code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import sys def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> int: __A : Union[str, Any] = len(a__ ) __A : Any = [[0 for x in range(a__ )] for x in range(a__ )] __A : Optional[Any] = [[0 for x in range(a__ )] for x in range(a__ )] for chain_length in range(2 ,a__ ): for a in range(1 ,n - chain_length + 1 ): __A : Tuple = a + chain_length - 1 __A : List[str] = sys.maxsize for c in range(a__ ,a__ ): __A : List[str] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __A : Any = cost __A : Any = c return matrix, sol def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Optional[Any] ,a__ : Any ) -> Any: if i == j: print("""A""" + str(a__ ) ,end=""" """ ) else: print("""(""" ,end=""" """ ) print_optiomal_solution(a__ ,a__ ,optimal_solution[i][j] ) print_optiomal_solution(a__ ,optimal_solution[i][j] + 1 ,a__ ) print(""")""" ,end=""" """ ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __A : Optional[int] = [30, 35, 15, 5, 10, 20, 25] __A : Optional[int] = len(a__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __A , __A : Optional[int] = matrix_chain_order(a__ ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(a__ ,1 ,n - 1 ) if __name__ == "__main__": main()
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : Any = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[Any] ): debug_launcher(test_script.main ) def lowerCAmelCase_ ( self : Dict ): debug_launcher(test_ops.main )
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase_ : int = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCamelCase_ ( _lowercase ): _lowercase : Any = '''beit''' def __init__( self : List[str] , __A : Optional[int]=8192 , __A : Optional[int]=768 , __A : Optional[Any]=12 , __A : Any=12 , __A : Optional[int]=3072 , __A : List[Any]="gelu" , __A : List[str]=0.0 , __A : Union[str, Any]=0.0 , __A : Optional[Any]=0.0_2 , __A : str=1e-1_2 , __A : Dict=224 , __A : List[str]=16 , __A : Optional[int]=3 , __A : Tuple=False , __A : Any=False , __A : List[str]=False , __A : List[Any]=False , __A : Optional[int]=0.1 , __A : Optional[Any]=0.1 , __A : Dict=True , __A : Any=[3, 5, 7, 11] , __A : str=[1, 2, 3, 6] , __A : List[str]=True , __A : Dict=0.4 , __A : Dict=256 , __A : Union[str, Any]=1 , __A : Dict=False , __A : Optional[Any]=255 , **__A : Tuple , ): super().__init__(**__A ) __A : str = vocab_size __A : int = hidden_size __A : Tuple = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : Union[str, Any] = intermediate_size __A : Optional[int] = hidden_act __A : Tuple = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[str] = initializer_range __A : Optional[Any] = layer_norm_eps __A : Optional[Any] = image_size __A : Union[str, Any] = patch_size __A : Union[str, Any] = num_channels __A : Optional[int] = use_mask_token __A : Tuple = use_absolute_position_embeddings __A : List[str] = use_relative_position_bias __A : Any = use_shared_relative_position_bias __A : int = layer_scale_init_value __A : Optional[Any] = drop_path_rate __A : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __A : Tuple = out_indices __A : str = pool_scales # auxiliary head attributes (semantic segmentation) __A : List[str] = use_auxiliary_head __A : Optional[Any] = auxiliary_loss_weight __A : Tuple = auxiliary_channels __A : List[str] = auxiliary_num_convs __A : Tuple = auxiliary_concat_input __A : Tuple = semantic_loss_ignore_index class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : Dict ): return 1e-4
17
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowerCamelCase_ ( datasets.BuilderConfig ): _lowercase : Optional[datasets.Features] = None class lowerCamelCase_ ( datasets.ArrowBasedBuilder ): _lowercase : List[Any] = PandasConfig def lowerCAmelCase_ ( self : Union[str, Any] ): return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : List[Any] , __A : Optional[int] ): if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __A : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__A , (str, list, tuple) ): __A : Any = data_files if isinstance(__A , __A ): __A : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : str = [dl_manager.iter_files(__A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] __A : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(__A , __A ): __A : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __A : Dict = [dl_manager.iter_files(__A ) for file in files] splits.append(datasets.SplitGenerator(name=__A , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase_ ( self : List[Any] , __A : pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __A : List[str] = table_cast(__A , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase_ ( self : Dict , __A : List[str] ): for i, file in enumerate(itertools.chain.from_iterable(__A ) ): with open(__A , """rb""" ) as f: __A : Optional[int] = pa.Table.from_pandas(pd.read_pickle(__A ) ) yield i, self._cast_table(__A )
17
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : str = '''▁''' UpperCAmelCase_ : List[Any] = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase_ : Any = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } UpperCAmelCase_ : int = { '''google/reformer-crime-and-punishment''': 524_288, } class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , __A : Tuple , __A : Dict="</s>" , __A : Any="<unk>" , __A : Any=[] , __A : Optional[Dict[str, Any]] = None , **__A : Tuple , ): __A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__A , unk_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __A : str = vocab_file __A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @property def lowerCAmelCase_ ( self : Dict ): return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self : Optional[Any] ): __A : Optional[int] = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): __A : Dict = self.__dict__.copy() __A : Tuple = None return state def __setstate__( self : int , __A : List[Any] ): __A : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __A : Union[str, Any] = {} __A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : str , __A : str ): return self.sp_model.encode(__A , out_type=__A ) def lowerCAmelCase_ ( self : Union[str, Any] , __A : str ): return self.sp_model.piece_to_id(__A ) def lowerCAmelCase_ ( self : Any , __A : List[str] ): if index < self.sp_model.get_piece_size(): __A : Any = self.sp_model.IdToPiece(__A ) return token def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Optional[Any] = [] __A : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__A ) + token __A : Union[str, Any] = [] else: current_sub_tokens.append(__A ) out_string += self.sp_model.decode(__A ) return out_string.strip() def lowerCAmelCase_ ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : str = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , """wb""" ) as fi: __A : Any = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __SCREAMING_SNAKE_CASE ( a__ : str ) -> List[str]: __A : Optional[int] = 384 if "tiny" in model_name: __A : Optional[Any] = [3, 3, 9, 3] __A : Tuple = [96, 192, 384, 768] if "small" in model_name: __A : Any = [3, 3, 27, 3] __A : Dict = [96, 192, 384, 768] if "base" in model_name: __A : Tuple = [3, 3, 27, 3] __A : int = [128, 256, 512, 1024] __A : Optional[Any] = 512 if "large" in model_name: __A : List[str] = [3, 3, 27, 3] __A : int = [192, 384, 768, 1536] __A : int = 768 if "xlarge" in model_name: __A : Optional[Any] = [3, 3, 27, 3] __A : Optional[int] = [256, 512, 1024, 2048] __A : List[Any] = 1024 # set label information __A : Any = 150 __A : Optional[Any] = """huggingface/label-files""" __A : Dict = """ade20k-id2label.json""" __A : str = json.load(open(hf_hub_download(a__ ,a__ ,repo_type="""dataset""" ) ,"""r""" ) ) __A : Optional[int] = {int(a__ ): v for k, v in idalabel.items()} __A : str = {v: k for k, v in idalabel.items()} __A : int = ConvNextConfig( depths=a__ ,hidden_sizes=a__ ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) __A : Union[str, Any] = UperNetConfig( backbone_config=a__ ,auxiliary_in_channels=a__ ,num_labels=a__ ,idalabel=a__ ,labelaid=a__ ,) return config def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> Dict: __A : Any = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.stages.{i}.{j}.gamma""", f"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.depthwise_conv.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.norm.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((f"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", f"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((f"""backbone.downsample_layers.{i}.0.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.0.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.weight""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((f"""backbone.downsample_layers.{i}.1.bias""", f"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((f"""backbone.norm{i}.weight""", f"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((f"""backbone.norm{i}.bias""", f"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Dict ,a__ : List[Any] ) -> int: __A : Any = dct.pop(a__ ) __A : Dict = val def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : List[str] ,a__ : Optional[int] ) -> int: __A : Optional[int] = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } __A : Dict = model_name_to_url[model_name] __A : Optional[int] = torch.hub.load_state_dict_from_url(a__ ,map_location="""cpu""" )["""state_dict"""] __A : Dict = get_upernet_config(a__ ) __A : Tuple = UperNetForSemanticSegmentation(a__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __A : Optional[Any] = state_dict.pop(a__ ) if "bn" in key: __A : Dict = key.replace("""bn""" ,"""batch_norm""" ) __A : List[Any] = val # rename keys __A : Optional[int] = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ ,a__ ,a__ ) model.load_state_dict(a__ ) # verify on image __A : Dict = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" __A : Optional[Any] = Image.open(requests.get(a__ ,stream=a__ ).raw ).convert("""RGB""" ) __A : Optional[int] = SegformerImageProcessor() __A : Union[str, Any] = processor(a__ ,return_tensors="""pt""" ).pixel_values with torch.no_grad(): __A : List[str] = model(a__ ) if model_name == "upernet-convnext-tiny": __A : int = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ) elif model_name == "upernet-convnext-small": __A : Optional[int] = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] ) elif model_name == "upernet-convnext-base": __A : List[Any] = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] ) elif model_name == "upernet-convnext-large": __A : str = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] ) elif model_name == "upernet-convnext-xlarge": __A : Optional[Any] = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] ) print("""Logits:""" ,outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] ,a__ ,atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a__ ) print(f"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(a__ ) if push_to_hub: print(f"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(f"""openmmlab/{model_name}""" ) processor.push_to_hub(f"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = False, False, False @dataclass class lowerCamelCase_ : _lowercase : Optional[int] = None _lowercase : bool = True _lowercase : bool = True _lowercase : Optional[str] = None # Automatically constructed _lowercase : ClassVar[str] = "dict" _lowercase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase : str = field(default='''Audio''' , init=_lowercase , repr=_lowercase ) def __call__( self : Dict ): return self.pa_type def lowerCAmelCase_ ( self : Optional[Any] , __A : Union[str, bytes, dict] ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(__A , __A ): return {"bytes": None, "path": value} elif isinstance(__A , __A ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __A : Tuple = BytesIO() sf.write(__A , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __A : Tuple = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: __A : Dict = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_2767 __A : Any = BytesIO(bytes() ) sf.write(__A , __A , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowerCAmelCase_ ( self : Dict , __A : dict , __A : Optional[Dict[str, Union[str, bool, None]]] = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) __A , __A : List[Any] = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err __A : Tuple = xsplitext(__A )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: __A : Optional[int] = token_per_repo_id or {} __A : List[str] = path.split("""::""" )[-1] try: __A : Tuple = string_to_dict(__A , config.HUB_DATASETS_URL )["""repo_id"""] __A : int = token_per_repo_id[repo_id] except (ValueError, KeyError): __A : Union[str, Any] = None with xopen(__A , """rb""" , use_auth_token=__A ) as f: __A , __A : Optional[Any] = sf.read(__A ) else: __A , __A : int = sf.read(__A ) __A : Any = array.T if self.mono: __A : int = librosa.to_mono(__A ) if self.sampling_rate and self.sampling_rate != sampling_rate: __A : Dict = librosa.resample(__A , orig_sr=__A , target_sr=self.sampling_rate ) __A : List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowerCAmelCase_ ( self : Optional[int] ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def lowerCAmelCase_ ( self : List[str] , __A : Union[pa.StringArray, pa.StructArray] ): if pa.types.is_string(storage.type ): __A : Dict = pa.array([None] * len(__A ) , type=pa.binary() ) __A : List[Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __A : List[Any] = pa.array([None] * len(__A ) , type=pa.string() ) __A : Any = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): __A : Union[str, Any] = pa.array([Audio().encode_example(__A ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __A : Dict = storage.field("""bytes""" ) else: __A : Tuple = pa.array([None] * len(__A ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __A : List[Any] = storage.field("""path""" ) else: __A : List[Any] = pa.array([None] * len(__A ) , type=pa.string() ) __A : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(__A , self.pa_type ) def lowerCAmelCase_ ( self : str , __A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : Dict ): with xopen(__A , """rb""" ) as f: __A : Optional[Any] = f.read() return bytes_ __A : Union[str, Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __A : int = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __A : str = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__A , self.pa_type )
17
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : Optional[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 ,limit + 1 ): if phi[i] == i - 1: for j in range(2 * i ,limit + 1 ,a__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
17
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
from __future__ import annotations from cmath import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> tuple[complex, complex]: if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __A : str = b * b - 4 * a * c __A : Union[str, Any] = (-b + sqrt(a__ )) / (2 * a) __A : List[Any] = (-b - sqrt(a__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __SCREAMING_SNAKE_CASE ( ) -> str: __A , __A : Dict = quadratic_roots(a=5 ,b=6 ,c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
17
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
1
import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 UpperCAmelCase_ : List[Any] = get_tests_dir('''fixtures/dummy-config.json''') class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): __A : str = 0 def lowerCAmelCase_ ( self : List[str] ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def lowerCAmelCase_ ( self : Tuple ): __A : List[str] = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(__A , __A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Optional[int] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def lowerCAmelCase_ ( self : Dict ): __A : Optional[Any] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) def lowerCAmelCase_ ( self : str ): __A : Union[str, Any] = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(__A , __A ) def lowerCAmelCase_ ( self : int ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. __A : Dict = os.path.join(__A , """fake-roberta""" ) os.makedirs(__A , exist_ok=__A ) with open(os.path.join(__A , """config.json""" ) , """w""" ) as f: f.write(json.dumps({} ) ) __A : Optional[Any] = AutoConfig.from_pretrained(__A ) self.assertEqual(type(__A ) , __A ) def lowerCAmelCase_ ( self : Dict ): try: AutoConfig.register("""custom""" , __A ) # Wrong model type will raise an error with self.assertRaises(__A ): AutoConfig.register("""model""" , __A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__A ): AutoConfig.register("""bert""" , __A ) # Now that the config is registered, it can be used as any other config with the auto-API __A : Any = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) __A : List[str] = AutoConfig.from_pretrained(__A ) self.assertIsInstance(__A , __A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( __A , """bert-base is not a local folder and is not a valid model identifier""" ): __A : int = AutoConfig.from_pretrained("""bert-base""" ) def lowerCAmelCase_ ( self : Tuple ): with self.assertRaisesRegex( __A , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): __A : Dict = AutoConfig.from_pretrained(__A , revision="""aaaaaa""" ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( __A , """hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" , ): __A : Dict = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def lowerCAmelCase_ ( self : List[Any] ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__A ): __A : List[str] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__A ): __A : Optional[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) __A : str = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__A ) __A : str = AutoConfig.from_pretrained(__A , trust_remote_code=__A ) self.assertEqual(reloaded_config.__class__.__name__ , """NewModelConfig""" ) def lowerCAmelCase_ ( self : Optional[int] ): class lowerCamelCase_ ( _lowercase ): _lowercase : Tuple = '''new-model''' try: AutoConfig.register("""new-model""" , __A ) # If remote code is not set, the default is to use local __A : Any = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. __A : Union[str, Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub __A : List[Any] = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" , trust_remote_code=__A ) self.assertEqual(config.__class__.__name__ , """NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
17
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
1
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class lowerCamelCase_ ( unittest.TestCase ): _lowercase : List[str] = JukeboxTokenizer _lowercase : Any = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def lowerCAmelCase_ ( self : List[Any] ): import torch __A : Union[str, Any] = JukeboxTokenizer.from_pretrained("""openai/jukebox-1b-lyrics""" ) __A : Tuple = tokenizer(**self.metas )["""input_ids"""] # fmt: off __A : Any = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCAmelCase_ ( self : Optional[Any] ): import torch __A : int = JukeboxTokenizer.from_pretrained("""openai/jukebox-5b-lyrics""" ) __A : List[str] = tokenizer(**self.metas )["""input_ids"""] # fmt: off __A : Dict = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
17
