' ).encode('utf-8' ) __lowerCamelCase : List[str] = format(len(UpperCAmelCase_ ) , '064b' ).encode('utf-8' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCAmelCase_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> Generator[list[int], None, None]: if len(UpperCAmelCase_ ) % 5_12 != 0: raise ValueError('Input must have length that\'s a multiple of 512' ) for pos in range(0 , len(UpperCAmelCase_ ) , 5_12 ): __lowerCamelCase : Any = bit_string[pos : pos + 5_12] __lowerCamelCase : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def UpperCAmelCase__ ( UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) __lowerCamelCase : List[Any] = format(UpperCAmelCase_ , '032b' ) __lowerCamelCase : Optional[int] = '' for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCAmelCase_ , 2 ) def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: return (a + b) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: if i < 0: raise ValueError('Input must be non-negative' ) if shift < 0: raise ValueError('Shift must be non-negative' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def UpperCAmelCase__ ( UpperCAmelCase_ : bytes ) -> bytes: __lowerCamelCase : Optional[Any] = preprocess(UpperCAmelCase_ ) __lowerCamelCase : Union[str, Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states __lowerCamelCase : Dict = 0x67_45_23_01 __lowerCamelCase : Union[str, Any] = 0xef_cd_ab_89 __lowerCamelCase : Optional[Any] = 0x98_ba_dc_fe __lowerCamelCase : Union[str, Any] = 0x10_32_54_76 __lowerCamelCase : List[str] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCAmelCase_ ): __lowerCamelCase : Dict = aa __lowerCamelCase : Tuple = ba __lowerCamelCase : List[Any] = ca __lowerCamelCase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f __lowerCamelCase : List[str] = d ^ (b & (c ^ d)) __lowerCamelCase : Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f __lowerCamelCase : Optional[int] = c ^ (d & (b ^ c)) __lowerCamelCase : Tuple = (5 * i + 1) % 16 elif i <= 47: __lowerCamelCase : str = b ^ c ^ d __lowerCamelCase : Any = (3 * i + 5) % 16 else: __lowerCamelCase : Union[str, Any] = c ^ (b | not_aa(UpperCAmelCase_ )) __lowerCamelCase : int = (7 * i) % 16 __lowerCamelCase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 __lowerCamelCase : Optional[Any] = d __lowerCamelCase : Tuple = c __lowerCamelCase : Optional[int] = b __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , left_rotate_aa(UpperCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total __lowerCamelCase : int = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[Any] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : List[str] = sum_aa(UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : Dict = reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) + reformat_hex(UpperCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
13
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : List[str] = LEDTokenizerFast __SCREAMING_SNAKE_CASE : Optional[Any] = True def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' super().setUp() __a : str = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __a : Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __a : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __a : Optional[int] = {'unk_token': '<unk>'} __a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) def __lowerCAmelCase ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , **SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def __lowerCAmelCase ( self : str ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __a : int = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[int] = tokenizer(SCREAMING_SNAKE_CASE__ , max_length=len(SCREAMING_SNAKE_CASE__ ) , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __a : int = batch.input_ids.tolist()[0] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_torch def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' __a : Any = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Dict = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('labels' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) @require_torch def __lowerCAmelCase ( self : Dict ): '''simple docstring''' __a : int = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Optional[int] = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , max_length=3_2 , padding='max_length' , return_tensors='pt' ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) @require_torch def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : List[Any] = tokenizer( ['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Dict = ['A long paragraph for summarization.'] __a : List[Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : List[str] = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __a : Union[str, Any] = tokenizer(text_target=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __a : Tuple = inputs['input_ids'] __a : List[str] = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __a : Tuple = ['Summary of the text.', 'Another summary.'] __a : Tuple = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __a : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ ) __a : Dict = [[0] * len(SCREAMING_SNAKE_CASE__ ) for x in encoded_output['input_ids']] __a : Optional[int] = tokenizer.pad(SCREAMING_SNAKE_CASE__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str ): '''simple docstring''' pass def __lowerCAmelCase ( self : int ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a : Tuple = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = 'A, <mask> AllenNLP sentence.' __a : Dict = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) __a : Dict = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __a : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __a : List[str] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
47
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Dict = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : List[Any] = 'rwkv' lowerCamelCase : Any = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=5_02_77 , SCREAMING_SNAKE_CASE_=10_24 , SCREAMING_SNAKE_CASE_=40_96 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : Tuple = context_length __lowerCamelCase : str = hidden_size __lowerCamelCase : List[str] = num_hidden_layers __lowerCamelCase : Any = attention_hidden_size if attention_hidden_size is not None else hidden_size __lowerCamelCase : Optional[int] = intermediate_size if intermediate_size is not None else 4 * hidden_size __lowerCamelCase : Optional[Any] = layer_norm_epsilon __lowerCamelCase : int = rescale_every __lowerCamelCase : Tuple = use_cache __lowerCamelCase : int = bos_token_id __lowerCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
