code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : str = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class lowercase_ ( __snake_case ): """simple docstring""" __lowerCAmelCase = "camembert" def __init__( self : int, UpperCamelCase__ : Union[str, Any]=3_05_22, UpperCamelCase__ : Tuple=7_68, UpperCamelCase__ : Union[str, Any]=12, UpperCamelCase__ : Tuple=12, UpperCamelCase__ : Dict=30_72, UpperCamelCase__ : Optional[int]="gelu", UpperCamelCase__ : Union[str, Any]=0.1, UpperCamelCase__ : str=0.1, UpperCamelCase__ : Optional[int]=5_12, UpperCamelCase__ : List[str]=2, UpperCamelCase__ : Optional[int]=0.02, UpperCamelCase__ : List[Any]=1e-12, UpperCamelCase__ : Union[str, Any]=1, UpperCamelCase__ : str=0, UpperCamelCase__ : Tuple=2, UpperCamelCase__ : Dict="absolute", UpperCamelCase__ : List[str]=True, UpperCamelCase__ : Tuple=None, **UpperCamelCase__ : Tuple, ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase, bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase, **__lowerCamelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout class lowercase_ ( __snake_case ): """simple docstring""" @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
107
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
0
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) # General docstring _lowerCAmelCase : int = 'PoolFormerConfig' # Base docstring _lowerCAmelCase : str = 'sail/poolformer_s12' _lowerCAmelCase : Any = [1, 5_1_2, 7, 7] # Image classification docstring _lowerCAmelCase : List[Any] = 'sail/poolformer_s12' _lowerCAmelCase : str = 'tabby, tabby cat' _lowerCAmelCase : Dict = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a_ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : bool = False ) -> Optional[int]: """simple docstring""" if drop_prob == 0.0 or not training: return input lowerCamelCase = 1 - drop_prob lowerCamelCase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowerCamelCase = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize lowerCamelCase = input.div(A__ ) * random_tensor return output class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , __snake_case : Optional[float] = None ) -> List[str]: '''simple docstring''' super().__init__() lowerCamelCase = drop_prob def lowerCamelCase__ ( self : int , __snake_case : torch.Tensor ) -> Optional[Any]: '''simple docstring''' return drop_path(__lowerCamelCase , self.drop_prob , self.training ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return "p={}".format(self.drop_prob ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Dict=None ) -> int: '''simple docstring''' super().__init__() lowerCamelCase = patch_size if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (patch_size, patch_size) lowerCamelCase = stride if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (stride, stride) lowerCamelCase = padding if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (padding, padding) lowerCamelCase = nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase ) lowerCamelCase = norm_layer(__lowerCamelCase ) if norm_layer else nn.Identity() def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Any ) -> Tuple: '''simple docstring''' lowerCamelCase = self.projection(__lowerCamelCase ) lowerCamelCase = self.norm(__lowerCamelCase ) return embeddings class lowerCAmelCase ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Dict , __snake_case : Any , **__snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__(1 , __lowerCamelCase , **__lowerCamelCase ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCamelCase = nn.AvgPoolad(__lowerCamelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowerCamelCase ) def lowerCamelCase__ ( self : int , __snake_case : int ) -> List[Any]: '''simple docstring''' return self.pool(__lowerCamelCase ) - hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Dict ) -> int: '''simple docstring''' super().__init__() lowerCamelCase = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) lowerCamelCase = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 ) lowerCamelCase = PoolFormerDropPath(__lowerCamelCase ) if isinstance(config.hidden_act , __lowerCamelCase ): lowerCamelCase = ACTaFN[config.hidden_act] else: lowerCamelCase = config.hidden_act def lowerCamelCase__ ( self : Any , __snake_case : int ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.conva(__lowerCamelCase ) lowerCamelCase = self.act_fn(__lowerCamelCase ) lowerCamelCase = self.drop(__lowerCamelCase ) lowerCamelCase = self.conva(__lowerCamelCase ) lowerCamelCase = self.drop(__lowerCamelCase ) return hidden_states class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , __snake_case : int , __snake_case : List[str] , __snake_case : int , __snake_case : int , __snake_case : Dict , __snake_case : List[str] ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase = PoolFormerPooling(__lowerCamelCase ) lowerCamelCase = PoolFormerOutput(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase = PoolFormerGroupNorm(__lowerCamelCase ) lowerCamelCase = PoolFormerGroupNorm(__lowerCamelCase ) # Useful for training neural nets lowerCamelCase = PoolFormerDropPath(__lowerCamelCase ) if drop_path > 0.0 else nn.Identity() lowerCamelCase = config.use_layer_scale if config.use_layer_scale: lowerCamelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase ) lowerCamelCase = nn.Parameter( config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[int] ) -> Tuple: '''simple docstring''' if self.use_layer_scale: lowerCamelCase = self.pooling(self.before_norm(__lowerCamelCase ) ) lowerCamelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowerCamelCase = hidden_states + self.drop_path(__lowerCamelCase ) lowerCamelCase = () lowerCamelCase = self.output(self.after_norm(__lowerCamelCase ) ) lowerCamelCase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowerCamelCase = hidden_states + self.drop_path(__lowerCamelCase ) lowerCamelCase = (output,) + outputs return outputs else: lowerCamelCase = self.drop_path(self.pooling(self.before_norm(__lowerCamelCase ) ) ) # First residual connection lowerCamelCase = pooling_output + hidden_states lowerCamelCase = () # Second residual connection inside the PoolFormerOutput block lowerCamelCase = self.drop_path(self.output(self.after_norm(__lowerCamelCase ) ) ) lowerCamelCase = hidden_states + layer_output lowerCamelCase = (output,) + outputs return outputs class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , __snake_case : Dict ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCamelCase = config # stochastic depth decay rule lowerCamelCase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowerCamelCase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowerCamelCase = nn.ModuleList(__lowerCamelCase ) # Transformer blocks lowerCamelCase = [] lowerCamelCase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowerCamelCase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __lowerCamelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__lowerCamelCase ) ) lowerCamelCase = nn.ModuleList(__lowerCamelCase ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=False , __snake_case : List[Any]=True ) -> Dict: '''simple docstring''' lowerCamelCase = () if output_hidden_states else None lowerCamelCase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowerCamelCase , lowerCamelCase = layers # Get patch embeddings from hidden_states lowerCamelCase = embedding_layer(__lowerCamelCase ) # Send the embeddings through the blocks for _, blk in enumerate(__lowerCamelCase ): lowerCamelCase = blk(__lowerCamelCase ) lowerCamelCase = layer_outputs[0] if output_hidden_states: lowerCamelCase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase ) class lowerCAmelCase ( __snake_case ): '''simple docstring''' snake_case = PoolFormerConfig snake_case = 'poolformer' snake_case = 'pixel_values' snake_case = True def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any ) -> Optional[Any]: '''simple docstring''' if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def lowerCamelCase__ ( self : str , __snake_case : Tuple , __snake_case : Any=False ) -> Optional[int]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase = value _lowerCAmelCase : Optional[int] = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowerCAmelCase : Dict = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , __snake_case , ) class lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__( self : str , __snake_case : str ) -> Optional[Any]: '''simple docstring''' super().__init__(__lowerCamelCase ) lowerCamelCase = config lowerCamelCase = PoolFormerEncoder(__lowerCamelCase ) # Initialize weights and apply final processing self.post_init() def lowerCamelCase__ ( self : Any ) -> List[str]: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ) -> List[str]: '''simple docstring''' lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) lowerCamelCase = self.encoder( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , ) lowerCamelCase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) class lowerCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowerCamelCase = nn.Linear(config.hidden_size , config.hidden_size ) def lowerCamelCase__ ( self : Tuple , __snake_case : Tuple ) -> Tuple: '''simple docstring''' lowerCamelCase = self.dense(__lowerCamelCase ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , __snake_case , ) class lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : List[str] ) -> List[Any]: '''simple docstring''' super().__init__(__lowerCamelCase ) lowerCamelCase = config.num_labels lowerCamelCase = PoolFormerModel(__lowerCamelCase ) # Final norm lowerCamelCase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowerCamelCase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ) -> Dict: '''simple docstring''' lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase = self.poolformer( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , ) lowerCamelCase = outputs[0] lowerCamelCase = self.classifier(self.norm(__lowerCamelCase ).mean([-2, -1] ) ) lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase = 'single_label_classification' else: lowerCamelCase = 'multi_label_classification' if self.config.problem_type == "regression": lowerCamelCase = MSELoss() if self.num_labels == 1: lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowerCamelCase = CrossEntropyLoss() lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase = BCEWithLogitsLoss() lowerCamelCase = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
246
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys snake_case__ : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase_ ( __snake_case ): '''simple docstring''' a__ = field(default=__snake_case , metadata={"""help""": """Whether to use SortishSampler or not."""} ) a__ = field( default=__snake_case , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) a__ = field( default=__snake_case , metadata={ """help""": ( """The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `max_length` value of the model configuration.""" ) } , ) a__ = field( default=__snake_case , metadata={ """help""": ( """The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default """ """to the `num_beams` value of the model configuration.""" ) } , ) a__ = field( default=__snake_case , metadata={ """help""": """Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.""" } , ) def _lowercase ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __magic_name__ = v.to_dict() return d
529
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , __A=13 , __A=32 , __A=3 , __A=4 , __A=[10, 20, 30, 40] , __A=[2, 2, 3, 2] , __A=True , __A=True , __A=37 , __A="gelu" , __A=10 , __A=0.02 , __A=["stage2", "stage3", "stage4"] , __A=[2, 3, 4] , __A=None , ): """simple docstring""" lowerCamelCase : Union[str, Any] = parent lowerCamelCase : Union[str, Any] = batch_size lowerCamelCase : Dict = image_size lowerCamelCase : Optional[Any] = num_channels lowerCamelCase : Optional[Any] = num_stages lowerCamelCase : Union[str, Any] = hidden_sizes lowerCamelCase : Union[str, Any] = depths lowerCamelCase : Dict = is_training lowerCamelCase : Tuple = use_labels lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : str = hidden_act lowerCamelCase : Tuple = num_labels lowerCamelCase : Dict = initializer_range lowerCamelCase : List[Any] = out_features lowerCamelCase : List[str] = out_indices lowerCamelCase : Tuple = scope def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Dict = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : Dict = self.get_config() return config, pixel_values, labels def _snake_case ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Dict = ConvNextModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase : Optional[Any] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Union[str, Any] = ConvNextForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase : str = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Tuple = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase : Optional[int] = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCamelCase : List[Any] = None lowerCamelCase : str = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase : Tuple = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Dict = config_and_inputs lowerCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __A : Optional[Any] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) __A : List[Any] = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) __A : int = True __A : List[str] = False __A : Optional[int] = False __A : Dict = False __A : int = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = ConvNextModelTester(self ) lowerCamelCase : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self ): """simple docstring""" return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def _snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = model_class(__lowerCamelCase ) lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Dict = [*signature.parameters.keys()] lowerCamelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def _snake_case ( self ): """simple docstring""" def check_hidden_states_output(__A , __A , __A ): lowerCamelCase : Tuple = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : Any = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCamelCase , lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : List[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : List[str] = ConvNextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def lowercase_( ): '''simple docstring''' lowerCamelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(__lowerCamelCase ) lowerCamelCase : List[Any] = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : List[str] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase : List[Any] = model(**__lowerCamelCase ) # verify the logits lowerCamelCase : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) lowerCamelCase : Tuple = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase , __snake_case ): '''simple docstring''' __A : List[Any] = (ConvNextBackbone,) if is_torch_available() else () __A : str = ConvNextConfig __A : int = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = ConvNextModelTester(self )
340
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger SCREAMING_SNAKE_CASE : Dict = get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class _lowerCamelCase: @add_start_docstrings(__lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase) -> Dict: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class _lowerCamelCase: @add_start_docstrings(__lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class _lowerCamelCase( __snake_case ): @add_start_docstrings(__lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, **lowerCamelCase) -> Dict: """simple docstring""" for processor in self: _lowercase : Dict = inspect.signature(processor.__call__).parameters if len(__lowerCamelCase) > 3: if not all(arg in kwargs for arg in list(function_args.keys())[2:]): raise ValueError( F'''Make sure that all the required parameters: {list(function_args.keys())} for ''' F'''{processor.__class__} are passed to the logits processor.''') _lowercase : Optional[Any] = processor(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, **__lowerCamelCase) else: _lowercase : Tuple = processor(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" if not isinstance(__lowerCamelCase, __lowerCamelCase) or not (temperature > 0): raise ValueError(F'''`temperature` has to be a strictly positive float, but is {temperature}''') _lowercase : Optional[int] = temperature def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Optional[int] = scores / self.temperature return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase = -float('Inf'), lowerCamelCase = 1) -> Any: """simple docstring""" if not isinstance(__lowerCamelCase, __lowerCamelCase) or (top_p < 0 or top_p > 1.0): raise ValueError(F'''`top_p` has to be a float > 0 and < 1, but is {top_p}''') if not isinstance(__lowerCamelCase, __lowerCamelCase) or (min_tokens_to_keep < 1): raise ValueError(F'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''') _lowercase : Tuple = top_p _lowercase : Optional[Any] = filter_value _lowercase : List[str] = min_tokens_to_keep def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase , _lowercase : str = lax.top_k(__lowerCamelCase, scores.shape[-1]) _lowercase : Optional[int] = jnp.full_like(__lowerCamelCase, self.filter_value) _lowercase : List[str] = jax.nn.softmax(__lowerCamelCase, axis=-1).cumsum(axis=-1) _lowercase : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well _lowercase : Any = jnp.roll(__lowerCamelCase, 1) score_mask |= score_mask.at[:, 0].set(__lowerCamelCase) # min tokens to keep _lowercase : str = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCamelCase) _lowercase : Optional[Any] = jnp.where(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase) _lowercase : Union[str, Any] = jax.lax.sort_key_val(__lowerCamelCase, __lowerCamelCase)[-1] return next_scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase = -float('Inf'), lowerCamelCase = 1) -> Optional[int]: """simple docstring""" if not isinstance(__lowerCamelCase, __lowerCamelCase) or top_k <= 0: raise ValueError(F'''`top_k` has to be a strictly positive integer, but is {top_k}''') _lowercase : List[Any] = max(__lowerCamelCase, __lowerCamelCase) _lowercase : Union[str, Any] = filter_value def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase , _lowercase : List[Any] = scores.shape _lowercase : Dict = jnp.full(batch_size * vocab_size, self.filter_value) _lowercase : Optional[Any] = min(self.top_k, scores.shape[-1]) # Safety check _lowercase , _lowercase : List[Any] = lax.top_k(__lowerCamelCase, __lowerCamelCase) _lowercase : List[str] = jnp.broadcast_to((jnp.arange(__lowerCamelCase) * vocab_size)[:, None], (batch_size, topk)).flatten() _lowercase : Any = topk_scores.flatten() _lowercase : str = topk_indices.flatten() + shift _lowercase : Optional[int] = next_scores_flat.at[topk_indices_flat].set(__lowerCamelCase) _lowercase : Optional[Any] = next_scores_flat.reshape(__lowerCamelCase, __lowerCamelCase) return next_scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Tuple = bos_token_id def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Union[str, Any] = jnp.full(scores.shape, -float('inf')) _lowercase : List[Any] = 1 - jnp.bool_(cur_len - 1) _lowercase : str = jnp.where(__lowerCamelCase, new_scores.at[:, self.bos_token_id].set(0), __lowerCamelCase) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : Dict = max_length _lowercase : Any = eos_token_id def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : int = jnp.full(scores.shape, -float('inf')) _lowercase : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1) _lowercase : str = jnp.where(__lowerCamelCase, new_scores.at[:, self.eos_token_id].set(0), __lowerCamelCase) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" if not isinstance(__lowerCamelCase, __lowerCamelCase) or min_length < 0: raise ValueError(F'''`min_length` has to be a positive integer, but is {min_length}''') if not isinstance(__lowerCamelCase, __lowerCamelCase) or eos_token_id < 0: raise ValueError(F'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''') _lowercase : Union[str, Any] = min_length _lowercase : Tuple = eos_token_id def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = 1 - jnp.clip(cur_len - self.min_length, 0, 1) _lowercase : Dict = jnp.where(__lowerCamelCase, scores.at[:, self.eos_token_id].set(-float('inf')), __lowerCamelCase) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Any = list(__lowerCamelCase) _lowercase : Optional[int] = begin_index def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Optional[int] = 1 - jnp.bool_(cur_len - self.begin_index) _lowercase : Any = jnp.where(__lowerCamelCase, scores.at[:, self.begin_suppress_tokens].set(-float('inf')), __lowerCamelCase) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Optional[int] = list(__lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Dict = scores.at[..., self.suppress_tokens].set(-float('inf')) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : Optional[int] = dict(__lowerCamelCase) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _lowercase : Dict = jnp.ones((max(force_token_map.keys()) + 1), dtype=jnp.intaa) * -1 for index, token in force_token_map.items(): if token is not None: _lowercase : Optional[int] = force_token_array.at[index].set(__lowerCamelCase) _lowercase : List[str] = jnp.intaa(__lowerCamelCase) def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" def _force_token(lowerCamelCase): _lowercase : Optional[int] = scores.shape[0] _lowercase : str = self.force_token_array[generation_idx] _lowercase : Optional[int] = jnp.ones_like(__lowerCamelCase, dtype=scores.dtype) * -float('inf') _lowercase : str = jnp.zeros((batch_size, 1), dtype=scores.dtype) _lowercase : Optional[Any] = lax.dynamic_update_slice(__lowerCamelCase, __lowerCamelCase, (0, current_token)) return new_scores _lowercase : Tuple = lax.cond( cur_len >= self.force_token_array.shape[0], lambda: scores, lambda: lax.cond( self.force_token_array[cur_len] >= 0, lambda: _force_token(__lowerCamelCase), lambda: scores, ), ) return scores class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : Any = generate_config.eos_token_id _lowercase : List[str] = generate_config.no_timestamps_token_id _lowercase : List[Any] = generate_config.no_timestamps_token_id + 1 _lowercase : List[str] = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__lowerCamelCase, 'max_initial_timestamp_index'): _lowercase : List[str] = generate_config.max_initial_timestamp_index else: _lowercase : Optional[int] = model_config.vocab_size if self.max_initial_timestamp_index is None: _lowercase : Optional[Any] = model_config.vocab_size def __call__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" _lowercase : Union[str, Any] = scores.at[:, self.no_timestamps_token_id].set(-float('inf')) def handle_pairs(lowerCamelCase, lowerCamelCase): _lowercase : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1, __lowerCamelCase, __lowerCamelCase) _lowercase : Union[str, Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin, True and last_was_timestamp, __lowerCamelCase, ) _lowercase : List[Any] = jnp.where((cur_len - self.begin_index) < 2, __lowerCamelCase, __lowerCamelCase) _lowercase : Union[str, Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin, __lowerCamelCase, __lowerCamelCase, ) return jnp.where( __lowerCamelCase, jnp.where( penultimate_was_timestamp > 0, scores_k.at[self.timestamp_begin :].set(-float('inf')), scores_k.at[: self.eos_token_id].set(-float('inf')), ), __lowerCamelCase, ) _lowercase : Optional[Any] = jax.vmap(__lowerCamelCase)(__lowerCamelCase, __lowerCamelCase) _lowercase : Optional[int] = jnp.where(cur_len == self.begin_index, __lowerCamelCase, __lowerCamelCase) _lowercase : List[str] = jnp.where( self.max_initial_timestamp_index is not None, True and apply_max_initial_timestamp, __lowerCamelCase, ) _lowercase : List[str] = self.timestamp_begin + self.max_initial_timestamp_index _lowercase : List[Any] = jnp.where( __lowerCamelCase, scores.at[:, last_allowed + 1 :].set(-float('inf')), __lowerCamelCase, ) # if sum of probability over timestamps is above any other token, sample timestamp _lowercase : Dict = jax.nn.log_softmax(__lowerCamelCase, axis=-1) def handle_cumulative_probs(lowerCamelCase, lowerCamelCase): _lowercase : Any = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1) _lowercase : List[Any] = jnp.max(logprobs_k[: self.timestamp_begin]) return jnp.where( timestamp_logprob > max_text_token_logprob, scores_k.at[: self.timestamp_begin].set(-float('inf')), __lowerCamelCase, ) _lowercase : Tuple = jax.vmap(__lowerCamelCase)(__lowerCamelCase, __lowerCamelCase) return scores
89
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _lowerCAmelCase = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) _lowerCAmelCase = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) _lowerCAmelCase = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) _lowerCAmelCase = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) _lowerCAmelCase = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) _lowerCAmelCase = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) _lowerCAmelCase = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : Dict = randrange(len(A__ ) ), randrange(len(A__ ) ) _lowerCAmelCase : Optional[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowerCAmelCase, _lowerCAmelCase : int = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowerCamelCase__ ( _lowerCamelCase = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : List[Any] = [PokerHand(A__ ) for hand in SORTED_HANDS] _lowerCAmelCase : Optional[Any] = poker_hands.copy() shuffle(A__ ) _lowerCAmelCase : Optional[int] = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PokerHand('2C 4S AS 3D 5C' ) _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowerCamelCase__ ( ): '''simple docstring''' _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[int] = os.path.abspath(os.path.dirname(A__ ) ) _lowerCAmelCase : List[str] = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: _lowerCAmelCase : Dict = line[:14].strip() _lowerCAmelCase : Any = line[15:].strip() _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = PokerHand(A__ ), PokerHand(A__ ) _lowerCAmelCase : Dict = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
259
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase = logging.get_logger(__name__) _lowercase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} _lowercase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } _lowercase = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def UpperCamelCase ( snake_case__ , snake_case__): with open(A__ , "r" , encoding="utf-8") as f: lowerCAmelCase_ : List[Any] = json.loads(f.read()) lowerCAmelCase_ : List[Any] = collections.OrderedDict() lowerCAmelCase_ : Optional[int] = collections.OrderedDict() lowerCAmelCase_ : Optional[int] = collections.OrderedDict() with open(A__ , "r" , encoding="utf-8") as f: lowerCAmelCase_ : List[str] = f.readlines() lowerCAmelCase_ : Tuple = [[t.rstrip("\n")] if (t == "," or "," not in t) else t.rstrip("\n").split(",") for t in token] for idx, b in enumerate(A__): lowerCAmelCase_ : List[Any] = b lowerCAmelCase_ : Optional[int] = idx for wd in b: lowerCAmelCase_ : str = idx return vocab, raw_vocab, ids_to_tokens, emoji class __snake_case ( __snake_case ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Dict ,lowerCAmelCase__ : Optional[int]="<|endoftext|>" ,lowerCAmelCase__ : int="<|endoftext|>" ,lowerCAmelCase__ : Dict="<|startoftext|>" ,lowerCAmelCase__ : Any="<|endoftext|>" ,lowerCAmelCase__ : List[str]=False ,**lowerCAmelCase__ : str ,) -> List[str]: '''simple docstring''' super().__init__( unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,do_clean_text=__lowerCamelCase ,**__lowerCamelCase ,) if not os.path.isfile(__lowerCamelCase ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(__lowerCamelCase ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCAmelCase_ : List[str] = do_clean_text lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = load_vocab_and_emoji(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase_ : Tuple = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def UpperCAmelCase_ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return len(self.raw_vocab ) def UpperCAmelCase_ ( self : Optional[Any] ) -> str: '''simple docstring''' return dict(self.raw_vocab ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : str ) -> Tuple: '''simple docstring''' return self.subword_tokenizer.tokenize(__lowerCamelCase ,clean=self.do_clean_text ) def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' return self.vocab.get(__lowerCamelCase ,self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Dict ) -> Tuple: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = "".join(__lowerCamelCase ).strip() return out_string def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : "Conversation" ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: lowerCAmelCase_ : List[Any] = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 0 if os.path.isdir(__lowerCamelCase ): lowerCAmelCase_ : List[str] = os.path.join( __lowerCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : List[str] = os.path.join( __lowerCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCAmelCase_ : Any = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : int = ( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : int = token_index writer.write(",".join(__lowerCamelCase ) + "\n" ) index += 1 with open(__lowerCamelCase ,"w" ,encoding="utf-8" ) as writer: json.dump(self.emoji ,__lowerCamelCase ) return vocab_file, emoji_file class __snake_case ( __snake_case ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : str ,lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : List[str] = vocab # same as swe lowerCAmelCase_ : Tuple = ids_to_tokens # same as bpe lowerCAmelCase_ : List[Any] = emoji lowerCAmelCase_ : Union[str, Any] = np.max([len(__lowerCamelCase ) for w in self.vocab.keys()] ) lowerCAmelCase_ : Union[str, Any] = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCAmelCase_ : Tuple = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCAmelCase_ : int = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCAmelCase_ : Any = re.compile( R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase_ : Optional[int] = re.compile( R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase_ : int = re.compile( R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCAmelCase_ : Optional[Any] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCAmelCase_ : Optional[int] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCAmelCase_ : List[str] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : Any ) -> Dict: '''simple docstring''' return len(self.ids_to_tokens ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = self.content_repattera.sub("<URL>" ,__lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.content_repattera.sub("<EMAIL>" ,__lowerCamelCase ) lowerCAmelCase_ : int = self.content_repattera.sub("<TEL>" ,__lowerCamelCase ) lowerCAmelCase_ : int = self.content_repattera.sub("<DATE>" ,__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = self.content_repattera.sub("<DATE>" ,__lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.content_repattera.sub("<PRICE>" ,__lowerCamelCase ) lowerCAmelCase_ : List[str] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase_ : Any = content.replace("<BLOCK><BLOCK>" ,"<BLOCK>" ) return content def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Optional[Any]=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : str = text.replace(" " ,"<SP>" ) lowerCAmelCase_ : Any = text.replace(" " ,"<SP>" ) lowerCAmelCase_ : Dict = text.replace("\r\n" ,"<BR>" ) lowerCAmelCase_ : Optional[Any] = text.replace("\n" ,"<BR>" ) lowerCAmelCase_ : Optional[int] = text.replace("\r" ,"<BR>" ) lowerCAmelCase_ : str = text.replace("\t" ,"<TAB>" ) lowerCAmelCase_ : List[str] = text.replace("—" ,"ー" ) lowerCAmelCase_ : Dict = text.replace("−" ,"ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase_ : Dict = text.replace(__lowerCamelCase ,__lowerCamelCase ) if clean: lowerCAmelCase_ : List[Any] = self.clean_text(__lowerCamelCase ) def check_simbol(lowerCAmelCase__ : Any ): lowerCAmelCase_ : List[Any] = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 2: lowerCAmelCase_ : Tuple = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc2a1 and c <= 0Xc2bf) or (c >= 0Xc780 and c <= 0Xc783) or (c >= 0Xcab9 and c <= 0Xcbbf) or (c >= 0Xcc80 and c <= 0Xcda2) ): return True return False def checkuae(lowerCAmelCase__ : Dict ): lowerCAmelCase_ : List[str] = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 3: lowerCAmelCase_ : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28080 and c <= 0Xe2b07f: return True return False lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Any = [] while pos < len(__lowerCamelCase ): lowerCAmelCase_ : Any = min(len(__lowerCamelCase ) ,pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCAmelCase_ : Tuple = [] # (token_id, token, pos) for e in range(__lowerCamelCase ,__lowerCamelCase ,-1 ): lowerCAmelCase_ : Union[str, Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__lowerCamelCase ) > 2: lowerCAmelCase_ : List[Any] = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__lowerCamelCase ) > 0: # the smallest token_id is adopted lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = sorted(__lowerCamelCase ,key=lambda lowerCAmelCase__ : x[0] )[0] result.append(__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = e else: lowerCAmelCase_ : Union[str, Any] = pos + 1 lowerCAmelCase_ : List[str] = text[pos:end] if check_simbol(__lowerCamelCase ): result.append("<KIGOU>" ) elif checkuae(__lowerCamelCase ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCAmelCase_ : Dict = end return result def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Optional[Any]="\n" ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : int = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode("utf-8" ,errors="replace" ) ) lowerCAmelCase_ : str = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(__lowerCamelCase ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode("utf-8" ,errors="replace" ) ) lowerCAmelCase_ : Optional[int] = "".join(__lowerCamelCase ) return text
659
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=10 ) -> Optional[int]: UpperCAmelCase_ = [] for _ in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=10 ) -> str: UpperCAmelCase_ = [] for step in range(A__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = os.path.join(A__ , "schedule.bin" ) torch.save(scheduler.state_dict() , A__ ) UpperCAmelCase_ = torch.load(A__ ) scheduler.load_state_dict(A__ ) return lrs @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def A__ ( self ): UpperCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCamelCase ) UpperCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase_ = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): UpperCAmelCase_ = criterion(__lowerCamelCase , __lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def A__ ( self ): UpperCAmelCase_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCamelCase ) UpperCAmelCase_ = torch.tensor([0.4, 0.2, -0.5] ) UpperCAmelCase_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCAmelCase_ = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCamelCase , weight_decay=0.0 , relative_step=__lowerCamelCase , scale_parameter=__lowerCamelCase , warmup_init=__lowerCamelCase , ) for _ in range(1000 ): UpperCAmelCase_ = criterion(__lowerCamelCase , __lowerCamelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = nn.Linear(50, 50 ) if is_torch_available() else None lowerCAmelCase_ : int = AdamW(m.parameters(), lr=1_0.0 ) if is_torch_available() else None lowerCAmelCase_ : Optional[Any] = 10 def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None ): self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase , msg=__lowerCamelCase ) def A__ ( self ): UpperCAmelCase_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCAmelCase_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCAmelCase_ , UpperCAmelCase_ = data UpperCAmelCase_ = scheduler_func(self.optimizer , **__lowerCamelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCAmelCase_ = unwrap_schedule(__lowerCamelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCamelCase , __lowerCamelCase , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) UpperCAmelCase_ = scheduler_func(self.optimizer , **__lowerCamelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCamelCase ) # wrap to test picklability of the schedule UpperCAmelCase_ = unwrap_and_save_reload_schedule(__lowerCamelCase , self.num_steps ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase ): UpperCAmelCase_ = fn def __call__( self , *lowerCAmelCase , **lowerCAmelCase ): return self.fn(*__lowerCamelCase , **__lowerCamelCase ) @classmethod def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = list(map(self , scheduler.lr_lambdas ) )
579
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
0
"""simple docstring""" def __snake_case ( __A ) -> List[str]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) lowercase : List[Any] = [True] * (num + 1) lowercase : List[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,A__ ): lowercase : Optional[Any] = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase: Tuple =int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
607
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = get_activation('''swish''' ) self.assertIsInstance(__lowerCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = get_activation('''silu''' ) self.assertIsInstance(__lowerCamelCase , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = get_activation('''mish''' ) self.assertIsInstance(__lowerCamelCase , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = get_activation('''gelu''' ) self.assertIsInstance(__lowerCamelCase , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