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[int] ): super().__init__() __A : Optional[int] = nn.Linear(3 , 4 ) __A : Optional[Any] = nn.BatchNormad(4 ) __A : Optional[int] = nn.Linear(4 , 5 ) def lowerCAmelCase_ ( self : str , __A : Any ): return self.lineara(self.batchnorm(self.lineara(__A ) ) ) class lowerCamelCase_ ( _lowercase ): def lowerCAmelCase_ ( self : Union[str, Any] , __A : int , *__A : List[Any] , **__A : Any ): return (args[0] + 1,) + args[1:], kwargs class lowerCamelCase_ ( _lowercase ): def lowerCAmelCase_ ( self : Optional[int] , __A : List[str] , __A : str ): return output + 1 class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[str] ): __A : Union[str, Any] = ModelForTest() __A : Union[str, Any] = ModelHook() add_hook_to_module(__A , __A ) self.assertEqual(test_model._hf_hook , __A ) self.assertTrue(hasattr(__A , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A , """_hf_hook""" ) ) self.assertFalse(hasattr(__A , """_old_forward""" ) ) def lowerCAmelCase_ ( self : Dict ): __A : str = ModelForTest() __A : Tuple = ModelHook() add_hook_to_module(__A , __A ) add_hook_to_module(__A , __A , append=__A ) self.assertEqual(isinstance(test_model._hf_hook , __A ) , __A ) self.assertEqual(len(test_model._hf_hook.hooks ) , 2 ) self.assertTrue(hasattr(__A , """_old_forward""" ) ) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , """forward""" ) self.assertListEqual(list(inspect.signature(test_model.forward ).parameters ) , ["""x"""] ) remove_hook_from_module(__A ) self.assertFalse(hasattr(__A , """_hf_hook""" ) ) self.assertFalse(hasattr(__A , """_old_forward""" ) ) def lowerCAmelCase_ ( self : int ): __A : int = ModelForTest() __A : List[str] = torch.randn(2 , 3 ) __A : Tuple = test_model(x + 1 ) __A : List[str] = test_model(x + 2 ) __A : int = PreForwardHook() add_hook_to_module(__A , __A ) __A : Union[str, Any] = test_model(__A ) self.assertTrue(torch.allclose(__A , __A , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __A : Dict = PreForwardHook() add_hook_to_module(__A , __A ) __A : Union[str, Any] = test_model(__A ) self.assertTrue(torch.allclose(__A , __A , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __A : List[Any] = SequentialHook(PreForwardHook() , PreForwardHook() ) add_hook_to_module(__A , __A ) __A : List[str] = test_model(__A ) assert torch.allclose(__A , __A , atol=1e-5 ) def lowerCAmelCase_ ( self : Dict ): __A : Any = ModelForTest() __A : List[str] = torch.randn(2 , 3 ) __A : Union[str, Any] = test_model(__A ) __A : Dict = PostForwardHook() add_hook_to_module(__A , __A ) __A : int = test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 , atol=1e-5 ) ) # Attaching a hook to a model when it already has one replaces, does not chain __A : Optional[int] = PostForwardHook() add_hook_to_module(__A , __A ) __A : int = test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 , atol=1e-5 ) ) # You need to use the sequential hook to chain two or more hooks __A : Dict = SequentialHook(PostForwardHook() , PostForwardHook() ) add_hook_to_module(__A , __A ) __A : Union[str, Any] = test_model(__A ) assert torch.allclose(__A , output + 2 , atol=1e-5 ) def lowerCAmelCase_ ( self : Tuple ): __A : Optional[Any] = ModelForTest() __A : List[Any] = torch.randn(2 , 3 ) __A : int = test_model(__A ) __A : Tuple = PostForwardHook() add_hook_to_module(__A , __A ) __A : List[Any] = test_model(__A ) self.assertTrue(torch.allclose(__A , output + 1 ) ) self.assertTrue(outputa.requires_grad ) __A : int = True __A : Any = test_model(__A ) self.assertFalse(outputa.requires_grad ) @require_multi_gpu def lowerCAmelCase_ ( self : str ): __A : Union[str, Any] = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0 ) ) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1 ) ) self.assertEqual(model.lineara.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.weight.device , torch.device(0 ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0 ) ) self.assertEqual(model.lineara.weight.device , torch.device(1 ) ) # We can still make a forward pass. The input does not need to be on any particular device __A : Tuple = torch.randn(2 , 3 ) __A : Tuple = model(__A ) self.assertEqual(output.device , torch.device(1 ) ) # We can add a general hook to put back output on same device as input. add_hook_to_module(__A , AlignDevicesHook(io_same_device=__A ) ) __A : List[str] = torch.randn(2 , 3 ).to(0 ) __A : Tuple = model(__A ) self.assertEqual(output.device , torch.device(0 ) ) def lowerCAmelCase_ ( self : Any ): __A : str = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __A : Optional[int] = {"""execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True} add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __A : List[str] = torch.device(hook_kwargs["""execution_device"""] ) self.assertEqual(model.batchnorm.running_mean.device , __A ) __A : Optional[Any] = torch.randn(2 , 3 ) __A : Optional[int] = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload __A : str = { """execution_device""": 0 if torch.cuda.is_available() else """cpu""", """offload""": True, """offload_buffers""": True, } add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) add_hook_to_module(model.batchnorm , AlignDevicesHook(**__A ) ) add_hook_to_module(model.lineara , AlignDevicesHook(**__A ) ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __A : int = torch.randn(2 , 3 ) __A : Optional[Any] = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara ) remove_hook_from_module(model.batchnorm ) remove_hook_from_module(model.lineara ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowerCAmelCase_ ( self : List[str] ): __A : Dict = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __A : str = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook(__A , execution_device=__A , offload=__A ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __A : List[Any] = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device , __A ) __A : List[str] = torch.randn(2 , 3 ) __A : Dict = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook(__A , execution_device=__A , offload=__A , offload_buffers=__A ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __A : Dict = torch.randn(2 , 3 ) __A : List[str] = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Any = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # This will move each submodule on different devices __A : int = 0 if torch.cuda.is_available() else """cpu""" attach_align_device_hook( __A , execution_device=__A , offload=__A , weights_map=model.state_dict() ) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) # Buffers are not included in the offload by default, so are on the execution device __A : Optional[int] = torch.device(__A ) self.assertEqual(model.batchnorm.running_mean.device , __A ) __A : Optional[Any] = torch.randn(2 , 3 ) __A : Any = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) # Now test with buffers included in the offload attach_align_device_hook( __A , execution_device=__A , offload=__A , weights_map=model.state_dict() , offload_buffers=__A , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""meta""" ) ) self.assertEqual(model.batchnorm.running_mean.device , torch.device("""meta""" ) ) __A : Any = torch.randn(2 , 3 ) __A : int = model(__A ) self.assertEqual(output.device , __A ) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(__A ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.batchnorm.weight.device , torch.device("""cpu""" ) ) self.assertEqual(model.lineara.weight.device , torch.device("""cpu""" ) )
17
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
1
def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : list ,a__ : int ,a__ : int ,a__ : int ) -> int: if index == number_of_items: return 0 __A : Optional[int] = 0 __A : List[Any] = 0 __A : int = knapsack(a__ ,a__ ,a__ ,a__ ,index + 1 ) if weights[index] <= max_weight: __A : Union[str, Any] = values[index] + knapsack( a__ ,a__ ,a__ ,max_weight - weights[index] ,index + 1 ) return max(a__ ,a__ ) if __name__ == "__main__": import doctest doctest.testmod()
17
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Tuple , __A : Dict , __A : Optional[Any]=7 , __A : str=3 , __A : int=18 , __A : Optional[Any]=30 , __A : Optional[int]=400 , __A : int=True , __A : List[str]=None , __A : Union[str, Any]=True , ): __A : Optional[int] = size if size is not None else {"""height""": 18, """width""": 18} __A : Any = parent __A : Dict = batch_size __A : Any = num_channels __A : Any = image_size __A : str = min_resolution __A : List[str] = max_resolution __A : Dict = do_resize __A : Tuple = size __A : List[str] = apply_ocr def lowerCAmelCase_ ( self : Optional[Any] ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase_ ( self : List[Any] ): __A : Dict = LayoutLMvaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : str ): __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) self.assertTrue(hasattr(__A , """apply_ocr""" ) ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __A : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase_ ( self : Union[str, Any] ): pass def lowerCAmelCase_ ( self : Union[str, Any] ): # Initialize image_processing __A : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) self.assertIsInstance(encoding.words , __A ) self.assertIsInstance(encoding.boxes , __A ) # Test batched __A : Union[str, Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : str ): # Initialize image_processing __A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : Optional[Any] ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __A : Union[str, Any] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def lowerCAmelCase_ ( self : int ): # with apply_OCR = True __A : Any = LayoutLMvaImageProcessor() from datasets import load_dataset __A : List[Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" ) __A : Any = Image.open(ds[0]["""file"""] ).convert("""RGB""" ) __A : Optional[int] = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A : Optional[int] = [["""11:14""", """to""", """11:39""", """a.m""", """11:39""", """to""", """11:44""", """a.m.""", """11:44""", """a.m.""", """to""", """12:25""", """p.m.""", """12:25""", """to""", """12:58""", """p.m.""", """12:58""", """to""", """4:00""", """p.m.""", """2:00""", """to""", """5:00""", """p.m.""", """Coffee""", """Break""", """Coffee""", """will""", """be""", """served""", """for""", """men""", """and""", """women""", """in""", """the""", """lobby""", """adjacent""", """to""", """exhibit""", """area.""", """Please""", """move""", """into""", """exhibit""", """area.""", """(Exhibits""", """Open)""", """TRRF""", """GENERAL""", """SESSION""", """(PART""", """|)""", """Presiding:""", """Lee""", """A.""", """Waller""", """TRRF""", """Vice""", """President""", """“Introductory""", """Remarks”""", """Lee""", """A.""", """Waller,""", """TRRF""", """Vice""", """Presi-""", """dent""", """Individual""", """Interviews""", """with""", """TRRF""", """Public""", """Board""", """Members""", """and""", """Sci-""", """entific""", """Advisory""", """Council""", """Mem-""", """bers""", """Conducted""", """by""", """TRRF""", """Treasurer""", """Philip""", """G.""", """Kuehn""", """to""", """get""", """answers""", """which""", """the""", """public""", """refrigerated""", """warehousing""", """industry""", """is""", """looking""", """for.""", """Plus""", """questions""", """from""", """the""", """floor.""", """Dr.""", """Emil""", """M.""", """Mrak,""", """University""", """of""", """Cal-""", """ifornia,""", """Chairman,""", """TRRF""", """Board;""", """Sam""", """R.""", """Cecil,""", """University""", """of""", """Georgia""", """College""", """of""", """Agriculture;""", """Dr.""", """Stanley""", """Charm,""", """Tufts""", """University""", """School""", """of""", """Medicine;""", """Dr.""", """Robert""", """H.""", """Cotton,""", """ITT""", """Continental""", """Baking""", """Company;""", """Dr.""", """Owen""", """Fennema,""", """University""", """of""", """Wis-""", """consin;""", """Dr.""", """Robert""", """E.""", """Hardenburg,""", """USDA.""", """Questions""", """and""", """Answers""", """Exhibits""", """Open""", """Capt.""", """Jack""", """Stoney""", """Room""", """TRRF""", """Scientific""", """Advisory""", """Council""", """Meeting""", """Ballroom""", """Foyer"""]] # noqa: E231 __A : int = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __A ) self.assertListEqual(encoding.boxes , __A ) # with apply_OCR = False __A : Any = LayoutLMvaImageProcessor(apply_ocr=__A ) __A : int = image_processing(__A , return_tensors="""pt""" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict , __A : Any , __A : Union[str, Any] , __A : Union[str, Any] ): self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : int = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__A ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def lowerCAmelCase_ ( self : List[Any] ): __A : List[Any] = None ops.enable_eager_execution_internal() __A : List[Any] = tf.config.list_physical_devices("""CPU""" ) if len(__A ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) __A : int = tf.config.list_logical_devices(device_type="""CPU""" ) __A : str = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): __A : Union[str, Any] = GradientAccumulator() __A : List[str] = tf.Variable([4.0, 3.0] ) __A , __A : Any = create_optimizer(5e-5 , 10 , 5 ) __A : int = tf.Variable([0.0, 0.0] , trainable=__A ) def accumulate_on_replica(__A : Optional[Any] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__A : Union[str, Any] , __A : List[str] ): with strategy.scope(): __A : List[Any] = strategy.experimental_local_results(__A ) local_variables[0].assign(__A ) local_variables[1].assign(__A ) strategy.run(__A , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__A ) def _check_local_values(__A : List[Any] , __A : Tuple ): __A : int = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __A , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , __A , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
17
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
1
from __future__ import annotations import typing from collections import Counter def __SCREAMING_SNAKE_CASE ( a__ : int ) -> typing.Counter[int]: __A : typing.Counter[int] = Counter() for base in range(1 ,max_perimeter + 1 ): for perpendicular in range(a__ ,max_perimeter + 1 ): __A : Any = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(a__ ): __A : int = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __SCREAMING_SNAKE_CASE ( a__ : int = 1000 ) -> int: __A : str = pythagorean_triple(a__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f"""Perimeter {solution()} has maximum solutions""")
17
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): __A : Optional[Any] = """ylacombe/bark-small""" __A : Any = tempfile.mkdtemp() __A : Optional[int] = """en_speaker_1""" __A : List[Any] = """This is a test string""" __A : int = """speaker_embeddings_path.json""" __A : List[str] = """speaker_embeddings""" def lowerCAmelCase_ ( self : Union[str, Any] , **__A : Any ): return AutoTokenizer.from_pretrained(self.checkpoint , **__A ) def lowerCAmelCase_ ( self : Dict ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : int ): __A : str = self.get_tokenizer() __A : Optional[Any] = BarkProcessor(tokenizer=__A ) processor.save_pretrained(self.tmpdirname ) __A : List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __A : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __A : Optional[int] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __A : int = 35 __A : Union[str, Any] = 2 __A : Optional[Any] = 8 __A : List[str] = { """semantic_prompt""": np.ones(__A ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __A : Union[str, Any] = processor(text=self.input_string , voice_preset=__A ) __A : List[str] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__A , np.array([] ) ).tolist() ) # test loading voice preset from npz file __A : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(__A , **__A ) __A : Optional[Any] = processor(text=self.input_string , voice_preset=__A ) __A : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__A , np.array([] ) ).tolist() ) # test loading voice preset from the hub __A : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCAmelCase_ ( self : Tuple ): __A : str = self.get_tokenizer() __A : str = BarkProcessor(tokenizer=__A ) __A : int = processor(text=self.input_string ) __A : int = tokenizer( self.input_string , padding="""max_length""" , max_length=256 , add_special_tokens=__A , return_attention_mask=__A , return_token_type_ids=__A , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
17
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[str] , __A : Dict[str, int] , __A : List[str] , __A : int = None , __A : int = None ): super().__init__() __A : Optional[Any] = pad_token_id __A : Any = max_length __A : Any = vocab __A : int = merges __A : int = BytePairTokenizer(__A , __A , sequence_length=__A ) @classmethod def lowerCAmelCase_ ( cls : Dict , __A : GPTaTokenizer , *__A : int , **__A : str ): __A : Optional[int] = [""" """.join(__A ) for m in tokenizer.bpe_ranks.keys()] __A : Tuple = tokenizer.get_vocab() return cls(__A , __A , *__A , **__A ) @classmethod def lowerCAmelCase_ ( cls : Tuple , __A : Union[str, os.PathLike] , *__A : Any , **__A : Optional[Any] ): __A : Any = GPTaTokenizer.from_pretrained(__A , *__A , **__A ) return cls.from_tokenizer(__A , *__A , **__A ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] , __A : Union[str, Any] ): return cls(**__A ) def lowerCAmelCase_ ( self : Optional[int] ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCAmelCase_ ( self : Optional[int] , __A : Optional[Any] , __A : int = None ): __A : Tuple = self.tf_tokenizer(__A ) __A : Tuple = tf.ones_like(__A ) if self.pad_token_id is not None: # pad the tokens up to max length __A : Any = max_length if max_length is not None else self.max_length if max_length is not None: __A , __A : Optional[int] = pad_model_inputs( __A , max_seq_length=__A , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> list[int]: if num <= 0: raise ValueError("""Input must be a positive integer""" ) __A : Any = [True] * (num + 1) __A : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p ,num + 1 ,a__ ): __A : Tuple = False p += 1 return [prime for prime in range(2 ,num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : str = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Any = {'''vocab_file''': '''spiece.model'''} UpperCAmelCase_ : Optional[int] = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } UpperCAmelCase_ : List[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : str = 4 class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = VOCAB_FILES_NAMES _lowercase : str = PRETRAINED_VOCAB_FILES_MAP _lowercase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Optional[int] = '''left''' def __init__( self : List[str] , __A : List[Any] , __A : Optional[int]=False , __A : str=True , __A : Optional[Any]=False , __A : int="<s>" , __A : str="</s>" , __A : List[str]="<unk>" , __A : Any="<sep>" , __A : Tuple="<pad>" , __A : Optional[Any]="<cls>" , __A : Dict="<mask>" , __A : str=["<eop>", "<eod>"] , __A : Optional[Dict[str, Any]] = None , **__A : Any , ): # Mask token behave like a normal word, i.e. include the space before it __A : Union[str, Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token __A : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , additional_special_tokens=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , ) __A : int = 3 __A : List[str] = do_lower_case __A : Optional[Any] = remove_space __A : Any = keep_accents __A : int = vocab_file __A : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__A ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return len(self.sp_model ) def lowerCAmelCase_ ( self : Any ): __A : int = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): __A : Optional[int] = self.