0
'''simple docstring''' import torch from transformers import AutoModel class A ( torch.nn.Module ): def __init__( self : str , __magic_name__ : List[Any]="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__magic_name__ , self ).__init__() lowerCAmelCase__ = AutoModel.from_pretrained(__magic_name__ , return_dict=__magic_name__ ) lowerCAmelCase__ = torch.nn.CosineSimilarity(3 , 1E-08 ) lowerCAmelCase__ = torch.nn.Softmax(dim=1 ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , **__magic_name__ : Union[str, Any] ): """simple docstring""" return self.bert(**__magic_name__ ).last_hidden_state def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Optional[int]=1 ): """simple docstring""" return self.softmax(T * self.cos(__magic_name__ , __magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple ): """simple docstring""" lowerCAmelCase__ = W_supports["sizes"].tolist() lowerCAmelCase__ = W_supports["start_token_id"].item() lowerCAmelCase__ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase__ = self.BERT(**__magic_name__ ) lowerCAmelCase__ = self.BERT(**__magic_name__ ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = W_supports["input_ids"] == start_token_id lowerCAmelCase__ = W_supports["input_ids"] == end_token_id for i, size in enumerate(__magic_name__ ): if i == 0: lowerCAmelCase__ = 0 else: lowerCAmelCase__ = support_sizes[i - 1] lowerCAmelCase__ = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase__ = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase__ = torch.vstack((p_starts, p_start) ) lowerCAmelCase__ = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase__ = p_start lowerCAmelCase__ = p_end return p_starts, p_ends
48
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 10_00 ) -> int: __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
13
0
"""simple docstring""" from __future__ import annotations _lowercase : int = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class _UpperCAmelCase : def __init__( self : Dict , _lowercase : dict[str, list[str]] , _lowercase : str ): __UpperCAmelCase = graph # mapping node to its parent in resulting breadth first tree __UpperCAmelCase = {} __UpperCAmelCase = source_vertex def a ( self : List[Any] ): __UpperCAmelCase = {self.source_vertex} __UpperCAmelCase = None __UpperCAmelCase = [self.source_vertex] # first in first out queue while queue: __UpperCAmelCase = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_lowercase ) __UpperCAmelCase = vertex queue.append(_lowercase ) def a ( self : Optional[Any] , _lowercase : str ): if target_vertex == self.source_vertex: return self.source_vertex __UpperCAmelCase = self.parent.get(_lowercase ) if target_vertex_parent is None: __UpperCAmelCase = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_lowercase ) return self.shortest_path(_lowercase ) + F'''->{target_vertex}''' if __name__ == "__main__": _lowercase : Tuple = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
49
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : Dict = XGLMConfig lowerCamelCase : List[str] = {} lowerCamelCase : Union[str, Any] = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=14 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Any: __lowerCamelCase : int = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : Optional[Any] = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Dict = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : List[Any] = d_model __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : List[Any] = num_attention_heads __lowerCamelCase : Optional[Any] = ffn_dim __lowerCamelCase : List[Any] = activation_function __lowerCamelCase : List[Any] = activation_dropout __lowerCamelCase : List[Any] = attention_dropout __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : Tuple = initializer_range __lowerCamelCase : int = None __lowerCamelCase : int = 0 __lowerCamelCase : Tuple = 2 __lowerCamelCase : Tuple = 1 def lowercase_ ( self ) -> Any: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def lowercase_ ( self ) -> Tuple: __lowerCamelCase : Optional[Any] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __lowerCamelCase : Optional[int] = None if self.use_input_mask: __lowerCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : str = self.get_config() __lowerCamelCase : List[Any] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def lowercase_ ( self ) -> Optional[int]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> str: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : str = config_and_inputs __lowerCamelCase : Union[str, Any] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () lowerCamelCase : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () lowerCamelCase : Any = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) lowerCamelCase : List[Any] = False lowerCamelCase : Dict = False lowerCamelCase : Union[str, Any] = False def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : str = TFXGLMModelTester(self ) __lowerCamelCase : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , n_embd=37 ) def lowercase_ ( self ) -> Dict: self.config_tester.run_common_tests() @slow def lowercase_ ( self ) -> Optional[int]: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = TFXGLMModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def lowercase_ ( self ) -> Any: super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self , SCREAMING_SNAKE_CASE_=True ) -> List[str]: __lowerCamelCase : Optional[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : int = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __lowerCamelCase : Optional[int] = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on __lowerCamelCase : Any = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __lowerCamelCase : List[Any] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __lowerCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __lowerCamelCase : Tuple = model.generate(SCREAMING_SNAKE_CASE_ , do_sample=SCREAMING_SNAKE_CASE_ , seed=[7, 0] ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowercase_ ( self ) -> int: __lowerCamelCase : Tuple = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __lowerCamelCase : Any = 'left' # use different length sentences to test batching __lowerCamelCase : Any = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='tf' , padding=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = inputs['input_ids'] __lowerCamelCase : str = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __lowerCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowerCamelCase : int = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Optional[Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowerCamelCase : Optional[Any] = model.generate(input_ids=SCREAMING_SNAKE_CASE_ , max_new_tokens=12 ) __lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , [non_padded_sentence, padded_sentence] )