175
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( A__ : str , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : List[Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = result.headers["Location"] SCREAMING_SNAKE_CASE = requests.get(A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{artifact_name}.zip" ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def __a ( A__ : List[Any] , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: SCREAMING_SNAKE_CASE = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE = line[: line.index(": " )] SCREAMING_SNAKE_CASE = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE = line if len(A__ ) != len(A__ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` " F"and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) SCREAMING_SNAKE_CASE = None if job_name and job_links: SCREAMING_SNAKE_CASE = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def __a ( A__ : List[str] , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : str ): SCREAMING_SNAKE_CASE = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE = test.split("/" )[2] else: SCREAMING_SNAKE_CASE = None return test def __a ( A__ : List[str] , A__ : Dict=None ): SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE = {x[2] for x in logs} SCREAMING_SNAKE_CASE = {} for test in tests: SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = "| no. | error | status |" SCREAMING_SNAKE_CASE = "|-:|:-|:-|" SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE = F"| {count} | {error[:100]} | |" lines.append(A__ ) return "\n".join(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __A : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A : int = get_job_links(args.workflow_run_id, token=args.token) __A : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A : Union[str, Any] = k.find(' / ') __A : Optional[int] = k[index + len(' / ') :] __A : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A : Optional[Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A : str = reduce_by_error(errors) __A : int = reduce_by_model(errors) __A : Any = make_github_table(reduced_by_error) __A : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
16
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : str = { 'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'], 'tokenization_convbert': ['ConvBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = ['ConvBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[int] = [ 'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvBertForMaskedLM', 'ConvBertForMultipleChoice', 'ConvBertForQuestionAnswering', 'ConvBertForSequenceClassification', 'ConvBertForTokenClassification', 'ConvBertLayer', 'ConvBertModel', 'ConvBertPreTrainedModel', 'load_tf_weights_in_convbert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ 'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFConvBertForMaskedLM', 'TFConvBertForMultipleChoice', 'TFConvBertForQuestionAnswering', 'TFConvBertForSequenceClassification', 'TFConvBertForTokenClassification', 'TFConvBertLayer', 'TFConvBertModel', 'TFConvBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
107
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
0
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase : str = logging.getLogger(__name__) class lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__( self : Dict , __snake_case : List[str]=-1 ) -> Any: '''simple docstring''' lowerCamelCase = label_idx def lowerCamelCase__ ( self : str , __snake_case : Dict , __snake_case : Union[Split, str] ) -> Optional[int]: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase = mode.value lowerCamelCase = os.path.join(__lowerCamelCase , F'''{mode}.txt''' ) lowerCamelCase = 1 lowerCamelCase = [] with open(__lowerCamelCase , encoding='utf-8' ) as f: lowerCamelCase = [] lowerCamelCase = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__lowerCamelCase , labels=__lowerCamelCase ) ) guid_index += 1 lowerCamelCase = [] lowerCamelCase = [] else: lowerCamelCase = line.split(' ' ) words.append(splits[0] ) if len(__lowerCamelCase ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__lowerCamelCase , labels=__lowerCamelCase ) ) return examples def lowerCamelCase__ ( self : Dict , __snake_case : TextIO , __snake_case : TextIO , __snake_case : List ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__lowerCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowerCamelCase = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__lowerCamelCase ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def lowerCamelCase__ ( self : Dict , __snake_case : str ) -> Dict: '''simple docstring''' if path: with open(__lowerCamelCase , 'r' ) as f: lowerCamelCase = f.read().splitlines() if "O" not in labels: lowerCamelCase = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] ) -> str: '''simple docstring''' super().__init__(label_idx=-2 ) def lowerCamelCase__ ( self : int , __snake_case : str ) -> int: '''simple docstring''' if path: with open(__lowerCamelCase , 'r' ) as f: lowerCamelCase = f.read().splitlines() if "O" not in labels: lowerCamelCase = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCAmelCase ( __snake_case ): '''simple docstring''' def lowerCamelCase__ ( self : int , __snake_case : Optional[int] , __snake_case : Union[Split, str] ) -> Tuple: '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase = mode.value lowerCamelCase = os.path.join(__lowerCamelCase , F'''{mode}.txt''' ) lowerCamelCase = 1 lowerCamelCase = [] with open(__lowerCamelCase , encoding='utf-8' ) as f: for sentence in parse_incr(__lowerCamelCase ): lowerCamelCase = [] lowerCamelCase = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__lowerCamelCase , labels=__lowerCamelCase ) ) guid_index += 1 return examples def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : TextIO , __snake_case : TextIO , __snake_case : List ) -> Optional[int]: '''simple docstring''' lowerCamelCase = 0 for sentence in parse_incr(__lowerCamelCase ): lowerCamelCase = preds_list[example_id] lowerCamelCase = '' for token in sentence: out += F'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(__lowerCamelCase ) example_id += 1 def lowerCamelCase__ ( self : List[Any] , __snake_case : str ) -> Optional[Any]: '''simple docstring''' if path: with open(__lowerCamelCase , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
246
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) snake_case__ : Tuple = 2_9_9_7_9_2_4_5_8 # Symbols snake_case__ : Dict = symbols("""ct x y z""") def _snake_case (__lowercase): if velocity > c: raise ValueError('Speed must not exceed light speed 299,792,458 [m/s]!') elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('Speed must be greater than or equal to 1!') return velocity / c def _snake_case (__lowercase): return 1 / sqrt(1 - beta(A__) ** 2) def _snake_case (__lowercase): return np.array( [ [gamma(A__), -gamma(A__) * beta(A__), 0, 0], [-gamma(A__) * beta(A__), gamma(A__), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ]) def _snake_case (__lowercase , __lowercase = None): # Ensure event is not empty if event is None: UpperCamelCase_ = np.array([ct, x, y, z]) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(A__) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: snake_case__ : List[str] = transform(2_9_9_7_9_2_4_5) print("""Example of four vector: """) print(f'ct\' = {four_vector[0]}') print(f'x\' = {four_vector[1]}') print(f'y\' = {four_vector[2]}') print(f'z\' = {four_vector[3]}') # Substitute symbols with numerical values snake_case__ : List[str] = {ct: c, x: 1, y: 1, z: 1} snake_case__ : str = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'\n{numerical_vector}')
23
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : str , UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" __magic_name__ = 3 __magic_name__ = 250 __magic_name__ = ids_tensor((batch_size, length) , __lowerCamelCase ) __magic_name__ = torch.ones((batch_size, length) , device=__lowerCamelCase , dtype=torch.float ) / length return input_ids, scores def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" __magic_name__ , __magic_name__ = self._get_tensors(5 ) __magic_name__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ , __magic_name__ = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ , __magic_name__ = self._get_tensors(10 ) self.assertTrue(criteria(__lowerCamelCase , __lowerCamelCase ) ) def _lowercase ( self : List[str] ) -> Optional[Any]: """simple docstring""" __magic_name__ = MaxLengthCriteria(max_length=10 ) __magic_name__ , __magic_name__ = self._get_tensors(5 ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ , __magic_name__ = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ , __magic_name__ = self._get_tensors(10 ) self.assertTrue(criteria(__lowerCamelCase , __lowerCamelCase ) ) def _lowercase ( self : Dict ) -> str: """simple docstring""" __magic_name__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __magic_name__ , __magic_name__ = self._get_tensors(5 ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ , __magic_name__ = self._get_tensors(9 ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ , __magic_name__ = self._get_tensors(10 ) self.assertTrue(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _lowercase ( self : Optional[Any] ) -> Tuple: """simple docstring""" __magic_name__ , __magic_name__ = self._get_tensors(5 ) __magic_name__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__lowerCamelCase , __lowerCamelCase ) ) __magic_name__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__lowerCamelCase , __lowerCamelCase ) ) def _lowercase ( self : List[Any] ) -> int: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__lowerCamelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __magic_name__ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__lowerCamelCase ) , 1 )
529
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _snake_case = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , __A=16 , __A=13 , __A=7 , __A=14 , __A=10 , __A=19 , __A=5 , __A=4 , __A=True , __A=16 , __A=2 , __A=4 , __A=4 , __A="gelu" , __A=0.1 , __A=0.1 , __A=[1, 2, 3, 4, 5] , __A=25 , __A=5 , ): """simple docstring""" lowerCamelCase : Any = d_model lowerCamelCase : Any = parent lowerCamelCase : str = batch_size lowerCamelCase : Tuple = prediction_length lowerCamelCase : Dict = context_length lowerCamelCase : Optional[int] = cardinality lowerCamelCase : Any = num_time_features lowerCamelCase : List[Any] = lags_sequence lowerCamelCase : Dict = embedding_dimension lowerCamelCase : Optional[Any] = is_training lowerCamelCase : Optional[Any] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : int = num_attention_heads lowerCamelCase : str = intermediate_size lowerCamelCase : Any = hidden_act lowerCamelCase : Optional[int] = hidden_dropout_prob lowerCamelCase : Any = attention_probs_dropout_prob lowerCamelCase : Optional[Any] = context_length lowerCamelCase : str = prediction_length + label_length lowerCamelCase : Optional[Any] = label_length lowerCamelCase : List[str] = moving_average lowerCamelCase : Optional[int] = autocorrelation_factor def _snake_case ( self ): """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _snake_case ( self , __A ): """simple docstring""" lowerCamelCase : Optional[int] = config.context_length + max(config.lags_sequence ) lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase : List[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase : Optional[int] = floats_tensor([self.batch_size, _past_length] ) lowerCamelCase : str = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase : str = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase : Optional[int] = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_config() lowerCamelCase : List[str] = self.prepare_autoformer_inputs_dict(__lowerCamelCase ) return config, inputs_dict def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Any = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self , __A , __A ): """simple docstring""" lowerCamelCase : Tuple = AutoformerModel(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() lowerCamelCase : Optional[int] = model(**__lowerCamelCase ) lowerCamelCase : str = outputs.encoder_last_hidden_state lowerCamelCase : Any = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : Dict = model.get_encoder() encoder.save_pretrained(__lowerCamelCase ) lowerCamelCase : Dict = AutoformerEncoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : str = model.create_network_inputs(**__lowerCamelCase ) lowerCamelCase , lowerCamelCase : List[Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase : List[str] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase : int = encoder(inputs_embeds=__lowerCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) lowerCamelCase : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase : Any = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase : Tuple = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase : Union[str, Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase : List[str] = model.get_decoder() decoder.save_pretrained(__lowerCamelCase ) lowerCamelCase : List[str] = AutoformerDecoder.from_pretrained(__lowerCamelCase ).to(__lowerCamelCase ) lowerCamelCase : Optional[Any] = decoder( trend=__lowerCamelCase , inputs_embeds=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class UpperCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __A : str = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __A : Optional[int] = (AutoformerForPrediction,) if is_torch_available() else () __A : List[str] = {"feature-extraction": AutoformerModel} if is_torch_available() else {} __A : Any = False __A : Tuple = False __A : Optional[int] = False __A : Dict = False __A : Union[str, Any] = False __A : Union[str, Any] = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = AutoformerModelTester(self ) lowerCamelCase : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase : Dict = model_class(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) lowerCamelCase , lowerCamelCase : int = model_class.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertEqual(info["missing_keys"] , [] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__lowerCamelCase ) @unittest.skip(reason="Model has no tokens embeddings" ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = inspect.signature(getattr(__lowerCamelCase , "forward" ) ) # The main input is the name of the argument after `self` lowerCamelCase : Tuple = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : str = model_class(__lowerCamelCase ) lowerCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : List[Any] = [*signature.parameters.keys()] lowerCamelCase : Any = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(__lowerCamelCase )] , __lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Tuple = True lowerCamelCase : Tuple = getattr(self.model_tester , "seq_length" , __lowerCamelCase ) lowerCamelCase : int = getattr(self.model_tester , "decoder_seq_length" , __lowerCamelCase ) lowerCamelCase : int = getattr(self.model_tester , "encoder_seq_length" , __lowerCamelCase ) lowerCamelCase : List[Any] = getattr(self.model_tester , "d_model" , __lowerCamelCase ) lowerCamelCase : List[str] = getattr(self.model_tester , "num_attention_heads" , __lowerCamelCase ) lowerCamelCase : List[str] = d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase : Optional[int] = True lowerCamelCase : List[str] = False lowerCamelCase : int = True lowerCamelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase : List[Any] = True lowerCamelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : Any = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase : List[Any] = outputs.encoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase : Optional[int] = len(__lowerCamelCase ) lowerCamelCase : str = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__lowerCamelCase , __lowerCamelCase ) # decoder attentions lowerCamelCase : int = outputs.decoder_attentions self.assertIsInstance(__lowerCamelCase , (list, tuple) ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase : str = outputs.cross_attentions self.assertIsInstance(__lowerCamelCase , (list, tuple) ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase : Any = True lowerCamelCase : int = True lowerCamelCase : str = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[int] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 2 , len(__lowerCamelCase ) ) lowerCamelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _snake_case ( self ): """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowercase_( SCREAMING_SNAKE_CASE_="train-batch.pt" ): '''simple docstring''' lowerCamelCase : List[Any] = hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=A__ , repo_type="dataset" ) lowerCamelCase : str = torch.load(A__ , map_location=A__ ) return batch @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : int = AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__lowerCamelCase ) lowerCamelCase : List[str] = prepare_batch() with torch.no_grad(): lowerCamelCase : Dict = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCamelCase : List[Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase : List[Any] = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowerCamelCase , atol=__lowerCamelCase ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__lowerCamelCase ) lowerCamelCase : Any = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase : List[str] = model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCamelCase : str = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase : Dict = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=__lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __lowerCamelCase , atol=__lowerCamelCase ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[int] = AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(__lowerCamelCase ) lowerCamelCase : Any = prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase : str = model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCamelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __lowerCamelCase ) lowerCamelCase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__lowerCamelCase ) lowerCamelCase : Union[str, Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __lowerCamelCase , rtol=1e-1 ) )
340
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_=0.9_99 , lowerCamelCase_="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(lowerCamelCase_ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowerCamelCase_ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowercase : str = [] for i in range(A__ ): _lowercase : Optional[int] = i / num_diffusion_timesteps _lowercase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class _lowerCamelCase( __snake_case, __snake_case ): lowercase_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] lowercase_ : Dict = 2 @register_to_config def __init__( self, lowerCamelCase = 10_00, lowerCamelCase = 0.0_0_0_8_5, lowerCamelCase = 0.0_1_2, lowerCamelCase = "linear", lowerCamelCase = None, lowerCamelCase = "epsilon", lowerCamelCase = "linspace", lowerCamelCase = 0, ) -> Tuple: """simple docstring""" if trained_betas is not None: _lowercase : Dict = torch.tensor(__lowerCamelCase, dtype=torch.floataa) elif beta_schedule == "linear": _lowercase : Union[str, Any] = torch.linspace(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, dtype=torch.floataa) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Tuple = ( torch.linspace(beta_start**0.5, beta_end**0.5, __lowerCamelCase, dtype=torch.floataa) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Tuple = betas_for_alpha_bar(__lowerCamelCase) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''') _lowercase : List[str] = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas, dim=0) # set all values self.set_timesteps(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase=None) -> List[Any]: """simple docstring""" if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter) == 0: _lowercase : int = 1 if len(__lowerCamelCase) > 1 else 0 else: _lowercase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase) else timestep _lowercase : Optional[int] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self) -> Any: """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : List[str] = self.index_for_timestep(__lowerCamelCase) if self.state_in_first_order: _lowercase : Dict = self.sigmas[step_index] else: _lowercase : List[Any] = self.sigmas_interpol[step_index] _lowercase : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = None, lowerCamelCase = None, ) -> Tuple: """simple docstring""" _lowercase : Any = num_inference_steps _lowercase : Any = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Optional[Any] = np.linspace(0, num_train_timesteps - 1, __lowerCamelCase, dtype=__lowerCamelCase)[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : int = (np.arange(0, __lowerCamelCase) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(__lowerCamelCase, 0, -step_ratio)).round().copy().astype(__lowerCamelCase) timesteps -= 1 else: raise ValueError( F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''') _lowercase : str = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) _lowercase : Optional[Any] = torch.from_numpy(np.log(__lowerCamelCase)).to(__lowerCamelCase) _lowercase : Union[str, Any] = np.interp(__lowerCamelCase, np.arange(0, len(__lowerCamelCase)), __lowerCamelCase) _lowercase : Tuple = np.concatenate([sigmas, [0.0]]).astype(np.floataa) _lowercase : int = torch.from_numpy(__lowerCamelCase).to(device=__lowerCamelCase) # interpolate sigmas _lowercase : Dict = sigmas.log().lerp(sigmas.roll(1).log(), 0.5).exp() _lowercase : Tuple = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]]) _lowercase : int = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]) if str(__lowerCamelCase).startswith('mps'): # mps does not support float64 _lowercase : str = torch.from_numpy(__lowerCamelCase).to(__lowerCamelCase, dtype=torch.floataa) else: _lowercase : List[Any] = torch.from_numpy(__lowerCamelCase).to(__lowerCamelCase) # interpolate timesteps _lowercase : Dict = self.sigma_to_t(__lowerCamelCase).to(__lowerCamelCase, dtype=timesteps.dtype) _lowercase : str = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1).flatten() _lowercase : Dict = torch.cat([timesteps[:1], interleaved_timesteps]) _lowercase : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Any = defaultdict(__lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" _lowercase : int = sigma.log() # get distribution _lowercase : Dict = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Optional[Any] = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) _lowercase : Union[str, Any] = low_idx + 1 _lowercase : Any = self.log_sigmas[low_idx] _lowercase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : List[Any] = (low - log_sigma) / (low - high) _lowercase : List[Any] = w.clamp(0, 1) # transform interpolation to time range _lowercase : Optional[Any] = (1 - w) * low_idx + w * high_idx _lowercase : Tuple = t.view(sigma.shape) return t @property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return self.sample is None def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = True, ) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.index_for_timestep(__lowerCamelCase) # advance index counter by 1 _lowercase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : List[Any] = self.sigmas[step_index] _lowercase : str = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : List[str] = self.sigmas[step_index - 1] _lowercase : str = self.sigmas_interpol[step_index] _lowercase : str = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Union[str, Any] = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Dict = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample') else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''') if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Union[str, Any] = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Dict = sigma_next - sigma_hat _lowercase : Tuple = self.sample _lowercase : Union[str, Any] = None _lowercase : Union[str, Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : int = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device, dtype=torch.floataa) _lowercase : str = timesteps.to(original_samples.device, dtype=torch.floataa) else: _lowercase : Dict = self.timesteps.to(original_samples.device) _lowercase : Optional[Any] = timesteps.to(original_samples.device) _lowercase : Tuple = [self.index_for_timestep(__lowerCamelCase, __lowerCamelCase) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): _lowercase : Optional[Any] = sigma.unsqueeze(-1) _lowercase : Any = original_samples + noise * sigma return noisy_samples def __len__( self) -> List[str]: """simple docstring""" return self.config.num_train_timesteps
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __UpperCamelCase ( __snake_case ): _UpperCAmelCase = "audio-spectrogram-transformer" def __init__( self ,_A=768 ,_A=12 ,_A=12 ,_A=3072 ,_A="gelu" ,_A=0.0 ,_A=0.0 ,_A=0.0_2 ,_A=1E-12 ,_A=16 ,_A=True ,_A=10 ,_A=10 ,_A=1024 ,_A=128 ,**_A ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Any = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : Any = qkv_bias _lowerCAmelCase : List[Any] = frequency_stride _lowerCAmelCase : str = time_stride _lowerCAmelCase : List[str] = max_length _lowerCAmelCase : List[Any] = num_mel_bins
259
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _lowercase = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _lowercase = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _lowercase = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : List[Any] = len([g for position, g in enumerate(A__) if g == main_target[position]]) return (item, float(A__)) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Tuple = random.randint(0 , len(A__) - 1) lowerCAmelCase_ : str = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase_ : List[Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = list(A__) if random.uniform(0 , 1) < MUTATION_PROBABILITY: lowerCAmelCase_ : List[Any] = random.choice(A__) return "".join(A__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): lowerCAmelCase_ : Optional[Any] = [] # Generate more children proportionally to the fitness score. lowerCAmelCase_ : Optional[Any] = int(parent_a[1] * 1_00) + 1 lowerCAmelCase_ : Optional[int] = 10 if child_n >= 10 else child_n for _ in range(A__): lowerCAmelCase_ : Optional[Any] = population_score[random.randint(0 , A__)][0] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = crossover(parent_a[0] , A__) # Append new string to the population list. pop.append(mutate(A__ , A__)) pop.append(mutate(A__ , A__)) return pop def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = True): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase_ : List[str] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(A__) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase_ : int = sorted({c for c in target if c not in genes}) if not_in_genes_list: lowerCAmelCase_ : Any = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(A__) # Generate random starting population. lowerCAmelCase_ : int = [] for _ in range(A__): population.append("".join([random.choice(A__) for i in range(len(A__))])) # Just some logs to know what the algorithms is doing. lowerCAmelCase_ , lowerCAmelCase_ : Any = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase_ : Tuple = [evaluate(A__ , A__) for item in population] # Check if there is a matching evolution. lowerCAmelCase_ : Any = sorted(A__ , key=lambda snake_case__: x[1] , reverse=A__) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''') # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase_ : Optional[Any] = population[: int(N_POPULATION / 3)] population.clear() population.extend(A__) # Normalize population score to be between 0 and 1. lowerCAmelCase_ : Any = [ (item, score / len(A__)) for item, score in population_score ] # This is selection for i in range(A__): population.extend(select(population_score[int(A__)] , A__ , A__)) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__) > N_POPULATION: break if __name__ == "__main__": _lowercase = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) _lowercase = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) _lowercase = basic(target_str, genes_list) print( f"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}" )
659
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
0
def snake_case__ ( ) -> Any: UpperCAmelCase_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCAmelCase_ = 6 UpperCAmelCase_ = 1 UpperCAmelCase_ = 1901 UpperCAmelCase_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCAmelCase_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCAmelCase_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCAmelCase_ = day - days_per_month[month - 2] if month > 12: year += 1 UpperCAmelCase_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
579
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
0
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( __snake_case ): def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=False , snake_case=True , snake_case="None" , snake_case=3 , snake_case=4 , snake_case=None , ) -> Optional[Any]: """simple docstring""" lowercase : Tuple = parent lowercase : int = batch_size lowercase : List[str] = seq_length lowercase : str = is_training lowercase : Union[str, Any] = use_input_mask lowercase : Optional[int] = use_token_type_ids lowercase : str = use_labels lowercase : int = vocab_size lowercase : Any = hidden_size lowercase : List[str] = num_hidden_layers lowercase : Optional[int] = num_attention_heads lowercase : Dict = intermediate_size lowercase : Dict = hidden_act lowercase : Dict = hidden_dropout_prob lowercase : List[Any] = attention_probs_dropout_prob lowercase : List[str] = max_position_embeddings lowercase : Union[str, Any] = type_vocab_size lowercase : Optional[Any] = type_sequence_label_size lowercase : List[Any] = initializer_range lowercase : Optional[Any] = num_labels lowercase : Optional[Any] = num_choices lowercase : Optional[int] = relative_attention lowercase : str = position_biased_input lowercase : Dict = pos_att_type lowercase : List[str] = scope def _UpperCAmelCase ( self ) -> Any: """simple docstring""" lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : int = None if self.use_input_mask: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase : Optional[int] = None if self.use_token_type_ids: lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Dict = None lowercase : List[str] = None lowercase : str = None if self.use_labels: lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) lowercase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCAmelCase ( self , snake_case ) -> List[str]: """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = DebertaVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] lowercase : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )[0] lowercase : Tuple = model(__lowerCamelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Dict: """simple docstring""" lowercase : str = DebertaVaForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> int: """simple docstring""" lowercase : str = self.num_labels lowercase : Union[str, Any] = DebertaVaForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Optional[int] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__lowerCamelCase ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Optional[int]: """simple docstring""" lowercase : List[Any] = self.num_labels lowercase : int = DebertaVaForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[Any]: """simple docstring""" lowercase : Tuple = DebertaVaForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: """simple docstring""" lowercase : int = DebertaVaForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase : List[str] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] = config_and_inputs lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __snake_case , __snake_case , unittest.TestCase ): __UpperCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : Dict = DebertaVaModelTester(self ) lowercase : str = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__lowerCamelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[int] = DebertaVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): @unittest.skip(reason="""Model not available yet""" ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" pass @slow def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) lowercase : Optional[int] = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowercase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase : Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] # compare the actual values for a slice. lowercase : int = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) , f'''{output[:, 1:4, 1:4]}''' )
607
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
0
from __future__ import annotations a_ = 1.6021E-19 # units = C def a__ ( _UpperCamelCase : float ,_UpperCamelCase : float ,_UpperCamelCase : float ,): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
175
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED _UpperCAmelCase : List[str] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } _UpperCAmelCase : int = { 'allenai/led-base-16384': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _SCREAMING_SNAKE_CASE ( ): _A = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _A = bs[:] _A = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 _A = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def _SCREAMING_SNAKE_CASE ( __snake_case : str ): _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs class lowercase_ ( __snake_case ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self : Tuple, UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[Any]="replace", UpperCamelCase__ : int="<s>", UpperCamelCase__ : Any="</s>", UpperCamelCase__ : Optional[Any]="</s>", UpperCamelCase__ : Optional[int]="<s>", UpperCamelCase__ : str="<unk>", UpperCamelCase__ : List[str]="<pad>", UpperCamelCase__ : List[Any]="<mask>", UpperCamelCase__ : Tuple=False, **UpperCamelCase__ : Union[str, Any], ) -> str: _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else bos_token _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else eos_token _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else sep_token _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else cls_token _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else unk_token _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A = AddedToken(__lowerCamelCase, lstrip=__lowerCamelCase, rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase, __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase, bos_token=__lowerCamelCase, eos_token=__lowerCamelCase, unk_token=__lowerCamelCase, sep_token=__lowerCamelCase, cls_token=__lowerCamelCase, pad_token=__lowerCamelCase, mask_token=__lowerCamelCase, add_prefix_space=__lowerCamelCase, **__lowerCamelCase, ) with open(__lowerCamelCase, encoding='utf-8' ) as vocab_handle: _A = json.load(__lowerCamelCase ) _A = {v: k for k, v in self.encoder.items()} _A = errors # how to handle errors in decoding _A = bytes_to_unicode() _A = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase, encoding='utf-8' ) as merges_handle: _A = merges_handle.read().split('\n' )[1:-1] _A = [tuple(merge.split() ) for merge in bpe_merges] _A = dict(zip(__lowerCamelCase, range(len(__lowerCamelCase ) ) ) ) _A = {} _A = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __UpperCAmelCase ( self : int ) -> Optional[Any]: return len(self.encoder ) def __UpperCAmelCase ( self : int ) -> Tuple: return dict(self.encoder, **self.added_tokens_encoder ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : List[str] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] _A = tuple(__lowerCamelCase ) _A = get_pairs(__lowerCamelCase ) if not pairs: return token while True: _A = min(__lowerCamelCase, key=lambda UpperCamelCase__ : self.bpe_ranks.get(__lowerCamelCase, float('inf' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCamelCase ): try: _A = word.index(__lowerCamelCase, __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCamelCase ) _A = new_word if len(__lowerCamelCase ) == 1: break else: _A = get_pairs(__lowerCamelCase ) _A = ' '.join(__lowerCamelCase ) _A = word return word def __UpperCAmelCase ( self : int, UpperCamelCase__ : List[Any] ) -> Tuple: _A = [] for token in re.findall(self.pat, __lowerCamelCase ): _A = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(' ' ) ) return bpe_tokens def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: return self.encoder.get(__lowerCamelCase, self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : int ) -> str: return self.decoder.get(__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : List[str] ) -> List[str]: _A = ''.join(__lowerCamelCase ) _A = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8', errors=self.errors ) return text def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : str, UpperCamelCase__ : Optional[str] = None ) -> List[Any]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _A = os.path.join( __lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join( __lowerCamelCase, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__lowerCamelCase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=__lowerCamelCase, ensure_ascii=__lowerCamelCase ) + '\n' ) _A = 0 with open(__lowerCamelCase, 'w', encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _A = token_index writer.write(' '.join(__lowerCamelCase ) + '\n' ) index += 1 return vocab_file, merge_file def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : List[int], UpperCamelCase__ : Optional[List[int]] = None ) -> Optional[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A = [self.cls_token_id] _A = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : List[int], UpperCamelCase__ : Optional[List[int]] = None, UpperCamelCase__ : bool = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase, token_ids_a=__lowerCamelCase, already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : List[int], UpperCamelCase__ : Optional[List[int]] = None ) -> Optional[Any]: _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : Any, UpperCamelCase__ : int, UpperCamelCase__ : Tuple=False, **UpperCamelCase__ : List[Any] ) -> Dict: _A = kwargs.pop('add_prefix_space', self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): _A = ' ' + text return (text, kwargs) def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding], UpperCamelCase__ : Optional[int] = None, UpperCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD, UpperCamelCase__ : Optional[int] = None, UpperCamelCase__ : Optional[bool] = None, ) -> Dict: _A = super()._pad( encoded_inputs=__lowerCamelCase, max_length=__lowerCamelCase, padding_strategy=__lowerCamelCase, pad_to_multiple_of=__lowerCamelCase, return_attention_mask=__lowerCamelCase, ) # Load from model defaults if return_attention_mask is None: _A = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _A = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _A = len(encoded_inputs['global_attention_mask'] ) != len(__lowerCamelCase ) if needs_to_be_padded: _A = len(__lowerCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _A = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": _A = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