__dict__.copy() __A : Dict = None return state def __setstate__( self : List[str] , __A : Union[str, Any] ): __A : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __A : List[Any] = {} __A : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : Optional[Any] , __A : List[str] ): if self.remove_space: __A : str = """ """.join(inputs.strip().split() ) else: __A : Union[str, Any] = inputs __A : Optional[int] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: __A : str = unicodedata.normalize("""NFKD""" , __A ) __A : Union[str, Any] = """""".join([c for c in outputs if not unicodedata.combining(__A )] ) if self.do_lower_case: __A : Optional[Any] = outputs.lower() return outputs def lowerCAmelCase_ ( self : List[str] , __A : str ): __A : Dict = self.preprocess_text(__A ) __A : str = self.sp_model.encode(__A , out_type=__A ) __A : Any = [] for piece in pieces: if len(__A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): __A : Dict = self.sp_model.EncodeAsPieces(piece[:-1].replace(__A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __A : List[str] = cur_pieces[1:] else: __A : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__A ) else: new_pieces.append(__A ) return new_pieces def lowerCAmelCase_ ( self : str , __A : int ): return self.sp_model.PieceToId(__A ) def lowerCAmelCase_ ( self : Optional[Any] , __A : List[Any] ): return self.sp_model.IdToPiece(__A ) def lowerCAmelCase_ ( self : Optional[Any] , __A : List[Any] ): __A : Optional[Any] = """""".join(__A ).replace(__A , """ """ ).strip() return out_string def lowerCAmelCase_ ( self : str , __A : List[int] , __A : bool = False , __A : bool = None , __A : bool = True , **__A : Optional[Any] , ): __A : Any = kwargs.pop("""use_source_tokenizer""" , __A ) __A : str = self.convert_ids_to_tokens(__A , skip_special_tokens=__A ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __A : Union[str, Any] = [] __A : Optional[int] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__A ) ) __A : Any = [] sub_texts.append(__A ) else: current_sub_text.append(__A ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__A ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens __A : int = """""".join(__A ) __A : List[Any] = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __A : int = self.clean_up_tokenization(__A ) return clean_text else: return text def lowerCAmelCase_ ( self : Dict , __A : List[int] , __A : Optional[List[int]] = None ): __A : Union[str, Any] = [self.sep_token_id] __A : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase_ ( self : Dict , __A : List[int] , __A : Optional[List[int]] = None , __A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A ) if token_ids_a is not None: return ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1, 1] return ([0] * len(__A )) + [1, 1] def lowerCAmelCase_ ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ): __A : Dict = [self.sep_token_id] __A : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase_ ( self : Tuple , __A : str , __A : Optional[str] = None ): if not os.path.isdir(__A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : Dict = os.path.join( __A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __A ) elif not os.path.isfile(self.vocab_file ): with open(__A , """wb""" ) as fi: __A : List[str] = self.sp_model.serialized_model_proto() fi.write(__A ) return (out_vocab_file,)
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : int ,a__ : Union[str, Any] ,a__ : Union[str, Any] ) -> str: for attribute in key.split(""".""" ): __A : Union[str, Any] = getattr(a__ ,a__ ) if weight_type is not None: __A : Optional[int] = getattr(a__ ,a__ ).shape else: __A : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __A : Optional[Any] = value elif weight_type == "weight_g": __A : List[Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Dict = value else: __A : Any = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : List[Any] ,a__ : str ) -> Optional[Any]: __A : List[Any] = [] __A : str = fairseq_model.state_dict() __A : List[Any] = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Any = False if "conv_layers" in name: load_conv_layer( a__ ,a__ ,a__ ,a__ ,hf_model.config.feat_extract_norm == """group""" ,) __A : int = True else: for key, mapped_key in MAPPING.items(): __A : Union[str, Any] = """hubert.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): __A : int = True if "*" in mapped_key: __A : List[Any] = name.split(a__ )[0].split(""".""" )[-2] __A : int = mapped_key.replace("""*""" ,a__ ) if "weight_g" in name: __A : Tuple = """weight_g""" elif "weight_v" in name: __A : Dict = """weight_v""" elif "weight" in name: __A : Any = """weight""" elif "bias" in name: __A : Optional[Any] = """bias""" else: __A : Union[str, Any] = None set_recursively(a__ ,a__ ,a__ ,a__ ,a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ,a__ : str ,a__ : List[Any] ) -> Union[str, Any]: __A : Any = full_name.split("""conv_layers.""" )[-1] __A : List[str] = name.split(""".""" ) __A : Optional[int] = int(items[0] ) __A : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __A : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __A : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __A : Union[str, Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __A : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Tuple ,a__ : Dict=None ,a__ : str=None ,a__ : Optional[Any]=True ) -> int: if config_path is not None: __A : str = HubertConfig.from_pretrained(a__ ) else: __A : List[str] = HubertConfig() if is_finetuned: if dict_path: __A : Tuple = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __A : List[str] = target_dict.pad_index __A : int = target_dict.bos_index __A : List[str] = target_dict.eos_index __A : Optional[int] = len(target_dict.symbols ) __A : str = os.path.join(a__ ,"""vocab.json""" ) if not os.path.isdir(a__ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(a__ ) ) return os.makedirs(a__ ,exist_ok=a__ ) with open(a__ ,"""w""" ,encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices ,a__ ) __A : int = WavaVecaCTCTokenizer( a__ ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="""|""" ,do_lower_case=a__ ,) __A : Dict = True if config.feat_extract_norm == """layer""" else False __A : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=16000 ,padding_value=0 ,do_normalize=a__ ,return_attention_mask=a__ ,) __A : Optional[Any] = WavaVecaProcessor(feature_extractor=a__ ,tokenizer=a__ ) processor.save_pretrained(a__ ) __A : Dict = HubertForCTC(a__ ) else: __A : Optional[Any] = HubertModel(a__ ) if is_finetuned: __A , __A , __A : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __A , __A , __A : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) __A : int = model[0].eval() recursively_load_weights(a__ ,a__ ,a__ ) hf_wavavec.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ : Any = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] UpperCAmelCase_ : List[Any] = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] UpperCAmelCase_ : List[str] = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): UpperCAmelCase_ : int = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCAmelCase_ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> float: __A : List[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __SCREAMING_SNAKE_CASE ( ) -> int: print(sum_of_series(1 ,1 ,10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
17
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Any , __A : str=13 , __A : str=7 , __A : Union[str, Any]=True , __A : int=True , __A : Optional[int]=False , __A : Tuple=True , __A : Union[str, Any]=99 , __A : List[str]=32 , __A : Tuple=5 , __A : Tuple=4 , __A : Union[str, Any]=37 , __A : int="gelu" , __A : int=0.1 , __A : Dict=0.1 , __A : int=512 , __A : List[str]=16 , __A : Union[str, Any]=2 , __A : Dict=0.0_2 , __A : Dict=3 , __A : str=4 , __A : str=None , ): __A : List[Any] = parent __A : Optional[Any] = batch_size __A : Tuple = seq_length __A : int = is_training __A : str = use_input_mask __A : List[str] = use_token_type_ids __A : Dict = use_labels __A : Optional[int] = vocab_size __A : Dict = hidden_size __A : List[Any] = num_hidden_layers __A : Dict = num_attention_heads __A : Union[str, Any] = intermediate_size __A : Any = hidden_act __A : List[Any] = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Tuple = max_position_embeddings __A : List[str] = type_vocab_size __A : Dict = type_sequence_label_size __A : List[Any] = initializer_range __A : int = num_labels __A : Dict = num_choices __A : Union[str, Any] = scope def lowerCAmelCase_ ( self : List[Any] ): __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : List[Any] = None if self.use_input_mask: __A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Union[str, Any] = None __A : int = None __A : List[Any] = None if self.use_labels: __A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __A : Any = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : List[Any] ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str , __A : Optional[Any] , __A : str , __A : List[Any] , __A : Any , __A : Tuple ): __A : Any = DistilBertModel(config=__A ) model.to(__A ) model.eval() __A : Optional[Any] = model(__A , __A ) __A : List[str] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Any , __A : Tuple , __A : Optional[int] , __A : Tuple , __A : List[Any] , __A : Any , __A : List[str] ): __A : Optional[int] = DistilBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __A : Optional[int] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict , __A : Any , __A : Any , __A : Optional[int] , __A : Optional[int] , __A : List[Any] ): __A : List[str] = DistilBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __A : int = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : int , __A : Optional[Any] , __A : List[Any] , __A : str , __A : Optional[Any] , __A : Optional[int] , __A : List[Any] ): __A : Dict = self.num_labels __A : Optional[Any] = DistilBertForSequenceClassification(__A ) model.to(__A ) model.eval() __A : Optional[Any] = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __A : str , __A : Any , __A : Tuple , __A : Tuple , __A : Tuple , __A : Any ): __A : Any = self.num_labels __A : Any = DistilBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __A : Dict = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] , __A : Optional[Any] , __A : Dict , __A : List[Any] , __A : Optional[int] , __A : Tuple , __A : Any ): __A : List[Any] = self.num_choices __A : Any = DistilBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __A : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Optional[Any] = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : List[Any] ): __A : Union[str, Any] = self.prepare_config_and_inputs() ((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) : Any = config_and_inputs __A : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : Union[str, Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _lowercase : List[str] = ( { '''feature-extraction''': DistilBertModel, '''fill-mask''': DistilBertForMaskedLM, '''question-answering''': DistilBertForQuestionAnswering, '''text-classification''': DistilBertForSequenceClassification, '''token-classification''': DistilBertForTokenClassification, '''zero-shot''': DistilBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Dict = True _lowercase : List[Any] = True _lowercase : str = True _lowercase : Dict = True def lowerCAmelCase_ ( self : Optional[Any] ): __A : Optional[int] = DistilBertModelTester(self ) __A : Dict = ConfigTester(self , config_class=__A , dim=37 ) def lowerCAmelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Any ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__A ) def lowerCAmelCase_ ( self : Dict ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__A ) def lowerCAmelCase_ ( self : Optional[int] ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__A ) def lowerCAmelCase_ ( self : str ): __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__A ) def lowerCAmelCase_ ( self : str ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__A ) @slow def lowerCAmelCase_ ( self : int ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Union[str, Any] = DistilBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def lowerCAmelCase_ ( self : int ): __A , __A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __A : List[str] = True __A : List[str] = model_class(config=__A ) __A : Any = self._prepare_for_class(__A , __A ) __A : Tuple = torch.jit.trace( __A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) ) __A : List[str] = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A ) loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Optional[int] ): __A : Dict = DistilBertModel.from_pretrained("""distilbert-base-uncased""" ) __A : Union[str, Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __A : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A : Tuple = model(__A , attention_mask=__A )[0] __A : int = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) __A : Optional[int] = torch.tensor( [[[-0.1_6_3_9, 0.3_2_9_9, 0.1_6_4_8], [-0.1_7_4_6, 0.3_2_8_9, 0.1_7_1_0], [-0.1_8_8_4, 0.3_3_5_7, 0.1_8_1_0]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
17
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ) -> int: while a != 0: __A , __A : Tuple = b % a, a return b def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ) -> int: if gcd(a__ ,a__ ) != 1: __A : Union[str, Any] = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(a__ ) __A , __A , __A : str = 1, 0, a __A , __A , __A : List[Any] = 0, 1, m while va != 0: __A : str = ua // va __A , __A , __A , __A , __A , __A : List[Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __SCREAMING_SNAKE_CASE ( a__ : Any ) -> Any: __A : Union[str, Any] = FileLock(str(tmpdir / """foo.lock""" ) ) __A : Optional[int] = FileLock(str(tmpdir / """foo.lock""" ) ) __A : Optional[Any] = 0.01 with locka.acquire(): with pytest.raises(a__ ): __A : str = time.time() locka.acquire(a__ ) assert time.time() - _start > timeout def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ) -> Tuple: __A : str = """a""" * 1000 + """.lock""" __A : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(""".lock""" ) assert not locka._lock_file.endswith(a__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 __A : str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(a__ ): locka.acquire(0 )
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
import operator as op UpperCAmelCase_ : Union[str, Any] = '''scaler.pt''' UpperCAmelCase_ : int = '''pytorch_model''' UpperCAmelCase_ : Optional[Any] = '''random_states''' UpperCAmelCase_ : Dict = '''optimizer''' UpperCAmelCase_ : Dict = '''scheduler''' UpperCAmelCase_ : int = '''pytorch_model.bin''' UpperCAmelCase_ : List[Any] = '''pytorch_model.bin.index.json''' UpperCAmelCase_ : Optional[Any] = '''model.safetensors''' UpperCAmelCase_ : str = '''model.safetensors.index.json''' UpperCAmelCase_ : Tuple = '''1.10.2''' UpperCAmelCase_ : str = '''py38''' UpperCAmelCase_ : List[str] = '''4.17.0''' UpperCAmelCase_ : Any = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] UpperCAmelCase_ : List[Any] = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] UpperCAmelCase_ : Optional[int] = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] UpperCAmelCase_ : Tuple = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] UpperCAmelCase_ : Union[str, Any] = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] UpperCAmelCase_ : int = '''2.0.1''' UpperCAmelCase_ : List[Any] = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] UpperCAmelCase_ : List[Any] = ['''default''', '''reduce-overhead''', '''max-autotune'''] UpperCAmelCase_ : Dict = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase_ : Tuple = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] UpperCAmelCase_ : Tuple = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] UpperCAmelCase_ : Any = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
17
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
1
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Optional[int]=False ) -> Optional[Any]: __A : Tuple = OmegaConf.load(a__ ) if display: print(yaml.dump(OmegaConf.to_container(a__ ) ) ) return config def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Dict=None ,a__ : List[str]=None ) -> Optional[int]: if conf_path is None: __A : str = """./model_checkpoints/vqgan_only.yaml""" __A : List[Any] = load_config(a__ ,display=a__ ) __A : Any = VQModel(**config.model.params ) if ckpt_path is None: __A : str = """./model_checkpoints/vqgan_only.pt""" __A : List[str] = torch.load(a__ ,map_location=a__ ) if ".ckpt" in ckpt_path: __A : List[str] = sd["""state_dict"""] model.load_state_dict(a__ ,strict=a__ ) model.to(a__ ) del sd return model def __SCREAMING_SNAKE_CASE ( a__ : Dict ,a__ : Optional[int] ) -> Any: __A , __A , __A : Union[str, Any] = model.encode(a__ ) print(f"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) __A : Optional[int] = model.decode(a__ ) return xrec def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : List[Any]=False ) -> Optional[int]: __A , __A : Optional[int] = string.rsplit(""".""" ,1 ) if reload: __A : Tuple = importlib.import_module(a__ ) importlib.reload(a__ ) return getattr(importlib.import_module(a__ ,package=a__ ) ,cls ) def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ) -> int: if "target" not in config: raise KeyError("""Expected key `target` to instantiate.""" ) return get_obj_from_str(config["""target"""] )(**config.get("""params""" ,{} ) ) def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ,a__ : Any ,a__ : Dict=True ,a__ : int=True ) -> List[str]: __A : Any = instantiate_from_config(a__ ) if sd is not None: model.load_state_dict(a__ ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Tuple ,a__ : int ,a__ : int ) -> Optional[Any]: # load the specified checkpoint if ckpt: __A : List[str] = torch.load(a__ ,map_location="""cpu""" ) __A : str = pl_sd["""global_step"""] print(f"""loaded model from global step {global_step}.""" ) else: __A : str = {"""state_dict""": None} __A : str = None __A : Dict = load_model_from_config(config.model ,pl_sd["""state_dict"""] ,gpu=a__ ,eval_mode=a__ )["""model"""] return model, global_step
17
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
1
def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int = 0 ) -> list: __A : Optional[Any] = length or len(a__ ) __A : Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __A , __A : Dict = list_data[i + 1], list_data[i] __A : int = True return list_data if not swapped else bubble_sort(a__ ,length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
17
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
1
from collections import deque from .hash_table import HashTable class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , *__A : str , **__A : Union[str, Any] ): super().__init__(*__A , **__A ) def lowerCAmelCase_ ( self : str , __A : str , __A : Optional[Any] ): __A : Tuple = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__A ) __A : Optional[int] = self.values[key] def lowerCAmelCase_ ( self : Any ): return ( sum(self.charge_factor - len(__A ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase_ ( self : Optional[int] , __A : int , __A : Union[str, Any]=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__A ) == 0 ): return key return super()._collision_resolution(__A , __A )
17
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCAmelCase_ : int = '''python tqdm regex requests packaging filelock numpy tokenizers'''.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __SCREAMING_SNAKE_CASE ( a__ : Dict ,a__ : Any=None ) -> List[str]: require_version(deps[pkg] ,a__ )
17
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
1