13
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def A__ ( __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : int=10 , __lowerCAmelCase : Optional[Any]=100 , __lowerCAmelCase : Union[str, Any]=1026 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[Any]="data/tokenized_stories_train_wikitext103.jbl" , __lowerCAmelCase : Optional[int]="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set lowerCamelCase__ , lowerCamelCase__ = generate_datasets( __lowerCAmelCase , __lowerCAmelCase , number=__lowerCAmelCase , min_len=1026 , trim=__lowerCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowerCamelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model lowerCamelCase__ = load_gpta("""gpt2""" ).to(__lowerCAmelCase ) print("""computing perplexity on objective set""" ) lowerCamelCase__ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ).item() print("""perplexity on objective set:""" , __lowerCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def A__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : Any=15 , __lowerCAmelCase : List[str]=128 , __lowerCAmelCase : Any=100 , __lowerCAmelCase : Optional[int]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model lowerCamelCase__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model lowerCamelCase__ = SecondaryLearner(__lowerCAmelCase ) # Train secondary learner lowerCamelCase__ = train_secondary_learner( __lowerCAmelCase , __lowerCAmelCase , max_epochs=__lowerCAmelCase , batch_size=__lowerCAmelCase , eval_freq=100 , igf_model_path=__lowerCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str=32 , __lowerCAmelCase : Tuple=1000 , __lowerCAmelCase : str=16 , __lowerCAmelCase : Optional[int]=1.0 , __lowerCAmelCase : List[str]=recopy_gpta , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : str=10 , __lowerCAmelCase : int="gpt2_finetuned.pt" , ): lowerCamelCase__ = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) lowerCamelCase__ = RandomSampler(__lowerCAmelCase ) lowerCamelCase__ = DataLoader(__lowerCAmelCase , sampler=__lowerCAmelCase ) lowerCamelCase__ = max_steps // (len(__lowerCAmelCase )) + 1 lowerCamelCase__ = 0 lowerCamelCase__ = torch.zeros((1, context_len) , dtype=torch.long , device=__lowerCAmelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = recopy_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(__lowerCAmelCase ) secondary_learner.eval() lowerCamelCase__ = [] lowerCamelCase__ = 0 lowerCamelCase__ = [] lowerCamelCase__ = [] # Compute the performance of the transformer model at the beginning lowerCamelCase__ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) test_perps.append(__lowerCAmelCase ) print("""Test perplexity, step""" , __lowerCAmelCase , """:""" , __lowerCAmelCase ) for epoch in range(int(__lowerCAmelCase ) ): for step, example in enumerate(__lowerCAmelCase ): torch.cuda.empty_cache() lowerCamelCase__ = random.randint(0 , example.size(2 ) - context_len - 1 ) lowerCamelCase__ = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowerCamelCase__ = model(__lowerCAmelCase , labels=__lowerCAmelCase ) lowerCamelCase__ = True if secondary_learner is not None: lowerCamelCase__ = secondary_learner.forward( torch.tensor(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(__lowerCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowerCamelCase__ = -1 if predicted_q < threshold: lowerCamelCase__ = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowerCamelCase__ = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowerCamelCase__ = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowerCamelCase__ = compute_perplexity(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) test_perps.append(__lowerCAmelCase ) print("""Test perplexity, step""" , __lowerCAmelCase , """:""" , __lowerCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , __lowerCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def A__ ( ): lowerCamelCase__ = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=__lowerCAmelCase , type=__lowerCAmelCase , required=__lowerCAmelCase , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=__lowerCAmelCase , default=__lowerCAmelCase , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=__lowerCAmelCase , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=__lowerCAmelCase , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1000 , type=__lowerCAmelCase , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=__lowerCAmelCase , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=__lowerCAmelCase , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=__lowerCAmelCase , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=__lowerCAmelCase , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1026 , type=__lowerCAmelCase , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=__lowerCAmelCase , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=__lowerCAmelCase , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=__lowerCAmelCase , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=__lowerCAmelCase , type=__lowerCAmelCase , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=__lowerCAmelCase , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner lowerCamelCase__ = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner lowerCamelCase__ = training_secondary_learner( __lowerCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model lowerCamelCase__ = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowerCamelCase__ , lowerCamelCase__ = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1026 , trim=__lowerCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=__lowerCAmelCase , secondary_learner=__lowerCAmelCase , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
50