107
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') _lowerCAmelCase : int = logging.getLogger(__name__) @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) snake_case = field( default=__snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) snake_case = field( default=__snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) snake_case = field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) snake_case = field( default=__snake_case , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) snake_case = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) snake_case = field( default=__snake_case , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = field(default=__snake_case , metadata={'help': 'The input training data file (a text file).'} ) snake_case = field( default=__snake_case , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) snake_case = field( default=__snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) snake_case = field( default=__snake_case , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) snake_case = field( default=__snake_case , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. If passed, sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) snake_case = field( default=__snake_case , metadata={ 'help': ( 'Whether to pad all samples to the maximum sentence length. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch. More ' 'efficient on GPU but very bad for TPU.' ) } , ) snake_case = field( default=__snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) snake_case = field( default=__snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' if self.train_file is not None: lowerCamelCase = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: lowerCamelCase = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCAmelCase : '''simple docstring''' snake_case = 42 snake_case = True snake_case = None snake_case = None def __call__( self : List[str] , __snake_case : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCamelCase = 'label' if 'label' in features[0].keys() else 'labels' lowerCamelCase = [feature.pop(__lowerCamelCase ) for feature in features] lowerCamelCase = len(__lowerCamelCase ) lowerCamelCase = len(features[0]['input_ids'] ) lowerCamelCase = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCamelCase )] for feature in features ] lowerCamelCase = list(chain(*__lowerCamelCase ) ) lowerCamelCase = self.tokenizer.pad( __lowerCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten lowerCamelCase = {k: v.view(__lowerCamelCase , __lowerCamelCase , -1 ) for k, v in batch.items()} # Add back labels lowerCamelCase = torch.tensor(__lowerCamelCase , dtype=torch.intaa ) return batch def a_ ( ) -> int: """simple docstring""" lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase , lowerCamelCase , lowerCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , A__ , A__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase = training_args.get_process_log_level() logger.setLevel(A__ ) datasets.utils.logging.set_verbosity(A__ ) transformers.utils.logging.set_verbosity(A__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: lowerCamelCase = {} if data_args.train_file is not None: lowerCamelCase = data_args.train_file if data_args.validation_file is not None: lowerCamelCase = data_args.validation_file lowerCamelCase = data_args.train_file.split('.' )[-1] lowerCamelCase = load_dataset( A__ , data_files=A__ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. lowerCamelCase = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. lowerCamelCase = [f'''ending{i}''' for i in range(4 )] lowerCamelCase = 'sent1' lowerCamelCase = 'sent2' if data_args.max_seq_length is None: lowerCamelCase = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) lowerCamelCase = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCamelCase = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(UpperCamelCase_ : Optional[Any] ): lowerCamelCase = [[context] * 4 for context in examples[context_name]] lowerCamelCase = examples[question_header_name] lowerCamelCase = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(A__ ) ] # Flatten out lowerCamelCase = list(chain(*A__ ) ) lowerCamelCase = list(chain(*A__ ) ) # Tokenize lowerCamelCase = tokenizer( A__ , A__ , truncation=A__ , max_length=A__ , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(A__ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCamelCase = raw_datasets['train'] if data_args.max_train_samples is not None: lowerCamelCase = min(len(A__ ) , data_args.max_train_samples ) lowerCamelCase = train_dataset.select(range(A__ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): lowerCamelCase = train_dataset.map( A__ , batched=A__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCamelCase = raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCamelCase = min(len(A__ ) , data_args.max_eval_samples ) lowerCamelCase = eval_dataset.select(range(A__ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): lowerCamelCase = eval_dataset.map( A__ , batched=A__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator lowerCamelCase = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=A__ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(UpperCamelCase_ : Optional[int] ): lowerCamelCase , lowerCamelCase = eval_predictions lowerCamelCase = np.argmax(A__ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer lowerCamelCase = Trainer( model=A__ , args=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=A__ , data_collator=A__ , compute_metrics=A__ , ) # Training if training_args.do_train: lowerCamelCase = None if training_args.resume_from_checkpoint is not None: lowerCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase = last_checkpoint lowerCamelCase = trainer.train(resume_from_checkpoint=A__ ) trainer.save_model() # Saves the tokenizer too for easy upload lowerCamelCase = train_result.metrics lowerCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ ) ) lowerCamelCase = min(A__ , len(A__ ) ) trainer.log_metrics('train' , A__ ) trainer.save_metrics('train' , A__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase = trainer.evaluate() lowerCamelCase = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A__ ) lowerCamelCase = min(A__ , len(A__ ) ) trainer.log_metrics('eval' , A__ ) trainer.save_metrics('eval' , A__ ) lowerCamelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**A__ ) else: trainer.create_model_card(**A__ ) def a_ ( UpperCamelCase_ : Any ) -> Union[str, Any]: """simple docstring""" main() if __name__ == "__main__": main()
246
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
0
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ : Dict = logging.get_logger(__name__) snake_case__ : str = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _a ( __snake_case ): """simple docstring""" A_ = """swin2sr""" A_ = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , _UpperCAmelCase=64 , _UpperCAmelCase=1 , _UpperCAmelCase=3 , _UpperCAmelCase=180 , _UpperCAmelCase=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase=[6, 6, 6, 6, 6, 6] , _UpperCAmelCase=8 , _UpperCAmelCase=2.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=2 , _UpperCAmelCase=1.0 , _UpperCAmelCase="1conv" , _UpperCAmelCase="pixelshuffle" , **_UpperCAmelCase , ) -> Optional[int]: super().__init__(**__lowerCamelCase ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = embed_dim UpperCamelCase_ = depths UpperCamelCase_ = len(__lowerCamelCase ) UpperCamelCase_ = num_heads UpperCamelCase_ = window_size UpperCamelCase_ = mlp_ratio UpperCamelCase_ = qkv_bias UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = drop_path_rate UpperCamelCase_ = hidden_act UpperCamelCase_ = use_absolute_embeddings UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = initializer_range UpperCamelCase_ = upscale UpperCamelCase_ = img_range UpperCamelCase_ = resi_connection UpperCamelCase_ = upsampler
23
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
0
def a__ ( A_ ): '''simple docstring''' __magic_name__ = [] for data in source_data: for i, el in enumerate(A__ ): if len(A__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(A__ ) ) return data_lists def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = [] for dlist, weight in zip(A__, A__ ): __magic_name__ = min(A__ ) __magic_name__ = max(A__ ) __magic_name__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __magic_name__ = f'''Invalid weight of {weight:f} provided''' raise ValueError(A__ ) score_lists.append(A__ ) return score_lists def a__ ( A_ ): '''simple docstring''' __magic_name__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(A__ ): __magic_name__ = final_scores[j] + ele return final_scores def a__ ( A_, A_ ): '''simple docstring''' __magic_name__ = get_data(A__ ) __magic_name__ = calculate_each_score(A__, A__ ) __magic_name__ = generate_final_scores(A__ ) # append scores to source data for i, ele in enumerate(A__ ): source_data[i].append(A__ ) return source_data
529
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
0
from __future__ import annotations import math _snake_case = '2020.9.26' _snake_case = 'xcodz-dot, cclaus, dhruvmanila' def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not all(isinstance(A__ , (float, int) ) for val in locals().values() ): lowerCamelCase : Dict = f"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(A__ ) lowerCamelCase : str = ((x * distance) / (z + distance)) * scale lowerCamelCase : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if not isinstance(A__ , A__ ): raise TypeError("Axis must be a str" ) lowerCamelCase : int = locals() del input_variables["axis"] if not all(isinstance(A__ , (float, int) ) for val in input_variables.values() ): lowerCamelCase : int = ( "Input values except axis must either be float or int: " f"""{list(input_variables.values() )}""" ) raise TypeError(A__ ) lowerCamelCase : Optional[int] = (angle % 360) / 450 * 180 / math.pi if axis == "z": lowerCamelCase : Optional[int] = x * math.cos(A__ ) - y * math.sin(A__ ) lowerCamelCase : Optional[int] = y * math.cos(A__ ) + x * math.sin(A__ ) lowerCamelCase : Any = z elif axis == "x": lowerCamelCase : Any = y * math.cos(A__ ) - z * math.sin(A__ ) lowerCamelCase : str = z * math.cos(A__ ) + y * math.sin(A__ ) lowerCamelCase : Dict = x elif axis == "y": lowerCamelCase : int = x * math.cos(A__ ) - z * math.sin(A__ ) lowerCamelCase : Optional[Any] = z * math.cos(A__ ) + x * math.sin(A__ ) lowerCamelCase : Any = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(f'''{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }''') print(f'''{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }''')
340
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowerCamelCase( __snake_case ): def __init__( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase = None, ) -> Tuple: """simple docstring""" super().__init__() self.register_modules(transformer=__lowerCamelCase, vae=__lowerCamelCase, scheduler=__lowerCamelCase) # create a imagenet -> id dictionary for easier use _lowercase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(','): _lowercase : Optional[Any] = int(__lowerCamelCase) _lowercase : Union[str, Any] = dict(sorted(self.labels.items())) def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" if not isinstance(__lowerCamelCase, __lowerCamelCase): _lowercase : Optional[int] = list(__lowerCamelCase) for l in label: if l not in self.labels: raise ValueError( F'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''') return [self.labels[l] for l in label] @torch.no_grad() def __call__( self, lowerCamelCase, lowerCamelCase = 4.0, lowerCamelCase = None, lowerCamelCase = 50, lowerCamelCase = "pil", lowerCamelCase = True, ) -> Union[str, Any]: """simple docstring""" _lowercase : int = len(__lowerCamelCase) _lowercase : List[str] = self.transformer.config.sample_size _lowercase : int = self.transformer.config.in_channels _lowercase : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=__lowerCamelCase, device=self.device, dtype=self.transformer.dtype, ) _lowercase : Tuple = torch.cat([latents] * 2) if guidance_scale > 1 else latents _lowercase : List[str] = torch.tensor(__lowerCamelCase, device=self.device).reshape(-1) _lowercase : Any = torch.tensor([10_00] * batch_size, device=self.device) _lowercase : Union[str, Any] = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCamelCase) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: _lowercase : Optional[Any] = latent_model_input[: len(__lowerCamelCase) // 2] _lowercase : str = torch.cat([half, half], dim=0) _lowercase : List[Any] = self.scheduler.scale_model_input(__lowerCamelCase, __lowerCamelCase) _lowercase : Tuple = t if not torch.is_tensor(__lowerCamelCase): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) _lowercase : List[Any] = latent_model_input.device.type == 'mps' if isinstance(__lowerCamelCase, __lowerCamelCase): _lowercase : Tuple = torch.floataa if is_mps else torch.floataa else: _lowercase : Optional[Any] = torch.intaa if is_mps else torch.intaa _lowercase : List[Any] = torch.tensor([timesteps], dtype=__lowerCamelCase, device=latent_model_input.device) elif len(timesteps.shape) == 0: _lowercase : Optional[int] = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _lowercase : Any = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output _lowercase : List[str] = self.transformer( __lowerCamelCase, timestep=__lowerCamelCase, class_labels=__lowerCamelCase).sample # perform guidance if guidance_scale > 1: _lowercase , _lowercase : List[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] _lowercase , _lowercase : str = torch.split(__lowerCamelCase, len(__lowerCamelCase) // 2, dim=0) _lowercase : int = uncond_eps + guidance_scale * (cond_eps - uncond_eps) _lowercase : Optional[Any] = torch.cat([half_eps, half_eps], dim=0) _lowercase : Optional[Any] = torch.cat([eps, rest], dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: _lowercase , _lowercase : List[str] = torch.split(__lowerCamelCase, __lowerCamelCase, dim=1) else: _lowercase : int = noise_pred # compute previous image: x_t -> x_t-1 _lowercase : List[Any] = self.scheduler.step(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase).prev_sample if guidance_scale > 1: _lowercase , _lowercase : List[Any] = latent_model_input.chunk(2, dim=0) else: _lowercase : Optional[int] = latent_model_input _lowercase : List[Any] = 1 / self.vae.config.scaling_factor * latents _lowercase : Optional[Any] = self.vae.decode(__lowerCamelCase).sample _lowercase : Tuple = (samples / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowercase : Tuple = samples.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": _lowercase : Any = self.numpy_to_pil(__lowerCamelCase) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCamelCase)
89
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' if rng is None: _lowerCAmelCase : Dict = random.Random() _lowerCAmelCase : Optional[Any] = 1 for dim in shape: total_dims *= dim _lowerCAmelCase : Optional[int] = [] for _ in range(A__ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCAmelCase : List[Any] = np.array(A__ , dtype=jnp.intaa ).reshape(A__ ) return output def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ids_tensor(A__ , vocab_size=2 , rng=A__ ) # make sure that at least one token is attended to for each batch _lowerCAmelCase : Optional[Any] = 1 return attn_mask @require_flax class __UpperCamelCase : _UpperCAmelCase = None _UpperCAmelCase = () def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCAmelCase : Optional[int] = 2 _lowerCAmelCase : List[str] = inputs['input_ids'].shape[-1] // 2 _lowerCAmelCase : Union[str, Any] = inputs['input_ids'][:max_batch_size, :sequence_length] _lowerCAmelCase : Optional[Any] = jnp.ones_like(__lowerCamelCase ) _lowerCAmelCase : int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCAmelCase : Optional[int] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCAmelCase : Tuple = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[str] = self._get_input_ids_and_config() _lowerCAmelCase : str = False _lowerCAmelCase : Optional[int] = max_length _lowerCAmelCase : Any = 0 for model_class in self.all_generative_model_classes: _lowerCAmelCase : str = model_class(__lowerCamelCase ) _lowerCAmelCase : int = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCAmelCase : List[str] = getattr(__lowerCamelCase ,__lowerCamelCase ) _lowerCAmelCase : Tuple = pt_model_class(__lowerCamelCase ).eval() _lowerCAmelCase : Tuple = load_flax_weights_in_pytorch_model(__lowerCamelCase ,flax_model.params ) _lowerCAmelCase : List[Any] = flax_model.generate(__lowerCamelCase ).sequences _lowerCAmelCase : int = pt_model.generate(torch.tensor(__lowerCamelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCAmelCase : Optional[int] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self._get_input_ids_and_config() _lowerCAmelCase : Dict = False _lowerCAmelCase : str = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Optional[Any] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : int = jit(model.generate ) _lowerCAmelCase : List[str] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : int = self._get_input_ids_and_config() _lowerCAmelCase : str = True _lowerCAmelCase : List[str] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : Optional[Any] = jit(model.generate ) _lowerCAmelCase : Optional[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : List[str] = max_length _lowerCAmelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : str = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : Optional[int] = jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Tuple = self._get_input_ids_and_config() _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Optional[Any] = max_length _lowerCAmelCase : Optional[Any] = 2 _lowerCAmelCase : int = 2 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Any = model_class(__lowerCamelCase ) _lowerCAmelCase : List[Any] = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCAmelCase : str = True _lowerCAmelCase : Optional[int] = max_length _lowerCAmelCase : List[str] = 0.8 _lowerCAmelCase : Tuple = 10 _lowerCAmelCase : Any = 0.3 _lowerCAmelCase : int = 1 _lowerCAmelCase : Union[str, Any] = 8 _lowerCAmelCase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : str = jit(model.generate ) _lowerCAmelCase : Tuple = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() _lowerCAmelCase : List[str] = max_length _lowerCAmelCase : Dict = 1 _lowerCAmelCase : int = 8 _lowerCAmelCase : Optional[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Tuple = model_class(__lowerCamelCase ) _lowerCAmelCase : Dict = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : Optional[int] = jit(model.generate ) _lowerCAmelCase : List[str] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = self._get_input_ids_and_config() _lowerCAmelCase : Optional[Any] = max_length _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[Any] = 8 _lowerCAmelCase : Tuple = 9 for model_class in self.all_generative_model_classes: _lowerCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Dict = model.generate(__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : Optional[Any] = jit_generate(__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : Optional[int] = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : int = False _lowerCAmelCase : List[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Tuple = model.generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : Optional[int] = jit_generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : int = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : Any = model_class(__lowerCamelCase ) _lowerCAmelCase : str = model.generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : int = jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCAmelCase : List[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCAmelCase : Union[str, Any] = 2 _lowerCAmelCase : List[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCAmelCase : List[Any] = model_class(__lowerCamelCase ) _lowerCAmelCase : Optional[int] = model.generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCamelCase ) _lowerCAmelCase : List[str] = jit(model.generate ) _lowerCAmelCase : List[Any] = jit_generate(__lowerCamelCase ,attention_mask=__lowerCamelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) _lowerCAmelCase : List[str] = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _lowerCAmelCase : Any = 'Hello world' _lowerCAmelCase : Optional[Any] = tokenizer(__lowerCamelCase ,return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCamelCase ,'do_samples' ): model.generate(__lowerCamelCase ,do_samples=__lowerCamelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCamelCase ,'foo' ): _lowerCAmelCase : Union[str, Any] = {'foo': 'bar'} model.generate(__lowerCamelCase ,**__lowerCamelCase )
259
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) _lowercase = 'https://openaipublic.azureedge.net/jukebox/models/' _lowercase = { 'jukebox-1b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '1b_lyrics/prior_level_2.pth.tar', ], 'jukebox-5b-lyrics': [ '5b/vqvae.pth.tar', '5b/prior_level_0.pth.tar', '5b/prior_level_1.pth.tar', '5b_lyrics/prior_level_2.pth.tar', ], } def UpperCamelCase ( snake_case__): if key.endswith(".model.1.bias") and len(key.split(".")) > 10: lowerCAmelCase_ : List[str] = key.replace(".model.1.bias" , ".conv1d_1.bias") elif key.endswith(".model.1.weight") and len(key.split(".")) > 10: lowerCAmelCase_ : List[str] = key.replace(".model.1.weight" , ".conv1d_1.weight") elif key.endswith(".model.3.bias") and len(key.split(".")) > 10: lowerCAmelCase_ : int = key.replace(".model.3.bias" , ".conv1d_2.bias") elif key.endswith(".model.3.weight") and len(key.split(".")) > 10: lowerCAmelCase_ : Optional[int] = key.replace(".model.3.weight" , ".conv1d_2.weight") if "conditioner_blocks.0." in key: lowerCAmelCase_ : List[Any] = key.replace("conditioner_blocks.0" , "conditioner_blocks") if "prime_prior" in key: lowerCAmelCase_ : Union[str, Any] = key.replace("prime_prior" , "encoder") if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCAmelCase_ : Any = key.replace(".emb." , ".") if key.endswith("k"): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook") if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding.") if "x_emb.emb." in key: lowerCAmelCase_ : List[Any] = key.replace("0.x_emb.emb" , "embed_tokens") if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm") if ".ln" in key: return key.replace(".ln" , ".layer_norm") if "_ln" in key: return key.replace("_ln" , "_layer_norm") if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in") if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head") if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out") if "x_emb" in key: return key.replace("x_emb" , "embed_tokens") return key def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__): lowerCAmelCase_ : str = {} import re lowerCAmelCase_ : int = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)") lowerCAmelCase_ : List[Any] = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)") lowerCAmelCase_ : Optional[Any] = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)") lowerCAmelCase_ : List[str] = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)") lowerCAmelCase_ : Optional[Any] = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)") lowerCAmelCase_ : int = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)") lowerCAmelCase_ : Any = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)") lowerCAmelCase_ : Any = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)") lowerCAmelCase_ : Any = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)") for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(A__): lowerCAmelCase_ : Any = re_encoder_block_conv_in.match(A__) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : Any = int(groups[2]) * 2 + int(groups[3]) lowerCAmelCase_ : List[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' lowerCAmelCase_ : Any = re_encoder_block_conv_in.sub(A__ , A__) elif re_encoder_block_resnet.fullmatch(A__): lowerCAmelCase_ : Dict = re_encoder_block_resnet.match(A__) lowerCAmelCase_ : List[str] = regex_match.groups() lowerCAmelCase_ : List[Any] = int(groups[2]) * 2 + int(groups[3]) lowerCAmelCase_ : int = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase_ : Tuple = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' lowerCAmelCase_ : List[str] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCAmelCase_ : Optional[int] = prefix + resnet_block lowerCAmelCase_ : Any = re_encoder_block_resnet.sub(A__ , A__) elif re_encoder_block_proj_out.fullmatch(A__): lowerCAmelCase_ : List[Any] = re_encoder_block_proj_out.match(A__) lowerCAmelCase_ : Any = regex_match.groups() lowerCAmelCase_ : Optional[Any] = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' lowerCAmelCase_ : Any = re_encoder_block_proj_out.sub(A__ , A__) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(A__): lowerCAmelCase_ : List[Any] = re_decoder_block_conv_out.match(A__) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : List[str] = int(groups[2]) * 2 + int(groups[3]) - 2 lowerCAmelCase_ : Tuple = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' lowerCAmelCase_ : Dict = re_decoder_block_conv_out.sub(A__ , A__) elif re_decoder_block_resnet.fullmatch(A__): lowerCAmelCase_ : Union[str, Any] = re_decoder_block_resnet.match(A__) lowerCAmelCase_ : Optional[int] = regex_match.groups() lowerCAmelCase_ : List[Any] = int(groups[2]) * 2 + int(groups[3]) - 2 lowerCAmelCase_ : Optional[Any] = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase_ : Dict = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' lowerCAmelCase_ : Dict = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCAmelCase_ : List[Any] = prefix + resnet_block lowerCAmelCase_ : int = re_decoder_block_resnet.sub(A__ , A__) elif re_decoder_block_proj_in.fullmatch(A__): lowerCAmelCase_ : str = re_decoder_block_proj_in.match(A__) lowerCAmelCase_ : Union[str, Any] = regex_match.groups() lowerCAmelCase_ : List[str] = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' lowerCAmelCase_ : Optional[int] = re_decoder_block_proj_in.sub(A__ , A__) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(A__): lowerCAmelCase_ : Optional[int] = re_prior_cond_conv_out.match(A__) lowerCAmelCase_ : str = regex_match.groups() lowerCAmelCase_ : Tuple = int(groups[1]) * 2 + int(groups[2]) - 2 lowerCAmelCase_ : int = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' lowerCAmelCase_ : List[Any] = re_prior_cond_conv_out.sub(A__ , A__) elif re_prior_cond_resnet.fullmatch(A__): lowerCAmelCase_ : str = re_prior_cond_resnet.match(A__) lowerCAmelCase_ : List[str] = regex_match.groups() lowerCAmelCase_ : Optional[Any] = int(groups[1]) * 2 + int(groups[2]) - 2 lowerCAmelCase_ : List[Any] = {"1": 1, "3": 2}[groups[-2]] lowerCAmelCase_ : List[str] = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' lowerCAmelCase_ : Union[str, Any] = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' lowerCAmelCase_ : Optional[int] = prefix + resnet_block lowerCAmelCase_ : List[str] = re_prior_cond_resnet.sub(A__ , A__) elif re_prior_cond_proj_in.fullmatch(A__): lowerCAmelCase_ : Tuple = re_prior_cond_proj_in.match(A__) lowerCAmelCase_ : Any = regex_match.groups() lowerCAmelCase_ : List[str] = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' lowerCAmelCase_ : List[str] = re_prior_cond_proj_in.sub(A__ , A__) # keep original key else: lowerCAmelCase_ : Union[str, Any] = original_key lowerCAmelCase_ : str = replace_key(A__) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''') # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: lowerCAmelCase_ : int = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''') lowerCAmelCase_ : List[Any] = original_key lowerCAmelCase_ : List[Any] = original_key lowerCAmelCase_ : Optional[Any] = value return new_dict @torch.no_grad() def UpperCamelCase ( snake_case__=None , snake_case__=None): for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split("/")[-1]}'''): lowerCAmelCase_ : List[Any] = requests.get(F'''{PREFIX}{file}''' , allow_redirects=A__) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=A__) open(F'''{pytorch_dump_folder_path}/{file.split("/")[-1]}''' , "wb").write(r.content) lowerCAmelCase_ : Tuple = MODEL_MAPPING[model_name.split("/")[-1]] lowerCAmelCase_ : str = JukeboxConfig.from_pretrained(A__) lowerCAmelCase_ : Dict = JukeboxModel(A__) lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Union[str, Any] = {} for i, dict_name in enumerate(A__): lowerCAmelCase_ : Union[str, Any] = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split("/")[-1]}''')["model"] lowerCAmelCase_ : Optional[Any] = {} for k in old_dic.keys(): if k.endswith(".b"): lowerCAmelCase_ : str = old_dic[k] elif k.endswith(".w"): lowerCAmelCase_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCAmelCase_ : Tuple = old_dic[k] else: lowerCAmelCase_ : str = old_dic[k] lowerCAmelCase_ : Dict = "vqvae" if i == 0 else F'''priors.{3 - i}''' lowerCAmelCase_ : Tuple = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__) weight_dict.append(A__) lowerCAmelCase_ : List[Any] = weight_dict.pop(0) model.vqvae.load_state_dict(A__) for i in range(len(A__)): model.priors[i].load_state_dict(weight_dict[2 - i]) Path(A__).mkdir(exist_ok=A__) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , "w") as txtfile: json.dump(A__ , A__) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(A__) return weight_dict if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''jukebox-5b-lyrics''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''jukebox-5b-lyrics-converted''', type=str, help='''Path to the output PyTorch model directory.''', ) _lowercase = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
659
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
SCREAMING_SNAKE_CASE = range(2, 20 + 1) SCREAMING_SNAKE_CASE = [10**k for k in range(ks[-1] + 1)] SCREAMING_SNAKE_CASE = {} def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = sum(a_i[j] for j in range(A__ , len(A__ ) ) ) UpperCAmelCase_ = sum(a_i[j] * base[j] for j in range(min(len(A__ ) , A__ ) ) ) UpperCAmelCase_ , UpperCAmelCase_ = 0, 0 UpperCAmelCase_ = n - i UpperCAmelCase_ = memo.get(A__ ) if sub_memo is not None: UpperCAmelCase_ = sub_memo.get(A__ ) if jumps is not None and len(A__ ) > 0: # find and make the largest jump without going over UpperCAmelCase_ = -1 for _k in range(len(A__ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase_ = _k break if max_jump >= 0: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase_ = diff + c for j in range(min(A__ , len(A__ ) ) ): UpperCAmelCase_ , UpperCAmelCase_ = divmod(A__ , 10 ) if new_c > 0: add(A__ , A__ , A__ ) else: UpperCAmelCase_ = [] else: UpperCAmelCase_ = {c: []} UpperCAmelCase_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase_ , UpperCAmelCase_ = next_term(A__ , k - 1 , i + dn , A__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase_ , UpperCAmelCase_ = compute(A__ , A__ , i + dn , A__ ) diff += _diff dn += terms_jumped UpperCAmelCase_ = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase_ = 0 while j < len(A__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A__ , (diff, dn, k) ) return (diff, dn) def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Any: if i >= n: return 0, i if k > len(A__ ): a_i.extend([0 for _ in range(k - len(A__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase_ = i UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = 0, 0, 0 for j in range(len(A__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase_ = ds_c + ds_b diff += addend UpperCAmelCase_ = 0 for j in range(A__ ): UpperCAmelCase_ = a_i[j] + addend UpperCAmelCase_ , UpperCAmelCase_ = divmod(A__ , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A__ , A__ , A__ ) return diff, i - start_i def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: for j in range(A__ , len(A__ ) ): UpperCAmelCase_ = digits[j] + addend if s >= 10: UpperCAmelCase_ , UpperCAmelCase_ = divmod(A__ , 10 ) UpperCAmelCase_ = addend // 10 + quotient else: UpperCAmelCase_ = s UpperCAmelCase_ = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase_ , UpperCAmelCase_ = divmod(A__ , 10 ) digits.append(A__ ) def snake_case__ ( __SCREAMING_SNAKE_CASE = 10**15 ) -> Optional[Any]: UpperCAmelCase_ = [1] UpperCAmelCase_ = 1 UpperCAmelCase_ = 0 while True: UpperCAmelCase_ , UpperCAmelCase_ = next_term(A__ , 20 , i + dn , A__ ) dn += terms_jumped if dn == n - i: break UpperCAmelCase_ = 0 for j in range(len(A__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
579
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : def __init__( self , snake_case , snake_case=3 , snake_case=3_2 , snake_case=3 , snake_case=1_0 , snake_case=[1_0, 2_0, 3_0, 4_0] , snake_case=[1, 1, 2, 1] , snake_case=True , snake_case=True , snake_case="relu" , snake_case=3 , snake_case=None , ) -> Dict: """simple docstring""" lowercase : Optional[Any] = parent lowercase : Optional[Any] = batch_size lowercase : int = image_size lowercase : Optional[Any] = num_channels lowercase : str = embeddings_size lowercase : List[Any] = hidden_sizes lowercase : List[Any] = depths lowercase : List[Any] = is_training lowercase : str = use_labels lowercase : Tuple = hidden_act lowercase : Optional[int] = num_labels lowercase : int = scope lowercase : Dict = len(__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Any = None if self.use_labels: lowercase : Dict = ids_tensor([self.batch_size] , self.num_labels ) lowercase : int = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] = TFRegNetModel(config=__lowerCamelCase ) lowercase : Union[str, Any] = model(__lowerCamelCase , training=__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case ) -> List[Any]: """simple docstring""" lowercase : int = self.num_labels lowercase : Optional[int] = TFRegNetForImageClassification(__lowerCamelCase ) lowercase : List[str] = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : Tuple = config_and_inputs lowercase : Union[str, Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( __snake_case , __snake_case , unittest.TestCase ): __UpperCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __UpperCAmelCase = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" lowercase : int = TFRegNetModelTester(self ) lowercase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" pass def _UpperCAmelCase ( self ) -> Any: """simple docstring""" lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Optional[Any] = model_class(__lowerCamelCase ) lowercase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : Dict = [*signature.parameters.keys()] lowercase : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" def check_hidden_states_output(snake_case , snake_case , snake_case ): lowercase : List[str] = model_class(__lowerCamelCase ) lowercase : Optional[int] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase ) lowercase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : Union[str, Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[int] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase : Any = layer_type lowercase : List[str] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : List[str] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" lowercase , lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(snake_case , snake_case , snake_case , snake_case={} ): lowercase : Tuple = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ) lowercase : Any = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple() def recursive_check(snake_case , snake_case ): if isinstance(__lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ): recursive_check(__lowerCamelCase , __lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase ) for model_class in self.all_model_classes: lowercase : int = model_class(__lowerCamelCase ) lowercase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) lowercase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) lowercase : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) lowercase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"""output_hidden_states""": True} ) lowercase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) lowercase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"""output_hidden_states""": True} ) def _UpperCAmelCase ( self ) -> Any: """simple docstring""" lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[Any] = TFRegNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __snake_case ( ) -> List[Any]: lowercase : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): @cached_property def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self ) -> int: """simple docstring""" lowercase : Optional[int] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowercase : Tuple = self.default_image_processor lowercase : Tuple = prepare_img() lowercase : Tuple = image_processor(images=__lowerCamelCase , return_tensors="""tf""" ) # forward pass lowercase : List[Any] = model(**__lowerCamelCase , training=__lowerCamelCase ) # verify the logits lowercase : Dict = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) lowercase : List[str] = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