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( _lowercase ): _lowercase : str = (DDPMParallelScheduler,) def lowerCAmelCase_ ( self : List[Any] , **__A : int ): __A : int = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**__A ) return config def lowerCAmelCase_ ( self : List[str] ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def lowerCAmelCase_ ( self : int ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def lowerCAmelCase_ ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__A ) def lowerCAmelCase_ ( self : Any ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__A ) def lowerCAmelCase_ ( self : List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__A ) def lowerCAmelCase_ ( self : int ): self.check_over_configs(thresholding=__A ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__A , prediction_type=__A , sample_max_value=__A , ) def lowerCAmelCase_ ( self : int ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def lowerCAmelCase_ ( self : int ): for t in [0, 500, 999]: self.check_over_forward(time_step=__A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : str = self.scheduler_classes[0] __A : Tuple = self.get_scheduler_config() __A : int = scheduler_class(**__A ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def lowerCAmelCase_ ( self : Optional[int] ): __A : int = self.scheduler_classes[0] __A : Optional[int] = self.get_scheduler_config() __A : List[Any] = scheduler_class(**__A ) __A : Any = len(__A ) __A : Tuple = self.dummy_model() __A : Union[str, Any] = self.dummy_sample_deter __A : List[Any] = self.dummy_sample_deter + 0.1 __A : Optional[Any] = self.dummy_sample_deter - 0.1 __A : Dict = samplea.shape[0] __A : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) __A : Dict = torch.arange(__A )[0:3, None].repeat(1 , __A ) __A : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __A : Dict = scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __A : List[str] = torch.sum(torch.abs(__A ) ) __A : List[str] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2 assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3 def lowerCAmelCase_ ( self : Optional[int] ): __A : int = self.scheduler_classes[0] __A : int = self.get_scheduler_config() __A : Dict = scheduler_class(**__A ) __A : Optional[Any] = len(__A ) __A : Tuple = self.dummy_model() __A : Optional[Any] = self.dummy_sample_deter __A : List[str] = torch.manual_seed(0 ) for t in reversed(range(__A ) ): # 1. predict noise residual __A : str = model(__A , __A ) # 2. predict previous mean of sample x_t-1 __A : List[str] = scheduler.step(__A , __A , __A , generator=__A ).prev_sample __A : Union[str, Any] = pred_prev_sample __A : List[Any] = torch.sum(torch.abs(__A ) ) __A : Union[str, Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def lowerCAmelCase_ ( self : int ): __A : int = self.scheduler_classes[0] __A : int = self.get_scheduler_config(prediction_type="""v_prediction""" ) __A : int = scheduler_class(**__A ) __A : Dict = len(__A ) __A : Any = self.dummy_model() __A : str = self.dummy_sample_deter __A : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__A ) ): # 1. predict noise residual __A : Optional[Any] = model(__A , __A ) # 2. predict previous mean of sample x_t-1 __A : Tuple = scheduler.step(__A , __A , __A , generator=__A ).prev_sample __A : Dict = pred_prev_sample __A : Union[str, Any] = torch.sum(torch.abs(__A ) ) __A : Union[str, Any] = torch.mean(torch.abs(__A ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def lowerCAmelCase_ ( self : Any ): __A : List[str] = self.scheduler_classes[0] __A : Any = self.get_scheduler_config() __A : Optional[Any] = scheduler_class(**__A ) __A : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__A ) __A : List[Any] = scheduler.timesteps for i, timestep in enumerate(__A ): if i == len(__A ) - 1: __A : List[str] = -1 else: __A : int = timesteps[i + 1] __A : Any = scheduler.previous_timestep(__A ) __A : Any = prev_t.item() self.assertEqual(__A , __A ) def lowerCAmelCase_ ( self : Any ): __A : str = self.scheduler_classes[0] __A : int = self.get_scheduler_config() __A : Optional[int] = scheduler_class(**__A ) __A : Any = [100, 87, 50, 51, 0] with self.assertRaises(__A , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=__A ) def lowerCAmelCase_ ( self : Any ): __A : List[str] = self.scheduler_classes[0] __A : Dict = self.get_scheduler_config() __A : Tuple = scheduler_class(**__A ) __A : Tuple = [100, 87, 50, 1, 0] __A : Union[str, Any] = len(__A ) with self.assertRaises(__A , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=__A , timesteps=__A ) def lowerCAmelCase_ ( self : Any ): __A : Tuple = self.scheduler_classes[0] __A : Optional[int] = self.get_scheduler_config() __A : Dict = scheduler_class(**__A ) __A : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __A , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=__A )
17
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
1
from queue import PriorityQueue from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( a__ : dict ,a__ : str ,a__ : set ,a__ : set ,a__ : dict ,a__ : dict ,a__ : PriorityQueue ,a__ : dict ,a__ : float | int ,) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue __A : Tuple = cst_fwd.get(a__ ,np.inf ) __A : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __A : List[Any] = new_cost_f __A : Any = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __A : Optional[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : dict ,a__ : dict ) -> int: __A : int = -1 __A : List[str] = set() __A : List[Any] = set() __A : str = {source: 0} __A : List[str] = {destination: 0} __A : int = {source: None} __A : Tuple = {destination: None} __A : PriorityQueue[Any] = PriorityQueue() __A : PriorityQueue[Any] = PriorityQueue() __A : str = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __A , __A : Union[str, Any] = queue_forward.get() visited_forward.add(a__ ) __A , __A : Optional[Any] = queue_backward.get() visited_backward.add(a__ ) __A : int = pass_and_relaxation( a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,) __A : List[Any] = pass_and_relaxation( a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,a__ ,) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __A : Optional[int] = shortest_distance return shortest_path_distance UpperCAmelCase_ : Union[str, Any] = { '''B''': [['''C''', 1]], '''C''': [['''D''', 1]], '''D''': [['''F''', 1]], '''E''': [['''B''', 1], ['''G''', 2]], '''F''': [], '''G''': [['''F''', 1]], } UpperCAmelCase_ : Any = { '''B''': [['''E''', 1]], '''C''': [['''B''', 1]], '''D''': [['''C''', 1]], '''F''': [['''D''', 1], ['''G''', 1]], '''E''': [[None, np.inf]], '''G''': [['''E''', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import pytest UpperCAmelCase_ : Optional[int] = '''__dummy_dataset1__''' UpperCAmelCase_ : str = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def __SCREAMING_SNAKE_CASE ( ) -> int: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __SCREAMING_SNAKE_CASE ( ) -> Dict: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __SCREAMING_SNAKE_CASE ( a__ : Dict ,a__ : str ,a__ : Dict ) -> int: __A : Tuple = dataset_loading_script_name __A : Optional[Any] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=a__ ) __A : List[Any] = script_dir / f"""{script_name}.py""" with open(a__ ,"""w""" ) as f: f.write(a__ ) return str(a__ )
17
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase_ : @property def lowerCAmelCase_ ( self : Any ): return self.get_dummy_input() @property def lowerCAmelCase_ ( self : Dict ): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F"""'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.""" ) def lowerCAmelCase_ ( self : Any , __A : int=True , __A : int=False , __A : str=False , __A : List[Any]=False , ): __A : Union[str, Any] = 4 __A : Union[str, Any] = 32 __A : List[Any] = (32, 32) __A : Dict = torch.manual_seed(0 ) __A : Optional[int] = torch.device(__A ) __A : int = (batch_size, num_channels) + sizes __A : Optional[int] = randn_tensor(__A , generator=__A , device=__A ) __A : Any = {"""hidden_states""": hidden_states} if include_temb: __A : int = 128 __A : Any = randn_tensor((batch_size, temb_channels) , generator=__A , device=__A ) if include_res_hidden_states_tuple: __A : Optional[Any] = torch.manual_seed(1 ) __A : Optional[int] = (randn_tensor(__A , generator=__A , device=__A ),) if include_encoder_hidden_states: __A : List[str] = floats_tensor((batch_size, 32, 32) ).to(__A ) if include_skip_sample: __A : int = randn_tensor(((batch_size, 3) + sizes) , generator=__A , device=__A ) return dummy_input def lowerCAmelCase_ ( self : int ): __A : str = { """in_channels""": 32, """out_channels""": 32, """temb_channels""": 128, } if self.block_type == "up": __A : Tuple = 32 if self.block_type == "mid": init_dict.pop("""out_channels""" ) __A : Any = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase_ ( self : Any , __A : Union[str, Any] ): __A , __A : List[str] = self.prepare_init_args_and_inputs_for_common() __A : Optional[Any] = self.block_class(**__A ) unet_block.to(__A ) unet_block.eval() with torch.no_grad(): __A : Any = unet_block(**__A ) if isinstance(__A , __A ): __A : Optional[int] = output[0] self.assertEqual(output.shape , self.output_shape ) __A : Any = output[0, -1, -3:, -3:] __A : int = torch.tensor(__A ).to(__A ) assert torch_all_close(output_slice.flatten() , __A , atol=5e-3 ) @unittest.skipIf(torch_device == """mps""" , """Training is not supported in mps""" ) def lowerCAmelCase_ ( self : List[Any] ): __A , __A : Tuple = self.prepare_init_args_and_inputs_for_common() __A : int = self.block_class(**__A ) model.to(__A ) model.train() __A : str = model(**__A ) if isinstance(__A , __A ): __A : Optional[Any] = output[0] __A : Dict = torch.device(__A ) __A : Any = randn_tensor(output.shape , device=__A ) __A : Union[str, Any] = torch.nn.functional.mse_loss(__A , __A ) loss.backward()
17
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = { '''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class lowerCamelCase_ ( _lowercase ): _lowercase : List[Any] = '''deformable_detr''' _lowercase : int = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : Union[str, Any] , __A : int=True , __A : Any=None , __A : int=3 , __A : Dict=300 , __A : Optional[int]=1024 , __A : Any=6 , __A : Optional[int]=1024 , __A : Optional[int]=8 , __A : Dict=6 , __A : Optional[Any]=1024 , __A : Optional[Any]=8 , __A : str=0.0 , __A : List[Any]=True , __A : Optional[int]="relu" , __A : Any=256 , __A : Union[str, Any]=0.1 , __A : List[str]=0.0 , __A : Union[str, Any]=0.0 , __A : Optional[Any]=0.0_2 , __A : Union[str, Any]=1.0 , __A : str=True , __A : List[str]=False , __A : Tuple="sine" , __A : List[str]="resnet50" , __A : Optional[int]=True , __A : Union[str, Any]=False , __A : str=4 , __A : Optional[Any]=4 , __A : List[Any]=4 , __A : str=False , __A : List[str]=300 , __A : List[Any]=False , __A : Optional[Any]=1 , __A : Union[str, Any]=5 , __A : Dict=2 , __A : Tuple=1 , __A : int=1 , __A : List[Any]=5 , __A : List[Any]=2 , __A : Any=0.1 , __A : Union[str, Any]=0.2_5 , __A : Optional[Any]=False , **__A : Any , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __A : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__A , __A ): __A : Any = backbone_config.get("""model_type""" ) __A : str = CONFIG_MAPPING[backbone_model_type] __A : List[str] = config_class.from_dict(__A ) __A : List[Any] = use_timm_backbone __A : List[Any] = backbone_config __A : Tuple = num_channels __A : Union[str, Any] = num_queries __A : str = max_position_embeddings __A : Any = d_model __A : Any = encoder_ffn_dim __A : Dict = encoder_layers __A : Optional[Any] = encoder_attention_heads __A : Tuple = decoder_ffn_dim __A : Dict = decoder_layers __A : Optional[Any] = decoder_attention_heads __A : List[Any] = dropout __A : int = attention_dropout __A : Union[str, Any] = activation_dropout __A : Optional[Any] = activation_function __A : List[str] = init_std __A : int = init_xavier_std __A : Dict = encoder_layerdrop __A : List[Any] = auxiliary_loss __A : Tuple = position_embedding_type __A : Dict = backbone __A : Any = use_pretrained_backbone __A : List[Any] = dilation # deformable attributes __A : Optional[Any] = num_feature_levels __A : str = encoder_n_points __A : Any = decoder_n_points __A : Tuple = two_stage __A : Any = two_stage_num_proposals __A : Optional[int] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher __A : Tuple = class_cost __A : Dict = bbox_cost __A : List[str] = giou_cost # Loss coefficients __A : Any = mask_loss_coefficient __A : Any = dice_loss_coefficient __A : Optional[Any] = bbox_loss_coefficient __A : Tuple = giou_loss_coefficient __A : str = eos_coefficient __A : Optional[Any] = focal_alpha __A : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=__A , **__A ) @property def lowerCAmelCase_ ( self : Union[str, Any] ): return self.encoder_attention_heads @property def lowerCAmelCase_ ( self : Optional[int] ): return self.d_model def lowerCAmelCase_ ( self : str ): __A : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __A : Optional[Any] = self.backbone_config.to_dict() __A : List[Any] = self.__class__.model_type return output
17
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
1
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCAmelCase_ : Union[str, Any] = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' UpperCAmelCase_ : Union[str, Any] = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' UpperCAmelCase_ : int = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowerCAmelCase_ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] , ) def lowerCAmelCase_ ( self : Optional[int] , __A : List[str] , __A : int , __A : Any=None , __A : Optional[Any]=None , __A : Optional[int]=None , __A : List[Any]=None , __A : List[str]="auto" , __A : List[str]=-1 , __A : int=0.9 , __A : List[Any]=5 , __A : Optional[Any]=500 , __A : List[str]="gpt2-large" , __A : Union[str, Any]=-1 , __A : List[str]=1024 , __A : Optional[Any]=25 , __A : str=5 , __A : List[Any]=True , __A : int=25 , ): __A : Any = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
17
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Any = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : int = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''git_vision_model''' def __init__( self : Tuple , __A : str=768 , __A : Union[str, Any]=3072 , __A : int=12 , __A : str=12 , __A : str=3 , __A : Union[str, Any]=224 , __A : Any=16 , __A : Any="quick_gelu" , __A : Union[str, Any]=1e-5 , __A : List[str]=0.0 , __A : Dict=0.0_2 , **__A : Union[str, Any] , ): super().__init__(**__A ) __A : Tuple = hidden_size __A : Any = intermediate_size __A : Dict = num_hidden_layers __A : str = num_attention_heads __A : Optional[Any] = num_channels __A : int = patch_size __A : Union[str, Any] = image_size __A : List[str] = initializer_range __A : Tuple = attention_dropout __A : Optional[int] = layer_norm_eps __A : Tuple = hidden_act @classmethod def lowerCAmelCase_ ( cls : Dict , __A : Union[str, os.PathLike] , **__A : str ): cls._set_token_in_kwargs(__A ) __A , __A : Optional[int] = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": __A : Tuple = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__A , **__A ) class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''git''' def __init__( self : str , __A : int=None , __A : Any=3_0522 , __A : Any=768 , __A : str=6 , __A : List[Any]=12 , __A : Dict=3072 , __A : List[str]="gelu" , __A : Tuple=0.1 , __A : Any=0.1 , __A : str=1024 , __A : List[Any]=0.0_2 , __A : str=1e-1_2 , __A : Union[str, Any]=0 , __A : Any="absolute" , __A : str=True , __A : int=False , __A : List[Any]=101 , __A : Union[str, Any]=102 , __A : Tuple=None , **__A : Tuple , ): super().__init__(bos_token_id=__A , eos_token_id=__A , pad_token_id=__A , **__A ) if vision_config is None: __A : Optional[int] = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) __A : List[Any] = GitVisionConfig(**__A ) __A : List[str] = vocab_size __A : str = hidden_size __A : Optional[Any] = num_hidden_layers __A : Optional[int] = num_attention_heads __A : Dict = hidden_act __A : int = intermediate_size __A : Optional[Any] = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Union[str, Any] = max_position_embeddings __A : Any = initializer_range __A : Any = layer_norm_eps __A : int = position_embedding_type __A : Union[str, Any] = use_cache __A : Dict = tie_word_embeddings __A : int = num_image_with_embedding __A : Optional[int] = bos_token_id __A : Dict = eos_token_id def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Union[str, Any] = copy.deepcopy(self.__dict__ ) __A : Optional[int] = self.vision_config.to_dict() __A : int = self.__class__.model_type return output
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
import math def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int = 0 ,a__ : int = 0 ) -> list: __A : Optional[int] = end or len(a__ ) for i in range(a__ ,a__ ): __A : List[Any] = i __A : Optional[int] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __A : Union[str, Any] = array[temp_index - 1] temp_index -= 1 __A : List[Any] = temp_index_value return array def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int ,a__ : int ) -> None: # Max Heap __A : Optional[int] = index __A : List[Any] = 2 * index + 1 # Left Node __A : Optional[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __A : str = left_index if right_index < heap_size and array[largest] < array[right_index]: __A : Any = right_index if largest != index: __A , __A : Optional[Any] = array[largest], array[index] heapify(a__ ,a__ ,a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list ) -> list: __A : Tuple = len(a__ ) for i in range(n // 2 ,-1 ,-1 ): heapify(a__ ,a__ ,a__ ) for i in range(n - 1 ,0 ,-1 ): __A , __A : Any = array[0], array[i] heapify(a__ ,0 ,a__ ) return array def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int ,a__ : int ,a__ : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int ,a__ : int ,a__ : int ) -> int: __A : Tuple = low __A : str = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __A , __A : int = array[j], array[i] i += 1 def __SCREAMING_SNAKE_CASE ( a__ : list ) -> list: if len(a__ ) == 0: return array __A : int = 2 * math.ceil(math.loga(len(a__ ) ) ) __A : int = 16 return intro_sort(a__ ,0 ,len(a__ ) ,a__ ,a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list ,a__ : int ,a__ : int ,a__ : int ,a__ : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(a__ ) max_depth -= 1 __A : Union[str, Any] = median_of_a(a__ ,a__ ,start + ((end - start) // 2) + 1 ,end - 1 ) __A : List[Any] = partition(a__ ,a__ ,a__ ,a__ ) intro_sort(a__ ,a__ ,a__ ,a__ ,a__ ) __A : Optional[int] = p return insertion_sort(a__ ,a__ ,a__ ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : int = input('''Enter numbers separated by a comma : ''').strip() UpperCAmelCase_ : Any = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
from sklearn.metrics import recall_score import datasets UpperCAmelCase_ : Dict = ''' Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. ''' UpperCAmelCase_ : List[Any] = ''' Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the \'positive class\' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - `\'binary\'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `\'micro\'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `\'macro\'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `\'weighted\'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `\'samples\'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `\'warn\'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {\'recall\': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric(\'recall\') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {\'recall\': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric(\'recall\') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {\'recall\': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric(\'recall\') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'macro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'micro\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=\'weighted\') >>> print(results) {\'recall\': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'recall\': array([1., 0., 0.])} ''' UpperCAmelCase_ : Tuple = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowerCAmelCase_ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"""] , ) def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Any=None , __A : str=1 , __A : int="binary" , __A : Any=None , __A : List[str]="warn" , ): __A : Optional[Any] = recall_score( __A , __A , labels=__A , pos_label=__A , average=__A , sample_weight=__A , zero_division=__A , ) return {"recall": float(__A ) if score.size == 1 else score}