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) # TODO Update this A__ : Tuple = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = 'esm' def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=7_68 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=12 , SCREAMING_SNAKE_CASE_=30_72 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10_26 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-12 , SCREAMING_SNAKE_CASE_="absolute" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = vocab_size __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : List[str] = num_attention_heads __lowerCamelCase : Any = intermediate_size __lowerCamelCase : Optional[Any] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : Optional[int] = max_position_embeddings __lowerCamelCase : str = initializer_range __lowerCamelCase : Optional[int] = layer_norm_eps __lowerCamelCase : List[str] = position_embedding_type __lowerCamelCase : int = use_cache __lowerCamelCase : Optional[Any] = emb_layer_norm_before __lowerCamelCase : Optional[Any] = token_dropout __lowerCamelCase : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) __lowerCamelCase : Dict = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[int] = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) __lowerCamelCase : List[str] = get_default_vocab_list() else: __lowerCamelCase : Optional[Any] = vocab_list else: __lowerCamelCase : Dict = None __lowerCamelCase : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , SCREAMING_SNAKE_CASE_ ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowercase_ ( self ) -> Any: __lowerCamelCase : Any = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : int = self.esmfold_config.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str = None lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : float = 0 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : int = 1_2_8 lowerCamelCase : "TrunkConfig" = None def lowercase_ ( self ) -> Any: if self.trunk is None: __lowerCamelCase : List[str] = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Any = TrunkConfig(**self.trunk ) def lowercase_ ( self ) -> int: __lowerCamelCase : Optional[int] = asdict(self ) __lowerCamelCase : str = self.trunk.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 4_8 lowerCamelCase : int = 1_0_2_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : int = 3_2 lowerCamelCase : float = 0 lowerCamelCase : float = 0 lowerCamelCase : bool = False lowerCamelCase : int = 4 lowerCamelCase : Optional[int] = 1_2_8 lowerCamelCase : "StructureModuleConfig" = None def lowercase_ ( self ) -> Optional[int]: if self.structure_module is None: __lowerCamelCase : Dict = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) __lowerCamelCase : Tuple = self.sequence_state_dim // self.sequence_head_width __lowerCamelCase : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = asdict(self ) __lowerCamelCase : int = self.structure_module.to_dict() return output @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : int = 3_8_4 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_6 lowerCamelCase : int = 1_2_8 lowerCamelCase : int = 1_2 lowerCamelCase : int = 4 lowerCamelCase : int = 8 lowerCamelCase : float = 0.1 lowerCamelCase : int = 8 lowerCamelCase : int = 1 lowerCamelCase : int = 2 lowerCamelCase : int = 7 lowerCamelCase : int = 1_0 lowerCamelCase : float = 1e-8 lowerCamelCase : float = 1e5 def lowercase_ ( self ) -> Any: return asdict(self ) def UpperCAmelCase__ ( ) -> Optional[Any]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
13
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , a__ : List[str] , a__ : int=13 , a__ : Optional[Any]=7 , a__ : Dict=True , a__ : Optional[Any]=True , a__ : int=False , a__ : Union[str, Any]=True , a__ : List[Any]=99 , a__ : Optional[int]=32 , a__ : List[str]=5 , a__ : Optional[Any]=4 , a__ : Optional[Any]=37 , a__ : str="gelu" , a__ : List[str]=0.1 , a__ : Optional[Any]=0.1 , a__ : Tuple=512 , a__ : List[Any]=16 , a__ : int=2 , a__ : Dict=0.02 , a__ : Tuple=3 , a__ : List[str]=4 , a__ : Optional[Any]=None , ): UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def __snake_case ( self : Dict ): UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self : Dict ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , use_stable_embedding=a__ , ) def __snake_case ( self : List[Any] , a__ : Optional[int] , a__ : str , a__ : int , a__ : Optional[Any] , a__ : Optional[int] , a__ : Tuple , a__ : List[str] ): UpperCAmelCase = OpenLlamaModel(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ ) UpperCAmelCase = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : Dict , a__ : List[str] , a__ : Optional[int] , a__ : List[Any] , a__ : str , a__ : Optional[int] , a__ : Dict , a__ : str , a__ : Optional[int] , a__ : List[Any] , ): UpperCAmelCase = True UpperCAmelCase = OpenLlamaModel(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) UpperCAmelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , ) UpperCAmelCase = model(a__ , attention_mask=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self : Tuple , a__ : Tuple , a__ : Tuple , a__ : List[str] , a__ : Optional[Any] , a__ : Dict , a__ : Optional[int] , a__ : List[Any] , a__ : int , a__ : Optional[int] , ): UpperCAmelCase = OpenLlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self : str , a__ : Any , a__ : int , a__ : Union[str, Any] , a__ : Tuple , a__ : Optional[Any] , a__ : Any , a__ : str , a__ : Union[str, Any] , a__ : str , ): UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = OpenLlamaForCausalLM(config=a__ ) model.to(a__ ) model.eval() # first forward pass UpperCAmelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , use_cache=a__ , ) UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCAmelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] UpperCAmelCase = model( a__ , attention_mask=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , past_key_values=a__ , output_hidden_states=a__ , )['''hidden_states'''][0] # select random slice UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ , a__ , atol=1e-3 ) ) def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ( UpperCAmelCase ), ) = config_and_inputs UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _lowerCamelCase =(OpenLlamaForCausalLM,) if is_torch_available() else () _lowerCamelCase =( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase =False _lowerCamelCase =False def __snake_case ( self : Optional[Any] ): UpperCAmelCase = OpenLlamaModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __snake_case ( self : List[str] ): self.config_tester.run_common_tests() def __snake_case ( self : Optional[Any] ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __snake_case ( self : Dict ): UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*a__ ) def __snake_case ( self : Dict ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(a__ ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = OpenLlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case ( self : Any ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = '''single_label_classification''' UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(a__ ) UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase = OpenLlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __snake_case ( self : Tuple ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = 3 UpperCAmelCase = '''multi_label_classification''' UpperCAmelCase = input_dict['''input_ids'''] UpperCAmelCase = input_ids.ne(1 ).to(a__ ) UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase = OpenLlamaForSequenceClassification(a__ ) model.to(a__ ) model.eval() UpperCAmelCase = model(a__ , attention_mask=a__ , labels=a__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def __snake_case ( self : Optional[int] ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __snake_case ( self : Any , a__ : List[str] ): UpperCAmelCase, UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase = ids_tensor([1, 10] , config.vocab_size ) UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = OpenLlamaModel(a__ ) original_model.to(a__ ) original_model.eval() UpperCAmelCase = original_model(a__ ).last_hidden_state UpperCAmelCase = original_model(a__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCAmelCase = {'''type''': scaling_type, '''factor''': 10.0} UpperCAmelCase = OpenLlamaModel(a__ ) scaled_model.to(a__ ) scaled_model.eval() UpperCAmelCase = scaled_model(a__ ).last_hidden_state UpperCAmelCase = scaled_model(a__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a__ , a__ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a__ , a__ , atol=1e-5 ) )
51
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def __A ( a_ :List[Any]) -> List[str]: __a : Dict = '''huggingface/label-files''' __a : Dict = '''imagenet-1k-id2label.json''' __a : List[str] = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) __a : int = {int(a_): v for k, v in idalabel.items()} __a : Optional[int] = {v: k for k, v in idalabel.items()} __a : Any = '''std_conv''' if '''bit''' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __a : int = BitConfig( conv_layer=a_ , num_labels=10_00 , idalabel=a_ , labelaid=a_ , ) return config def __A ( a_ :Optional[int]) -> Optional[int]: if "stem.conv" in name: __a : Any = name.replace('''stem.conv''' , '''bit.embedder.convolution''') if "blocks" in name: __a : List[str] = name.replace('''blocks''' , '''layers''') if "head.fc" in name: __a : List[str] = name.replace('''head.fc''' , '''classifier.1''') if name.startswith('''norm'''): __a : str = '''bit.''' + name if "bit" not in name and "classifier" not in name: __a : str = '''bit.encoder.''' + name return name def __A ( ) -> Optional[Any]: __a : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __a : Any = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def __A ( a_ :Optional[int] , a_ :Union[str, Any] , a_ :Union[str, Any]=False) -> Union[str, Any]: __a : List[str] = get_config(a_) # load original model from timm __a : int = create_model(a_ , pretrained=a_) timm_model.eval() # load state_dict of original model __a : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __a : Tuple = state_dict.pop(a_) __a : Optional[int] = val.squeeze() if '''head''' in key else val # load HuggingFace model __a : List[str] = BitForImageClassification(a_) model.eval() model.load_state_dict(a_) # create image processor __a : Tuple = create_transform(**resolve_data_config({} , model=a_)) __a : Optional[Any] = transform.transforms __a : Union[str, Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } __a : List[str] = BitImageProcessor( do_resize=a_ , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=a_ , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=a_ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __a : List[str] = prepare_img() __a : Optional[Any] = transform(a_).unsqueeze(0) __a : Union[str, Any] = processor(a_ , return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(a_ , a_) # verify logits with torch.no_grad(): __a : Tuple = model(a_) __a : Any = outputs.logits print('''Logits:''' , logits[0, :3]) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1).item()]) __a : Union[str, Any] = timm_model(a_) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(a_ , outputs.logits , atol=1e-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""") model.save_pretrained(a_) processor.save_pretrained(a_) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""") model.push_to_hub(F"""ybelkada/{model_name}""") processor.push_to_hub(F"""ybelkada/{model_name}""") if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''resnetv2_50x1_bitm''', type=str, help='''Name of the BiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub.''', ) A = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
52
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union A__ : Any = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class UpperCAmelCase_ : """simple docstring""" lowerCamelCase : str lowerCamelCase : Optional[str] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None lowerCamelCase : Optional[Union[str, int]] = None def lowercase_ ( self ) -> List[str]: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Any: return f'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def lowercase_ ( self ) -> int: return self.major, self.minor, self.patch def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return Version(SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return other raise TypeError(f'{other} (type {type(SCREAMING_SNAKE_CASE_ )}) cannot be compared to version.' ) def __eq__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: try: __lowerCamelCase : Union[str, Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : List[Any] = self._validate_operand(SCREAMING_SNAKE_CASE_ ) return self.tuple < other.tuple def __hash__( self ) -> List[str]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase : str = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def lowercase_ ( self ) -> str: return self.version_str def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> str: __lowerCamelCase : str = _VERSION_REG.match(UpperCAmelCase_ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(UpperCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> Dict: return ".".join(str(UpperCAmelCase_ ) for v in version_tuple )
13