607
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __snake_case , unittest.TestCase ): lowerCAmelCase__ = DiTPipeline lowerCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase__ = False def lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__lowerCamelCase , ) __lowerCamelCase = AutoencoderKL() __lowerCamelCase = DDIMScheduler() __lowerCamelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__lowerCamelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__lowerCamelCase ) else: __lowerCamelCase = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __lowerCamelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''cpu''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __lowerCamelCase = self.get_dummy_inputs(__lowerCamelCase ) __lowerCamelCase = pipe(**__lowerCamelCase ).images __lowerCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __lowerCamelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) __lowerCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def lowerCamelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def lowerCamelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) __lowerCamelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] __lowerCamelCase = pipe.get_label_ids(__lowerCamelCase ) __lowerCamelCase = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): __lowerCamelCase = load_numpy( F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) __lowerCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) __lowerCamelCase = ['''vase''', '''umbrella'''] __lowerCamelCase = pipe.get_label_ids(__lowerCamelCase ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1E-1
175
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( A__ : str , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : List[Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = result.headers["Location"] SCREAMING_SNAKE_CASE = requests.get(A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{artifact_name}.zip" ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def __a ( A__ : List[Any] , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: SCREAMING_SNAKE_CASE = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE = line[: line.index(": " )] SCREAMING_SNAKE_CASE = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE = line if len(A__ ) != len(A__ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` " F"and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) SCREAMING_SNAKE_CASE = None if job_name and job_links: SCREAMING_SNAKE_CASE = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def __a ( A__ : List[str] , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : str ): SCREAMING_SNAKE_CASE = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE = test.split("/" )[2] else: SCREAMING_SNAKE_CASE = None return test def __a ( A__ : List[str] , A__ : Dict=None ): SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE = {x[2] for x in logs} SCREAMING_SNAKE_CASE = {} for test in tests: SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = "| no. | error | status |" SCREAMING_SNAKE_CASE = "|-:|:-|:-|" SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE = F"| {count} | {error[:100]} | |" lines.append(A__ ) return "\n".join(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __A : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A : int = get_job_links(args.workflow_run_id, token=args.token) __A : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A : Union[str, Any] = k.find(' / ') __A : Optional[int] = k[index + len(' / ') :] __A : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A : Optional[Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A : str = reduce_by_error(errors) __A : int = reduce_by_model(errors) __A : Any = make_github_table(reduced_by_error) __A : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
16
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def _SCREAMING_SNAKE_CASE ( __snake_case : list[list[float]] ): _A = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements _A = [[0.0, 0.0], [0.0, 0.0]] _A , _A = matrix[1][1], matrix[0][0] _A , _A = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix _A = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A = array(A__ ) for i in range(3 ): for j in range(3 ): _A = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
107
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : List[str] = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ['MaskFormerFeatureExtractor'] _lowerCAmelCase : Optional[Any] = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] _lowerCAmelCase : str = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure)
246
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
23
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __lowerCAmelCase : List[Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def a__ ( ): '''simple docstring''' __magic_name__ = _ask_options( """In which compute environment are you running?""", ["""This machine""", """AWS (Amazon SageMaker)"""], _convert_compute_environment, ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __magic_name__ = get_sagemaker_input() else: __magic_name__ = get_cluster_input() return config def a__ ( A_=None ): '''simple docstring''' if subparsers is not None: __magic_name__ = subparsers.add_parser("""config""", description=A__ ) else: __magic_name__ = argparse.ArgumentParser("""Accelerate config command""", description=A__ ) parser.add_argument( """--config_file""", default=A__, help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ), ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def a__ ( A_ ): '''simple docstring''' __magic_name__ = get_user_input() if args.config_file is not None: __magic_name__ = args.config_file else: if not os.path.isdir(A__ ): os.makedirs(A__ ) __magic_name__ = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(A__ ) else: config.to_yaml_file(A__ ) print(f'''accelerate configuration saved at {config_file}''' ) def a__ ( ): '''simple docstring''' __magic_name__ = config_command_parser() __magic_name__ = parser.parse_args() config_command(A__ ) if __name__ == "__main__": main()
529
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(A__ , config=A__ ) lowerCamelCase : Any = downstream_dict["projector.weight"] lowerCamelCase : Optional[Any] = downstream_dict["projector.bias"] lowerCamelCase : Optional[int] = downstream_dict["model.post_net.linear.weight"] lowerCamelCase : List[str] = downstream_dict["model.post_net.linear.bias"] return model def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Any = UniSpeechSatForAudioFrameClassification.from_pretrained(A__ , config=A__ ) lowerCamelCase : List[Any] = downstream_dict["model.linear.weight"] lowerCamelCase : Optional[int] = downstream_dict["model.linear.bias"] return model def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Dict = UniSpeechSatForXVector.from_pretrained(A__ , config=A__ ) lowerCamelCase : Any = downstream_dict["connector.weight"] lowerCamelCase : str = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCamelCase : List[Any] = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] lowerCamelCase : List[Any] = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] lowerCamelCase : Any = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowerCamelCase : List[str] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowerCamelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowerCamelCase : int = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowerCamelCase : List[Any] = downstream_dict["objective.W"] return model @torch.no_grad() def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = torch.load(A__ , map_location="cpu" ) lowerCamelCase : List[Any] = checkpoint["Downstream"] lowerCamelCase : Dict = UniSpeechSatConfig.from_pretrained(A__ ) lowerCamelCase : int = WavaVecaFeatureExtractor.from_pretrained( A__ , return_attention_mask=A__ , do_normalize=A__ ) lowerCamelCase : List[str] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowerCamelCase : Dict = convert_classification(A__ , A__ , A__ ) elif arch.endswith("ForAudioFrameClassification" ): lowerCamelCase : Union[str, Any] = convert_diarization(A__ , A__ , A__ ) elif arch.endswith("ForXVector" ): lowerCamelCase : int = convert_xvector(A__ , A__ , A__ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: lowerCamelCase : str = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _snake_case = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
340
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=3, lowerCamelCase=10, lowerCamelCase=[10, 20, 30, 40], lowerCamelCase=[1, 1, 2, 1], lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase="relu", lowerCamelCase=3, lowerCamelCase=None, ) -> int: """simple docstring""" _lowercase : Dict = parent _lowercase : Union[str, Any] = batch_size _lowercase : Union[str, Any] = image_size _lowercase : int = num_channels _lowercase : Tuple = embeddings_size _lowercase : List[str] = hidden_sizes _lowercase : Union[str, Any] = depths _lowercase : List[Any] = is_training _lowercase : Optional[Any] = use_labels _lowercase : int = hidden_act _lowercase : Optional[Any] = num_labels _lowercase : str = scope _lowercase : str = len(__lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Union[str, Any] = None if self.use_labels: _lowercase : int = ids_tensor([self.batch_size], self.num_labels) _lowercase : Dict = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Optional[int] = TFResNetModel(config=__lowerCamelCase) _lowercase : int = model(__lowerCamelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[int] = self.num_labels _lowercase : List[Any] = TFResNetForImageClassification(__lowerCamelCase) _lowercase : Optional[int] = model(__lowerCamelCase, labels=__lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCamelCase( __snake_case, __snake_case, unittest.TestCase ): lowercase_ : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () lowercase_ : Optional[Any] = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) lowercase_ : Any = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False lowercase_ : Any = False def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[Any] = TFResNetModelTester(self) _lowercase : str = ConfigTester(self, config_class=__lowerCamelCase, has_text_modality=__lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason='ResNet does not use inputs_embeds') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass @unittest.skip(reason='ResNet does not support input and output embeddings') def UpperCamelCase ( self) -> Tuple: """simple docstring""" pass def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[Any] = model_class(__lowerCamelCase) _lowercase : int = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : int = [*signature.parameters.keys()] _lowercase : str = ['pixel_values'] self.assertListEqual(arg_names[:1], __lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : List[Any] = model_class(__lowerCamelCase) _lowercase : Optional[int] = model(**self._prepare_for_class(__lowerCamelCase, __lowerCamelCase)) _lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : str = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase), expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Union[str, Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase : Any = layer_type _lowercase : Any = True check_hidden_states_output(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Tuple = True check_hidden_states_output(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase) @slow def UpperCamelCase ( self) -> List[Any]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = TFResNetModel.from_pretrained(__lowerCamelCase) self.assertIsNotNone(__lowerCamelCase) def UpperCamelCase_( ) -> Optional[int]: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Any = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) _lowercase : Dict = self.default_image_processor _lowercase : Optional[Any] = prepare_img() _lowercase : List[str] = image_processor(images=__lowerCamelCase, return_tensors='tf') # forward pass _lowercase : Union[str, Any] = model(**__lowerCamelCase) # verify the logits _lowercase : Tuple = tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape, __lowerCamelCase) _lowercase : Dict = tf.constant([-1_1.1_0_6_9, -9.7_8_7_7, -8.3_7_7_7]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy(), __lowerCamelCase, atol=1E-4))
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class __UpperCamelCase ( __snake_case ): def __init__( self ,*_A ,**_A ): '''simple docstring''' warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' ,__lowerCamelCase ,) super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
259
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
0
from __future__ import annotations from collections.abc import Callable _lowercase = list[list[float | int]] def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ : Optional[int] = len(A__) lowerCAmelCase_ : Any = [[0 for _ in range(size + 1)] for _ in range(A__)] lowerCAmelCase_ : Optional[int] = 42 lowerCAmelCase_ : Dict = 42 lowerCAmelCase_ : Optional[int] = 42 lowerCAmelCase_ : Optional[Any] = 42 lowerCAmelCase_ : Optional[int] = 42 lowerCAmelCase_ : Optional[Any] = 42 for row in range(A__): for col in range(A__): lowerCAmelCase_ : Optional[Any] = matrix[row][col] lowerCAmelCase_ : List[Any] = vector[row][0] lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = 0 while row < size and col < size: # pivoting lowerCAmelCase_ : List[str] = max((abs(augmented[rowa][col]), rowa) for rowa in range(A__ , A__))[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCAmelCase_ , lowerCAmelCase_ : int = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , A__): lowerCAmelCase_ : str = augmented[rowa][col] / augmented[row][col] lowerCAmelCase_ : Any = 0 for cola in range(col + 1 , size + 1): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , A__): for row in range(A__): lowerCAmelCase_ : Dict = augmented[row][col] / augmented[col][col] for cola in range(A__ , size + 1): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10)] for row in range(A__) ] def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = len(A__) lowerCAmelCase_ : Dict = [[0 for _ in range(A__)] for _ in range(A__)] lowerCAmelCase_ : Optional[Any] = [[0] for _ in range(A__)] lowerCAmelCase_ : Union[str, Any] = 42 lowerCAmelCase_ : Optional[Any] = 42 lowerCAmelCase_ : Dict = 42 lowerCAmelCase_ : List[str] = 42 for x_val, y_val in enumerate(A__): for col in range(A__): lowerCAmelCase_ : Optional[Any] = (x_val + 1) ** (size - col - 1) lowerCAmelCase_ : Dict = y_val lowerCAmelCase_ : List[str] = solve(A__ , A__) def interpolated_func(snake_case__) -> int: return sum( round(coeffs[x_val][0]) * (var ** (size - x_val - 1)) for x_val in range(A__)) return interpolated_func def UpperCamelCase ( snake_case__): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def UpperCamelCase ( snake_case__ = question_function , snake_case__ = 10): lowerCAmelCase_ : List[Any] = [func(A__) for x_val in range(1 , order + 1)] lowerCAmelCase_ : List[str] = [ interpolate(data_points[:max_coeff]) for max_coeff in range(1 , order + 1) ] lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : List[str] = 42 lowerCAmelCase_ : str = 42 for poly in polynomials: lowerCAmelCase_ : Union[str, Any] = 1 while func(A__) == poly(A__): x_val += 1 ret += poly(A__) return ret if __name__ == "__main__": print(f"{solution() = }")
659
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = PhobertTokenizer lowerCAmelCase_ : Optional[int] = False def A__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = ["T@@", "i", "I", "R@@", "r", "e@@"] UpperCAmelCase_ = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCAmelCase_ = ["#version: 0.2", "l à</w>"] UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def A__ ( self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = "Tôi là VinAI Research" UpperCAmelCase_ = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def A__ ( self ): UpperCAmelCase_ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ = "Tôi là VinAI Research" UpperCAmelCase_ = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() UpperCAmelCase_ = tokenizer.tokenize(__lowerCamelCase ) print(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
579
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase: Optional[int] =logging.get_logger(__name__) lowerCAmelCase: Optional[Any] ={ 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCamelCase__ ( __snake_case ): __UpperCAmelCase = """gpt_neox""" def __init__( self , snake_case=5_0_4_3_2 , snake_case=6_1_4_4 , snake_case=4_4 , snake_case=6_4 , snake_case=2_4_5_7_6 , snake_case="gelu" , snake_case=0.25 , snake_case=1_0_0_0_0 , snake_case=0.0 , snake_case=0.0 , snake_case=0.1 , snake_case=2_0_4_8 , snake_case=0.02 , snake_case=1E-5 , snake_case=True , snake_case=0 , snake_case=2 , snake_case=False , snake_case=True , snake_case=None , **snake_case , ) -> Optional[Any]: """simple docstring""" super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowercase : Tuple = vocab_size lowercase : List[Any] = max_position_embeddings lowercase : Optional[int] = hidden_size lowercase : int = num_hidden_layers lowercase : List[str] = num_attention_heads lowercase : int = intermediate_size lowercase : Dict = hidden_act lowercase : str = rotary_pct lowercase : str = rotary_emb_base lowercase : int = attention_dropout lowercase : List[Any] = hidden_dropout lowercase : Optional[int] = classifier_dropout lowercase : Optional[Any] = initializer_range lowercase : List[str] = layer_norm_eps lowercase : Optional[Any] = use_cache lowercase : Optional[int] = tie_word_embeddings lowercase : Any = use_parallel_residual lowercase : str = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) lowercase : int = self.rope_scaling.get("""type""" , __lowerCamelCase ) lowercase : Any = self.rope_scaling.get("""factor""" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
607
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
175
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : List[str] = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ ( __snake_case ): """simple docstring""" __lowerCAmelCase = "blenderbot-small" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : List[Any], UpperCamelCase__ : List[str]=5_02_65, UpperCamelCase__ : List[Any]=5_12, UpperCamelCase__ : Optional[Any]=8, UpperCamelCase__ : str=20_48, UpperCamelCase__ : str=16, UpperCamelCase__ : Optional[int]=8, UpperCamelCase__ : Optional[int]=20_48, UpperCamelCase__ : str=16, UpperCamelCase__ : int=0.0, UpperCamelCase__ : Any=0.0, UpperCamelCase__ : Tuple=True, UpperCamelCase__ : Optional[int]=True, UpperCamelCase__ : int="gelu", UpperCamelCase__ : str=5_12, UpperCamelCase__ : List[Any]=0.1, UpperCamelCase__ : List[str]=0.0, UpperCamelCase__ : Optional[Any]=0.0, UpperCamelCase__ : Union[str, Any]=0.02, UpperCamelCase__ : Union[str, Any]=1, UpperCamelCase__ : List[Any]=False, UpperCamelCase__ : int=0, UpperCamelCase__ : Optional[Any]=1, UpperCamelCase__ : List[str]=2, UpperCamelCase__ : Optional[Any]=2, **UpperCamelCase__ : Optional[int], ) -> Optional[int]: _A = vocab_size _A = max_position_embeddings _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase, bos_token_id=__lowerCamelCase, eos_token_id=__lowerCamelCase, is_encoder_decoder=__lowerCamelCase, decoder_start_token_id=__lowerCamelCase, forced_eos_token_id=__lowerCamelCase, **__lowerCamelCase, ) class lowercase_ ( __snake_case ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _A = {0: 'batch'} _A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _A = {0: 'batch', 1: 'decoder_sequence'} _A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase, direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _A , _A = self.num_layers for i in range(__lowerCamelCase ): _A = {0: 'batch', 2: 'past_sequence + sequence'} _A = {0: 'batch', 2: 'past_sequence + sequence'} else: _A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: if self.task in ["default", "seq2seq-lm"]: _A = super().outputs else: _A = super(__lowerCamelCase, self ).outputs if self.use_past: _A , _A = self.num_layers for i in range(__lowerCamelCase ): _A = {0: 'batch', 2: 'past_sequence + sequence'} _A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self : Any, UpperCamelCase__ : PreTrainedTokenizer, UpperCamelCase__ : int = -1, UpperCamelCase__ : int = -1, UpperCamelCase__ : bool = False, UpperCamelCase__ : Optional[TensorType] = None, ) -> str: _A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) # Generate decoder inputs _A = seq_length if not self.use_past else 1 _A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) _A = {f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _A = dict(**__lowerCamelCase, **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _A , _A = common_inputs['input_ids'].shape _A = common_inputs['decoder_input_ids'].shape[1] _A , _A = self.num_attention_heads _A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _A = decoder_seq_length + 3 _A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(__lowerCamelCase, __lowerCamelCase )], dim=1 ) _A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _A , _A = self.num_layers _A = min(__lowerCamelCase, __lowerCamelCase ) _A = max(__lowerCamelCase, __lowerCamelCase ) - min_num_layers _A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. _A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(__lowerCamelCase, __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : PreTrainedTokenizer, UpperCamelCase__ : int = -1, UpperCamelCase__ : int = -1, UpperCamelCase__ : bool = False, UpperCamelCase__ : Optional[TensorType] = None, ) -> Any: _A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _A , _A = common_inputs['input_ids'].shape # Not using the same length for past_key_values _A = seqlen + 2 _A , _A = self.num_layers _A , _A = self.num_attention_heads _A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _A = common_inputs['attention_mask'].dtype _A = torch.cat( [common_inputs['attention_mask'], torch.ones(__lowerCamelCase, __lowerCamelCase, dtype=__lowerCamelCase )], dim=1 ) _A = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : PreTrainedTokenizer, UpperCamelCase__ : int = -1, UpperCamelCase__ : int = -1, UpperCamelCase__ : bool = False, UpperCamelCase__ : Optional[TensorType] = None, ) -> List[Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _A = compute_effective_axis_dimension( __lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _A = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) _A = compute_effective_axis_dimension( __lowerCamelCase, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence _A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _A = dict(tokenizer(__lowerCamelCase, return_tensors=__lowerCamelCase ) ) return common_inputs def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : PreTrainedTokenizer, UpperCamelCase__ : int = -1, UpperCamelCase__ : int = -1, UpperCamelCase__ : bool = False, UpperCamelCase__ : Optional[TensorType] = None, ) -> List[Any]: if self.task in ["default", "seq2seq-lm"]: _A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase, batch_size=__lowerCamelCase, seq_length=__lowerCamelCase, is_pair=__lowerCamelCase, framework=__lowerCamelCase ) elif self.task == "causal-lm": _A = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase, batch_size=__lowerCamelCase, seq_length=__lowerCamelCase, is_pair=__lowerCamelCase, framework=__lowerCamelCase ) else: _A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase, batch_size=__lowerCamelCase, seq_length=__lowerCamelCase, is_pair=__lowerCamelCase, framework=__lowerCamelCase ) return common_inputs def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Dict, UpperCamelCase__ : int ) -> Any: if self.task in ["default", "seq2seq-lm"]: _A = super()._flatten_past_key_values_(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) else: _A = super(__lowerCamelCase, self )._flatten_past_key_values_( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
107
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
0
import math from collections.abc import Callable def a_ ( UpperCamelCase_ : Callable[[float], float] , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> int: """simple docstring""" lowerCamelCase = xa lowerCamelCase = xa while True: if x_n == x_na or function(A__ ) == function(A__ ): raise ZeroDivisionError('float division by zero, could not find root' ) lowerCamelCase = x_na - ( function(A__ ) / ((function(A__ ) - function(A__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 1_0**-5: return x_na lowerCamelCase = x_na lowerCamelCase = x_na def a_ ( UpperCamelCase_ : float ) -> Tuple: """simple docstring""" return math.pow(A__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
246
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES snake_case__ : int = logging.get_logger(__name__) snake_case__ : List[str] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) snake_case__ : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) snake_case__ : Tuple = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) snake_case__ : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) snake_case__ : Any = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) snake_case__ : Optional[int] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) snake_case__ : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) snake_case__ : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) snake_case__ : str = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) snake_case__ : Dict = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) snake_case__ : Dict = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) snake_case__ : Any = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) snake_case__ : Optional[int] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) snake_case__ : List[str] = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) snake_case__ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) snake_case__ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) snake_case__ : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) snake_case__ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) snake_case__ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) snake_case__ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) snake_case__ : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) snake_case__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) snake_case__ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) snake_case__ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) snake_case__ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_MAPPING snake_case__ : Optional[int] = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_PRETRAINING_MAPPING snake_case__ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING snake_case__ : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_MASKED_LM_MAPPING snake_case__ : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case__ : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING snake_case__ : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING snake_case__ : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING snake_case__ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING snake_case__ : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING snake_case__ : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING snake_case__ : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class _a ( _BaseAutoModelClass ): """simple docstring""" A_ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING snake_case__ : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
23
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a__ ( A_, A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter __magic_name__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __magic_name__ = TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams __magic_name__ = 4 __magic_name__ = True # hparam_utils.py hparams __magic_name__ = 0.664694 __magic_name__ = 0.207951 __magic_name__ = 0.121194 __magic_name__ = True __magic_name__ = True __magic_name__ = False __magic_name__ = 0.0352513 __magic_name__ = TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __magic_name__ = 4 __magic_name__ = False # hparam_utils.py hparams __magic_name__ = 36.4519 __magic_name__ = 0.903421 __magic_name__ = 222.088 __magic_name__ = True __magic_name__ = True __magic_name__ = True __magic_name__ = 0.763141 __magic_name__ = TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": __magic_name__ = TapasForSequenceClassification(config=A__ ) elif task == "MLM": __magic_name__ = TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": __magic_name__ = TapasModel(config=A__ ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__, A__, A__ ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A__ ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) __magic_name__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""", model_max_length=512 ) tokenizer.save_pretrained(A__ ) print("""Used relative position embeddings:""", model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
529
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __A , __A=13 , __A=10 , __A=3 , __A=2 , __A=2 , __A=True , __A=True , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=10 , __A=0.02 , __A="divided_space_time" , __A=None , ): """simple docstring""" lowerCamelCase : int = parent lowerCamelCase : Tuple = batch_size lowerCamelCase : List[str] = image_size lowerCamelCase : str = num_channels lowerCamelCase : Dict = patch_size lowerCamelCase : int = num_frames lowerCamelCase : Optional[int] = is_training lowerCamelCase : str = use_labels lowerCamelCase : Dict = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : Any = num_attention_heads lowerCamelCase : Optional[int] = intermediate_size lowerCamelCase : Dict = hidden_act lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Tuple = attention_type lowerCamelCase : Optional[Any] = initializer_range lowerCamelCase : List[Any] = scope lowerCamelCase : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowerCamelCase : int = (image_size // patch_size) ** 2 lowerCamelCase : Optional[Any] = (num_frames) * self.num_patches_per_frame + 1 def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Optional[int] = None if self.use_labels: lowerCamelCase : str = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase : str = self.get_config() return config, pixel_values, labels def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[str] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowerCamelCase : List[str] = self.num_labels return config def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : Any = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase : str = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __A , __A , __A ): """simple docstring""" lowerCamelCase : str = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase : Tuple = model(__lowerCamelCase ) # verify the logits shape lowerCamelCase : Any = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase : Optional[int] = config_and_inputs lowerCamelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __A : List[str] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __A : int = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) __A : List[Any] = False __A : Union[str, Any] = False __A : Optional[int] = False __A : str = False def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = TimesformerModelTester(self ) lowerCamelCase : Optional[int] = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _snake_case ( self , __A , __A , __A=False ): """simple docstring""" lowerCamelCase : Optional[int] = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _snake_case ( self ): """simple docstring""" pass def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[Any] = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self ): """simple docstring""" lowerCamelCase , lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int = model_class(__lowerCamelCase ) lowerCamelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : str = [*signature.parameters.keys()] lowerCamelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def _snake_case ( self ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : str = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _snake_case ( self ): """simple docstring""" if not self.has_attentions: pass else: lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : str = True for model_class in self.all_model_classes: lowerCamelCase : List[Any] = self.model_tester.seq_length lowerCamelCase : int = self.model_tester.num_frames lowerCamelCase : Tuple = True lowerCamelCase : List[str] = False lowerCamelCase : Dict = True lowerCamelCase : Union[str, Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase : int = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase : str = True lowerCamelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : Dict = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase : List[Any] = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowerCamelCase : Optional[Any] = len(__lowerCamelCase ) # Check attention is always last and order is fine lowerCamelCase : Dict = True lowerCamelCase : Union[str, Any] = True lowerCamelCase : List[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) lowerCamelCase : int = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _snake_case ( self ): """simple docstring""" def check_hidden_states_output(__A , __A , __A ): lowerCamelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase : str = outputs.hidden_states lowerCamelCase : Any = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) lowerCamelCase : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCamelCase , lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase : Tuple = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowercase_( ): '''simple docstring''' lowerCamelCase : List[str] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCamelCase : List[Any] = np.load(A__ ) return list(A__ ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) lowerCamelCase : int = self.default_image_processor lowerCamelCase : List[Any] = prepare_video() lowerCamelCase : Optional[Any] = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): lowerCamelCase : int = model(**__lowerCamelCase ) # verify the logits lowerCamelCase : List[str] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) lowerCamelCase : Tuple = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
340
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
0
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem SCREAMING_SNAKE_CASE : Tuple = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 SCREAMING_SNAKE_CASE : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: if "://" in dataset_path: _lowercase : Dict = dataset_path.split('://' )[1] return dataset_path def UpperCamelCase_( lowerCamelCase_ ) -> int: if fs is not None and fs.protocol != "file": return True else: return False def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : str = not is_remote_filesystem(A__ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(A__ ) , fs._strip_protocol(A__ ) ) else: fs.mv(A__ , A__ , recursive=A__ ) def UpperCamelCase_( ) -> Any: if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: _lowercase : Optional[Any] = None _lowercase : Dict = None _lowercase : Optional[Any] = threading.Lock()
89
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __UpperCamelCase ( __snake_case ): _UpperCAmelCase = ["image_processor", "tokenizer"] _UpperCAmelCase = "BlipImageProcessor" _UpperCAmelCase = "AutoTokenizer" def __init__( self ,_A ,_A ,_A ): '''simple docstring''' super().__init__(__lowerCamelCase ,__lowerCamelCase ) # add QFormer tokenizer _lowerCAmelCase : Dict = qformer_tokenizer def __call__( self ,_A = None ,_A = None ,_A = True ,_A = False ,_A = None ,_A = None ,_A = 0 ,_A = None ,_A = None ,_A = False ,_A = False ,_A = False ,_A = False ,_A = False ,_A = True ,_A = None ,**_A ,): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) _lowerCAmelCase : List[Any] = BatchFeature() if text is not None: _lowerCAmelCase : str = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) encoding.update(__lowerCamelCase ) _lowerCAmelCase : Optional[int] = self.qformer_tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) _lowerCAmelCase : Optional[Any] = qformer_text_encoding.pop('input_ids' ) _lowerCAmelCase : Union[str, Any] = qformer_text_encoding.pop('attention_mask' ) if images is not None: _lowerCAmelCase : List[str] = self.image_processor(__lowerCamelCase ,return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def __lowerCamelCase ( self ,*_A ,**_A ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.tokenizer.model_input_names _lowerCAmelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def __lowerCamelCase ( self ,_A ,**_A ): '''simple docstring''' if os.path.isfile(__lowerCamelCase ): raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(__lowerCamelCase ,exist_ok=__lowerCamelCase ) _lowerCAmelCase : str = os.path.join(__lowerCamelCase ,'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase ,**__lowerCamelCase ) @classmethod def __lowerCamelCase ( cls ,_A ,**_A ): '''simple docstring''' _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained(__lowerCamelCase ,subfolder='qformer_tokenizer' ) _lowerCAmelCase : int = cls._get_arguments_from_pretrained(__lowerCamelCase ,**__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