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
1
import math def __SCREAMING_SNAKE_CASE ( a__ : int ) -> str: __A : Optional[int] = 0 __A : List[str] = 0 while num > 0: __A : Optional[int] = num % 8 __A : List[Any] = octal + (remainder * math.floor(math.pow(10 ,a__ ) )) counter += 1 __A : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f"""0o{int(a__ )}""" def __SCREAMING_SNAKE_CASE ( ) -> None: print("""\n2 in octal is:""" ) print(decimal_to_octal(2 ) ) # = 2 print("""\n8 in octal is:""" ) print(decimal_to_octal(8 ) ) # = 10 print("""\n65 in octal is:""" ) print(decimal_to_octal(65 ) ) # = 101 print("""\n216 in octal is:""" ) print(decimal_to_octal(216 ) ) # = 330 print("""\n512 in octal is:""" ) print(decimal_to_octal(512 ) ) # = 1000 print("""\n""" ) if __name__ == "__main__": main()
17
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = '''encoder-decoder''' _lowercase : str = True def __init__( self : Union[str, Any] , **__A : Optional[Any] ): super().__init__(**__A ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __A : List[Any] = kwargs.pop("""encoder""" ) __A : int = encoder_config.pop("""model_type""" ) __A : int = kwargs.pop("""decoder""" ) __A : Tuple = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __A : Union[str, Any] = AutoConfig.for_model(__A , **__A ) __A : Optional[Any] = AutoConfig.for_model(__A , **__A ) __A : List[Any] = True @classmethod def lowerCAmelCase_ ( cls : Optional[int] , __A : PretrainedConfig , __A : PretrainedConfig , **__A : Dict ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) __A : Tuple = True __A : List[Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A ) def lowerCAmelCase_ ( self : Optional[int] ): __A : str = copy.deepcopy(self.__dict__ ) __A : Any = self.encoder.to_dict() __A : Optional[Any] = self.decoder.to_dict() __A : Union[str, Any] = self.__class__.model_type return output
17
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Dict = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['''ViTFeatureExtractor'''] UpperCAmelCase_ : Dict = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Dict = XLMTokenizer _lowercase : Any = False def lowerCAmelCase_ ( self : Dict ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] __A : Tuple = dict(zip(__A , range(len(__A ) ) ) ) __A : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] __A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def lowerCAmelCase_ ( self : Optional[int] , __A : Optional[Any] ): __A : Optional[Any] = """lower newer""" __A : Tuple = """lower newer""" return input_text, output_text def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Dict = XLMTokenizer(self.vocab_file , self.merges_file ) __A : Union[str, Any] = """lower""" __A : Optional[int] = ["""low""", """er</w>"""] __A : int = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) __A : int = tokens + ["""<unk>"""] __A : Dict = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) @slow def lowerCAmelCase_ ( self : Dict ): __A : Tuple = XLMTokenizer.from_pretrained("""xlm-mlm-en-2048""" ) __A : str = tokenizer.encode("""sequence builders""" , add_special_tokens=__A ) __A : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__A ) __A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__A ) __A : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : Any = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : Tuple ) -> Optional[int]: __A : int = UniSpeechSatForSequenceClassification.from_pretrained(a__ ,config=a__ ) __A : Dict = downstream_dict["""projector.weight"""] __A : int = downstream_dict["""projector.bias"""] __A : Any = downstream_dict["""model.post_net.linear.weight"""] __A : Any = downstream_dict["""model.post_net.linear.bias"""] return model def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ,a__ : Optional[Any] ,a__ : str ) -> str: __A : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(a__ ,config=a__ ) __A : List[str] = downstream_dict["""model.linear.weight"""] __A : int = downstream_dict["""model.linear.bias"""] return model def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : str ,a__ : Optional[Any] ) -> str: __A : Optional[Any] = UniSpeechSatForXVector.from_pretrained(a__ ,config=a__ ) __A : int = downstream_dict["""connector.weight"""] __A : Dict = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __A : str = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] __A : Tuple = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] __A : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __A : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __A : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __A : Tuple = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __A : Union[str, Any] = downstream_dict["""objective.W"""] return model @torch.no_grad() def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Dict ,a__ : List[Any] ,a__ : Tuple ) -> List[str]: __A : Dict = torch.load(a__ ,map_location="""cpu""" ) __A : int = checkpoint["""Downstream"""] __A : Optional[int] = UniSpeechSatConfig.from_pretrained(a__ ) __A : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained( a__ ,return_attention_mask=a__ ,do_normalize=a__ ) __A : Union[str, Any] = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __A : List[str] = convert_classification(a__ ,a__ ,a__ ) elif arch.endswith("""ForAudioFrameClassification""" ): __A : List[Any] = convert_diarization(a__ ,a__ ,a__ ) elif arch.endswith("""ForXVector""" ): __A : Tuple = convert_xvector(a__ ,a__ ,a__ ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: __A : List[str] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') UpperCAmelCase_ : Dict = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
17
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class lowerCamelCase_ ( _lowercase ): _lowercase : List[Any] = '''open-llama''' def __init__( self : Union[str, Any] , __A : Dict=10_0000 , __A : Optional[int]=4096 , __A : str=1_1008 , __A : str=32 , __A : Union[str, Any]=32 , __A : str="silu" , __A : Tuple=2048 , __A : Optional[Any]=0.0_2 , __A : List[Any]=1e-6 , __A : Dict=True , __A : Optional[Any]=0 , __A : str=1 , __A : Any=2 , __A : Optional[int]=False , __A : List[Any]=True , __A : Any=0.1 , __A : int=0.1 , __A : Optional[int]=True , __A : Optional[int]=True , __A : Optional[Any]=None , **__A : str , ): __A : List[str] = vocab_size __A : Dict = max_position_embeddings __A : Dict = hidden_size __A : str = intermediate_size __A : Tuple = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : Optional[int] = hidden_act __A : List[Any] = initializer_range __A : Tuple = rms_norm_eps __A : str = use_cache __A : Optional[int] = kwargs.pop( """use_memorry_efficient_attention""" , __A ) __A : Union[str, Any] = hidden_dropout_prob __A : Optional[Any] = attention_dropout_prob __A : str = use_stable_embedding __A : Dict = shared_input_output_embedding __A : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A , ) def lowerCAmelCase_ ( self : List[Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"""got {self.rope_scaling}""" ) __A : Dict = self.rope_scaling.get("""type""" , __A ) __A : Optional[Any] = self.rope_scaling.get("""factor""" , __A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
17
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[Any] = '''funnel''' _lowercase : Tuple = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', } def __init__( self : Union[str, Any] , __A : List[Any]=3_0522 , __A : List[str]=[4, 4, 4] , __A : Optional[int]=None , __A : List[str]=2 , __A : Optional[Any]=768 , __A : int=12 , __A : List[Any]=64 , __A : Optional[Any]=3072 , __A : str="gelu_new" , __A : Optional[Any]=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.0 , __A : List[str]=0.1 , __A : Union[str, Any]=None , __A : Tuple=1e-9 , __A : Optional[Any]="mean" , __A : Optional[int]="relative_shift" , __A : List[str]=True , __A : Union[str, Any]=True , __A : Union[str, Any]=True , **__A : Tuple , ): __A : Tuple = vocab_size __A : Tuple = block_sizes __A : Optional[int] = [1] * len(__A ) if block_repeats is None else block_repeats assert len(__A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." __A : Tuple = num_decoder_layers __A : Optional[int] = d_model __A : Union[str, Any] = n_head __A : Dict = d_head __A : List[str] = d_inner __A : Optional[Any] = hidden_act __A : Union[str, Any] = hidden_dropout __A : Tuple = attention_dropout __A : Optional[int] = activation_dropout __A : Optional[Any] = initializer_range __A : int = initializer_std __A : List[str] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" __A : List[str] = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" __A : int = attention_type __A : str = separate_cls __A : List[Any] = truncate_seq __A : List[str] = pool_q_only super().__init__(**__A ) @property def lowerCAmelCase_ ( self : Dict ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCAmelCase_ ( self : Optional[Any] ): return len(self.block_sizes ) @num_blocks.setter def lowerCAmelCase_ ( self : List[Any] , __A : List[Any] ): raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
17
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Optional[Any] ): __A : Union[str, Any] = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __A : Optional[Any] = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __A : List[str] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __A : int = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __A : Dict = model(__A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1e-3 ) ) @slow def lowerCAmelCase_ ( self : List[str] ): __A : Any = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __A : int = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __A : Optional[Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim __A : Dict = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __A : Dict = model(__A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1e-3 ) )
17
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ : Any = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys UpperCAmelCase_ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) UpperCAmelCase_ : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", f"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", f"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.encoder.layers.{i}.norm1.weight""", f"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.weight""", f"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( f"""transformer.decoder.layers.{i}.cross_attn.out_proj.bias""", f"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm1.weight""", f"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.weight""", f"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.norm2.bias""", f"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""decoder.layers.{i}.final_layer_norm.bias""")) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.weight""", f"""decoder.layers.{i}.sa_qcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.weight""", f"""decoder.layers.{i}.sa_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qpos_proj.weight""", f"""decoder.layers.{i}.sa_qpos_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kpos_proj.weight""", f"""decoder.layers.{i}.sa_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.weight""", f"""decoder.layers.{i}.sa_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.weight""", f"""decoder.layers.{i}.ca_qcontent_proj.weight""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.weight""", f"""decoder.layers.{i}.ca_kcontent_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kpos_proj.weight""", f"""decoder.layers.{i}.ca_kpos_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.weight""", f"""decoder.layers.{i}.ca_v_proj.weight""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight""", f"""decoder.layers.{i}.ca_qpos_sine_proj.weight""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_qcontent_proj.bias""", f"""decoder.layers.{i}.sa_qcontent_proj.bias""") ) rename_keys.append( (f"""transformer.decoder.layers.{i}.sa_kcontent_proj.bias""", f"""decoder.layers.{i}.sa_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_qpos_proj.bias""", f"""decoder.layers.{i}.sa_qpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_kpos_proj.bias""", f"""decoder.layers.{i}.sa_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.sa_v_proj.bias""", f"""decoder.layers.{i}.sa_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qcontent_proj.bias""", f"""decoder.layers.{i}.ca_qcontent_proj.bias""") ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_kcontent_proj.bias""", f"""decoder.layers.{i}.ca_kcontent_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_kpos_proj.bias""", f"""decoder.layers.{i}.ca_kpos_proj.bias""")) rename_keys.append((f"""transformer.decoder.layers.{i}.ca_v_proj.bias""", f"""decoder.layers.{i}.ca_v_proj.bias""")) rename_keys.append( (f"""transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias""", f"""decoder.layers.{i}.ca_qpos_sine_proj.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : Dict ) -> Dict: __A : Optional[Any] = state_dict.pop(a__ ) __A : int = val def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Union[str, Any]: __A : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __A : Dict = key.replace("""backbone.0.body""" ,"""backbone.conv_encoder.model""" ) __A : Optional[int] = value else: __A : Optional[int] = value return new_state_dict def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int=False ) -> Optional[Any]: __A : Union[str, Any] = """""" if is_panoptic: __A : List[Any] = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __A : int = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __A : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __A : List[Any] = in_proj_weight[:256, :] __A : List[str] = in_proj_bias[:256] __A : Dict = in_proj_weight[256:512, :] __A : List[str] = in_proj_bias[256:512] __A : List[str] = in_proj_weight[-256:, :] __A : List[str] = in_proj_bias[-256:] def __SCREAMING_SNAKE_CASE ( ) -> Dict: __A : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __A : Optional[Any] = Image.open(requests.get(a__ ,stream=a__ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : int ) -> Union[str, Any]: __A : Any = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __A : Dict = """resnet101""" if "dc5" in model_name: __A : Union[str, Any] = True __A : Dict = """panoptic""" in model_name if is_panoptic: __A : Optional[Any] = 250 else: __A : int = 91 __A : Tuple = """huggingface/label-files""" __A : List[Any] = """coco-detection-id2label.json""" __A : List[str] = json.load(open(hf_hub_download(a__ ,a__ ,repo_type="""dataset""" ) ,"""r""" ) ) __A : str = {int(a__ ): v for k, v in idalabel.items()} __A : List[str] = idalabel __A : Union[str, Any] = {v: k for k, v in idalabel.items()} # load image processor __A : Union[str, Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" __A : int = ConditionalDetrImageProcessor(format=a__ ) # prepare image __A : int = prepare_img() __A : Optional[int] = image_processor(images=a__ ,return_tensors="""pt""" ) __A : Union[str, Any] = encoding["""pixel_values"""] logger.info(f"""Converting model {model_name}...""" ) # load original model from torch hub __A : Optional[Any] = torch.hub.load("""DeppMeng/ConditionalDETR""" ,a__ ,pretrained=a__ ).eval() __A : List[str] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __A : Dict = """conditional_detr.""" + src rename_key(a__ ,a__ ,a__ ) __A : List[Any] = rename_backbone_keys(a__ ) # query, key and value matrices need special treatment read_in_q_k_v(a__ ,is_panoptic=a__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __A : int = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""conditional_detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): __A : List[str] = state_dict.pop(a__ ) __A : List[Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __A : Union[str, Any] = state_dict.pop(a__ ) __A : Dict = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: __A : List[str] = state_dict.pop(a__ ) __A : int = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __A : int = state_dict.pop(a__ ) __A : int = val # finally, create HuggingFace model and load state dict __A : List[Any] = ConditionalDetrForSegmentation(a__ ) if is_panoptic else ConditionalDetrForObjectDetection(a__ ) model.load_state_dict(a__ ) model.eval() model.push_to_hub(repo_id=a__ ,organization="""DepuMeng""" ,commit_message="""Add model""" ) # verify our conversion __A : Union[str, Any] = conditional_detr(a__ ) __A : Tuple = model(a__ ) assert torch.allclose(outputs.logits ,original_outputs["""pred_logits"""] ,atol=1E-4 ) assert torch.allclose(outputs.pred_boxes ,original_outputs["""pred_boxes"""] ,atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks ,original_outputs["""pred_masks"""] ,atol=1E-4 ) # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
17
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
1
def __SCREAMING_SNAKE_CASE ( a__ : list ) -> list: if len(a__ ) <= 1: return [tuple(a__ )] __A : int = [] def generate(a__ : int ,a__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 ,a__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __A , __A : Any = arr[k - 1], arr[i] else: # k is odd __A , __A : Optional[Any] = arr[k - 1], arr[0] generate(k - 1 ,a__ ) generate(len(a__ ) ,a__ ) return res if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase_ : int = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
17
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
1
from __future__ import annotations import requests UpperCAmelCase_ : Optional[Any] = set( '''approved_at_utc approved_by author_flair_background_color author_flair_css_class author_flair_richtext author_flair_template_id author_fullname author_premium can_mod_post category clicked content_categories created_utc downs edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta is_original_content is_reddit_media_domain is_video link_flair_css_class link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title name permalink pwls quarantine saved score secure_media secure_media_embed selftext subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type total_awards_received ups upvote_ratio url user_reports'''.split() ) def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : int = 1 ,a__ : str = "new" ,a__ : list | None = None ) -> dict: __A : Optional[int] = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(a__ ) - valid_terms ) ): __A : Optional[int] = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(a__ ) __A : Any = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" ,headers={"""User-agent""": """A random string"""} ,) if response.status_code == 429: raise requests.HTTPError __A : Tuple = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(a__ )} __A : str = {} for id_ in range(a__ ): __A : int = { item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data('''learnpython''', wanted_data=['''title''', '''url''', '''selftext''']))