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = 42 class _UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Union[str, Any] , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , lowerCAmelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , lowerCAmelCase_ : Tuple[int] = (6_4,) , lowerCAmelCase_ : int = 1 , lowerCAmelCase_ : str = "silu" , lowerCAmelCase_ : int = 3 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : int = 2_5_6 , lowerCAmelCase_ : int = 3_2 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : float = 0.1_82_15 , lowerCAmelCase_ : str = "group" , ) -> List[Any]: super().__init__() # pass init params to Encoder __lowerCAmelCase = Encoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , down_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , double_z=lowerCAmelCase_ , ) __lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels __lowerCAmelCase = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) __lowerCAmelCase = VectorQuantizer(lowerCAmelCase_ , lowerCAmelCase_ , beta=0.25 , remap=lowerCAmelCase_ , sane_index_shape=lowerCAmelCase_ ) __lowerCAmelCase = nn.Convad(lowerCAmelCase_ , lowerCAmelCase_ , 1 ) # pass init params to Decoder __lowerCAmelCase = Decoder( in_channels=lowerCAmelCase_ , out_channels=lowerCAmelCase_ , up_block_types=lowerCAmelCase_ , block_out_channels=lowerCAmelCase_ , layers_per_block=lowerCAmelCase_ , act_fn=lowerCAmelCase_ , norm_num_groups=lowerCAmelCase_ , norm_type=lowerCAmelCase_ , ) @apply_forward_hook def lowercase ( self : Optional[int] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> VQEncoderOutput: __lowerCAmelCase = self.encoder(lowerCAmelCase_ ) __lowerCAmelCase = self.quant_conv(lowerCAmelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=lowerCAmelCase_ ) @apply_forward_hook def lowercase ( self : Optional[Any] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.quantize(lowerCAmelCase_ ) else: __lowerCAmelCase = h __lowerCAmelCase = self.post_quant_conv(lowerCAmelCase_ ) __lowerCAmelCase = self.decoder(lowerCAmelCase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: __lowerCAmelCase = sample __lowerCAmelCase = self.encode(lowerCAmelCase_ ).latents __lowerCAmelCase = self.decode(lowerCAmelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=lowerCAmelCase_ )
53
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
0
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( __lowercase , unittest.TestCase ): _snake_case =MgpstrTokenizer _snake_case =False _snake_case ={} _snake_case =False def lowerCAmelCase__ ( self: List[str] ) -> List[str]: '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase_ =["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on UpperCAmelCase_ =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase_ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + "\n" ) def lowerCAmelCase__ ( self: Union[str, Any] , **_lowerCAmelCase: Tuple ) -> str: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ ="tester" UpperCAmelCase_ ="tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def lowerCAmelCase__ ( self: Any ) -> Any: '''simple docstring''' pass def lowerCAmelCase__ ( self: int ) -> int: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ ="[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) UpperCAmelCase_ =tokenizer.encode([special_token] , add_special_tokens=_lowerCAmelCase ) self.assertEqual(len(_lowerCAmelCase ) , 1 ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) self.assertTrue(special_token not in decoded ) def lowerCAmelCase__ ( self: Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ =self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCAmelCase_ , UpperCAmelCase_ =self.get_input_output_texts(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.tokenize(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) UpperCAmelCase_ =tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ =tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertNotEqual(len(_lowerCAmelCase ) , 0 ) UpperCAmelCase_ =tokenizer.decode(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(text_a.replace(" " , "" ) , _lowerCAmelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def lowerCAmelCase__ ( self: Optional[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def lowerCAmelCase__ ( self: str ) -> Union[str, Any]: '''simple docstring''' pass
54
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __lowerCamelCase : Union[str, Any] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ,A : Optional[Any] ,): __A = parent __A = 13 __A = 7 __A = 30 __A = self.seq_length + self.mem_len __A = 15 __A = True __A = True __A = 99 __A = [10, 50, 80] __A = 32 __A = 32 __A = 4 __A = 8 __A = 1_28 __A = 2 __A = 2 __A = None __A = 1 __A = 0 __A = 3 __A = self.vocab_size - 1 __A = 0.01 def UpperCamelCase_ ( self : Union[str, Any] ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_labels: __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = TransfoXLConfig( vocab_size=self.vocab_size ,mem_len=self.mem_len ,clamp_len=self.clamp_len ,cutoffs=self.cutoffs ,d_model=self.hidden_size ,d_embed=self.d_embed ,n_head=self.num_attention_heads ,d_head=self.d_head ,d_inner=self.d_inner ,div_val=self.div_val ,n_layer=self.num_hidden_layers ,eos_token_id=self.eos_token_id ,pad_token_id=self.vocab_size - 1 ,init_range=self.init_range ,num_labels=self.num_labels ,) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase_ ( self : Any ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase_ ( self : str ,A : List[Any] ,A : str ,A : Optional[Any] ,A : Union[str, Any] ): __A = TFTransfoXLModel(A ) __A , __A = model(A ).to_tuple() __A = {"input_ids": input_ids_a, "mems": mems_a} __A , __A = model(A ).to_tuple() self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Dict ,A : Any ,A : Any ,A : Optional[Any] ): __A = TFTransfoXLLMHeadModel(A ) __A , __A = model(A ).to_tuple() __A = {"input_ids": input_ids_a, "labels": lm_labels} __A , __A = model(A ).to_tuple() __A , __A = model([input_ids_a, mems_a] ).to_tuple() __A = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __A , __A = model(A ).to_tuple() self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) self.parent.assertEqual(lm_logits_a.