259
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = 'MobileNetV1Config' # Base docstring _lowercase = 'google/mobilenet_v1_1.0_224' _lowercase = [1, 1024, 7, 7] # Image classification docstring _lowercase = 'google/mobilenet_v1_1.0_224' _lowercase = 'tabby, tabby cat' _lowercase = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__=None): lowerCAmelCase_ : Optional[Any] = {} if isinstance(A__ , A__): lowerCAmelCase_ : int = model.mobilenet_va else: lowerCAmelCase_ : Optional[Any] = model lowerCAmelCase_ : Dict = "MobilenetV1/Conv2d_0/" lowerCAmelCase_ : Union[str, Any] = backbone.conv_stem.convolution.weight lowerCAmelCase_ : Union[str, Any] = backbone.conv_stem.normalization.bias lowerCAmelCase_ : str = backbone.conv_stem.normalization.weight lowerCAmelCase_ : List[str] = backbone.conv_stem.normalization.running_mean lowerCAmelCase_ : str = backbone.conv_stem.normalization.running_var for i in range(13): lowerCAmelCase_ : Any = i + 1 lowerCAmelCase_ : Optional[int] = i * 2 lowerCAmelCase_ : Union[str, Any] = backbone.layer[pt_index] lowerCAmelCase_ : List[Any] = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowerCAmelCase_ : Tuple = pointer.convolution.weight lowerCAmelCase_ : List[Any] = pointer.normalization.bias lowerCAmelCase_ : Dict = pointer.normalization.weight lowerCAmelCase_ : Any = pointer.normalization.running_mean lowerCAmelCase_ : List[Any] = pointer.normalization.running_var lowerCAmelCase_ : Any = backbone.layer[pt_index + 1] lowerCAmelCase_ : List[Any] = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowerCAmelCase_ : str = pointer.convolution.weight lowerCAmelCase_ : Tuple = pointer.normalization.bias lowerCAmelCase_ : List[str] = pointer.normalization.weight lowerCAmelCase_ : Optional[Any] = pointer.normalization.running_mean lowerCAmelCase_ : List[str] = pointer.normalization.running_var if isinstance(A__ , A__): lowerCAmelCase_ : Dict = "MobilenetV1/Logits/Conv2d_1c_1x1/" lowerCAmelCase_ : Dict = model.classifier.weight lowerCAmelCase_ : Tuple = model.classifier.bias return tf_to_pt_map def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__): try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions.") raise # Load weights from TF model lowerCAmelCase_ : Optional[Any] = tf.train.list_variables(A__) lowerCAmelCase_ : Tuple = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''') lowerCAmelCase_ : Optional[Any] = tf.train.load_variable(A__ , A__) lowerCAmelCase_ : List[Any] = array # Build TF to PyTorch weights loading map lowerCAmelCase_ : Union[str, Any] = _build_tf_to_pytorch_map(A__ , A__ , A__) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''') if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''') continue lowerCAmelCase_ : str = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise") lowerCAmelCase_ : List[str] = np.transpose(A__ , (2, 3, 0, 1)) elif "weights" in name: logger.info("Transposing") if len(pointer.shape) == 2: # copying into linear layer lowerCAmelCase_ : int = array.squeeze().transpose() else: lowerCAmelCase_ : List[str] = np.transpose(A__ , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''') logger.info(F'''Initialize PyTorch weight {name} {array.shape}''') lowerCAmelCase_ : Any = torch.from_numpy(A__) tf_weights.pop(A__ , A__) tf_weights.pop(name + "/RMSProp" , A__) tf_weights.pop(name + "/RMSProp_1" , A__) tf_weights.pop(name + "/ExponentialMovingAverage" , A__) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}''') return model def UpperCamelCase ( snake_case__ , snake_case__): lowerCAmelCase_ , lowerCAmelCase_ : Any = features.shape[-2:] lowerCAmelCase_ , lowerCAmelCase_ : Dict = conv_layer.stride lowerCAmelCase_ , lowerCAmelCase_ : int = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase_ : Optional[Any] = max(kernel_height - stride_height , 0) else: lowerCAmelCase_ : List[Any] = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: lowerCAmelCase_ : Any = max(kernel_width - stride_width , 0) else: lowerCAmelCase_ : Any = max(kernel_width - (in_width % stride_width) , 0) lowerCAmelCase_ : int = pad_along_width // 2 lowerCAmelCase_ : List[Any] = pad_along_width - pad_left lowerCAmelCase_ : List[Any] = pad_along_height // 2 lowerCAmelCase_ : Optional[Any] = pad_along_height - pad_top lowerCAmelCase_ : List[Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(A__ , A__ , "constant" , 0.0) class __snake_case ( nn.Module ): """simple docstring""" def __init__( self : Any ,lowerCAmelCase__ : MobileNetVaConfig ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : int ,lowerCAmelCase__ : Optional[int] = 1 ,lowerCAmelCase__ : Optional[int] = 1 ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[bool] = True ,lowerCAmelCase__ : Optional[bool or str] = True ,) -> Tuple: '''simple docstring''' super().__init__() lowerCAmelCase_ : Dict = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowerCAmelCase_ : Optional[int] = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase_ : List[Any] = nn.Convad( in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=__lowerCamelCase ,stride=__lowerCamelCase ,padding=__lowerCamelCase ,groups=__lowerCamelCase ,bias=__lowerCamelCase ,padding_mode="zeros" ,) if use_normalization: lowerCAmelCase_ : Union[str, Any] = nn.BatchNormad( num_features=__lowerCamelCase ,eps=config.layer_norm_eps ,momentum=0.9_997 ,affine=__lowerCamelCase ,track_running_stats=__lowerCamelCase ,) else: lowerCAmelCase_ : Optional[int] = None if use_activation: if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act ,__lowerCamelCase ): lowerCAmelCase_ : Optional[int] = ACTaFN[config.hidden_act] else: lowerCAmelCase_ : str = config.hidden_act else: lowerCAmelCase_ : Union[str, Any] = None def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : torch.Tensor ) -> Any: '''simple docstring''' if self.config.tf_padding: lowerCAmelCase_ : Dict = apply_tf_padding(__lowerCamelCase ,self.convolution ) lowerCAmelCase_ : int = self.convolution(__lowerCamelCase ) if self.normalization is not None: lowerCAmelCase_ : Optional[int] = self.normalization(__lowerCamelCase ) if self.activation is not None: lowerCAmelCase_ : Dict = self.activation(__lowerCamelCase ) return features class __snake_case ( __snake_case ): """simple docstring""" UpperCamelCase_ = MobileNetVaConfig UpperCamelCase_ = load_tf_weights_in_mobilenet_va UpperCamelCase_ = 'mobilenet_v1' UpperCamelCase_ = 'pixel_values' UpperCamelCase_ = False def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : Union[nn.Linear, nn.Convad] ) -> Dict: '''simple docstring''' if isinstance(__lowerCamelCase ,(nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 ,std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase ,nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _lowercase = r'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' _lowercase = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , __snake_case , ) class __snake_case ( __snake_case ): """simple docstring""" def __init__( self : str ,lowerCAmelCase__ : MobileNetVaConfig ,lowerCAmelCase__ : bool = True ) -> str: '''simple docstring''' super().__init__(__lowerCamelCase ) lowerCAmelCase_ : Any = config lowerCAmelCase_ : Dict = 32 lowerCAmelCase_ : Optional[int] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) lowerCAmelCase_ : List[str] = MobileNetVaConvLayer( __lowerCamelCase ,in_channels=config.num_channels ,out_channels=__lowerCamelCase ,kernel_size=3 ,stride=2 ,) lowerCAmelCase_ : Union[str, Any] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase_ : Tuple = nn.ModuleList() for i in range(13 ): lowerCAmelCase_ : Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase_ : Optional[int] = max(int(depth * config.depth_multiplier ) ,config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase ,in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=3 ,stride=strides[i] ,groups=__lowerCamelCase ,) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase ,in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,kernel_size=1 ,) ) lowerCAmelCase_ : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Dict ) -> List[str]: '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality="vision" ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Optional[torch.Tensor] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[bool] = None ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCAmelCase_ : Union[str, Any] = self.conv_stem(__lowerCamelCase ) lowerCAmelCase_ : List[str] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase_ : Dict = layer_module(__lowerCamelCase ) if output_hidden_states: lowerCAmelCase_ : Tuple = all_hidden_states + (hidden_states,) lowerCAmelCase_ : Optional[int] = hidden_states if self.pooler is not None: lowerCAmelCase_ : Optional[Any] = torch.flatten(self.pooler(__lowerCamelCase ) ,start_dim=1 ) else: lowerCAmelCase_ : Union[str, Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=__lowerCamelCase ,) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __snake_case , ) class __snake_case ( __snake_case ): """simple docstring""" def __init__( self : Optional[Any] ,lowerCAmelCase__ : MobileNetVaConfig ) -> Union[str, Any]: '''simple docstring''' super().__init__(__lowerCamelCase ) lowerCAmelCase_ : Tuple = config.num_labels lowerCAmelCase_ : Any = MobileNetVaModel(__lowerCamelCase ) lowerCAmelCase_ : str = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase_ : List[Any] = nn.Dropout(config.classifier_dropout_prob ,inplace=__lowerCamelCase ) lowerCAmelCase_ : int = nn.Linear(__lowerCamelCase ,config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : Optional[torch.Tensor] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[torch.Tensor] = None ,lowerCAmelCase__ : Optional[bool] = None ,) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : List[str] = self.mobilenet_va(__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase_ : Union[str, Any] = self.classifier(self.dropout(__lowerCamelCase ) ) lowerCAmelCase_ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase_ : Tuple = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase_ : Tuple = "single_label_classification" else: lowerCAmelCase_ : Union[str, Any] = "multi_label_classification" if self.config.problem_type == "regression": lowerCAmelCase_ : Optional[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase_ : int = loss_fct(logits.squeeze() ,labels.squeeze() ) else: lowerCAmelCase_ : Optional[int] = loss_fct(__lowerCamelCase ,__lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase_ : str = CrossEntropyLoss() lowerCAmelCase_ : Any = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase_ : Optional[Any] = BCEWithLogitsLoss() lowerCAmelCase_ : Union[str, Any] = loss_fct(__lowerCamelCase ,__lowerCamelCase ) if not return_dict: lowerCAmelCase_ : Dict = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states ,)
659
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = '▁' SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } SCREAMING_SNAKE_CASE = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class lowerCamelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , lowerCAmelCase , lowerCAmelCase="<s>" , lowerCAmelCase="</s>" , lowerCAmelCase="</s>" , lowerCAmelCase="<s>" , lowerCAmelCase="<unk>" , lowerCAmelCase="<pad>" , lowerCAmelCase="<mask>" , lowerCAmelCase = None , **lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) UpperCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ = 1 UpperCAmelCase_ = len(self.sp_model ) + self.fairseq_offset UpperCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None UpperCAmelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase ): UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] UpperCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self ): UpperCAmelCase_ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , lowerCAmelCase ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def A__ ( self , lowerCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , lowerCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , lowerCAmelCase ): UpperCAmelCase_ = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip() return out_string def A__ ( self , lowerCAmelCase , lowerCAmelCase = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
579
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase: Optional[int] ={ 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: Any =[ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase: List[Any] =[ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCAmelCase: int =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
607
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
0
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a_ = logging.get_logger(__name__) a_ = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } a_ = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } a_ = { 'jukebox': 512, } class __lowerCAmelCase ( __snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=["v3", "v2", "v2"] , __UpperCAmelCase=512 , __UpperCAmelCase=5 , __UpperCAmelCase="<|endoftext|>" , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase , n_genres=__lowerCamelCase , version=__lowerCamelCase , max_n_lyric_tokens=__lowerCamelCase , **__lowerCamelCase , ) __lowerCamelCase = version __lowerCamelCase = max_n_lyric_tokens __lowerCamelCase = n_genres with open(__lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(__lowerCamelCase ) with open(__lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(__lowerCamelCase ) with open(__lowerCamelCase , encoding='''utf-8''' ) as vocab_handle: __lowerCamelCase = json.load(__lowerCamelCase ) __lowerCamelCase = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __lowerCamelCase = oov.replace(r'''\-\'''' , r'''\-+\'''' ) __lowerCamelCase = regex.compile(__lowerCamelCase ) __lowerCamelCase = {v: k for k, v in self.artists_encoder.items()} __lowerCamelCase = {v: k for k, v in self.genres_encoder.items()} __lowerCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def lowerCamelCase ( self ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def lowerCamelCase ( self ): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = [self.artists_encoder.get(__lowerCamelCase , 0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): __lowerCamelCase = [self.genres_encoder.get(__lowerCamelCase , 0 ) for genre in list_genres[genres]] __lowerCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __lowerCamelCase = [[self.lyrics_encoder.get(__lowerCamelCase , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return list(__lowerCamelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self.prepare_for_tokenization(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowerCamelCase = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": __lowerCamelCase = artists[idx].lower() __lowerCamelCase = [genres[idx].lower()] else: __lowerCamelCase = self._normalize(artists[idx] ) + '''.v2''' __lowerCamelCase = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __lowerCamelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) __lowerCamelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' __lowerCamelCase = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} __lowerCamelCase = 0 __lowerCamelCase = len(__lowerCamelCase ) + 1 __lowerCamelCase = self.vocab __lowerCamelCase = {v: k for k, v in self.vocab.items()} __lowerCamelCase = '''''' else: __lowerCamelCase = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) __lowerCamelCase = self._run_strip_accents(__lowerCamelCase ) __lowerCamelCase = lyrics.replace('''\\''' , '''\n''' ) __lowerCamelCase = self.out_of_vocab.sub('''''' , __lowerCamelCase ), [], [] return artists, genres, lyrics def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = unicodedata.normalize('''NFD''' , __lowerCamelCase ) __lowerCamelCase = [] for char in text: __lowerCamelCase = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) __lowerCamelCase = frozenset(__lowerCamelCase ) __lowerCamelCase = re.compile(r'''_+''' ) __lowerCamelCase = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) __lowerCamelCase = pattern.sub('''_''' , __lowerCamelCase ).strip('''_''' ) return text def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return " ".join(__lowerCamelCase ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): '''simple docstring''' # Convert to TensorType if not isinstance(__lowerCamelCase , __lowerCamelCase ): __lowerCamelCase = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf __lowerCamelCase = tf.constant __lowerCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch __lowerCamelCase = torch.tensor __lowerCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 __lowerCamelCase = jnp.array __lowerCamelCase = _is_jax else: __lowerCamelCase = np.asarray __lowerCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __lowerCamelCase = [inputs] if not is_tensor(__lowerCamelCase ): __lowerCamelCase = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase="pt" ): '''simple docstring''' __lowerCamelCase = [0, 0, 0] __lowerCamelCase = [artist] * len(self.version ) __lowerCamelCase = [genres] * len(self.version ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self.tokenize(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = self._convert_token_to_id(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __lowerCamelCase = [-INFINITY] * len(full_tokens[-1] ) __lowerCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=__lowerCamelCase ) ) __lowerCamelCase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=__lowerCamelCase ) ) __lowerCamelCase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __lowerCamelCase = self.artists_decoder.get(__lowerCamelCase ) __lowerCamelCase = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] __lowerCamelCase = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
175
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( A__ : str , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : List[Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = result.headers["Location"] SCREAMING_SNAKE_CASE = requests.get(A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{artifact_name}.zip" ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def __a ( A__ : List[Any] , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: SCREAMING_SNAKE_CASE = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE = line[: line.index(": " )] SCREAMING_SNAKE_CASE = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE = line if len(A__ ) != len(A__ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` " F"and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) SCREAMING_SNAKE_CASE = None if job_name and job_links: SCREAMING_SNAKE_CASE = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def __a ( A__ : List[str] , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : str ): SCREAMING_SNAKE_CASE = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE = test.split("/" )[2] else: SCREAMING_SNAKE_CASE = None return test def __a ( A__ : List[str] , A__ : Dict=None ): SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE = {x[2] for x in logs} SCREAMING_SNAKE_CASE = {} for test in tests: SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = "| no. | error | status |" SCREAMING_SNAKE_CASE = "|-:|:-|:-|" SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE = F"| {count} | {error[:100]} | |" lines.append(A__ ) return "\n".join(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __A : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A : int = get_job_links(args.workflow_run_id, token=args.token) __A : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A : Union[str, Any] = k.find(' / ') __A : Optional[int] = k[index + len(' / ') :] __A : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A : Optional[Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A : str = reduce_by_error(errors) __A : int = reduce_by_model(errors) __A : Any = make_github_table(reduced_by_error) __A : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
16
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _SCREAMING_SNAKE_CASE ( __snake_case : str ): _A = int(A__ ) _A , _A , _A = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F'{h}:{m:02d}:{s:02d}' if h != 0 else F'{m:02d}:{s:02d}' def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any]=3_0_0 ): # docstyle-ignore return F'\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ' def _SCREAMING_SNAKE_CASE ( __snake_case : str ): _A = '<table border=\"1\" class=\"dataframe\">\n' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F' <th>{i}</th>\n' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: _A = F'{elt:.6f}' if isinstance(A__ , A__ ) else str(A__ ) html_code += F' <td>{elt}</td>\n' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowercase_ : """simple docstring""" __lowerCAmelCase = 5 __lowerCAmelCase = 0.2 def __init__( self : Optional[int], UpperCamelCase__ : int, UpperCamelCase__ : Optional[str] = None, UpperCamelCase__ : bool = True, UpperCamelCase__ : Optional["NotebookTrainingTracker"] = None, UpperCamelCase__ : int = 3_00, ) -> List[str]: _A = total _A = '' if prefix is None else prefix _A = leave _A = parent _A = width _A = None _A = None _A = None def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : int, UpperCamelCase__ : bool = False, UpperCamelCase__ : str = None ) -> Any: _A = value if comment is not None: _A = comment if self.last_value is None: _A = _A = time.time() _A = _A = value _A = _A = None _A = self.warmup _A = 1 self.update_bar(__lowerCamelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total ): if self.first_calls > 0: self.first_calls -= 1 _A = time.time() _A = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: _A = self.elapsed_time / (value - self.start_value) else: _A = None if value >= self.total: _A = self.total _A = None if not self.leave: self.close() elif self.average_time_per_item is not None: _A = self.average_time_per_item * (self.total - value) self.update_bar(__lowerCamelCase ) _A = value _A = current_time if self.average_time_per_item is None: _A = 1 else: _A = max(int(self.update_every / self.average_time_per_item ), 1 ) def __UpperCAmelCase ( self : str, UpperCamelCase__ : List[Any], UpperCamelCase__ : List[Any]=None ) -> Any: _A = ' ' * (len(str(self.total ) ) - len(str(__lowerCamelCase ) )) + str(__lowerCamelCase ) if self.elapsed_time is None: _A = f'[{spaced_value}/{self.total} : < :' elif self.predicted_remaining is None: _A = f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )}' else: _A = ( f'[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <' f' {format_time(self.predicted_remaining )}' ) self.label += f', {1/self.average_time_per_item:.2f} it/s' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f', {self.comment}]' self.display() def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: _A = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: _A = disp.display(disp.HTML(self.html_code ), display_id=__lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: if self.parent is None and self.output is not None: self.output.update(disp.HTML('' ) ) class lowercase_ ( __snake_case ): """simple docstring""" def __init__( self : int, UpperCamelCase__ : Optional[int], UpperCamelCase__ : List[str]=None ) -> Optional[int]: super().__init__(__lowerCamelCase ) _A = None if column_names is None else [column_names] _A = None def __UpperCAmelCase ( self : Any ) -> Any: _A = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: _A = disp.display(disp.HTML(self.html_code ), display_id=__lowerCamelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : Optional[Any] ) -> str: if self.inner_table is None: _A = [list(values.keys() ), list(values.values() )] else: _A = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__lowerCamelCase ) _A = columns self.inner_table.append([values[c] for c in columns] ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : Any, UpperCamelCase__ : List[str]=None, UpperCamelCase__ : str=3_00 ) -> Optional[Any]: _A = NotebookProgressBar(__lowerCamelCase, prefix=__lowerCamelCase, parent=self, width=__lowerCamelCase ) return self.child_bar def __UpperCAmelCase ( self : Tuple ) -> Any: _A = None self.display() class lowercase_ ( __snake_case ): """simple docstring""" def __init__( self : Dict ) -> List[Any]: _A = None _A = None _A = False def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : str, UpperCamelCase__ : str, **UpperCamelCase__ : Tuple ) -> str: _A = 'Epoch' if args.evaluation_strategy == IntervalStrategy.EPOCH else 'Step' _A = 0 _A = 0 _A = [self.first_column] + ['Training Loss'] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('Validation Loss' ) _A = NotebookTrainingTracker(state.max_steps, __lowerCamelCase ) def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple, **UpperCamelCase__ : List[str] ) -> str: _A = int(state.epoch ) if int(state.epoch ) == state.epoch else f'{state.epoch:.2f}' self.training_tracker.update( state.global_step + 1, comment=f'Epoch {epoch}/{state.num_train_epochs}', force_update=self._force_next_update, ) _A = False def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : int, UpperCamelCase__ : List[str], UpperCamelCase__ : int, UpperCamelCase__ : Any=None, **UpperCamelCase__ : int ) -> str: if not has_length(__lowerCamelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: _A = self.training_tracker.add_child(len(__lowerCamelCase ) ) else: _A = NotebookProgressBar(len(__lowerCamelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[str], **UpperCamelCase__ : List[Any] ) -> Any: if self.prediction_bar is not None: self.prediction_bar.close() _A = None def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : str, UpperCamelCase__ : int, UpperCamelCase__ : Tuple, UpperCamelCase__ : Dict=None, **UpperCamelCase__ : Dict ) -> int: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: _A = {'Training Loss': logs['loss']} # First column is necessarily Step sine we're not in epoch eval strategy _A = state.global_step self.training_tracker.write_line(__lowerCamelCase ) def __UpperCAmelCase ( self : str, UpperCamelCase__ : str, UpperCamelCase__ : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : Optional[int]=None, **UpperCamelCase__ : int ) -> List[Any]: if self.training_tracker is not None: _A = {'Training Loss': 'No log', 'Validation Loss': 'No log'} for log in reversed(state.log_history ): if "loss" in log: _A = log['loss'] break if self.first_column == "Epoch": _A = int(state.epoch ) else: _A = state.global_step _A = 'eval' for k in metrics: if k.endswith('_loss' ): _A = re.sub(r'\_loss$', '', __lowerCamelCase ) _A = metrics.pop('total_flos', __lowerCamelCase ) _A = metrics.pop('epoch', __lowerCamelCase ) _A = metrics.pop(f'{metric_key_prefix}_runtime', __lowerCamelCase ) _A = metrics.pop(f'{metric_key_prefix}_samples_per_second', __lowerCamelCase ) _A = metrics.pop(f'{metric_key_prefix}_steps_per_second', __lowerCamelCase ) _A = metrics.pop(f'{metric_key_prefix}_jit_compilation_time', __lowerCamelCase ) for k, v in metrics.items(): if k == f'{metric_key_prefix}_loss': _A = v else: _A = k.split('_' ) _A = ' '.join([part.capitalize() for part in splits[1:]] ) _A = v self.training_tracker.write_line(__lowerCamelCase ) self.training_tracker.remove_child() _A = None # Evaluation takes a long time so we should force the next update. _A = True def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Dict, UpperCamelCase__ : Dict, UpperCamelCase__ : Dict, **UpperCamelCase__ : Any ) -> Dict: self.training_tracker.update( state.global_step, comment=f'Epoch {int(state.epoch )}/{state.num_train_epochs}', force_update=__lowerCamelCase ) _A = None
107
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _lowerCAmelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) _lowerCAmelCase : Any = ['names', 'prefix'] _lowerCAmelCase : Tuple = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _lowerCAmelCase : Dict = ['encoding_errors', 'on_bad_lines'] _lowerCAmelCase : str = ['date_format'] @dataclass class lowerCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' snake_case = ',' snake_case = None snake_case = 'infer' snake_case = None snake_case = None snake_case = None snake_case = None snake_case = None snake_case = True snake_case = None snake_case = None snake_case = None snake_case = None snake_case = False snake_case = None snake_case = None snake_case = None snake_case = True snake_case = True snake_case = False snake_case = True snake_case = None snake_case = '.' snake_case = None snake_case = '"' snake_case = 0 snake_case = None snake_case = None snake_case = None snake_case = None snake_case = True snake_case = True snake_case = 0 snake_case = True snake_case = False snake_case = None snake_case = 10_000 snake_case = None snake_case = 'strict' snake_case = 'error' snake_case = None def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' if self.delimiter is not None: lowerCamelCase = self.delimiter if self.column_names is not None: lowerCamelCase = self.column_names @property def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCamelCase = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class lowerCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case = CsvConfig def lowerCamelCase__ ( self : int ) -> int: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self : Any , __snake_case : str ) -> Optional[Any]: '''simple docstring''' if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): lowerCamelCase = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCamelCase = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase = [files] lowerCamelCase = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={'files': files} ) ) return splits def lowerCamelCase__ ( self : List[Any] , __snake_case : pa.Table ) -> Dict: '''simple docstring''' if self.config.features is not None: lowerCamelCase = self.config.features.arrow_schema if all(not require_storage_cast(__lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast lowerCamelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example lowerCamelCase = table_cast(__lowerCamelCase , __lowerCamelCase ) return pa_table def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str lowerCamelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): lowerCamelCase = pd.read_csv(__lowerCamelCase , iterator=__lowerCamelCase , dtype=__lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowerCamelCase ): lowerCamelCase = pa.Table.from_pandas(__lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise
246
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Tuple = logging.get_logger(__name__) def _snake_case (__lowercase): UpperCamelCase_ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) UpperCamelCase_ = DetaConfig( backbone_config=A__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=A__ , with_box_refine=A__ , two_stage=A__ , ) # set labels UpperCamelCase_ = 'huggingface/label-files' if "o365" in model_name: UpperCamelCase_ = 366 UpperCamelCase_ = 'object365-id2label.json' else: UpperCamelCase_ = 91 UpperCamelCase_ = 'coco-detection-id2label.json' UpperCamelCase_ = num_labels UpperCamelCase_ = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type='dataset')) , 'r')) UpperCamelCase_ = {int(A__): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} return config def _snake_case (__lowercase): UpperCamelCase_ = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias')) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight')) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""")) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""")) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""")) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight')) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias')) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight')) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias')) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight')) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias')) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""")) # fmt: on return rename_keys def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = dct.pop(A__) UpperCamelCase_ = val def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): UpperCamelCase_ = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase_ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""") UpperCamelCase_ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ = in_proj_weight[:dim, :] UpperCamelCase_ = in_proj_bias[: dim] UpperCamelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCamelCase_ = in_proj_weight[ -dim :, : ] UpperCamelCase_ = in_proj_bias[-dim :] # fmt: on def _snake_case (__lowercase , __lowercase): # transformer decoder self-attention layers UpperCamelCase_ = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention UpperCamelCase_ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""") UpperCamelCase_ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""") # next, add query, keys and values (in that order) to the state dict UpperCamelCase_ = in_proj_weight[:hidden_size, :] UpperCamelCase_ = in_proj_bias[:hidden_size] UpperCamelCase_ = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCamelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase_ = in_proj_weight[-hidden_size:, :] UpperCamelCase_ = in_proj_bias[-hidden_size:] def _snake_case (): UpperCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase_ = Image.open(requests.get(A__ , stream=A__).raw) return im @torch.no_grad() def _snake_case (__lowercase , __lowercase , __lowercase): UpperCamelCase_ = get_deta_config(A__) # load original state dict if model_name == "deta-swin-large": UpperCamelCase_ = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth') elif model_name == "deta-swin-large-o365": UpperCamelCase_ = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth') else: raise ValueError(f"""Model name {model_name} not supported""") UpperCamelCase_ = torch.load(A__ , map_location='cpu')['model'] # original state dict for name, param in state_dict.items(): print(A__ , param.shape) # rename keys UpperCamelCase_ = create_rename_keys(A__) for src, dest in rename_keys: rename_key(A__ , A__ , A__) read_in_swin_q_k_v(A__ , config.backbone_config) read_in_decoder_q_k_v(A__ , A__) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCamelCase_ = state_dict.pop(A__) UpperCamelCase_ = val if "input_proj" in key: UpperCamelCase_ = state_dict.pop(A__) UpperCamelCase_ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCamelCase_ = state_dict.pop(A__) UpperCamelCase_ = val # finally, create HuggingFace model and load state dict UpperCamelCase_ = DetaForObjectDetection(A__) model.load_state_dict(A__) model.eval() UpperCamelCase_ = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(A__) # load image processor UpperCamelCase_ = DetaImageProcessor(format='coco_detection') # verify our conversion on image UpperCamelCase_ = prepare_img() UpperCamelCase_ = processor(images=A__ , return_tensors='pt') UpperCamelCase_ = encoding['pixel_values'] UpperCamelCase_ = model(pixel_values.to(A__)) # verify logits print('Logits:' , outputs.logits[0, :3, :3]) print('Boxes:' , outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": UpperCamelCase_ = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]]) UpperCamelCase_ = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]]) elif model_name == "deta-swin-large-o365": UpperCamelCase_ = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]]) UpperCamelCase_ = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]]) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(A__) , atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(A__) , atol=1e-4) print('Everything ok!') if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""") Path(A__).mkdir(exist_ok=A__) model.save_pretrained(A__) processor.save_pretrained(A__) # Push to hub if push_to_hub: print('Pushing model and processor to hub...') model.push_to_hub(f"""jozhang97/{model_name}""") processor.push_to_hub(f"""jozhang97/{model_name}""") if __name__ == "__main__": snake_case__ : str = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
23
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
def a__ ( A_, A_ = " " ): '''simple docstring''' __magic_name__ = [] __magic_name__ = 0 for index, char in enumerate(A__ ): if char == separator: split_words.append(string[last_index:index] ) __magic_name__ = index + 1 elif index + 1 == len(A__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
529
from __future__ import annotations def __a ( A__ : list[int | str] ): create_state_space_tree(A__ , [] , 0 , [0 for i in range(len(A__ ) )] ) def __a ( A__ : list[int | str] , A__ : list[int | str] , A__ : int , A__ : list[int] , ): if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE = True create_state_space_tree(A__ , A__ , index + 1 , A__ ) current_sequence.pop() SCREAMING_SNAKE_CASE = False __A : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __A : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
16
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class UpperCAmelCase_ ( __snake_case , __snake_case ): '''simple docstring''' __A : int = "bit" __A : Any = ["preactivation", "bottleneck"] __A : List[str] = ["SAME", "VALID"] def __init__( self , __A=3 , __A=64 , __A=[256, 512, 1024, 2048] , __A=[3, 4, 6, 3] , __A="preactivation" , __A="relu" , __A=None , __A=32 , __A=0.0 , __A=False , __A=32 , __A=1 , __A=None , __A=None , **__A , ): """simple docstring""" super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: lowerCamelCase : List[str] = global_padding.upper() else: raise ValueError(F"""Padding strategy {global_padding} not supported""" ) lowerCamelCase : Dict = num_channels lowerCamelCase : List[Any] = embedding_size lowerCamelCase : Optional[int] = hidden_sizes lowerCamelCase : List[str] = depths lowerCamelCase : List[Any] = layer_type lowerCamelCase : Union[str, Any] = hidden_act lowerCamelCase : Dict = global_padding lowerCamelCase : str = num_groups lowerCamelCase : Union[str, Any] = drop_path_rate lowerCamelCase : Optional[int] = embedding_dynamic_padding lowerCamelCase : List[str] = output_stride lowerCamelCase : Tuple = width_factor lowerCamelCase : Any = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] lowerCamelCase , lowerCamelCase : Tuple = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