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : int ): __A : str = tempfile.mkdtemp() __A : List[str] = BlipImageProcessor() __A : Union[str, Any] = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) __A : str = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) __A : Union[str, Any] = InstructBlipProcessor(__A , __A , __A ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Union[str, Any] , **__A : Any ): return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).tokenizer def lowerCAmelCase_ ( self : Union[str, Any] , **__A : List[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor def lowerCAmelCase_ ( self : str , **__A : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).qformer_tokenizer def lowerCAmelCase_ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : str ): __A : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __A : Any = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self : str ): __A : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __A : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __A : Union[str, Any] = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) __A : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) self.assertIsInstance(processor.qformer_tokenizer , __A ) def lowerCAmelCase_ ( self : Any ): __A : Optional[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : int = self.get_qformer_tokenizer() __A : Optional[Any] = InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) __A : List[str] = self.prepare_image_inputs() __A : Dict = image_processor(__A , return_tensors="""np""" ) __A : Dict = processor(images=__A , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase_ ( self : int ): __A : Optional[Any] = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Any = self.get_qformer_tokenizer() __A : str = InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) __A : Dict = """lower newer""" __A : Dict = processor(text=__A ) __A : int = tokenizer(__A , return_token_type_ids=__A ) __A : Any = qformer_tokenizer(__A , return_token_type_ids=__A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def lowerCAmelCase_ ( self : Any ): __A : Union[str, Any] = self.get_image_processor() __A : Any = self.get_tokenizer() __A : Optional[Any] = self.get_qformer_tokenizer() __A : str = InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) __A : List[Any] = """lower newer""" __A : int = self.prepare_image_inputs() __A : Union[str, Any] = processor(text=__A , images=__A ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Dict = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : List[Any] = self.get_qformer_tokenizer() __A : Union[str, Any] = InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) __A : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : Dict = processor.batch_decode(__A ) __A : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Optional[int] = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Tuple = self.get_qformer_tokenizer() __A : Union[str, Any] = InstructBlipProcessor( tokenizer=__A , image_processor=__A , qformer_tokenizer=__A ) __A : int = """lower newer""" __A : Optional[int] = self.prepare_image_inputs() __A : List[str] = processor(text=__A , images=__A ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
17
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''blenderbot-small''' _lowercase : List[Any] = ['''past_key_values'''] _lowercase : str = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , __A : Union[str, Any]=5_0265 , __A : str=512 , __A : Any=8 , __A : str=2048 , __A : List[Any]=16 , __A : Dict=8 , __A : Union[str, Any]=2048 , __A : Union[str, Any]=16 , __A : Optional[int]=0.0 , __A : Dict=0.0 , __A : Dict=True , __A : Any=True , __A : Dict="gelu" , __A : int=512 , __A : str=0.1 , __A : Optional[int]=0.0 , __A : Union[str, Any]=0.0 , __A : Optional[int]=0.0_2 , __A : Union[str, Any]=1 , __A : str=False , __A : Tuple=0 , __A : Union[str, Any]=1 , __A : Tuple=2 , __A : Optional[int]=2 , **__A : List[Any] , ): __A : List[str] = vocab_size __A : int = max_position_embeddings __A : int = d_model __A : int = encoder_ffn_dim __A : Any = encoder_layers __A : Any = encoder_attention_heads __A : List[Any] = decoder_ffn_dim __A : Any = decoder_layers __A : int = decoder_attention_heads __A : int = dropout __A : str = attention_dropout __A : Any = activation_dropout __A : List[str] = activation_function __A : Optional[int] = init_std __A : int = encoder_layerdrop __A : List[str] = decoder_layerdrop __A : List[str] = use_cache __A : int = encoder_layers __A : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , is_encoder_decoder=__A , decoder_start_token_id=__A , forced_eos_token_id=__A , **__A , ) class lowerCamelCase_ ( _lowercase ): @property def lowerCAmelCase_ ( self : Optional[int] ): if self.task in ["default", "seq2seq-lm"]: __A : Dict = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __A : Optional[Any] = {0: """batch"""} __A : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: __A : Tuple = {0: """batch""", 1: """decoder_sequence"""} __A : str = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(__A , direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. __A : Union[str, Any] = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: __A , __A : Dict = self.num_layers for i in range(__A ): __A : Dict = {0: """batch""", 2: """past_sequence + sequence"""} __A : Union[str, Any] = {0: """batch""", 2: """past_sequence + sequence"""} else: __A : int = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property def lowerCAmelCase_ ( self : Any ): if self.task in ["default", "seq2seq-lm"]: __A : Any = super().outputs else: __A : Dict = super(__A , self ).outputs if self.use_past: __A , __A : Tuple = self.num_layers for i in range(__A ): __A : Tuple = {0: """batch""", 2: """past_sequence + sequence"""} __A : int = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def lowerCAmelCase_ ( self : List[Any] , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): __A : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) # Generate decoder inputs __A : str = seq_length if not self.use_past else 1 __A : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) __A : Dict = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __A : str = dict(**__A , **__A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __A , __A : List[Any] = common_inputs["""input_ids"""].shape __A : List[str] = common_inputs["""decoder_input_ids"""].shape[1] __A , __A : int = self.num_attention_heads __A : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __A : Optional[Any] = decoder_seq_length + 3 __A : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __A : List[str] = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(__A , __A )] , dim=1 ) __A : int = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __A , __A : Any = self.num_layers __A : int = min(__A , __A ) __A : Tuple = max(__A , __A ) - min_num_layers __A : Dict = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(__A ): common_inputs["past_key_values"].append( ( torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), torch.zeros(__A ), ) ) # TODO: test this. __A : List[str] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(__A , __A ): common_inputs["past_key_values"].append((torch.zeros(__A ), torch.zeros(__A )) ) return common_inputs def lowerCAmelCase_ ( self : List[str] , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): __A : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , __A , __A , __A , __A ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __A , __A : Union[str, Any] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __A : int = seqlen + 2 __A , __A : Optional[Any] = self.num_layers __A , __A : Optional[Any] = self.num_attention_heads __A : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __A : Union[str, Any] = common_inputs["""attention_mask"""].dtype __A : int = torch.cat( [common_inputs["""attention_mask"""], torch.ones(__A , __A , dtype=__A )] , dim=1 ) __A : Tuple = [ (torch.zeros(__A ), torch.zeros(__A )) for _ in range(__A ) ] return common_inputs def lowerCAmelCase_ ( self : int , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __A : List[str] = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __A : List[str] = tokenizer.num_special_tokens_to_add(__A ) __A : Tuple = compute_effective_axis_dimension( __A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__A ) # Generate dummy inputs according to compute batch and sequence __A : Any = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size __A : Any = dict(tokenizer(__A , return_tensors=__A ) ) return common_inputs def lowerCAmelCase_ ( self : List[str] , __A : PreTrainedTokenizer , __A : int = -1 , __A : int = -1 , __A : bool = False , __A : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __A : Any = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) elif self.task == "causal-lm": __A : List[str] = self._generate_dummy_inputs_for_causal_lm( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) else: __A : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __A , batch_size=__A , seq_length=__A , is_pair=__A , framework=__A ) return common_inputs def lowerCAmelCase_ ( self : int , __A : int , __A : Dict , __A : str , __A : Dict ): if self.task in ["default", "seq2seq-lm"]: __A : Union[str, Any] = super()._flatten_past_key_values_(__A , __A , __A , __A ) else: __A : Union[str, Any] = super(__A , self )._flatten_past_key_values_( __A , __A , __A , __A )
17
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase_ : def __init__( self : Dict , __A : Optional[Any]=2 , __A : Union[str, Any]=3 , __A : int=64 , __A : Tuple=None ): __A : Union[str, Any] = np.random.default_rng(__A ) __A : Optional[int] = length __A : Union[str, Any] = rng.normal(size=(length,) ).astype(np.floataa ) __A : Union[str, Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[int] ): return self.length def __getitem__( self : Tuple , __A : int ): return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase_ ( torch.nn.Module ): def __init__( self : Tuple , __A : List[Any]=0 , __A : Optional[int]=0 , __A : Optional[int]=False ): super().__init__() __A : int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __A : Tuple = True def lowerCAmelCase_ ( self : Optional[int] , __A : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __A : str = False return x * self.a[0] + self.b[0] class lowerCamelCase_ ( torch.nn.Module ): def __init__( self : Dict , __A : str=0 , __A : List[Any]=0 , __A : Optional[int]=False ): super().__init__() __A : int = torch.nn.Parameter(torch.tensor(__A ).float() ) __A : str = torch.nn.Parameter(torch.tensor(__A ).float() ) __A : Optional[Any] = True def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) __A : Optional[Any] = False return x * self.a + self.b def __SCREAMING_SNAKE_CASE ( a__ : Union[str, Any] ,a__ : int = 16 ) -> List[str]: from datasets import load_dataset from transformers import AutoTokenizer __A : List[str] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __A : Dict = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __A : Any = load_dataset("""csv""" ,data_files=a__ ) __A : Optional[int] = datasets["""train"""].unique("""label""" ) __A : Optional[int] = {v: i for i, v in enumerate(a__ )} def tokenize_function(a__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __A : int = tokenizer( examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=a__ ,max_length=a__ ,padding="""max_length""" ) if "label" in examples: __A : List[str] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __A : str = datasets.map( a__ ,batched=a__ ,remove_columns=["""sentence1""", """sentence2""", """label"""] ,) def collate_fn(a__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a__ ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(a__ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. __A : Tuple = DataLoader(tokenized_datasets["""train"""] ,shuffle=a__ ,collate_fn=a__ ,batch_size=2 ) __A : List[str] = DataLoader(tokenized_datasets["""validation"""] ,shuffle=a__ ,collate_fn=a__ ,batch_size=1 ) return train_dataloader, eval_dataloader
17
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 ,len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 ,len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 ,len(a__ ) ): for j in range(1 ,len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] ,matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
17
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Dict = {'''processing_layoutxlm''': ['''LayoutXLMProcessor''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = ['''LayoutXLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = ['''LayoutXLMTokenizerFast'''] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ) -> int: monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" ,set() ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ) -> List[Any]: class lowerCamelCase_ : def __init__( self : Any , __A : Dict ): __A : int = metric_id class lowerCamelCase_ : _lowercase : int = [MetricMock(_lowercase ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def lowerCAmelCase_ ( self : str ): return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" ,HfhMock() ) @pytest.mark.parametrize( """func, args""" ,[(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : List[str] ,a__ : str ,a__ : Optional[Any] ,a__ : List[Any] ) -> Optional[Any]: if "tmp_path" in args: __A : List[str] = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(a__ ,match="""https://huggingface.co/docs/evaluate""" ): func(*a__ )
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCAmelCase_ : Union[str, Any] = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE ( a__ : Any=None ,a__ : Dict=None ) -> Union[str, Any]: return field(default_factory=lambda: default ,metadata=a__ ) @dataclass class lowerCamelCase_ : _lowercase : int _lowercase : float _lowercase : str _lowercase : bool @dataclass class lowerCamelCase_ : _lowercase : int = 42 _lowercase : str = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class lowerCamelCase_ : _lowercase : bool = False _lowercase : bool = True _lowercase : Optional[bool] = None class lowerCamelCase_ ( _lowercase ): _lowercase : int = '''titi''' _lowercase : Union[str, Any] = '''toto''' class lowerCamelCase_ ( _lowercase ): _lowercase : List[Any] = '''titi''' _lowercase : List[Any] = '''toto''' _lowercase : Optional[Any] = 42 @dataclass class lowerCamelCase_ : _lowercase : BasicEnum = "toto" def lowerCAmelCase_ ( self : Optional[Any] ): __A : List[str] = BasicEnum(self.foo ) @dataclass class lowerCamelCase_ : _lowercase : MixedTypeEnum = "toto" def lowerCAmelCase_ ( self : int ): __A : Optional[int] = MixedTypeEnum(self.foo ) @dataclass class lowerCamelCase_ : _lowercase : Optional[int] = None _lowercase : Optional[float] = field(default=_lowercase , metadata={'''help''': '''help message'''} ) _lowercase : Optional[str] = None _lowercase : Optional[List[str]] = list_field(default=[] ) _lowercase : Optional[List[int]] = list_field(default=[] ) @dataclass class lowerCamelCase_ : _lowercase : List[int] = list_field(default=[] ) _lowercase : List[int] = list_field(default=[1, 2, 3] ) _lowercase : List[str] = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) _lowercase : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowerCamelCase_ : _lowercase : List[int] = field() _lowercase : str = field() _lowercase : BasicEnum = field() def lowerCAmelCase_ ( self : str ): __A : List[str] = BasicEnum(self.required_enum ) @dataclass class lowerCamelCase_ : _lowercase : int _lowercase : "BasicEnum" = field() _lowercase : "Optional[bool]" = None _lowercase : "str" = field(default='''toto''' , metadata={'''help''': '''help message'''} ) _lowercase : "List[str]" = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class lowerCamelCase_ : _lowercase : bool = False _lowercase : bool = True _lowercase : bool | None = None @dataclass class lowerCamelCase_ : _lowercase : int | None = None _lowercase : float | None = field(default=_lowercase , metadata={'''help''': '''help message'''} ) _lowercase : str | None = None _lowercase : list[str] | None = list_field(default=[] ) _lowercase : list[int] | None = list_field(default=[] ) class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : List[Any] , __A : argparse.ArgumentParser , __A : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): __A : Any = {k: v for k, v in vars(__A ).items() if k != """container"""} __A : Tuple = {k: v for k, v in vars(__A ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , __A ) and yy.get("""choices""" , __A ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](__A ) , yy["""type"""](__A ) ) del xx["type"], yy["type"] self.assertEqual(__A , __A ) def lowerCAmelCase_ ( self : str ): __A : Dict = HfArgumentParser(__A ) __A : List[str] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__A , required=__A ) expected.add_argument("""--bar""" , type=__A , required=__A ) expected.add_argument("""--baz""" , type=__A , required=__A ) expected.add_argument("""--flag""" , type=__A , default=__A , const=__A , nargs="""?""" ) self.argparsersEqual(__A , __A ) __A : List[Any] = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((__A) , ) : Optional[Any] = parser.parse_args_into_dataclasses(__A , look_for_args_file=__A ) self.assertFalse(example.flag ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : Any = HfArgumentParser(__A ) __A : Optional[int] = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=__A ) expected.add_argument("""--baz""" , default="""toto""" , type=__A , help="""help message""" ) self.argparsersEqual(__A , __A ) def lowerCAmelCase_ ( self : List[str] ): __A : Dict = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__A , default=__A , const=__A , nargs="""?""" ) expected.add_argument("""--baz""" , type=__A , default=__A , const=__A , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=__A , dest="""baz""" ) expected.add_argument("""--opt""" , type=__A , default=__A ) __A : Optional[Any] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: __A : List[Any] = HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) __A : Any = parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) __A : str = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) __A : Union[str, Any] = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) __A : Union[str, Any] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) __A : Any = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(__A , Namespace(foo=__A , baz=__A , opt=__A ) ) def lowerCAmelCase_ ( self : int ): __A : Tuple = HfArgumentParser(__A ) __A : str = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__A , __A ) __A : Tuple = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __A : Optional[int] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) __A : Tuple = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __A : Tuple = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) __A : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) __A : Dict = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase_ ( self : str ): @dataclass class lowerCamelCase_ : _lowercase : Literal["titi", "toto", 42] = "toto" __A : int = HfArgumentParser(__A ) __A : List[str] = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(__A , __A ) __A : str = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) __A : Dict = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) __A : List[str] = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : Union[str, Any] = HfArgumentParser(__A ) __A : List[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=__A ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=__A ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__A ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=__A ) self.argparsersEqual(__A , __A ) __A : int = parser.parse_args([] ) self.assertEqual( __A , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) __A : Optional[int] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(__A , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase_ ( self : Tuple ): __A : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=__A , type=__A ) expected.add_argument("""--bar""" , default=__A , type=__A , help="""help message""" ) expected.add_argument("""--baz""" , default=__A , type=__A ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=__A ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=__A ) __A : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__A ) for dataclass_type in dataclass_types: __A : Optional[int] = HfArgumentParser(__A ) self.argparsersEqual(__A , __A ) __A : str = parser.parse_args([] ) self.assertEqual(__A , Namespace(foo=__A , bar=__A , baz=__A , ces=[] , des=[] ) ) __A : Optional[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(__A , Namespace(foo=12 , bar=3.1_4 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def lowerCAmelCase_ ( self : int ): __A : List[Any] = HfArgumentParser(__A ) __A : int = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=__A , required=__A ) expected.add_argument("""--required_str""" , type=__A , required=__A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__A , ) self.argparsersEqual(__A , __A ) def lowerCAmelCase_ ( self : List[Any] ): __A : str = HfArgumentParser(__A ) __A : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=__A , required=__A ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=__A , ) expected.add_argument("""--opt""" , type=__A , default=__A ) expected.add_argument("""--baz""" , default="""toto""" , type=__A , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=__A ) self.argparsersEqual(__A , __A ) def lowerCAmelCase_ ( self : str ): __A : Optional[Any] = HfArgumentParser(__A ) __A : Union[str, Any] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } __A : List[Any] = parser.parse_dict(__A )[0] __A : List[str] = BasicExample(**__A ) self.assertEqual(__A , __A ) def lowerCAmelCase_ ( self : Tuple ): __A : List[str] = HfArgumentParser(__A ) __A : List[str] = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(__A , parser.parse_dict , __A , allow_extra_keys=__A ) def lowerCAmelCase_ ( self : Tuple ): __A : Optional[int] = HfArgumentParser(__A ) __A : Any = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __A : Optional[int] = os.path.join(__A , """temp_json""" ) os.mkdir(__A ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(__A , __A ) __A : Tuple = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] __A : str = BasicExample(**__A ) self.assertEqual(__A , __A ) def lowerCAmelCase_ ( self : Tuple ): __A : str = HfArgumentParser(__A ) __A : int = { """foo""": 12, """bar""": 3.1_4, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __A : Union[str, Any] = os.path.join(__A , """temp_yaml""" ) os.mkdir(__A ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(__A , __A ) __A : Union[str, Any] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] __A : str = BasicExample(**__A ) self.assertEqual(__A , __A ) def lowerCAmelCase_ ( self : List[Any] ): __A : str = HfArgumentParser(__A ) self.assertIsNotNone(__A )
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : Dict , __A : Union[str, Any] , __A : bool = True , __A : bool = False ): __A : Any = scheduler __A : Optional[Any] = optimizers if isinstance(__A , (list, tuple) ) else [optimizers] __A : Union[str, Any] = split_batches __A : List[str] = step_with_optimizer __A : int = GradientState() def lowerCAmelCase_ ( self : Dict , *__A : int , **__A : List[Any] ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__A , **__A ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__A , **__A ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __A : str = AcceleratorState().num_processes for _ in range(__A ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__A , **__A ) else: self.scheduler.step(*__A , **__A ) def lowerCAmelCase_ ( self : Any ): return self.scheduler.get_last_lr() def lowerCAmelCase_ ( self : Optional[Any] ): return self.scheduler.state_dict() def lowerCAmelCase_ ( self : int , __A : int ): self.scheduler.load_state_dict(__A ) def lowerCAmelCase_ ( self : Optional[int] ): return self.scheduler.get_lr() def lowerCAmelCase_ ( self : List[Any] , *__A : Optional[Any] , **__A : List[str] ): return self.scheduler.print_lr(*__A , **__A )
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[Any] = '''blip_2_vision_model''' def __init__( self : Optional[Any] , __A : List[Any]=1408 , __A : Optional[Any]=6144 , __A : int=39 , __A : Tuple=16 , __A : Tuple=224 , __A : Any=14 , __A : Any="gelu" , __A : Any=0.0_0_0_0_1 , __A : Dict=0.0 , __A : Tuple=1e-1_0 , __A : Any=True , **__A : int , ): super().__init__(**__A ) __A : Dict = hidden_size __A : int = intermediate_size __A : List[Any] = num_hidden_layers __A : Tuple = num_attention_heads __A : List[Any] = patch_size __A : Any = image_size __A : Dict = initializer_range __A : List[Any] = attention_dropout __A : Optional[Any] = layer_norm_eps __A : Dict = hidden_act __A : str = qkv_bias @classmethod def lowerCAmelCase_ ( cls : Any , __A : Union[str, os.PathLike] , **__A : Any ): cls._set_token_in_kwargs(__A ) __A , __A : Optional[Any] = cls.get_config_dict(__A , **__A ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __A : str = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__A , **__A ) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = '''blip_2_qformer''' def __init__( self : Union[str, Any] , __A : List[Any]=3_0522 , __A : Union[str, Any]=768 , __A : Optional[Any]=12 , __A : List[str]=12 , __A : Optional[int]=3072 , __A : Dict="gelu" , __A : Optional[int]=0.1 , __A : Any=0.1 , __A : List[str]=512 , __A : Optional[Any]=0.0_2 , __A : List[Any]=1e-1_2 , __A : List[str]=0 , __A : Optional[Any]="absolute" , __A : Any=2 , __A : Union[str, Any]=1408 , **__A : Optional[Any] , ): super().__init__(pad_token_id=__A , **__A ) __A : List[Any] = vocab_size __A : int = hidden_size __A : Dict = num_hidden_layers __A : Union[str, Any] = num_attention_heads __A : Union[str, Any] = hidden_act __A : Tuple = intermediate_size __A : Tuple = hidden_dropout_prob __A : Any = attention_probs_dropout_prob __A : int = max_position_embeddings __A : List[Any] = initializer_range __A : Optional[Any] = layer_norm_eps __A : Optional[int] = position_embedding_type __A : List[str] = cross_attention_frequency __A : List[Any] = encoder_hidden_size @classmethod def lowerCAmelCase_ ( cls : Union[str, Any] , __A : Union[str, os.PathLike] , **__A : List[Any] ): cls._set_token_in_kwargs(__A ) __A , __A : Any = cls.get_config_dict(__A , **__A ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __A : int = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__A , **__A ) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = '''blip-2''' _lowercase : Any = True def __init__( self : Tuple , __A : Dict=None , __A : str=None , __A : int=None , __A : Union[str, Any]=32 , **__A : int ): super().__init__(**__A ) if vision_config is None: __A : List[Any] = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: __A : Union[str, Any] = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: __A : Optional[Any] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __A : Any = BlipaVisionConfig(**__A ) __A : Tuple = BlipaQFormerConfig(**__A ) __A : Any = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __A : str = CONFIG_MAPPING[text_model_type](**__A ) __A : List[Any] = self.text_config.tie_word_embeddings __A : int = self.text_config.is_encoder_decoder __A : Union[str, Any] = num_query_tokens __A : int = self.vision_config.hidden_size __A : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __A : Optional[int] = 1.0 __A : Optional[Any] = 0.0_2 @classmethod def lowerCAmelCase_ ( cls : Optional[int] , __A : BlipaVisionConfig , __A : BlipaQFormerConfig , __A : PretrainedConfig , **__A : str , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def lowerCAmelCase_ ( self : List[Any] ): __A : Union[str, Any] = copy.deepcopy(self.__dict__ ) __A : int = self.vision_config.to_dict() __A : Optional[Any] = self.qformer_config.to_dict() __A : Optional[Any] = self.text_config.to_dict() __A : Any = self.__class__.model_type return output
17
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
1
def __SCREAMING_SNAKE_CASE ( a__ : int = 100 ) -> int: __A : Union[str, Any] = n * (n + 1) * (2 * n + 1) / 6 __A : List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
17
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
1
from manim import * class lowerCamelCase_ ( _lowercase ): def lowerCAmelCase_ ( self : str ): __A : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) __A : Any = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __A : Union[str, Any] = [mem.copy() for i in range(6 )] __A : Optional[int] = [mem.copy() for i in range(6 )] __A : List[Any] = VGroup(*__A ).arrange(__A , buff=0 ) __A : Dict = VGroup(*__A ).arrange(__A , buff=0 ) __A : int = VGroup(__A , __A ).arrange(__A , buff=0 ) __A : Tuple = Text("""CPU""" , font_size=24 ) __A : Optional[Any] = Group(__A , __A ).arrange(__A , buff=0.5 , aligned_edge=__A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__A ) __A : List[str] = [mem.copy() for i in range(4 )] __A : List[str] = VGroup(*__A ).arrange(__A , buff=0 ) __A : List[Any] = Text("""GPU""" , font_size=24 ) __A : Optional[int] = Group(__A , __A ).arrange(__A , buff=0.5 , aligned_edge=__A ) gpu.move_to([-1, -1, 0] ) self.add(__A ) __A : Optional[int] = [mem.copy() for i in range(6 )] __A : Any = VGroup(*__A ).arrange(__A , buff=0 ) __A : Tuple = Text("""Model""" , font_size=24 ) __A : Dict = Group(__A , __A ).arrange(__A , buff=0.5 , aligned_edge=__A ) model.move_to([3, -1.0, 0] ) self.add(__A ) __A : Optional[int] = [] for i, rect in enumerate(__A ): rect.set_stroke(__A ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) __A : Tuple = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__A , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__A , buff=0.0 ) self.add(__A ) cpu_targs.append(__A ) __A : Union[str, Any] = [mem.copy() for i in range(6 )] __A : Optional[Any] = VGroup(*__A ).arrange(__A , buff=0 ) __A : Union[str, Any] = Text("""Loaded Checkpoint""" , font_size=24 ) __A : Union[str, Any] = Group(__A , __A ).arrange(__A , aligned_edge=__A , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) __A : Union[str, Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __A : List[Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__A , __A ) __A : Optional[Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) __A : int = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__A ) , Write(__A ) ) self.play(Write(__A , run_time=1 ) , Create(__A , run_time=1 ) ) __A : str = [] __A : Union[str, Any] = [] for i, rect in enumerate(__A ): __A : Any = fill.copy().set_fill(__A , opacity=0.7 ) target.move_to(__A ) first_animations.append(GrowFromCenter(__A , run_time=1 ) ) __A : str = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__A , run_time=1.5 ) ) self.play(*__A ) self.play(*__A ) self.wait()
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __SCREAMING_SNAKE_CASE ( a__ : int ) -> str: def wrapper(*a__ : List[Any] ,**a__ : str ): __A : List[Any] = timeit.default_timer() __A : Any = func(*a__ ,**a__ ) __A : Union[str, Any] = timeit.default_timer() - starttime return delta __A : Dict = func.__name__ return wrapper def __SCREAMING_SNAKE_CASE ( a__ : dict ,a__ : Dict=100 ,a__ : Optional[Any]=None ) -> Dict: __A : Optional[int] = [] __A : Dict = seq_shapes or {} for i in range(a__ ): __A : Optional[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(a__ ,_ArrayXD ): __A : Any = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(a__ ,datasets.Value ): if v.dtype == "string": __A : List[str] = """The small grey turtle was surprisingly fast when challenged.""" else: __A : int = np.random.randint(10 ,size=1 ).astype(v.dtype ).item() elif isinstance(a__ ,datasets.Sequence ): while isinstance(a__ ,datasets.Sequence ): __A : str = v.feature __A : List[Any] = seq_shapes[k] __A : Dict = np.random.rand(*a__ ).astype(v.dtype ) __A : Any = data dummy_data.append((i, example) ) return dummy_data def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Optional[int] ,a__ : Any=100 ,a__ : Optional[Any]=None ) -> str: __A : int = generate_examples(a__ ,num_examples=a__ ,seq_shapes=a__ ) with ArrowWriter(features=a__ ,path=a__ ) as writer: for key, record in dummy_data: __A : List[str] = features.encode_example(a__ ) writer.write(a__ ) __A , __A : int = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) __A : Optional[Any] = datasets.Dataset.from_file(filename=a__ ,info=datasets.DatasetInfo(features=a__ ) ) return dataset
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType UpperCAmelCase_ : Optional[List[str]] = None UpperCAmelCase_ : Union[str, Any] = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image UpperCAmelCase_ : List[Any] = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class lowerCamelCase_ : _lowercase : bool = True _lowercase : Optional[str] = None # Automatically constructed _lowercase : ClassVar[str] = "PIL.Image.Image" _lowercase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowercase : str = field(default='''Image''' , init=_lowercase , repr=_lowercase ) def __call__( self : Tuple ): return self.pa_type def lowerCAmelCase_ ( self : Optional[Any] , __A : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if isinstance(__A , __A ): __A : Optional[Any] = np.array(__A ) if isinstance(__A , __A ): return {"path": value, "bytes": None} elif isinstance(__A , __A ): return {"path": None, "bytes": value} elif isinstance(__A , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(__A ) elif isinstance(__A , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__A ) elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def lowerCAmelCase_ ( self : Union[str, Any] , __A : dict , __A : Any=None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Image(decode=True) instead.""" ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support decoding images, please install 'Pillow'.""" ) if token_per_repo_id is None: __A : int = {} __A , __A : Dict = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" ) else: if is_local_path(__A ): __A : Optional[Any] = PIL.Image.open(__A ) else: __A : Optional[int] = path.split("""::""" )[-1] try: __A : Dict = string_to_dict(__A , config.HUB_DATASETS_URL )["""repo_id"""] __A : Dict = token_per_repo_id.get(__A ) except ValueError: __A : List[str] = None with xopen(__A , """rb""" , use_auth_token=__A ) as f: __A : Optional[int] = BytesIO(f.read() ) __A : Any = PIL.Image.open(bytes_ ) else: __A : Tuple = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowerCAmelCase_ ( self : List[Any] ): from .features import Value return ( self if self.decode else { "bytes": Value("""binary""" ), "path": Value("""string""" ), } ) def lowerCAmelCase_ ( self : Dict , __A : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): if pa.types.is_string(storage.type ): __A : List[Any] = pa.array([None] * len(__A ) , type=pa.binary() ) __A : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __A : Optional[int] = pa.array([None] * len(__A ) , type=pa.string() ) __A : Dict = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: __A : List[str] = storage.field("""bytes""" ) else: __A : List[str] = pa.array([None] * len(__A ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: __A : int = storage.field("""path""" ) else: __A : List[str] = pa.array([None] * len(__A ) , type=pa.string() ) __A : List[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): __A : Any = pa.array( [encode_np_array(np.array(__A ) )["""bytes"""] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) __A : Dict = pa.array([None] * len(__A ) , type=pa.string() ) __A : int = pa.StructArray.from_arrays( [bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__A , self.pa_type ) def lowerCAmelCase_ ( self : List[str] , __A : pa.StructArray ): @no_op_if_value_is_null def path_to_bytes(__A : List[str] ): with xopen(__A , """rb""" ) as f: __A : Any = f.read() return bytes_ __A : Union[str, Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __A : Any = pa.array( [os.path.basename(__A ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) __A : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__A , self.pa_type ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() __A : Dict = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __SCREAMING_SNAKE_CASE ( a__ : "PIL.Image.Image" ) -> bytes: __A : Dict = BytesIO() if image.format in list_image_compression_formats(): __A : int = image.format else: __A : Any = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(a__ ,format=a__ ) return buffer.getvalue() def __SCREAMING_SNAKE_CASE ( a__ : "PIL.Image.Image" ) -> dict: if hasattr(a__ ,"""filename""" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(a__ )} def __SCREAMING_SNAKE_CASE ( a__ : np.ndarray ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) __A : int = array.dtype __A : Dict = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER __A : Optional[Any] = dtype.kind __A : Any = dtype.itemsize __A : str = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: __A : Optional[int] = np.dtype("""|u1""" ) if dtype_kind not in ["u", "i"]: raise TypeError( f"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: __A : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: __A : Optional[Any] = dtype_byteorder + dtype_kind + str(a__ ) __A : Tuple = np.dtype(a__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) __A : Dict = PIL.Image.fromarray(array.astype(a__ ) ) return {"path": None, "bytes": image_to_bytes(a__ )} def __SCREAMING_SNAKE_CASE ( a__ : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("""To support encoding images, please install 'Pillow'.""" ) if objs: __A , __A : Any = first_non_null_value(a__ ) if isinstance(a__ ,a__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(a__ ,np.ndarray ): __A : Tuple = no_op_if_value_is_null(a__ ) return [obj_to_image_dict_func(a__ ) for obj in objs] elif isinstance(a__ ,PIL.Image.Image ): __A : str = no_op_if_value_is_null(a__ ) return [obj_to_image_dict_func(a__ ) for obj in objs] else: return objs else: return objs
17
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
1