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] ,[(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers ,) def UpperCamelCase_ ( self : Optional[Any] ,A : Tuple ,A : str ,A : Union[str, Any] ,A : Optional[int] ): __A = TFTransfoXLForSequenceClassification(A ) __A = model(A ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : int ): __A = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A)) = config_and_inputs __A = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) snake_case_ = () if is_tf_available() else () snake_case_ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = False def UpperCamelCase_ ( self : List[str] ,A : str ,A : Optional[Any] ,A : Any ,A : Optional[Any] ,A : List[Any] ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase_ ( self : Optional[Any] ): __A = TFTransfoXLModelTester(self ) __A = ConfigTester(self ,config_class=A ,d_embed=37 ) def UpperCamelCase_ ( self : Any ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Tuple ): self.model_tester.set_seed() __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*A ) def UpperCamelCase_ ( self : str ): self.model_tester.set_seed() __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*A ) def UpperCamelCase_ ( self : int ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Tuple ): __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __A = model_class(A ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __A = model.get_output_embeddings() assert isinstance(A ,tf.keras.layers.Layer ) __A = model.get_bias() assert name is None else: __A = model.get_output_embeddings() assert x is None __A = model.get_bias() assert name is None def UpperCamelCase_ ( self : Union[str, Any] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase_ ( self : List[Any] ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = TFTransfoXLModel.from_pretrained(A ) self.assertIsNotNone(A ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def UpperCamelCase_ ( self : Union[str, Any] ): pass @require_tf class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def UpperCamelCase_ ( self : List[Any] ): __A = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __A = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] ,dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __A = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __A = model.generate(A ,max_length=2_00 ,do_sample=A ) self.assertListEqual(output_ids[0].numpy().tolist() ,A )
55
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=5 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=10 , SCREAMING_SNAKE_CASE_=0.0_2 , ) -> Optional[int]: __lowerCamelCase : Optional[int] = parent __lowerCamelCase : Dict = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[str] = patch_size __lowerCamelCase : Optional[int] = num_channels __lowerCamelCase : Any = is_training __lowerCamelCase : Dict = use_labels __lowerCamelCase : List[Any] = hidden_size __lowerCamelCase : List[Any] = num_hidden_layers __lowerCamelCase : Optional[Any] = num_attention_heads __lowerCamelCase : Dict = intermediate_size __lowerCamelCase : Union[str, Any] = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Tuple = attention_probs_dropout_prob __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : List[str] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (image_size // patch_size) ** 2 __lowerCamelCase : Optional[int] = num_patches + 1 def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[int] = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : Union[str, Any] = FlaxViTModel(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = model(SCREAMING_SNAKE_CASE_ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __lowerCamelCase : str = (self.image_size, self.image_size) __lowerCamelCase : str = (self.patch_size, self.patch_size) __lowerCamelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: __lowerCamelCase : Tuple = self.type_sequence_label_size __lowerCamelCase : Any = FlaxViTForImageClassification(config=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCamelCase : List[str] = 1 __lowerCamelCase : List[Any] = FlaxViTForImageClassification(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCamelCase : List[Any] = model(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : List[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) : int = config_and_inputs __lowerCamelCase : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : str = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ) -> None: __lowerCamelCase : str = FlaxViTModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def lowercase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase , __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Dict = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : List[str] = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> Any: __lowerCamelCase , __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCamelCase : List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) @jax.jit def model_jitted(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return model(pixel_values=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) with self.subTest('JIT Enabled' ): __lowerCamelCase : Optional[int] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __lowerCamelCase : Union[str, Any] = model_jitted(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: __lowerCamelCase : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __lowerCamelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
13
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Tuple = { "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = [ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : int = [ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _a : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
'''simple docstring''' import argparse A__ : Optional[Any] = """docs/source/_static/js/custom.js""" def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> int: with open(UpperCAmelCase_ , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase : Dict = f.readlines() __lowerCamelCase : Tuple = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __lowerCamelCase : Dict = F'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F' "v{version}": "v{version}",\n' with open(UpperCAmelCase_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(UpperCAmelCase_ ) if __name__ == "__main__": A__ : str = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") A__ : Any = parser.parse_args() update_custom_js(args.version)
13
0
def snake_case (UpperCAmelCase__ ) -> list: if n_term == "": return [] UpperCamelCase_: list = [] for temp in range(int(UpperCAmelCase__ ) ): series.append(F'''1/{temp + 1}''' if series else '1' ) return series if __name__ == "__main__": A_ : Dict = input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
57