340
def __a ( A__ : int = 1000 ): SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'{solution() = }')
16
0
import random def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False ) -> Union[str, Any]: _lowercase : Union[str, Any] = {i: [] for i in range(A__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(A__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(A__ ): for j in range(i + 1 , A__ ): if random.random() < probability: graph[i].append(A__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(A__ ) return graph def UpperCamelCase_( lowerCamelCase_ ) -> int: return { i: [j for j in range(A__ ) if i != j] for i in range(A__ ) } if __name__ == "__main__": import doctest doctest.testmod()
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Dict = { 'configuration_bigbird_pegasus': [ 'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BigBirdPegasusConfig', 'BigBirdPegasusOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST', 'BigBirdPegasusForCausalLM', 'BigBirdPegasusForConditionalGeneration', 'BigBirdPegasusForQuestionAnswering', 'BigBirdPegasusForSequenceClassification', 'BigBirdPegasusModel', 'BigBirdPegasusPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( __snake_case ): def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( speech_model=__lowerCamelCase ,speech_processor=__lowerCamelCase ,vae=__lowerCamelCase ,text_encoder=__lowerCamelCase ,tokenizer=__lowerCamelCase ,unet=__lowerCamelCase ,scheduler=__lowerCamelCase ,feature_extractor=__lowerCamelCase ,) def __lowerCamelCase ( self ,_A = "auto" ): '''simple docstring''' if slice_size == "auto": _lowerCAmelCase : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' self.enable_attention_slicing(__lowerCamelCase ) @torch.no_grad() def __call__( self ,_A ,_A=1_6000 ,_A = 512 ,_A = 512 ,_A = 50 ,_A = 7.5 ,_A = None ,_A = 1 ,_A = 0.0 ,_A = None ,_A = None ,_A = "pil" ,_A = True ,_A = None ,_A = 1 ,**_A ,): '''simple docstring''' _lowerCAmelCase : List[str] = self.speech_processor.feature_extractor( __lowerCamelCase ,return_tensors='pt' ,sampling_rate=__lowerCamelCase ).input_features.to(self.device ) _lowerCAmelCase : int = self.speech_model.generate(__lowerCamelCase ,max_length=48_0000 ) _lowerCAmelCase : List[Any] = self.speech_processor.tokenizer.batch_decode(__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ,normalize=__lowerCamelCase )[ 0 ] if isinstance(__lowerCamelCase ,__lowerCamelCase ): _lowerCAmelCase : List[Any] = 1 elif isinstance(__lowerCamelCase ,__lowerCamelCase ): _lowerCAmelCase : List[str] = len(__lowerCamelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__lowerCamelCase ,__lowerCamelCase ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(__lowerCamelCase )}.""" ) # get prompt text embeddings _lowerCAmelCase : Optional[Any] = self.tokenizer( __lowerCamelCase ,padding='max_length' ,max_length=self.tokenizer.model_max_length ,return_tensors='pt' ,) _lowerCAmelCase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _lowerCAmelCase : Dict = text_input_ids[:, : self.tokenizer.model_max_length] _lowerCAmelCase : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase : str = text_embeddings.shape _lowerCAmelCase : int = text_embeddings.repeat(1 ,__lowerCamelCase ,1 ) _lowerCAmelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt ,__lowerCamelCase ,-1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : Any = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : Optional[int] = 42 if negative_prompt is None: _lowerCAmelCase : List[Any] = [''] * batch_size elif type(__lowerCamelCase ) is not type(__lowerCamelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(__lowerCamelCase )} !=""" F""" {type(__lowerCamelCase )}.""" ) elif isinstance(__lowerCamelCase ,__lowerCamelCase ): _lowerCAmelCase : Dict = [negative_prompt] elif batch_size != len(__lowerCamelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(__lowerCamelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _lowerCAmelCase : Union[str, Any] = negative_prompt _lowerCAmelCase : List[Any] = text_input_ids.shape[-1] _lowerCAmelCase : List[Any] = self.tokenizer( __lowerCamelCase ,padding='max_length' ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors='pt' ,) _lowerCAmelCase : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase : int = uncond_embeddings.shape[1] _lowerCAmelCase : Any = uncond_embeddings.repeat(1 ,__lowerCamelCase ,1 ) _lowerCAmelCase : int = uncond_embeddings.view(batch_size * num_images_per_prompt ,__lowerCamelCase ,-1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : List[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCAmelCase : Union[str, Any] = torch.randn(__lowerCamelCase ,generator=__lowerCamelCase ,device='cpu' ,dtype=__lowerCamelCase ).to( self.device ) else: _lowerCAmelCase : Tuple = torch.randn(__lowerCamelCase ,generator=__lowerCamelCase ,device=self.device ,dtype=__lowerCamelCase ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _lowerCAmelCase : Optional[int] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__lowerCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCAmelCase : List[str] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Optional[int] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : List[Any] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : Any = {} if accepts_eta: _lowerCAmelCase : Tuple = eta for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : int = self.scheduler.scale_model_input(__lowerCamelCase ,__lowerCamelCase ) # predict the noise residual _lowerCAmelCase : Any = self.unet(__lowerCamelCase ,__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ).sample # perform guidance if do_classifier_free_guidance: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = noise_pred.chunk(2 ) _lowerCAmelCase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Optional[Any] = self.scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) _lowerCAmelCase : Tuple = 1 / 0.1_8_2_1_5 * latents _lowerCAmelCase : str = self.vae.decode(__lowerCamelCase ).sample _lowerCAmelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : Any = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__lowerCamelCase ,nsfw_content_detected=__lowerCamelCase )
259
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Any ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = tokenizer("This is me" , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) self.assertFalse( any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**__lowerCamelCase ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase ) ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = "hf-internal-testing/tiny-random-t5" SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__lowerCamelCase ): model.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(__lowerCamelCase )
16
0
import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } _lowercase = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } _lowercase = { 'vinai/phobert-base': 256, 'vinai/phobert-large': 256, } def UpperCamelCase ( snake_case__): lowerCAmelCase_ : List[str] = set() lowerCAmelCase_ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase_ : Optional[Any] = char lowerCAmelCase_ : Union[str, Any] = set(A__) return pairs class __snake_case ( __snake_case ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : List[str]="<s>" ,lowerCAmelCase__ : int="</s>" ,lowerCAmelCase__ : Dict="</s>" ,lowerCAmelCase__ : Tuple="<s>" ,lowerCAmelCase__ : List[str]="<unk>" ,lowerCAmelCase__ : Optional[Any]="<pad>" ,lowerCAmelCase__ : Dict="<mask>" ,**lowerCAmelCase__ : Optional[Any] ,) -> Optional[Any]: '''simple docstring''' super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,**__lowerCamelCase ,) lowerCAmelCase_ : List[str] = vocab_file lowerCAmelCase_ : List[Any] = merges_file lowerCAmelCase_ : Dict = {} lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : List[str] = 2 lowerCAmelCase_ : Any = 3 self.add_from_file(__lowerCamelCase ) lowerCAmelCase_ : Tuple = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase ,encoding="utf-8" ) as merges_handle: lowerCAmelCase_ : List[Any] = merges_handle.read().split("\n" )[:-1] lowerCAmelCase_ : Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] lowerCAmelCase_ : Optional[Any] = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase_ : Dict = {} def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> int: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id] lowerCAmelCase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> Optional[Any]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self : str ) -> Dict: '''simple docstring''' return len(self.encoder ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[str] ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] lowerCAmelCase_ : Optional[Any] = tuple(__lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) lowerCAmelCase_ : List[Any] = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCAmelCase_ : Optional[int] = min(__lowerCamelCase ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(__lowerCamelCase ,float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase_ , lowerCAmelCase_ : str = bigram lowerCAmelCase_ : Any = [] lowerCAmelCase_ : str = 0 while i < len(__lowerCamelCase ): try: lowerCAmelCase_ : Any = word.index(__lowerCamelCase ,__lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase_ : Optional[int] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase_ : Dict = tuple(__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = new_word if len(__lowerCamelCase ) == 1: break else: lowerCAmelCase_ : Tuple = get_pairs(__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = "@@ ".join(__lowerCamelCase ) lowerCAmelCase_ : Tuple = word[:-4] lowerCAmelCase_ : str = word return word def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[str] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Any = [] lowerCAmelCase_ : Optional[int] = re.findall(R"\S+\n?" ,__lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) ) return split_tokens def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> Optional[int]: '''simple docstring''' return self.encoder.get(__lowerCamelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' return self.decoder.get(__lowerCamelCase ,self.unk_token ) def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = " ".join(__lowerCamelCase ).replace("@@ " ,"" ).strip() return out_string def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> List[Any]: '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase_ : Optional[Any] = os.path.join( __lowerCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase_ : List[Any] = os.path.join( __lowerCamelCase ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file ,__lowerCamelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.merges_file ,__lowerCamelCase ) return out_vocab_file, out_merge_file def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' if isinstance(__lowerCamelCase ,__lowerCamelCase ): try: with open(__lowerCamelCase ,"r" ,encoding="utf-8" ) as fd: self.add_from_file(__lowerCamelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return lowerCAmelCase_ : Any = f.readlines() for lineTmp in lines: lowerCAmelCase_ : List[Any] = lineTmp.strip() lowerCAmelCase_ : List[Any] = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) lowerCAmelCase_ : Any = line[:idx] lowerCAmelCase_ : Union[str, Any] = len(self.encoder )
659
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : str=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[int]=224 , __lowerCamelCase : Any=1000 , __lowerCamelCase : Optional[Any]=[3, 3, 6, 4] , __lowerCamelCase : List[Any]=[48, 56, 112, 220] , ): SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = layer_depths SCREAMING_SNAKE_CASE = embed_dims def _snake_case ( self : Optional[Any] ): SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def _snake_case ( self : Dict ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1e-5 , ) def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] ): SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : int ): ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () lowerCamelCase__ = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = SwiftFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self : Optional[int] ): pass def _snake_case ( self : Optional[int] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _snake_case ( self : int ): SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _snake_case ( self : Tuple ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SwiftFormerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self : Union[str, Any] ): pass def _snake_case ( self : Optional[Any] ): def check_hidden_states_output(__lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) SCREAMING_SNAKE_CASE = outputs.hidden_states SCREAMING_SNAKE_CASE = 8 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__lowerCamelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _snake_case ( self : List[Any] ): def _config_zero_init(__lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = copy.deepcopy(__lowerCamelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__lowerCamelCase , __lowerCamelCase , 1e-10 ) if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ): SCREAMING_SNAKE_CASE = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return configs_no_init SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self : str ): pass def __a ( ): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : List[str] ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ): SCREAMING_SNAKE_CASE = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
16
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=30 , lowerCAmelCase=2 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=10 , lowerCAmelCase=0.02 , lowerCAmelCase=None , ): UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = type_sequence_label_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase_ = (image_size // patch_size) ** 2 UpperCAmelCase_ = num_patches + 1 def A__ ( self ): UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def A__ ( self ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = ViTMSNModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase_ = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase_ = self.type_sequence_label_size UpperCAmelCase_ = ViTMSNForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase_ = model(__lowerCamelCase , labels=__lowerCamelCase ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ = 1 UpperCAmelCase_ = ViTMSNForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A__ ( self ): UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : int = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCAmelCase_ : List[str] = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Union[str, Any] = False def A__ ( self ): UpperCAmelCase_ = ViTMSNModelTester(self ) UpperCAmelCase_ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def A__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def A__ ( self ): pass def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def A__ ( self ): UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(__lowerCamelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def A__ ( self ): UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def A__ ( self ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = ViTMSNModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def snake_case__ ( ) -> str: UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def A__ ( self ): torch.manual_seed(2 ) UpperCAmelCase_ = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__lowerCamelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase_ = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
579
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings __A : Optional[Any] = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): SCREAMING_SNAKE_CASE = v.to_dict() return d
16
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowerCamelCase__ ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> str: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=__lowerCamelCase , ) assert hasattr(self , """env""" ) def _UpperCAmelCase ( self , snake_case ) -> int: """simple docstring""" # configuration for running training on smdistributed Model Parallel lowercase : Optional[int] = { """enabled""": True, """processes_per_host""": 8, } lowercase : Optional[int] = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowercase : Optional[Any] = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowercase : Tuple = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=__lowerCamelCase , instance_type=self.instance_type , debugger_hook_config=__lowerCamelCase , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 5_0_0, } , metric_definitions=self.env.metric_definitions , distribution=__lowerCamelCase , py_version="""py36""" , ) def _UpperCAmelCase ( self , snake_case ) -> Tuple: """simple docstring""" TrainingJobAnalytics(__lowerCamelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def _UpperCAmelCase ( self , snake_case ) -> Any: """simple docstring""" # create estimator lowercase : Optional[Any] = self.create_estimator(__lowerCamelCase ) # run training estimator.fit() # result dataframe lowercase : Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase : str = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowercase : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 9_9_9_9_9_9 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __lowerCamelCase )
607
import os def __a ( ): SCREAMING_SNAKE_CASE = os.path.join(os.path.dirname(A__ ) , "num.txt" ) with open(A__ ) as file_hand: return str(sum(int(A__ ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
16
0
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset a_ = pd.read_csv( """https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/""" """position_salaries.csv""" ) a_ = dataset.iloc[:, 1:2].values a_ = dataset.iloc[:, 2].values a_ = train_test_split(X, y, test_size=0.2, random_state=0) a_ = PolynomialFeatures(degree=4) a_ = poly_reg.fit_transform(X) a_ = LinearRegression() pol_reg.fit(X_poly, y) def a__ ( ): plt.scatter(A__ ,A__ ,color='''red''' ) plt.plot(A__ ,pol_reg.predict(poly_reg.fit_transform(A__ ) ) ,color='''blue''' ) plt.title('''Truth or Bluff (Linear Regression)''' ) plt.xlabel('''Position level''' ) plt.ylabel('''Salary''' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
175
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Optional[int] ): # Initialise PyTorch model _A = BertConfig.from_json_file(A__ ) print(F'Building PyTorch model from configuration: {config}' ) _A = BertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(A__ , A__ , A__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _UpperCAmelCase : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
107
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __A : str = logging.get_logger(__name__) __A : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __A : Tuple = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __A : str = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __A : Optional[Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } __A : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } __A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } __A : str = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __A : Any = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __A : Dict = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __A : Optional[int] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __A : List[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __A : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __call__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Union[bool, str] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : Any , ): if titles is None and texts is None: return super().__call__( __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE = titles if texts is None else texts return super().__call__( __lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE = titles if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [titles] SCREAMING_SNAKE_CASE = texts if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [texts] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = questions if not isinstance(__lowerCamelCase , __lowerCamelCase ) else [questions] * n_passages if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( f"There should be as many titles than texts but got {len(__lowerCamelCase )} titles and {len(__lowerCamelCase )} texts." ) SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , __lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = super().__call__(__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] SCREAMING_SNAKE_CASE = { "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__lowerCamelCase , __lowerCamelCase ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE = attention_mask return self.pad(__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , return_tensors=__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : BatchEncoding , __lowerCamelCase : DPRReaderOutput , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 4 , ): SCREAMING_SNAKE_CASE = reader_input["input_ids"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = reader_output[:3] SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = sorted(range(__lowerCamelCase ) , reverse=__lowerCamelCase , key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__lowerCamelCase , top_spans=__lowerCamelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__lowerCamelCase , start_index=__lowerCamelCase , end_index=__lowerCamelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__lowerCamelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _snake_case ( self : Optional[int] , __lowerCamelCase : List[int] , __lowerCamelCase : List[int] , __lowerCamelCase : int , __lowerCamelCase : int , ): SCREAMING_SNAKE_CASE = [] for start_index, start_score in enumerate(__lowerCamelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[1] , reverse=__lowerCamelCase ) SCREAMING_SNAKE_CASE = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]" ) SCREAMING_SNAKE_CASE = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f"Span is too long: {length} > {max_answer_length}" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__lowerCamelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__snake_case ) class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = ["input_ids", "attention_mask"]
16
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __snake_case : Dict , __snake_case : List[Any]=7 , __snake_case : Any=3 , __snake_case : Any=30 , __snake_case : Any=400 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=None , __snake_case : Optional[int]=0.9 , __snake_case : Dict=None , __snake_case : Dict=True , __snake_case : List[Any]=[0.5, 0.5, 0.5] , __snake_case : Dict=[0.5, 0.5, 0.5] , ) -> str: '''simple docstring''' lowerCamelCase = size if size is not None else {'shortest_edge': 30} lowerCamelCase = crop_size if crop_size is not None else {'height': 30, 'width': 30} lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = min_resolution lowerCamelCase = max_resolution lowerCamelCase = do_resize_and_center_crop lowerCamelCase = size lowerCamelCase = crop_pct lowerCamelCase = crop_size lowerCamelCase = do_normalize lowerCamelCase = image_mean lowerCamelCase = image_std def lowerCamelCase__ ( self : Dict ) -> Dict: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case = PoolFormerImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' lowerCamelCase = PoolFormerImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'size' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'crop_pct' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'image_mean' ) ) self.assertTrue(hasattr(__lowerCamelCase , 'image_std' ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) lowerCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' pass def lowerCamelCase__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase = image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase = image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input lowerCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase = image_processing(__lowerCamelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
246
from typing import Any import numpy as np def __a ( A__ : np.ndarray ): return np.array_equal(A__ , matrix.conjugate().T ) def __a ( A__ : np.ndarray , A__ : np.ndarray ): SCREAMING_SNAKE_CASE = v.conjugate().T SCREAMING_SNAKE_CASE = v_star.dot(A__ ) assert isinstance(A__ , np.ndarray ) return (v_star_dot.dot(A__ )) / (v_star.dot(A__ )) def __a ( ): SCREAMING_SNAKE_CASE = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) SCREAMING_SNAKE_CASE = np.array([[1], [2], [3]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." print(rayleigh_quotient(A__ , A__ ) ) SCREAMING_SNAKE_CASE = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(A__ ), F"{a} is not hermitian." assert rayleigh_quotient(A__ , A__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
16
0
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed snake_case__ : Any = logging.getLogger(__name__) def _snake_case (__lowercase=2 , __lowercase=3 , __lowercase=16 , __lowercase = 10 , __lowercase = 2): def get_dataset(__lowercase): UpperCamelCase_ = torch.randn(batch_size * n_batches , 1) return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1)) UpperCamelCase_ = get_dataset(A__) UpperCamelCase_ = get_dataset(A__) UpperCamelCase_ = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4) UpperCamelCase_ = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4) return (train_dataloader, valid_dataloader) def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None): UpperCamelCase_ = [] for epoch in range(A__): # Train quickly model.train() for batch in dataloader: UpperCamelCase_ , UpperCamelCase_ = batch UpperCamelCase_ = model(A__) UpperCamelCase_ = torch.nn.functional.mse_loss(A__ , A__) accelerator.backward(A__) optimizer.step() optimizer.zero_grad() rands.append(random.random()) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _a ( nn.Module ): """simple docstring""" def __init__( self ) -> List[str]: super().__init__() UpperCamelCase_ = nn.Parameter(torch.randn(1 ) ) UpperCamelCase_ = nn.Parameter(torch.randn(1 ) ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: return x * self.a + self.b class _a ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(total_limit=1 , project_dir=__lowerCamelCase , automatic_checkpoint_naming=__lowerCamelCase ) # Train baseline UpperCamelCase_ = Accelerator(project_config=__lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def _UpperCAmelCase ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() # Train baseline UpperCamelCase_ = Accelerator() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save initial UpperCamelCase_ = os.path.join(__lowerCamelCase , 'initial' ) accelerator.save_state(__lowerCamelCase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() UpperCamelCase_ = train(3 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = Accelerator() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.load_state(__lowerCamelCase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase_ = train(2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save everything UpperCamelCase_ = os.path.join(__lowerCamelCase , 'checkpoint' ) accelerator.save_state(__lowerCamelCase ) # Load everything back in and make sure all states work accelerator.load_state(__lowerCamelCase ) test_rands += train(1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=__lowerCamelCase ) # Train baseline UpperCamelCase_ = Accelerator(project_dir=__lowerCamelCase , project_config=__lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save initial accelerator.save_state() ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() UpperCamelCase_ = train(3 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=__lowerCamelCase ) UpperCamelCase_ = Accelerator(project_dir=__lowerCamelCase , project_config=__lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.load_state(os.path.join(__lowerCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase_ = train(2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowerCamelCase , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ((UpperCamelCase_) , (UpperCamelCase_)) = model.a.item(), model.b.item() UpperCamelCase_ = optimizer.state_dict() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = torch.tensor([1, 2, 3] ) UpperCamelCase_ = torch.tensor([2, 3, 4] ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(net.parameters() ) UpperCamelCase_ = Accelerator() with self.assertRaises(__lowerCamelCase ) as ve: accelerator.register_for_checkpointing(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) UpperCamelCase_ = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def _UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ = torch.optim.lr_scheduler.StepLR(__lowerCamelCase , step_size=1 , gamma=0.9_9 ) UpperCamelCase_ , UpperCamelCase_ = dummy_dataloaders() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=__lowerCamelCase ) # Train baseline UpperCamelCase_ = Accelerator(project_dir=__lowerCamelCase , project_config=__lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Save initial accelerator.save_state() UpperCamelCase_ = scheduler.state_dict() train(3 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.assertNotEqual(__lowerCamelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(__lowerCamelCase , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(__lowerCamelCase , scheduler.state_dict() ) def _UpperCAmelCase ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase_ = DummyModel() UpperCamelCase_ = ProjectConfiguration(automatic_checkpoint_naming=__lowerCamelCase , total_limit=2 ) # Train baseline UpperCamelCase_ = Accelerator(project_dir=__lowerCamelCase , project_config=__lowerCamelCase ) UpperCamelCase_ = accelerator.prepare(__lowerCamelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(__lowerCamelCase , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = ['torchrun', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) if __name__ == "__main__": snake_case__ : Union[str, Any] = '/tmp/accelerate/state_checkpointing' snake_case__ : Any = DummyModel() snake_case__ : Optional[int] = torch.optim.Adam(params=model.parameters(), lr=1E-3) snake_case__ : Any = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) snake_case__ : List[Any] = dummy_dataloaders() snake_case__ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline snake_case__ : Optional[Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) snake_case__ : Any = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) snake_case__ : Optional[int] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: snake_case__ : Dict = group['params'][0].device break assert param_device.type == accelerator.device.type snake_case__ : int = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: snake_case__ : Optional[Any] = group['params'][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: snake_case__ : Any = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
23
from __future__ import annotations __A : str = list[tuple[int, int]] __A : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __A : List[str] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , __lowerCamelCase : Node | None , ): SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = g_cost SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = self.calculate_heuristic() def _snake_case ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Union[str, Any] , __lowerCamelCase : List[Any] ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : tuple[int, int] , __lowerCamelCase : tuple[int, int] ): SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __lowerCamelCase ) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def _snake_case ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def _snake_case ( self : List[Any] , __lowerCamelCase : Node ): SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _snake_case ( self : str , __lowerCamelCase : Node | None ): SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path if __name__ == "__main__": __A : Optional[Any] = (0, 0) __A : Optional[int] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') __A : List[str] = GreedyBestFirst(init, goal) __A : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __A : Optional[Any] = 2 for elem in grid: print(elem)
16
0
from __future__ import annotations def a__ ( A_ ): '''simple docstring''' create_state_space_tree(A__, [], 0, [0 for i in range(len(A__ ) )] ) def a__ ( A_, A_, A_, A_, ): '''simple docstring''' if index == len(A__ ): print(A__ ) return for i in range(len(A__ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __magic_name__ = True create_state_space_tree(A__, A__, index + 1, A__ ) current_sequence.pop() __magic_name__ = False __lowerCAmelCase : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) __lowerCAmelCase : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
529
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A : int = logging.get_logger(__name__) __A : List[str] = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) __A : Optional[Any] = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Tuple = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) __A : Dict = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) __A : Any = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) __A : Optional[int] = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) __A : Union[str, Any] = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) __A : Optional[int] = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) __A : str = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) __A : Dict = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) __A : Dict = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) __A : Any = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) __A : Optional[int] = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) __A : List[str] = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) __A : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_MAPPING __A : Optional[int] = auto_class_update(FlaxAutoModel) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A : Tuple = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A : int = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A : int = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A : List[Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A : int = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _SCREAMING_SNAKE_CASE ( _BaseAutoModelClass ): '''simple docstring''' lowerCamelCase__ = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A : Optional[int] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
16
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_( SCREAMING_SNAKE_CASE_ = "laptop" ): '''simple docstring''' lowerCamelCase : Dict = f"""https://www.amazon.in/laptop/s?k={product}""" lowerCamelCase : Union[str, Any] = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } lowerCamelCase : Tuple = BeautifulSoup(requests.get(A__ , headers=A__ ).text ) # Initialize a Pandas dataframe with the column titles lowerCamelCase : Dict = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: lowerCamelCase : str = item.ha.text lowerCamelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] lowerCamelCase : Tuple = item.find("span" , attrs={"class": "a-offscreen"} ).text try: lowerCamelCase : Tuple = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: lowerCamelCase : Union[str, Any] = "Not available" try: lowerCamelCase : Union[str, Any] = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: lowerCamelCase : str = "" try: lowerCamelCase : Union[str, Any] = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: lowerCamelCase : Optional[int] = float("nan" ) except AttributeError: pass lowerCamelCase : Optional[int] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] lowerCamelCase : Optional[int] = " " lowerCamelCase : Dict = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
340
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
0
from math import factorial def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(A__ , A__ ) or not isinstance(A__ , A__ ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _lowercase : Union[str, Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _lowercase : List[str] = float(factorial(A__ ) ) coefficient /= factorial(A__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
89