'''simple docstring''' import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = hidden_states.shape __lowerCamelCase : Dict = jax.image.resize( SCREAMING_SNAKE_CASE_ , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) __lowerCamelCase : Optional[Any] = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> List[str]: __lowerCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __lowerCamelCase : str = self.conv(SCREAMING_SNAKE_CASE_ ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels __lowerCamelCase : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : Tuple = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : List[str] = nn.Dense(SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) __lowerCamelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __lowerCamelCase : int = nn.Dropout(self.dropout_prob ) __lowerCamelCase : Union[str, Any] = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __lowerCamelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __lowerCamelCase : List[Any] = None if use_nin_shortcut: __lowerCamelCase : Any = nn.Conv( SCREAMING_SNAKE_CASE_ , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True ) -> Tuple: __lowerCamelCase : List[Any] = hidden_states __lowerCamelCase : str = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = self.conva(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = self.time_emb_proj(nn.swish(SCREAMING_SNAKE_CASE_ ) ) __lowerCamelCase : List[str] = jnp.expand_dims(jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) , 1 ) __lowerCamelCase : Optional[int] = hidden_states + temb __lowerCamelCase : List[Any] = self.norma(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = nn.swish(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.dropout(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self.conva(SCREAMING_SNAKE_CASE_ ) if self.conv_shortcut is not None: __lowerCamelCase : List[str] = self.conv_shortcut(SCREAMING_SNAKE_CASE_ ) return hidden_states + residual
13
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __lowerCAmelCase : Any = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __lowerCAmelCase : Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F'''{len(upper_files)} files contain uppercase characters:''') print('''\n'''.join(upper_files) + '''\n''') __lowerCAmelCase : List[str] = [file for file in filepaths if ''' ''' in file] if space_files: print(F'''{len(space_files)} files contain space characters:''') print('''\n'''.join(space_files) + '''\n''') __lowerCAmelCase : Union[str, Any] = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F'''{len(hyphen_files)} files contain hyphen characters:''') print('''\n'''.join(hyphen_files) + '''\n''') __lowerCAmelCase : Any = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'''{len(nodir_files)} files are not in a directory:''') print('''\n'''.join(nodir_files) + '''\n''') __lowerCAmelCase : Optional[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
58
'''simple docstring''' from __future__ import annotations A__ : int = 10 def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]: __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = max(UpperCAmelCase_ ) while placement <= max_digit: # declare and initialize empty buckets __lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )] # split list_of_ints between the buckets for i in list_of_ints: __lowerCamelCase : List[Any] = int((i / placement) % RADIX ) buckets[tmp].append(UpperCAmelCase_ ) # put each buckets' contents into list_of_ints __lowerCamelCase : Tuple = 0 for b in range(UpperCAmelCase_ ): for i in buckets[b]: __lowerCamelCase : List[Any] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
13
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
59
'''simple docstring''' from collections import defaultdict from math import gcd def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_50_00_00 ) -> int: __lowerCamelCase : defaultdict = defaultdict(UpperCAmelCase_ ) __lowerCamelCase : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , UpperCAmelCase_ , 2 ): if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) > 1: continue __lowerCamelCase : Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(UpperCAmelCase_ , limit + 1 , UpperCAmelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
13
0
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = False ) -> str: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[int] = f'''Expected string as input, found {type(_UpperCamelCase )}''' raise ValueError(_UpperCamelCase ) if not isinstance(_UpperCamelCase , _UpperCamelCase ): snake_case_ : str = f'''Expected boolean as use_pascal parameter, found {type(_UpperCamelCase )}''' raise ValueError(_UpperCamelCase ) snake_case_ : Optional[int] = input_str.split('''_''' ) snake_case_ : Dict = 0 if use_pascal else 1 snake_case_ : Optional[Any] = words[start_index:] snake_case_ : Any = [word[0].upper() + word[1:] for word in words_to_capitalize] snake_case_ : Union[str, Any] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
60
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A__ : str = logging.get_logger(__name__) A__ : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A__ : Tuple = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } A__ : str = { """junnyu/roformer_chinese_small""": 1536, """junnyu/roformer_chinese_base""": 1536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } A__ : Tuple = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION lowerCamelCase : Dict = RoFormerTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="[UNK]" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[PAD]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , SCREAMING_SNAKE_CASE_ ) != do_lower_case or pre_tok_state.get('strip_accents' , SCREAMING_SNAKE_CASE_ ) != strip_accents ): __lowerCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('type' ) ) __lowerCamelCase : Union[str, Any] = do_lower_case __lowerCamelCase : str = strip_accents __lowerCamelCase : Optional[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = do_lower_case def __getstate__( self ) -> List[str]: __lowerCamelCase : Union[str, Any] = self.__dict__.copy() __lowerCamelCase : Dict = BertPreTokenizer() return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = d __lowerCamelCase : List[Any] = self.__dict__['_tokenizer'].get_vocab() __lowerCamelCase : Union[str, Any] = PreTokenizer.custom(JiebaPreTokenizer(SCREAMING_SNAKE_CASE_ ) ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: __lowerCamelCase : List[str] = [self.sep_token_id] __lowerCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: __lowerCamelCase : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , **SCREAMING_SNAKE_CASE_ , ) -> Any: __lowerCamelCase : Tuple = BertPreTokenizer() return super().save_pretrained(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
13
0