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __A : Dict = logging.get_logger(__name__) @dataclass class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self : List[Any] , **__lowerCamelCase : Any ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE = deprecated_arg[3:] SCREAMING_SNAKE_CASE = not kwargs.pop(__lowerCamelCase ) logger.warning( f"{deprecated_arg} is depreciated. Please use --no-{positive_arg} or" f" {positive_arg}={kwargs[positive_arg]}" ) SCREAMING_SNAKE_CASE = kwargs.pop("tpu_name" , self.tpu_name ) SCREAMING_SNAKE_CASE = kwargs.pop("device_idx" , self.device_idx ) SCREAMING_SNAKE_CASE = kwargs.pop("eager_mode" , self.eager_mode ) SCREAMING_SNAKE_CASE = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__ = field( default=__snake_case , metadata={"help": "Name of TPU"} , ) lowerCamelCase__ = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__ = field(default=__snake_case , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__ = field( default=__snake_case , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _snake_case ( self : Optional[int] ): requires_backends(self , ["tf"] ) SCREAMING_SNAKE_CASE = None if self.tpu: try: if self.tpu_name: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: SCREAMING_SNAKE_CASE = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: SCREAMING_SNAKE_CASE = None return tpu @cached_property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) SCREAMING_SNAKE_CASE = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/gpu:{self.device_idx}" ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU SCREAMING_SNAKE_CASE = tf.distribute.OneDeviceStrategy(device=f"/cpu:{self.device_idx}" ) return strategy @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _snake_case ( self : Optional[Any] ): requires_backends(self , ["tf"] ) return self._setup_strategy @property def _snake_case ( self : List[str] ): requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _snake_case ( self : Any ): requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _snake_case ( self : Dict ): return self.n_gpu > 0
16
0
"""simple docstring""" from __future__ import annotations _lowerCAmelCase = list[tuple[int, int]] _lowerCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCAmelCase = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __UpperCamelCase : def __init__( self ,_A ,_A ,_A ,_A ,_A ,_A ,): '''simple docstring''' _lowerCAmelCase : int = pos_x _lowerCAmelCase : str = pos_y _lowerCAmelCase : Any = (pos_y, pos_x) _lowerCAmelCase : Optional[Any] = goal_x _lowerCAmelCase : List[Any] = goal_y _lowerCAmelCase : str = g_cost _lowerCAmelCase : Any = parent _lowerCAmelCase : int = self.calculate_heuristic() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = abs(self.pos_x - self.goal_x ) _lowerCAmelCase : List[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self ,_A ): '''simple docstring''' return self.f_cost < other.f_cost class __UpperCamelCase : def __init__( self ,_A ,_A ): '''simple docstring''' _lowerCAmelCase : Any = Node(start[1] ,start[0] ,goal[1] ,goal[0] ,0 ,__lowerCamelCase ) _lowerCAmelCase : int = Node(goal[1] ,goal[0] ,goal[1] ,goal[0] ,9_9999 ,__lowerCamelCase ) _lowerCAmelCase : str = [self.start] _lowerCAmelCase : int = [] _lowerCAmelCase : str = False def __lowerCamelCase ( self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _lowerCAmelCase : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _lowerCAmelCase : int = True return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) _lowerCAmelCase : Any = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path _lowerCAmelCase : Dict = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) if not self.reached: return [self.start.pos] return None def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [] for action in delta: _lowerCAmelCase : List[str] = parent.pos_x + action[1] _lowerCAmelCase : Any = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase ,__lowerCamelCase ,self.target.pos_y ,self.target.pos_x ,parent.g_cost + 1 ,__lowerCamelCase ,) ) return successors def __lowerCamelCase ( self ,_A ): '''simple docstring''' _lowerCAmelCase : Any = node _lowerCAmelCase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _lowerCAmelCase : int = current_node.parent path.reverse() return path if __name__ == "__main__": _lowerCAmelCase = (0, 0) _lowerCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") _lowerCAmelCase = GreedyBestFirst(init, goal) _lowerCAmelCase = greedy_bf.search() if path: for pos_x, pos_y in path: _lowerCAmelCase = 2 for elem in grid: print(elem)
259
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
0
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __snake_case ( __snake_case ): """simple docstring""" UpperCamelCase_ = (UniPCMultistepScheduler,) UpperCamelCase_ = (('num_inference_steps', 2_5),) def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = { "num_train_timesteps": 10_00, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, "solver_type": "bh2", } config.update(**__lowerCamelCase ) return config def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Optional[Any]=0 ,**lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase_ : int = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Optional[int] = kwargs.pop("num_inference_steps" ,__lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.dummy_sample lowerCAmelCase_ : Dict = 0.1 * sample lowerCAmelCase_ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Any = self.get_scheduler_config(**__lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ , lowerCAmelCase_ : List[str] = sample, sample for t in range(__lowerCamelCase ,time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase_ : List[str] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample lowerCAmelCase_ : Dict = new_scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : Tuple=0 ,**lowerCAmelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Optional[int] = kwargs.pop("num_inference_steps" ,__lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.dummy_sample lowerCAmelCase_ : int = 0.1 * sample lowerCAmelCase_ : Any = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Any = self.get_scheduler_config() lowerCAmelCase_ : Optional[Any] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) lowerCAmelCase_ : str = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : str = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ : Optional[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample lowerCAmelCase_ : Tuple = new_scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str=None ,**lowerCAmelCase__ : str ) -> Any: '''simple docstring''' if scheduler is None: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : str = self.get_scheduler_config(**__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = scheduler_class(**__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : Any = self.get_scheduler_config(**__lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler_class(**__lowerCamelCase ) lowerCAmelCase_ : Any = 10 lowerCAmelCase_ : Any = self.dummy_model() lowerCAmelCase_ : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ).prev_sample return sample def UpperCAmelCase_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Optional[int] = kwargs.pop("num_inference_steps" ,__lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Any = self.get_scheduler_config() lowerCAmelCase_ : Tuple = scheduler_class(**__lowerCamelCase ) lowerCAmelCase_ : Optional[int] = self.dummy_sample lowerCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase ,"set_timesteps" ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase ,"set_timesteps" ): lowerCAmelCase_ : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase_ : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[5] lowerCAmelCase_ : Tuple = scheduler.timesteps[6] lowerCAmelCase_ : Optional[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample lowerCAmelCase_ : str = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Dict = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase_ : str = self.full_loop(scheduler=__lowerCamelCase ) lowerCAmelCase_ : str = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 lowerCAmelCase_ : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : str = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Optional[int] = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : str = self.full_loop(scheduler=__lowerCamelCase ) lowerCAmelCase_ : List[Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__lowerCamelCase ,prediction_type=__lowerCamelCase ,sample_max_value=__lowerCamelCase ,solver_order=__lowerCamelCase ,solver_type=__lowerCamelCase ,) def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__lowerCamelCase ,solver_type=__lowerCamelCase ,prediction_type=__lowerCamelCase ,) lowerCAmelCase_ : Dict = self.full_loop( solver_order=__lowerCamelCase ,solver_type=__lowerCamelCase ,prediction_type=__lowerCamelCase ,) assert not torch.isnan(__lowerCamelCase ).any(), "Samples have nan numbers" def UpperCAmelCase_ ( self : Tuple ) -> int: '''simple docstring''' self.check_over_configs(lower_order_final=__lowerCamelCase ) self.check_over_configs(lower_order_final=__lowerCamelCase ) def UpperCAmelCase_ ( self : List[str] ) -> Tuple: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=__lowerCamelCase ,time_step=0 ) def UpperCAmelCase_ ( self : Tuple ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = self.full_loop() lowerCAmelCase_ : int = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.2_464 ) < 1e-3 def UpperCAmelCase_ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : str = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase_ : int = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 0.1_014 ) < 1e-3 def UpperCAmelCase_ ( self : Dict ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = self.scheduler_classes[0] lowerCAmelCase_ : int = self.get_scheduler_config(thresholding=__lowerCamelCase ,dynamic_thresholding_ratio=0 ) lowerCAmelCase_ : Optional[int] = scheduler_class(**__lowerCamelCase ) lowerCAmelCase_ : int = 10 lowerCAmelCase_ : Dict = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = model(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase_ ( self : Optional[int] ,**lowerCAmelCase__ : List[str] ) -> List[Any]: '''simple docstring''' for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Optional[Any] = self.get_scheduler_config(**__lowerCamelCase ) lowerCAmelCase_ : List[str] = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
659
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Dict: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: UpperCAmelCase_ = ord(A__ ) if not _is_chinese_char(A__ ): return 0 return 1 def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ = set() for token in tokens: UpperCAmelCase_ = len(A__ ) > 1 and is_chinese(A__ ) if chinese_word: word_set.add(A__ ) UpperCAmelCase_ = list(A__ ) return word_list def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]: if not chinese_word_set: return bert_tokens UpperCAmelCase_ = max([len(A__ ) for w in chinese_word_set] ) UpperCAmelCase_ = bert_tokens UpperCAmelCase_ , UpperCAmelCase_ = 0, len(A__ ) while start < end: UpperCAmelCase_ = True if is_chinese(bert_word[start] ): UpperCAmelCase_ = min(end - start , A__ ) for i in range(A__ , 1 , -1 ): UpperCAmelCase_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCAmelCase_ = "##" + bert_word[j] UpperCAmelCase_ = start + i UpperCAmelCase_ = False break if single_word: start += 1 return bert_word def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ = [] for i in range(0 , len(A__ ) , 100 ): UpperCAmelCase_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCAmelCase_ = [get_chinese_word(A__ ) for r in res] ltp_res.extend(A__ ) assert len(A__ ) == len(A__ ) UpperCAmelCase_ = [] for i in range(0 , len(A__ ) , 100 ): UpperCAmelCase_ = bert_tokenizer(lines[i : i + 100] , add_special_tokens=A__ , truncation=A__ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(A__ ) == len(A__ ) UpperCAmelCase_ = [] for input_ids, chinese_word in zip(A__ , A__ ): UpperCAmelCase_ = [] for id in input_ids: UpperCAmelCase_ = bert_tokenizer._convert_id_to_token(A__ ) input_tokens.append(A__ ) UpperCAmelCase_ = add_sub_symbol(A__ , A__ ) UpperCAmelCase_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A__ ): if token[:2] == "##": UpperCAmelCase_ = token[2:] # save chinese tokens' pos if len(A__ ) == 1 and _is_chinese_char(ord(A__ ) ): ref_id.append(A__ ) ref_ids.append(A__ ) assert len(A__ ) == len(A__ ) return ref_ids def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Dict: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [line.strip() for line in data if len(A__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCAmelCase_ = LTP(args.ltp ) # faster in GPU device UpperCAmelCase_ = BertTokenizer.from_pretrained(args.bert ) UpperCAmelCase_ = prepare_ref(A__ , A__ , A__ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: UpperCAmelCase_ = [json.dumps(A__ ) + "\n" for ref in ref_ids] f.writelines(A__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
579
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
0
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCamelCase__ : def __init__( self , snake_case , snake_case=3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=False , snake_case=True , snake_case=9_9 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ) -> Optional[Any]: """simple docstring""" lowercase : Any = parent lowercase : str = batch_size lowercase : int = seq_length lowercase : List[str] = is_training lowercase : Tuple = use_input_mask lowercase : str = use_token_type_ids lowercase : List[Any] = use_labels lowercase : Optional[int] = vocab_size lowercase : Optional[Any] = hidden_size lowercase : Union[str, Any] = num_hidden_layers lowercase : str = num_attention_heads lowercase : Any = intermediate_size lowercase : List[str] = hidden_act lowercase : Optional[Any] = hidden_dropout_prob lowercase : Optional[Any] = attention_probs_dropout_prob lowercase : str = max_position_embeddings lowercase : List[Any] = type_vocab_size lowercase : Tuple = type_sequence_label_size lowercase : Union[str, Any] = initializer_range lowercase : Tuple = num_labels lowercase : Union[str, Any] = num_choices lowercase : Optional[Any] = scope def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Tuple = None if self.use_input_mask: lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : str = None lowercase : str = None lowercase : List[str] = None lowercase : str = None if self.use_labels: lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) lowercase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__lowerCamelCase , ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = FalconModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) lowercase : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Optional[int]: """simple docstring""" lowercase : Optional[int] = True lowercase : Any = FalconModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Optional[int] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) lowercase : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) lowercase : Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> List[Any]: """simple docstring""" lowercase : Dict = FalconForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Optional[Any]: """simple docstring""" lowercase : int = True lowercase : List[Any] = True lowercase : Any = FalconForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass lowercase : Any = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) lowercase : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowercase : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) lowercase : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) lowercase : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] lowercase : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )["""hidden_states"""][0] # select random slice lowercase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowercase : int = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Union[str, Any] = config_and_inputs lowercase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __UpperCAmelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __UpperCAmelCase = (FalconForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" lowercase : Dict = FalconModelTester(self ) lowercase : Any = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> int: """simple docstring""" lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" lowercase , *lowercase : List[str] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowercase : Union[str, Any] = alibi self.model_tester.create_and_check_model(__lowerCamelCase , *__lowerCamelCase ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" lowercase , lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = 3 lowercase : List[str] = input_dict["""input_ids"""] lowercase : Tuple = input_ids.ne(1 ).to(__lowerCamelCase ) lowercase : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase : str = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Optional[int] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" lowercase , lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Optional[Any] = 3 lowercase : List[str] = """single_label_classification""" lowercase : Tuple = input_dict["""input_ids"""] lowercase : Optional[int] = input_ids.ne(1 ).to(__lowerCamelCase ) lowercase : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowercase : List[Any] = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" lowercase , lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase : int = input_dict["""input_ids"""] lowercase : List[Any] = FalconForCausalLM(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Optional[Any] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) lowercase : int = input_ids.shape[0] lowercase : Tuple = model._convert_to_rw_cache(result.past_key_values ) lowercase : List[Any] = model._convert_cache_to_standard_format(__lowerCamelCase , __lowerCamelCase ) for layer in range(len(__lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" lowercase , lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() lowercase : Any = 3 lowercase : List[str] = """multi_label_classification""" lowercase : Optional[int] = input_dict["""input_ids"""] lowercase : Union[str, Any] = input_ids.ne(1 ).to(__lowerCamelCase ) lowercase : Optional[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowercase : Optional[int] = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowercase : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _UpperCAmelCase ( self ) -> Optional[Any]: """simple docstring""" # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowercase , lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__lowerCamelCase , """use_cache""" ): return lowercase : List[Any] = model_class(__lowerCamelCase ).to(__lowerCamelCase ) if "use_cache" not in inputs: lowercase : Any = True lowercase : str = model(**__lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowercase : Any = ( getattr(__lowerCamelCase , """decoder_layers""" , __lowerCamelCase ) or getattr(__lowerCamelCase , """num_decoder_layers""" , __lowerCamelCase ) or config.num_hidden_layers ) lowercase : str = getattr(__lowerCamelCase , """num_kv_heads""" , config.num_attention_heads ) lowercase : List[str] = getattr(__lowerCamelCase , """d_model""" , config.hidden_size ) lowercase : Optional[Any] = embed_dim // num_attention_heads lowercase : str = outputs["""past_key_values"""] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) lowercase , lowercase : Optional[Any] = inputs["""input_ids"""].shape for i in range(__lowerCamelCase ): if config.new_decoder_architecture: lowercase : str = config.num_attention_heads elif config.multi_query: lowercase : List[str] = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class lowerCamelCase__ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ) -> Tuple: """simple docstring""" lowercase : Dict = AutoTokenizer.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) lowercase : str = FalconForCausalLM.from_pretrained("""Rocketknight1/falcon-rw-1b""" ) model.eval() model.to(__lowerCamelCase ) lowercase : Optional[int] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowerCamelCase ) lowercase : Union[str, Any] = ( """My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.""" ) lowercase : Optional[int] = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=1_9 ) lowercase : Tuple = tokenizer.batch_decode(__lowerCamelCase )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowercase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase ) lowercase : Tuple = FalconForCausalLM.from_pretrained(__lowerCamelCase ) model.eval() model.to(__lowerCamelCase ) lowercase : List[Any] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=4 ) model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=4 ) model.generate(**__lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowercase : Tuple = AutoTokenizer.from_pretrained(__lowerCamelCase ) lowercase : Optional[Any] = FalconForCausalLM.from_pretrained(__lowerCamelCase ) model.eval() model.to(device=__lowerCamelCase ) lowercase : List[str] = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__lowerCamelCase ) # Test results are the same with and without cache lowercase : int = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=2_0 , use_cache=__lowerCamelCase ) lowercase : Optional[int] = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=2_0 , use_cache=__lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
607
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A : Any = logging.get_logger(__name__) __A : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __A : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __A : Union[str, Any] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __a ( ): SCREAMING_SNAKE_CASE = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE = bs[:] SCREAMING_SNAKE_CASE = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = set() SCREAMING_SNAKE_CASE = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE = char return pairs class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Optional[Any]="</s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Union[str, Any]="<s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Any=False , **__lowerCamelCase : Optional[Any] , ): SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase ) SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE = bytes_to_unicode() SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _snake_case ( self : str ): return len(self.encoder ) def _snake_case ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : Dict , __lowerCamelCase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while i < len(__lowerCamelCase ): try: SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase ) SCREAMING_SNAKE_CASE = new_word if len(__lowerCamelCase ) == 1: break else: SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = word return word def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = [] for token in re.findall(self.pat , __lowerCamelCase ): SCREAMING_SNAKE_CASE = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _snake_case ( self : Tuple , __lowerCamelCase : Dict ): return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ): return self.decoder.get(__lowerCamelCase ) def _snake_case ( self : Optional[int] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) SCREAMING_SNAKE_CASE = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Any=False , **__lowerCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE = " " + text return (text, kwargs) def _snake_case ( self : Any , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def _snake_case ( self : int , __lowerCamelCase : "Conversation" ): SCREAMING_SNAKE_CASE = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." ) return input_ids
16
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer a_ = logging.get_logger(__name__) a_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a_ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } a_ = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } a_ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class __lowerCAmelCase ( __snake_case ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = BertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) __lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __lowerCamelCase ) != tokenize_chinese_chars ): __lowerCamelCase = getattr(__lowerCamelCase , normalizer_state.pop('''type''' ) ) __lowerCamelCase = do_lower_case __lowerCamelCase = strip_accents __lowerCamelCase = tokenize_chinese_chars __lowerCamelCase = normalizer_class(**__lowerCamelCase ) __lowerCamelCase = do_lower_case def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ): '''simple docstring''' __lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __lowerCamelCase = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
175
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( A__ : str , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : List[Any] , A__ : Optional[int]=None ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100" SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ ).json() SCREAMING_SNAKE_CASE = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) SCREAMING_SNAKE_CASE = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): SCREAMING_SNAKE_CASE = requests.get(url + F"&page={i + 2}" , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} def __a ( A__ : Any , A__ : str , A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = None if token is not None: SCREAMING_SNAKE_CASE = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"} SCREAMING_SNAKE_CASE = requests.get(A__ , headers=A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = result.headers["Location"] SCREAMING_SNAKE_CASE = requests.get(A__ , allow_redirects=A__ ) SCREAMING_SNAKE_CASE = os.path.join(A__ , F"{artifact_name}.zip" ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def __a ( A__ : List[Any] , A__ : List[Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: SCREAMING_SNAKE_CASE = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE = line[: line.index(": " )] SCREAMING_SNAKE_CASE = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed SCREAMING_SNAKE_CASE = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE = line if len(A__ ) != len(A__ ): raise ValueError( F"`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` " F"and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some" " problem." ) SCREAMING_SNAKE_CASE = None if job_name and job_links: SCREAMING_SNAKE_CASE = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def __a ( A__ : Union[str, Any] , A__ : Union[str, Any]=None ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def __a ( A__ : List[str] , A__ : Tuple=None ): SCREAMING_SNAKE_CASE = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : str ): SCREAMING_SNAKE_CASE = test.split("::" )[0] if test.startswith("tests/models/" ): SCREAMING_SNAKE_CASE = test.split("/" )[2] else: SCREAMING_SNAKE_CASE = None return test def __a ( A__ : List[str] , A__ : Dict=None ): SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE = {x[2] for x in logs} SCREAMING_SNAKE_CASE = {} for test in tests: SCREAMING_SNAKE_CASE = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE = counter.most_common() SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE = {"count": n_errors, "errors": error_counts} SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda A__ : item[1]["count"] , reverse=A__ ) ) return r def __a ( A__ : Dict ): SCREAMING_SNAKE_CASE = "| no. | error | status |" SCREAMING_SNAKE_CASE = "|-:|:-|:-|" SCREAMING_SNAKE_CASE = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE = reduced_by_error[error]["count"] SCREAMING_SNAKE_CASE = F"| {count} | {error[:100]} | |" lines.append(A__ ) return "\n".join(A__ ) def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = "| model | no. of errors | major error | count |" SCREAMING_SNAKE_CASE = "|-:|-:|-:|-:|" SCREAMING_SNAKE_CASE = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE = reduced_by_model[model]["count"] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]["errors"].items() )[0] SCREAMING_SNAKE_CASE = F"| {model} | {count} | {error[:60]} | {_count} |" lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') __A : Union[str, Any] = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) __A : int = get_job_links(args.workflow_run_id, token=args.token) __A : Dict = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: __A : Union[str, Any] = k.find(' / ') __A : Optional[int] = k[index + len(' / ') :] __A : Optional[int] = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) __A : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) __A : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error __A : Dict = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors __A : Optional[Any] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) __A : str = reduce_by_error(errors) __A : int = reduce_by_model(errors) __A : Any = make_github_table(reduced_by_error) __A : List[str] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
16
0
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE ( __snake_case : np.ndarray ): return 1 / (1 + np.exp(-vector )) def _SCREAMING_SNAKE_CASE ( __snake_case : np.ndarray ): return vector * sigmoid(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
107
from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[Any] = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = "gpt_neox" def __init__( self : Optional[int] , __lowerCamelCase : List[str]=50432 , __lowerCamelCase : int=6144 , __lowerCamelCase : Optional[Any]=44 , __lowerCamelCase : Tuple=64 , __lowerCamelCase : Optional[int]=24576 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Any=0.25 , __lowerCamelCase : List[Any]=10000 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : int=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-5 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : str , ): super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = rotary_pct SCREAMING_SNAKE_CASE = rotary_emb_base SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = hidden_dropout SCREAMING_SNAKE_CASE = classifier_dropout SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = use_parallel_residual SCREAMING_SNAKE_CASE = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _snake_case ( self : Union[str, Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("type" , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.rope_scaling.get("factor" , __lowerCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
16
0
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( __snake_case , unittest.TestCase ): '''simple docstring''' snake_case = CodeGenTokenizer snake_case = CodeGenTokenizerFast snake_case = True snake_case = {'add_prefix_space': True} snake_case = False def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] lowerCamelCase = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase = {'unk_token': '<unk>'} lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCamelCase ) ) def lowerCamelCase__ ( self : Tuple , **__snake_case : List[str] ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCamelCase__ ( self : List[str] , **__snake_case : Optional[int] ) -> str: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCamelCase__ ( self : Optional[Any] , __snake_case : List[str] ) -> Optional[int]: '''simple docstring''' lowerCamelCase = 'lower newer' lowerCamelCase = 'lower newer' return input_text, output_text def lowerCamelCase__ ( self : Union[str, Any] ) -> str: '''simple docstring''' lowerCamelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase = 'lower newer' lowerCamelCase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase = tokens + [tokenizer.unk_token] lowerCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def lowerCamelCase__ ( self : Tuple ) -> List[str]: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) lowerCamelCase = 'lower newer' # Testing tokenization lowerCamelCase = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCamelCase = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids without special tokens lowerCamelCase = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCamelCase = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing conversion to ids with special tokens lowerCamelCase = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase ) lowerCamelCase = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase ) lowerCamelCase = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) # Testing the unknown token lowerCamelCase = tokens + [rust_tokenizer.unk_token] lowerCamelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def lowerCamelCase__ ( self : Tuple , *__snake_case : Dict , **__snake_case : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase__ ( self : Optional[Any] , __snake_case : Any=15 ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # Simple input lowerCamelCase = 'This is a simple input' lowerCamelCase = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase = ('This is a simple input', 'This is a pair') lowerCamelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( __lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding='max_length' , ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' lowerCamelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input lowerCamelCase = 'This is a simple input' lowerCamelCase = ['This is a simple input looooooooong', 'This is a simple input'] lowerCamelCase = ('This is a simple input', 'This is a pair') lowerCamelCase = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] lowerCamelCase = tokenizer.pad_token_id lowerCamelCase = tokenizer(__lowerCamelCase , padding='max_length' , max_length=30 , return_tensors='np' ) lowerCamelCase = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors='np' ) lowerCamelCase = tokenizer(*__lowerCamelCase , padding='max_length' , max_length=60 , return_tensors='np' ) lowerCamelCase = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = '$$$' lowerCamelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase ) lowerCamelCase = 'This is a simple input' lowerCamelCase = ['This is a simple input 1', 'This is a simple input 2'] lowerCamelCase = tokenizer.bos_token_id lowerCamelCase = tokenizer(__lowerCamelCase ) lowerCamelCase = tokenizer(__lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCamelCase = tokenizer.decode(out_s.input_ids ) lowerCamelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) lowerCamelCase = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' lowerCamelCase = '\nif len_a > len_b: result = a\nelse: result = b' lowerCamelCase = tokenizer.encode(__lowerCamelCase ) lowerCamelCase = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^\"\"\"', '\n\n\n'] lowerCamelCase = tokenizer.decode(__lowerCamelCase , truncate_before_pattern=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCamelCase__ ( self : int ) -> int: '''simple docstring''' pass
246
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : List[Any] = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case__ : Optional[int] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class _a ( __snake_case , unittest.TestCase ): """simple docstring""" A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def _UpperCAmelCase ( self ) -> Any: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = PegasusTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self ) -> Optional[int]: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> str: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Tuple: return ("This is a test", "This is a test") def _UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase_ = '</s>' UpperCamelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> Any: UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(__lowerCamelCase ) , 1103 ) def _UpperCAmelCase ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase_ = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) UpperCamelCase_ = rust_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] UpperCamelCase_ = py_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase_ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word UpperCamelCase_ = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' UpperCamelCase_ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] UpperCamelCase_ = tokenizer([raw_input_str] , return_tensors=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( self ) -> List[str]: UpperCamelCase_ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 UpperCamelCase_ = 'To ensure a smooth flow of bank resolutions.' UpperCamelCase_ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] UpperCamelCase_ = tokenizer([raw_input_str] , return_tensors=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _UpperCAmelCase ( self ) -> str: UpperCamelCase_ = ['This is going to be way too long.' * 150, 'short example'] UpperCamelCase_ = ['not super long but more than 5 tokens', 'tiny'] UpperCamelCase_ = self._large_tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='pt' ) UpperCamelCase_ = self._large_tokenizer( text_target=__lowerCamelCase , max_length=5 , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def _UpperCAmelCase ( self ) -> str: # fmt: off UpperCamelCase_ = {'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class _a ( __snake_case , unittest.TestCase ): """simple docstring""" A_ = PegasusTokenizer A_ = PegasusTokenizerFast A_ = True A_ = True def _UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = PegasusTokenizer(__lowerCamelCase , offset=0 , mask_token_sent=__lowerCamelCase , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self ) -> List[Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def _UpperCAmelCase ( self , **_UpperCAmelCase ) -> List[Any]: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[Any]: return ("This is a test", "This is a test") def _UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase_ = self.tokenizer_class.from_pretrained(self.tmpdirname ) UpperCamelCase_ = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) UpperCamelCase_ = rust_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] UpperCamelCase_ = py_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_torch def _UpperCAmelCase ( self ) -> int: UpperCamelCase_ = ['This is going to be way too long.' * 1000, 'short example'] UpperCamelCase_ = ['not super long but more than 5 tokens', 'tiny'] UpperCamelCase_ = self._large_tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='pt' ) UpperCamelCase_ = self._large_tokenizer( text_target=__lowerCamelCase , max_length=5 , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCamelCase ) == 2 # input_ids, attention_mask. def _UpperCAmelCase ( self ) -> Dict: UpperCamelCase_ = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) UpperCamelCase_ = self._large_tokenizer(__lowerCamelCase ).input_ids self.assertListEqual( __lowerCamelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
23
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __A : Union[str, Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __A : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', f'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', f'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qpos_proj.weight', f'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kpos_proj.weight', f'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.weight', f'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', f'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', f'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kpos_proj.weight', f'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.weight', f'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', f'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', f'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', f'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.sa_qpos_proj.bias', f'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_kpos_proj.bias', f'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.sa_v_proj.bias', f'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', f'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', f'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.ca_kpos_proj.bias', f'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((f'transformer.decoder.layers.{i}.ca_v_proj.bias', f'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (f'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', f'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ('transformer.decoder.ref_point_head.layers.0.weight', 'decoder.ref_point_head.layers.0.weight'), ('transformer.decoder.ref_point_head.layers.0.bias', 'decoder.ref_point_head.layers.0.bias'), ('transformer.decoder.ref_point_head.layers.1.weight', 'decoder.ref_point_head.layers.1.weight'), ('transformer.decoder.ref_point_head.layers.1.bias', 'decoder.ref_point_head.layers.1.bias'), ('transformer.decoder.query_scale.layers.0.weight', 'decoder.query_scale.layers.0.weight'), ('transformer.decoder.query_scale.layers.0.bias', 'decoder.query_scale.layers.0.bias'), ('transformer.decoder.query_scale.layers.1.weight', 'decoder.query_scale.layers.1.weight'), ('transformer.decoder.query_scale.layers.1.bias', 'decoder.query_scale.layers.1.bias'), ('transformer.decoder.layers.0.ca_qpos_proj.weight', 'decoder.layers.0.ca_qpos_proj.weight'), ('transformer.decoder.layers.0.ca_qpos_proj.bias', 'decoder.layers.0.ca_qpos_proj.bias'), ] ) def __a ( A__ : Dict , A__ : Dict , A__ : Any ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val def __a ( A__ : Optional[int] ): SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: SCREAMING_SNAKE_CASE = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) SCREAMING_SNAKE_CASE = value else: SCREAMING_SNAKE_CASE = value return new_state_dict def __a ( A__ : Optional[Any] , A__ : Tuple=False ): SCREAMING_SNAKE_CASE = "" if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] SCREAMING_SNAKE_CASE = in_proj_bias[:256] SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] SCREAMING_SNAKE_CASE = in_proj_bias[256:512] SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] SCREAMING_SNAKE_CASE = in_proj_bias[-256:] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : List[str] , A__ : Union[str, Any] ): SCREAMING_SNAKE_CASE = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: SCREAMING_SNAKE_CASE = "resnet101" if "dc5" in model_name: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = "panoptic" in model_name if is_panoptic: SCREAMING_SNAKE_CASE = 250 else: SCREAMING_SNAKE_CASE = 91 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "coco-detection-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} # load image processor SCREAMING_SNAKE_CASE = "coco_panoptic" if is_panoptic else "coco_detection" SCREAMING_SNAKE_CASE = ConditionalDetrImageProcessor(format=A__ ) # prepare image SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=A__ , return_tensors="pt" ) SCREAMING_SNAKE_CASE = encoding["pixel_values"] logger.info(F"Converting model {model_name}..." ) # load original model from torch hub SCREAMING_SNAKE_CASE = torch.hub.load("DeppMeng/ConditionalDETR" , A__ , pretrained=A__ ).eval() SCREAMING_SNAKE_CASE = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: SCREAMING_SNAKE_CASE = "conditional_detr." + src rename_key(A__ , A__ , A__ ) SCREAMING_SNAKE_CASE = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them SCREAMING_SNAKE_CASE = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif "class_labels_classifier" in key or "bbox_predictor" in key: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # finally, create HuggingFace model and load state dict SCREAMING_SNAKE_CASE = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion SCREAMING_SNAKE_CASE = conditional_detr(A__ ) SCREAMING_SNAKE_CASE = model(A__ ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() parser.add_argument( '--model_name', default='conditional_detr_resnet50', type=str, help='Name of the CONDITIONAL_DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __A : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
16
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Any = ShapEPipeline _lowercase : int = ['''prompt'''] _lowercase : List[str] = ['''prompt'''] _lowercase : Union[str, Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowercase : Optional[Any] = False @property def lowerCAmelCase_ ( self : List[str] ): return 32 @property def lowerCAmelCase_ ( self : Optional[int] ): return 32 @property def lowerCAmelCase_ ( self : Dict ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : str ): return 8 @property def lowerCAmelCase_ ( self : Optional[int] ): __A : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCAmelCase_ ( self : str ): torch.manual_seed(0 ) __A : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def lowerCAmelCase_ ( self : List[Any] ): torch.manual_seed(0 ) __A : Optional[int] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __A : List[str] = PriorTransformer(**__A ) return model @property def lowerCAmelCase_ ( self : Dict ): torch.manual_seed(0 ) __A : Any = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __A : Tuple = ShapERenderer(**__A ) return model def lowerCAmelCase_ ( self : Optional[int] ): __A : Union[str, Any] = self.dummy_prior __A : List[Any] = self.dummy_text_encoder __A : Union[str, Any] = self.dummy_tokenizer __A : Tuple = self.dummy_renderer __A : Any = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__A , clip_sample=__A , clip_sample_range=1.0 , ) __A : Tuple = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase_ ( self : List[Any] , __A : str , __A : Any=0 ): if str(__A ).startswith("""mps""" ): __A : int = torch.manual_seed(__A ) else: __A : List[Any] = torch.Generator(device=__A ).manual_seed(__A ) __A : Optional[int] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase_ ( self : Optional[int] ): __A : str = """cpu""" __A : Tuple = self.get_dummy_components() __A : Optional[Any] = self.pipeline_class(**__A ) __A : List[str] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : Tuple = pipe(**self.get_dummy_inputs(__A ) ) __A : Tuple = output.images[0] __A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __A : List[Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self : Dict ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase_ ( self : Dict ): __A : List[str] = torch_device == """cpu""" __A : str = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__A , relax_max_difference=__A , ) def lowerCAmelCase_ ( self : Dict ): __A : List[Any] = self.get_dummy_components() __A : List[str] = self.pipeline_class(**__A ) __A : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : List[Any] = 1 __A : int = 2 __A : int = self.get_dummy_inputs(__A ) for key in inputs.keys(): if key in self.batch_params: __A : Optional[Any] = batch_size * [inputs[key]] __A : Tuple = pipe(**__A , num_images_per_prompt=__A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : int ): __A : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __A : Union[str, Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __A : Any = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : int = torch.Generator(device=__A ).manual_seed(0 ) __A : str = pipe( """a shark""" , generator=__A , guidance_scale=1_5.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__A , __A )
17
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
1
def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : bool = False ) -> str: if not isinstance(a__ ,a__ ): __A : Dict = f"""Expected string as input, found {type(a__ )}""" raise ValueError(a__ ) if not isinstance(a__ ,a__ ): __A : Optional[int] = f"""Expected boolean as use_pascal parameter, found {type(a__ )}""" raise ValueError(a__ ) __A : Any = input_str.split("""_""" ) __A : Optional[int] = 0 if use_pascal else 1 __A : Optional[Any] = words[start_index:] __A : Any = [word[0].upper() + word[1:] for word in words_to_capitalize] __A : List[str] = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
17
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
1
def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = len(a__ ) for i in range(length - 1 ): __A : Optional[Any] = i for k in range(i + 1 ,a__ ): if collection[k] < collection[least]: __A : Dict = k if least != i: __A , __A : str = (collection[i], collection[least]) return collection if __name__ == "__main__": UpperCAmelCase_ : Any = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase_ : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
17
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
17
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class lowerCamelCase_ : pass
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
from __future__ import annotations import pandas as pd def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : list[int] ,a__ : int ) -> list[int]: __A : List[str] = [0] * no_of_processes __A : Dict = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(a__ ): __A : Tuple = burst_time[i] __A : Dict = 0 __A : Any = 0 __A : List[Any] = 999999999 __A : List[str] = 0 __A : List[str] = False # Process until all processes are completed while complete != no_of_processes: for j in range(a__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __A : List[Any] = remaining_time[j] __A : Union[str, Any] = j __A : int = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __A : int = remaining_time[short] if minm == 0: __A : List[str] = 999999999 if remaining_time[short] == 0: complete += 1 __A : Optional[Any] = False # Find finish time of current process __A : Union[str, Any] = increment_time + 1 # Calculate waiting time __A : Tuple = finish_time - arrival_time[short] __A : Tuple = finar - burst_time[short] if waiting_time[short] < 0: __A : str = 0 # Increment time increment_time += 1 return waiting_time def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : int ,a__ : list[int] ) -> list[int]: __A : Any = [0] * no_of_processes for i in range(a__ ): __A : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : list[int] ,a__ : int ) -> None: __A : int = 0 __A : Any = 0 for i in range(a__ ): __A : Dict = total_waiting_time + waiting_time[i] __A : List[str] = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" ,total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') UpperCAmelCase_ : Tuple = int(input()) UpperCAmelCase_ : Dict = [0] * no_of_processes UpperCAmelCase_ : Union[str, Any] = [0] * no_of_processes UpperCAmelCase_ : Optional[int] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) UpperCAmelCase_ , UpperCAmelCase_ : Dict = map(int, input().split()) UpperCAmelCase_ : str = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase_ : Union[str, Any] = burst_time UpperCAmelCase_ : Any = no_of_processes UpperCAmelCase_ : int = waiting_time UpperCAmelCase_ : Optional[Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase_ : Tuple = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
17
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
1
from __future__ import annotations from typing import Any class lowerCamelCase_ ( _lowercase ): pass class lowerCamelCase_ : def __init__( self : Optional[int] , __A : Any ): __A : Any = data __A : Node | None = None def __iter__( self : Dict ): __A : Optional[Any] = self __A : Optional[int] = [] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data __A : Optional[Any] = node.next_node @property def lowerCAmelCase_ ( self : Tuple ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": UpperCAmelCase_ : List[str] = Node(1) UpperCAmelCase_ : List[Any] = Node(2) UpperCAmelCase_ : Optional[int] = Node(3) UpperCAmelCase_ : List[Any] = Node(4) print(root_node.has_loop) # False UpperCAmelCase_ : str = root_node.next_node print(root_node.has_loop) # True UpperCAmelCase_ : int = Node(5) UpperCAmelCase_ : Dict = Node(6) UpperCAmelCase_ : Any = Node(5) UpperCAmelCase_ : Union[str, Any] = Node(6) print(root_node.has_loop) # False UpperCAmelCase_ : Union[str, Any] = Node(1) print(root_node.has_loop) # False
17
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): __A : str = f"""Input value of [number={number}] must be an integer""" raise TypeError(a__ ) if number < 1: __A : Optional[int] = f"""Input value of [number={number}] must be > 0""" raise ValueError(a__ ) __A : Optional[Any] = 1 for i in range(1 ,a__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
17
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int | None = None ,a__ : int | None = None ) -> None: if start is None: __A : int = 0 if end is None: __A : Union[str, Any] = len(a__ ) - 1 if start >= end: return __A : Optional[int] = (start + end) // 2 slowsort(a__ ,a__ ,a__ ) slowsort(a__ ,mid + 1 ,a__ ) if sequence[end] < sequence[mid]: __A , __A : Dict = sequence[mid], sequence[end] slowsort(a__ ,a__ ,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
17
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : int ) -> bool: __A : Union[str, Any] = len(a__ ) __A : List[str] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __A : Any = True # sum is not zero and set is empty then false for i in range(1 ,required_sum + 1 ): __A : Optional[Any] = False for i in range(1 ,arr_len + 1 ): for j in range(1 ,required_sum + 1 ): if arr[i - 1] > j: __A : Union[str, Any] = subset[i - 1][j] if arr[i - 1] <= j: __A : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __SCREAMING_SNAKE_CASE ( a__ : Tuple ) -> Any: __A : Dict = checkpoints.load_tax_checkpoint(a__ ) __A : List[str] = flatten_dict(a__ ) return flax_params def __SCREAMING_SNAKE_CASE ( a__ : Union[str, Any] ) -> List[Any]: __A : Union[str, Any] = {} __A : Union[str, Any] = { """token_embedder""": """embeddings""", """encoder_norm""": """layernorm""", """kernel""": """weight""", """.out""": """.output""", """scale""": """weight""", """embedders_0.pos_embedding""": """row_embedder.weight""", """embedders_1.pos_embedding""": """column_embedder.weight""", } __A : Dict = { """query""": """attention.query""", """key""": """attention.key""", """value""": """attention.value""", """output.dense""": """output""", """encoder_decoder_attention.o""": """encoder_decoder_attention.attention.o""", """pre_self_attention_layer_norm""": """self_attention.layer_norm""", """pre_cross_attention_layer_norm""": """encoder_decoder_attention.layer_norm""", """mlp.""": """mlp.DenseReluDense.""", """pre_mlp_layer_norm""": """mlp.layer_norm""", """self_attention.o""": """self_attention.attention.o""", """decoder.embeddings.embedding""": """decoder.embed_tokens.weight""", """decoder.relpos_bias.rel_embedding""": """decoder.layer.0.self_attention.attention.relative_attention_bias.weight""", """decoder.decoder_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.logits_dense.weight""": """decoder.lm_head.weight""", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __A : List[Any] = """.""".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __A : List[str] = new_key.replace(a__ ,a__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __A : Optional[Any] = new_key.replace(a__ ,a__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __A : Optional[Any] = re.sub(r"""layers_(\d+)""" ,r"""layer.\1""" ,a__ ) __A : Any = new_key.replace("""encoder""" ,"""encoder.encoder""" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __A : int = re.sub(r"""layers_(\d+)""" ,r"""layer.\1""" ,a__ ) __A : Optional[int] = flax_dict[key] __A : Union[str, Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __A : Optional[int] = torch.from_numpy(converted_dict[key].T ) else: __A : List[str] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Union[str, Any] ,a__ : Optional[Any]=False ,a__ : Union[str, Any]=False ) -> Union[str, Any]: __A : Any = get_flax_param(a__ ) if not use_large: __A : Union[str, Any] = PixaStructVisionConfig() __A : str = PixaStructTextConfig() else: __A : List[str] = PixaStructVisionConfig( hidden_size=1536 ,d_ff=3968 ,num_attention_heads=24 ,num_hidden_layers=18 ) __A : int = PixaStructTextConfig(hidden_size=1536 ,d_ff=3968 ,num_heads=24 ,num_layers=18 ) __A : Union[str, Any] = PixaStructConfig( vision_config=encoder_config.to_dict() ,text_config=decoder_config.to_dict() ,is_vqa=a__ ) __A : int = PixaStructForConditionalGeneration(a__ ) __A : str = rename_and_convert_flax_params(a__ ) model.load_state_dict(a__ ) __A : Optional[int] = AutoTokenizer.from_pretrained("""ybelkada/test-pix2struct-tokenizer""" ) __A : str = PixaStructImageProcessor() __A : Union[str, Any] = PixaStructProcessor(image_processor=a__ ,tokenizer=a__ ) if use_large: __A : int = 4096 __A : Dict = True # mkdir if needed os.makedirs(a__ ,exist_ok=a__ ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) print("""Model saved in {}""".format(a__ ) ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase_ : List[Any] = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCamelCase_ : def __init__( self : Optional[Any] , __A : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) __A : Union[str, Any] = primes[group]["""prime"""] __A : List[str] = primes[group]["""generator"""] __A : int = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase_ ( self : List[str] ): return hex(self.__private_key )[2:] def lowerCAmelCase_ ( self : Optional[Any] ): __A : Any = pow(self.generator , self.__private_key , self.prime ) return hex(__A )[2:] def lowerCAmelCase_ ( self : str , __A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__A , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase_ ( self : Optional[int] , __A : str ): __A : List[str] = int(__A , base=16 ) if not self.is_valid_public_key(__A ): raise ValueError("""Invalid public key""" ) __A : Union[str, Any] = pow(__A , self.__private_key , self.prime ) return shaaaa(str(__A ).encode() ).hexdigest() @staticmethod def lowerCAmelCase_ ( __A : int , __A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__A , (prime - 1) // 2 , __A ) == 1 ) @staticmethod def lowerCAmelCase_ ( __A : str , __A : str , __A : int = 14 ): __A : int = int(__A , base=16 ) __A : List[str] = int(__A , base=16 ) __A : Union[str, Any] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__A , __A ): raise ValueError("""Invalid public key""" ) __A : int = pow(__A , __A , __A ) return shaaaa(str(__A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
import numpy as np class lowerCamelCase_ : def __init__( self : Union[str, Any] ): __A : Union[str, Any] = (0, 0) __A : Optional[Any] = None __A : int = 0 __A : List[Any] = 0 __A : Any = 0 def __eq__( self : str , __A : Dict ): return self.position == cell.position def lowerCAmelCase_ ( self : int ): print(self.position ) class lowerCamelCase_ : def __init__( self : Dict , __A : List[str]=(5, 5) ): __A : str = np.zeros(__A ) __A : str = world_size[0] __A : Union[str, Any] = world_size[1] def lowerCAmelCase_ ( self : Dict ): print(self.w ) def lowerCAmelCase_ ( self : int , __A : str ): __A : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __A : Optional[int] = cell.position[0] __A : List[str] = cell.position[1] __A : Optional[int] = [] for n in neughbour_cord: __A : Optional[int] = current_x + n[0] __A : int = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __A : int = Cell() __A : Optional[Any] = (x, y) __A : Optional[Any] = cell neighbours.append(__A ) return neighbours def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Optional[int] ,a__ : List[str] ) -> Any: __A : Dict = [] __A : Dict = [] _open.append(a__ ) while _open: __A : List[str] = np.argmin([n.f for n in _open] ) __A : Dict = _open[min_f] _closed.append(_open.pop(a__ ) ) if current == goal: break for n in world.get_neigbours(a__ ): for c in _closed: if c == n: continue __A : Tuple = current.g + 1 __A , __A : int = n.position __A , __A : str = goal.position __A : Optional[int] = (ya - ya) ** 2 + (xa - xa) ** 2 __A : Any = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a__ ) __A : Any = [] while current.parent is not None: path.append(current.position ) __A : Tuple = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCAmelCase_ : List[str] = Gridworld() # Start position and goal UpperCAmelCase_ : Any = Cell() UpperCAmelCase_ : Tuple = (0, 0) UpperCAmelCase_ : Tuple = Cell() UpperCAmelCase_ : str = (4, 4) print(f"""path from {start.position} to {goal.position}""") UpperCAmelCase_ : Tuple = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCAmelCase_ : Optional[int] = 1 print(world.w)
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
import torch from diffusers import DiffusionPipeline class lowerCamelCase_ ( _lowercase ): def __init__( self : Optional[int] , __A : Optional[Any] , __A : Dict ): super().__init__() self.register_modules(unet=__A , scheduler=__A ) def __call__( self : List[Any] ): __A : Optional[Any] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) __A : List[str] = 1 __A : Union[str, Any] = self.unet(__A , __A ).sample __A : Union[str, Any] = self.scheduler.step(__A , __A , __A ).prev_sample __A : int = scheduler_output - scheduler_output + torch.ones_like(__A ) return result
17
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[str] ): __A : Union[str, Any] = 0 @slow def lowerCAmelCase_ ( self : Dict ): for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __A : Optional[Any] = AutoTokenizer.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __A : int = AutoTokenizer.from_pretrained(__A ) self.assertIsNotNone(__A ) self.assertIsInstance(__A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__A ) , 0 ) def lowerCAmelCase_ ( self : List[str] ): __A : List[str] = AutoTokenizer.from_pretrained(__A ) self.assertIsInstance(__A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : int = AutoTokenizer.from_pretrained(__A ) self.assertIsInstance(__A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowerCAmelCase_ ( self : List[str] ): __A : int = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) # Check that tokenizer_type ≠ model_type __A : str = AutoTokenizer.from_pretrained(__A , config=__A ) self.assertIsInstance(__A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowerCAmelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__A , """vocab.txt""" ) ) __A : List[str] = AutoTokenizer.from_pretrained(__A , tokenizer_type="""bert""" , use_fast=__A ) self.assertIsInstance(__A , __A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__A , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__A , """merges.txt""" ) ) __A : int = AutoTokenizer.from_pretrained(__A , tokenizer_type="""gpt2""" , use_fast=__A ) self.assertIsInstance(__A , __A ) @require_tokenizers def lowerCAmelCase_ ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__A , """vocab.txt""" ) ) __A : List[Any] = AutoTokenizer.from_pretrained(__A , tokenizer_type="""bert""" ) self.assertIsInstance(__A , __A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__A , """vocab.json""" ) ) shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__A , """merges.txt""" ) ) __A : int = AutoTokenizer.from_pretrained(__A , tokenizer_type="""gpt2""" ) self.assertIsInstance(__A , __A ) def lowerCAmelCase_ ( self : List[Any] ): with pytest.raises(__A ): AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" ) @require_tokenizers def lowerCAmelCase_ ( self : str ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __A : List[Any] = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" ) self.assertIsInstance(__A , (BertTokenizer, BertTokenizerFast) ) if isinstance(__A , __A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __A ) else: self.assertEqual(tokenizer.do_lower_case , __A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowerCAmelCase_ ( self : Tuple ): for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __A , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ): __A : Union[str, Any] = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" ) def lowerCAmelCase_ ( self : List[str] ): # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __A : Union[str, Any] = TOKENIZER_MAPPING.values() __A : int = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__A ) @require_tokenizers def lowerCAmelCase_ ( self : Union[str, Any] ): self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__A ) , __A ) self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __A ) @require_tokenizers def lowerCAmelCase_ ( self : Any ): __A : List[str] = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__A ) __A : Dict = """Hello, world. How are you?""" __A : List[Any] = tokenizer.tokenize(__A ) self.assertEqual("""[UNK]""" , tokens[0] ) __A : Dict = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__A ) __A : str = tokenizer.tokenize(__A ) self.assertEqual("""[UNK]""" , tokens[0] ) @require_tokenizers def lowerCAmelCase_ ( self : str ): __A : Optional[Any] = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" ) self.assertEqual(type(__A ) , __A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , """[UNK]""" ) self.assertEqual(tokenizer.padding_side , """right""" ) self.assertEqual(tokenizer.truncation_side , """right""" ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Dict = AutoTokenizer.from_pretrained(__A ) self.assertIsInstance(__A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A ) __A : int = AutoTokenizer.from_pretrained(__A ) self.assertIsInstance(__A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowerCAmelCase_ ( self : Dict ): __A : List[Any] = AutoTokenizer.from_pretrained("""ctrl""" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__A , __A ) def lowerCAmelCase_ ( self : Any ): # Check we can load the tokenizer config of an online model. __A : List[Any] = get_tokenizer_config("""bert-base-cased""" ) __A : int = config.pop("""_commit_hash""" , __A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__A , {"""do_lower_case""": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __A : Optional[Any] = get_tokenizer_config(__A ) self.assertDictEqual(__A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __A : str = AutoTokenizer.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A ) __A : List[Any] = get_tokenizer_config(__A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" ) def lowerCAmelCase_ ( self : List[str] ): try: AutoConfig.register("""custom""" , __A ) AutoTokenizer.register(__A , slow_tokenizer_class=__A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoTokenizer.register(__A , slow_tokenizer_class=__A ) __A : Union[str, Any] = CustomTokenizer.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A ) __A : Union[str, Any] = AutoTokenizer.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowerCAmelCase_ ( self : str ): try: AutoConfig.register("""custom""" , __A ) # Can register in two steps AutoTokenizer.register(__A , slow_tokenizer_class=__A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__A , fast_tokenizer_class=__A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __A , slow_tokenizer_class=__A , fast_tokenizer_class=__A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoTokenizer.register(__A , fast_tokenizer_class=__A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __A : List[str] = BertTokenizerFast.from_pretrained(__A ) bert_tokenizer.save_pretrained(__A ) __A : List[str] = CustomTokenizerFast.from_pretrained(__A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A ) __A : Tuple = AutoTokenizer.from_pretrained(__A ) self.assertIsInstance(__A , __A ) __A : List[str] = AutoTokenizer.from_pretrained(__A , use_fast=__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : Optional[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): __A : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): __A : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A ) __A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A ) __A : Tuple = AutoTokenizer.from_pretrained(__A , trust_remote_code=__A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __A : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A , use_fast=__A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A ) __A : Dict = AutoTokenizer.from_pretrained(__A , trust_remote_code=__A , use_fast=__A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" ) @require_tokenizers def lowerCAmelCase_ ( self : Any ): class lowerCamelCase_ ( _lowercase ): _lowercase : int = False class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = NewTokenizer _lowercase : Dict = False try: AutoConfig.register("""custom""" , __A ) AutoTokenizer.register(__A , slow_tokenizer_class=__A ) AutoTokenizer.register(__A , fast_tokenizer_class=__A ) # If remote code is not set, the default is to use local __A : Optional[int] = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __A : Any = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __A : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertFalse(tokenizer.special_attribute_present ) __A : Any = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A , use_fast=__A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __A : Dict = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) self.assertTrue(tokenizer.special_attribute_present ) __A : str = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__A , use_fast=__A ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : str ): __A : Optional[int] = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version __A : int = AutoTokenizer.from_pretrained( """hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__A , use_fast=__A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): __A : List[Any] = AutoTokenizer.from_pretrained("""bert-base""" ) def lowerCAmelCase_ ( self : str ): with self.assertRaisesRegex( __A , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __A : Dict = AutoTokenizer.from_pretrained(__A , revision="""aaaaaa""" ) def lowerCAmelCase_ ( self : int ): # Make sure we have cached the tokenizer. __A : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) with RequestCounter() as counter: __A : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
17
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : int , __A : int , __A : Optional[Any]=13 , __A : Any=7 , __A : Any=True , __A : List[Any]=True , __A : str=True , __A : int=True , __A : Optional[Any]=99 , __A : Dict=32 , __A : int=5 , __A : Optional[int]=4 , __A : Dict=37 , __A : List[str]="gelu" , __A : str=0.1 , __A : int=0.1 , __A : Optional[int]=512 , __A : Optional[int]=16 , __A : List[str]=2 , __A : List[Any]=0.0_2 , __A : int=4 , ): __A : Tuple = parent __A : Union[str, Any] = batch_size __A : int = seq_length __A : Any = is_training __A : Optional[int] = use_attention_mask __A : List[Any] = use_token_type_ids __A : Optional[int] = use_labels __A : Optional[Any] = vocab_size __A : Tuple = hidden_size __A : int = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[Any] = intermediate_size __A : Optional[int] = hidden_act __A : Any = hidden_dropout_prob __A : List[Any] = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : Tuple = type_vocab_size __A : List[str] = type_sequence_label_size __A : List[str] = initializer_range __A : List[Any] = num_choices def lowerCAmelCase_ ( self : List[Any] ): __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Optional[Any] = None if self.use_attention_mask: __A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Any = None if self.use_token_type_ids: __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Dict = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.prepare_config_and_inputs() __A , __A , __A , __A : Tuple = config_and_inputs __A : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self : Tuple ): __A : Tuple = self.prepare_config_and_inputs() __A , __A , __A , __A : List[Any] = config_and_inputs __A : Optional[int] = True __A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : str = True _lowercase : Any = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self : List[str] ): __A : List[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCAmelCase_ ( self : Any ): for model_class_name in self.all_model_classes: __A : List[Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__A ) __A : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__A ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : int ): __A : Dict = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__A ) __A : str = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __A : List[Any] = model(__A )[0] __A : str = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , __A ) # compare the actual values for a slice. __A : int = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __A , atol=1e-4 ) ) @slow def lowerCAmelCase_ ( self : Any ): __A : Union[str, Any] = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=__A ) __A : Dict = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) __A : Optional[int] = model(__A )[0] # compare the actual values for a slice. __A : Optional[int] = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , __A , atol=1e-4 ) )
17
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __SCREAMING_SNAKE_CASE ( a__ : Any ) -> List[Any]: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Tuple: __A : Union[str, Any] = create_tensor(a__ ) __A : Any = gather(a__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ) -> Any: __A : Optional[Any] = [state.process_index] __A : Union[str, Any] = gather_object(a__ ) assert len(a__ ) == state.num_processes, f"""{gathered_obj}, {len(a__ )} != {state.num_processes}""" assert gathered_obj == list(range(state.num_processes ) ), f"""{gathered_obj} != {list(range(state.num_processes ) )}""" def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Optional[int]: __A : List[str] = create_tensor(a__ ) __A : Tuple = broadcast(a__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> Any: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __A : Any = torch.arange(state.num_processes + 1 ).to(state.device ) else: __A : str = torch.arange(state.num_processes ).to(state.device ) __A : int = pad_across_processes(a__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Tuple: # For now runs on only two processes if state.num_processes != 2: return __A : Union[str, Any] = create_tensor(a__ ) __A : str = reduce(a__ ,"""sum""" ) __A : int = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(a__ ,a__ ), f"""{reduced_tensor} != {truth_tensor}""" def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Any: # For now runs on only two processes if state.num_processes != 2: return __A : Optional[Any] = create_tensor(a__ ) __A : Optional[Any] = reduce(a__ ,"""mean""" ) __A : List[str] = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(a__ ,a__ ), f"""{reduced_tensor} != {truth_tensor}""" def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> Optional[int]: # For xla_spawn (TPUs) main() def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: __A : Any = PartialState() state.print(f"""State: {state}""" ) state.print("""testing gather""" ) test_gather(a__ ) state.print("""testing gather_object""" ) test_gather_object(a__ ) state.print("""testing broadcast""" ) test_broadcast(a__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(a__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(a__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(a__ ) if __name__ == "__main__": main()
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) UpperCAmelCase_ : List[str] = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Tuple: __A : Optional[Any] = git.Repo(search_parent_directories=a__ ) __A : str = { """repo_id""": str(a__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(a__ ,"""git_log.json""" ) ,"""w""" ) as f: json.dump(a__ ,a__ ,indent=4 ) def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Any: if params.n_gpu <= 0: __A : Dict = 0 __A : Dict = -1 __A : Dict = True __A : Dict = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 __A : int = int(os.environ["""WORLD_SIZE"""] ) __A : Optional[int] = int(os.environ["""N_GPU_NODE"""] ) __A : Optional[int] = int(os.environ["""RANK"""] ) # number of nodes / node ID __A : int = params.world_size // params.n_gpu_per_node __A : Dict = params.global_rank // params.n_gpu_per_node __A : Union[str, Any] = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 __A : int = 1 __A : List[Any] = 0 __A : str = 0 __A : List[str] = 0 __A : Tuple = 1 __A : Optional[Any] = 1 __A : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode __A : Tuple = params.node_id == 0 and params.local_rank == 0 __A : str = params.n_nodes > 1 # summary __A : Optional[int] = f"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" ,backend="""nccl""" ,) def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> str: np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : Tuple = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
1