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : Dict , __A : List[str]=3 , __A : List[Any]=32 , __A : int=3 , __A : str=10 , __A : List[Any]=[10, 20, 30, 40] , __A : Union[str, Any]=[1, 1, 2, 1] , __A : Any=True , __A : Optional[int]=True , __A : int="relu" , __A : Dict=3 , __A : Dict=None , ): __A : Tuple = parent __A : int = batch_size __A : List[str] = image_size __A : Tuple = num_channels __A : Tuple = embeddings_size __A : Optional[Any] = hidden_sizes __A : str = depths __A : Optional[int] = is_training __A : Tuple = use_labels __A : Optional[int] = hidden_act __A : Tuple = num_labels __A : Optional[int] = scope __A : List[Any] = len(__A ) def lowerCAmelCase_ ( self : Dict ): __A : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : Optional[Any] = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __A : int = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : int ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowerCAmelCase_ ( self : str , __A : Optional[Any] , __A : Tuple , __A : List[str] ): __A : List[Any] = TFRegNetModel(config=__A ) __A : int = model(__A , training=__A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCAmelCase_ ( self : Dict , __A : str , __A : Tuple , __A : List[Any] ): __A : Optional[Any] = self.num_labels __A : Optional[int] = TFRegNetForImageClassification(__A ) __A : List[Any] = model(__A , labels=__A , training=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : str ): __A : int = self.prepare_config_and_inputs() __A , __A , __A : List[Any] = config_and_inputs __A : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () _lowercase : Tuple = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : Optional[int] = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False def lowerCAmelCase_ ( self : Dict ): __A : Tuple = TFRegNetModelTester(self ) __A : int = ConfigTester(self , config_class=__A , has_text_modality=__A ) def lowerCAmelCase_ ( self : List[str] ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : List[Any] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowerCAmelCase_ ( self : Dict ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowerCAmelCase_ ( self : Optional[int] ): pass def lowerCAmelCase_ ( self : str ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Dict = model_class(__A ) __A : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Optional[int] = [*signature.parameters.keys()] __A : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def lowerCAmelCase_ ( self : Any ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : List[str] ): def check_hidden_states_output(__A : Optional[int] , __A : str , __A : str ): __A : Tuple = model_class(__A ) __A : List[str] = model(**self._prepare_for_class(__A , __A ) , training=__A ) __A : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __A : int = self.model_tester.num_stages self.assertEqual(len(__A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __A , __A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __A : List[Any] = layer_type __A : Optional[int] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : str = True check_hidden_states_output(__A , __A , __A ) def lowerCAmelCase_ ( self : Dict ): __A , __A : Any = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__A : int , __A : Any , __A : List[Any] , __A : Any={} ): __A : List[str] = model(__A , return_dict=__A , **__A ) __A : Tuple = model(__A , return_dict=__A , **__A ).to_tuple() def recursive_check(__A : Dict , __A : int ): if isinstance(__A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__A , __A ): recursive_check(__A , __A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__A , __A ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}""" ) , ) recursive_check(__A , __A ) for model_class in self.all_model_classes: __A : Optional[int] = model_class(__A ) __A : Optional[Any] = self._prepare_for_class(__A , __A ) __A : Tuple = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A ) __A : Dict = self._prepare_for_class(__A , __A , return_labels=__A ) __A : List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A ) __A : int = self._prepare_for_class(__A , __A ) __A : Optional[int] = self._prepare_for_class(__A , __A ) check_equivalence(__A , __A , __A , {"""output_hidden_states""": True} ) __A : int = self._prepare_for_class(__A , __A , return_labels=__A ) __A : List[Any] = self._prepare_for_class(__A , __A , return_labels=__A ) check_equivalence(__A , __A , __A , {"""output_hidden_states""": True} ) def lowerCAmelCase_ ( self : List[str] ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) @slow def lowerCAmelCase_ ( self : int ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[str] = TFRegNetModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __SCREAMING_SNAKE_CASE ( ) -> List[str]: __A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : str ): __A : Union[str, Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __A : Tuple = self.default_image_processor __A : str = prepare_img() __A : Optional[int] = image_processor(images=__A , return_tensors="""tf""" ) # forward pass __A : Any = model(**__A , training=__A ) # verify the logits __A : List[str] = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) __A : List[Any] = tf.constant([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , __A , atol=1e-4 )
17
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): _lowercase : List[Any] = StableDiffusionInstructPixaPixPipeline _lowercase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} _lowercase : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowercase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS _lowercase : Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase_ ( self : Any ): torch.manual_seed(0 ) __A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) __A : List[Any] = PNDMScheduler(skip_prk_steps=__A ) torch.manual_seed(0 ) __A : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __A : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __A : Union[str, Any] = CLIPTextModel(__A ) __A : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __A : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Union[str, Any]=0 ): __A : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A ) __A : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A : Dict = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ) if str(__A ).startswith("""mps""" ): __A : int = torch.manual_seed(__A ) else: __A : str = torch.Generator(device=__A ).manual_seed(__A ) __A : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """image_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : List[str] ): __A : int = """cpu""" # ensure determinism for the device-dependent torch.Generator __A : str = self.get_dummy_components() __A : List[str] = StableDiffusionInstructPixaPixPipeline(**__A ) __A : List[str] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __A : Tuple = self.get_dummy_inputs(__A ) __A : Union[str, Any] = sd_pipe(**__A ).images __A : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __A : List[str] = np.array([0.7_5_2_6, 0.3_7_5_0, 0.4_5_4_7, 0.6_1_1_7, 0.5_8_6_6, 0.5_0_1_6, 0.4_3_2_7, 0.5_6_4_2, 0.4_8_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Optional[Any] ): __A : int = """cpu""" # ensure determinism for the device-dependent torch.Generator __A : Optional[int] = self.get_dummy_components() __A : Any = StableDiffusionInstructPixaPixPipeline(**__A ) __A : str = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __A : Dict = self.get_dummy_inputs(__A ) __A : List[Any] = """french fries""" __A : List[str] = sd_pipe(**__A , negative_prompt=__A ) __A : Union[str, Any] = output.images __A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __A : Optional[Any] = np.array([0.7_5_1_1, 0.3_6_4_2, 0.4_5_5_3, 0.6_2_3_6, 0.5_7_9_7, 0.5_0_1_3, 0.4_3_4_3, 0.5_6_1_1, 0.4_8_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Any ): __A : int = """cpu""" # ensure determinism for the device-dependent torch.Generator __A : Dict = self.get_dummy_components() __A : List[str] = StableDiffusionInstructPixaPixPipeline(**__A ) __A : Tuple = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __A : Optional[int] = self.get_dummy_inputs(__A ) __A : int = [inputs["""prompt"""]] * 2 __A : str = np.array(inputs["""image"""] ).astype(np.floataa ) / 2_5_5.0 __A : Optional[Any] = torch.from_numpy(__A ).unsqueeze(0 ).to(__A ) __A : Dict = image / 2 + 0.5 __A : List[Any] = image.permute(0 , 3 , 1 , 2 ) __A : Optional[int] = image.repeat(2 , 1 , 1 , 1 ) __A : List[str] = sd_pipe(**__A ).images __A : List[str] = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __A : Dict = np.array([0.5_8_1_2, 0.5_7_4_8, 0.5_2_2_2, 0.5_9_0_8, 0.5_6_9_5, 0.7_1_7_4, 0.6_8_0_4, 0.5_5_2_3, 0.5_5_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : Tuple ): __A : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator __A : Dict = self.get_dummy_components() __A : str = EulerAncestralDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" ) __A : List[str] = StableDiffusionInstructPixaPixPipeline(**__A ) __A : Optional[int] = sd_pipe.to(__A ) sd_pipe.set_progress_bar_config(disable=__A ) __A : Optional[Any] = self.get_dummy_inputs(__A ) __A : str = sd_pipe(**__A ).images __A : List[str] = image[0, -3:, -3:, -1] __A : List[Any] = [round(__A , 4 ) for x in image_slice.flatten().tolist()] print(""",""".join([str(__A ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __A : Optional[int] = np.array([0.7_4_1_7, 0.3_8_4_2, 0.4_7_3_2, 0.5_7_7_6, 0.5_8_9_1, 0.5_1_3_9, 0.4_0_5_2, 0.5_6_7_3, 0.4_9_8_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : int ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Any = self.get_dummy_components() __A : Any = StableDiffusionInstructPixaPixPipeline(**__A ) __A : Any = VaeImageProcessor(do_resize=__A , do_normalize=__A ) __A : Tuple = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __A : int = pipe(**self.get_dummy_inputs_by_type(__A , input_image_type="""pt""" ) )[0] __A : List[Any] = components["""vae"""] __A : Union[str, Any] = self.get_dummy_inputs_by_type(__A , input_image_type="""pt""" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __A : Optional[Any] = vae.encode(inputs[image_param] ).latent_dist.mode() __A : Tuple = pipe(**__A )[0] __A : Tuple = np.abs(out - out_latents_inputs ).max() self.assertLess(__A , 1e-4 , """passing latents as image input generate different result from passing image""" ) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : List[Any] , __A : Union[str, Any]=0 ): __A : Tuple = torch.manual_seed(__A ) __A : Optional[int] = load_image( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg""" ) __A : Dict = { """prompt""": """turn him into a cyborg""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """image_guidance_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self : Any ): __A : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __A : Dict = self.get_inputs() __A : List[Any] = pipe(**__A ).images __A : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __A : str = np.array([0.5_9_0_2, 0.6_0_1_5, 0.6_0_2_7, 0.5_9_8_3, 0.6_0_9_2, 0.6_0_6_1, 0.5_7_6_5, 0.5_7_8_5, 0.5_5_5_5] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : int ): __A : Tuple = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__A ) __A : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __A : Union[str, Any] = self.get_inputs() __A : str = pipe(**__A ).images __A : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __A : Dict = np.array([0.6_5_7_8, 0.6_8_1_7, 0.6_9_7_2, 0.6_7_6_1, 0.6_8_5_6, 0.6_9_1_6, 0.6_4_2_8, 0.6_5_1_6, 0.6_3_0_1] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : List[str] ): __A : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__A ) __A : List[Any] = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __A : Tuple = self.get_inputs() __A : List[Any] = pipe(**__A ).images __A : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __A : Optional[Any] = np.array([0.3_8_2_8, 0.3_8_3_4, 0.3_8_1_8, 0.3_7_9_2, 0.3_8_6_5, 0.3_7_5_2, 0.3_7_9_2, 0.3_8_4_7, 0.3_7_5_3] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowerCAmelCase_ ( self : int ): __A : List[Any] = 0 def callback_fn(__A : int , __A : int , __A : torch.FloatTensor ) -> None: __A : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __A : Dict = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __A : List[str] = latents[0, -3:, -3:, -1] __A : List[Any] = np.array([-0.2_4_6_3, -0.4_6_4_4, -0.9_7_5_6, 1.5_1_7_6, 1.4_4_1_4, 0.7_8_6_6, 0.9_8_9_7, 0.8_5_2_1, 0.7_9_8_3] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: __A : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __A : Union[str, Any] = latents[0, -3:, -3:, -1] __A : List[Any] = np.array([-0.2_6_4_4, -0.4_6_2_6, -0.9_6_5_3, 1.5_1_7_6, 1.4_5_5_1, 0.7_6_8_6, 0.9_8_0_5, 0.8_4_5_2, 0.8_1_1_5] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 __A : Optional[int] = False __A : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__A , torch_dtype=torch.floataa ) __A : Optional[Any] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __A : Dict = self.get_inputs() pipe(**__A , callback=__A , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowerCAmelCase_ ( self : str ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Optional[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( """timbrooks/instruct-pix2pix""" , safety_checker=__A , torch_dtype=torch.floataa ) __A : Optional[int] = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __A : List[Any] = self.get_inputs() __A : str = pipe(**__A ) __A : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def lowerCAmelCase_ ( self : Optional[int] ): __A : Optional[Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __A : int = inputs["""image"""].resize((504, 504) ) __A : Dict = """timbrooks/instruct-pix2pix""" __A : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() __A : List[str] = pipe(**__A ) __A : Union[str, Any] = output.images[0] __A : Dict = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __A : Tuple = np.array([0.2_7_2_6, 0.2_5_2_9, 0.2_6_6_4, 0.2_6_5_5, 0.2_6_4_1, 0.2_6_4_2, 0.2_5_9_1, 0.2_6_4_9, 0.2_5_9_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
17
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
1
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __SCREAMING_SNAKE_CASE ( a__ : Dataset ,a__ : Dict[str, str] ) -> Union[str, Any]: __A : Union[str, Any] = args.log_outputs __A : List[Any] = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric __A : List[Any] = load_metric("""wer""" ) __A : List[str] = load_metric("""cer""" ) # compute metrics __A : int = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) __A : Any = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results __A : List[Any] = f"""WER: {wer_result}\nCER: {cer_result}""" print(a__ ) with open(f"""{dataset_id}_eval_results.txt""" ,"""w""" ) as f: f.write(a__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: __A : int = f"""log_{dataset_id}_predictions.txt""" __A : Union[str, Any] = f"""log_{dataset_id}_targets.txt""" with open(a__ ,"""w""" ) as p, open(a__ ,"""w""" ) as t: # mapping function to write output def write_to_file(a__ : Dict ,a__ : str ): p.write(f"""{i}""" + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f"""{i}""" + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(a__ ,with_indices=a__ ) def __SCREAMING_SNAKE_CASE ( a__ : str ) -> str: __A : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training __A : List[Any] = re.sub(a__ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! __A : int = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: __A : str = """ """.join(text.split(a__ ) ) return text def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: # load dataset __A : Optional[Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=a__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor __A : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) __A : Any = feature_extractor.sampling_rate # resample audio __A : Optional[int] = dataset.cast_column("""audio""" ,Audio(sampling_rate=a__ ) ) # load eval pipeline if args.device is None: __A : List[str] = 0 if torch.cuda.is_available() else -1 __A : str = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(a__ : Tuple ): __A : int = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) __A : Optional[int] = prediction["""text"""] __A : int = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples __A : List[str] = dataset.map(a__ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(a__ ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) UpperCAmelCase_ : int = parser.parse_args() main(args)
17
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __SCREAMING_SNAKE_CASE ( a__ : int = 3 ) -> qiskit.result.counts.Counts: if isinstance(a__ ,a__ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(a__ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) __A : Optional[Any] = QuantumRegister(a__ ,"""qr""" ) __A : Optional[int] = ClassicalRegister(a__ ,"""cr""" ) __A : Any = QuantumCircuit(a__ ,a__ ) __A : Optional[Any] = number_of_qubits for i in range(a__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(a__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,a__ ,a__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(a__ ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(a__ ,a__ ) # simulate with 10000 shots __A : Union[str, Any] = Aer.get_backend("""qasm_simulator""" ) __A : Dict = execute(a__ ,a__ ,shots=10000 ) return job.result().get_counts(a__ ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
17
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCAmelCase_ : List[str] = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' UpperCAmelCase_ : Dict = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' UpperCAmelCase_ : Dict = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowerCAmelCase_ ( self : Tuple ): if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def lowerCAmelCase_ ( self : Any , __A : Any , __A : Optional[int] , __A : int = CHRF.CHAR_ORDER , __A : int = CHRF.WORD_ORDER , __A : int = CHRF.BETA , __A : bool = False , __A : bool = False , __A : bool = False , ): __A : str = len(references[0] ) if any(len(__A ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __A : int = [[refs[i] for refs in references] for i in range(__A )] __A : Tuple = CHRF(__A , __A , __A , __A , __A , __A ) __A : Union[str, Any] = sb_chrf.corpus_score(__A , __A ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
17
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
1
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[Any] ): if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=__A , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self : List[Any] , __A : List[Any]=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=__A , instance_type=self.instance_type , debugger_hook_config=__A , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowerCAmelCase_ ( self : Dict , __A : List[Any] ): TrainingJobAnalytics(__A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) def lowerCAmelCase_ ( self : Tuple ): # create estimator __A : Tuple = self.create_estimator() # run training estimator.fit() # result dataframe __A : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __A : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __A : Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __A : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , __A )
17
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
1
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''rwkv''' _lowercase : Any = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[Any] , __A : int=5_0277 , __A : int=1024 , __A : Optional[Any]=4096 , __A : Any=32 , __A : int=None , __A : str=None , __A : Optional[Any]=1e-5 , __A : List[Any]=0 , __A : Optional[Any]=0 , __A : Union[str, Any]=6 , __A : Optional[int]=False , __A : Any=True , **__A : List[Any] , ): __A : Union[str, Any] = vocab_size __A : Optional[Any] = context_length __A : str = hidden_size __A : Optional[int] = num_hidden_layers __A : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size __A : Dict = intermediate_size if intermediate_size is not None else 4 * hidden_size __A : str = layer_norm_epsilon __A : Optional[int] = rescale_every __A : Optional[Any] = use_cache __A : Union[str, Any] = bos_token_id __A : Union[str, Any] = eos_token_id super().__init__( tie_word_embeddings=__A , bos_token_id=__A , eos_token_id=__A , **__A )
17
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=_lowercase ) class lowerCamelCase_ ( _lowercase ): _lowercase : str = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''image''': Image()} ) _lowercase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _lowercase : str = "image" _lowercase : str = "labels" def lowerCAmelCase_ ( self : Union[str, Any] , __A : Tuple ): if self.label_column not in features: raise ValueError(F"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , __A ): raise ValueError(F"""Column {self.label_column} is not a ClassLabel.""" ) __A : int = copy.deepcopy(self ) __A : int = self.label_schema.copy() __A : Any = features[self.label_column] __A : Union[str, Any] = label_schema return task_template @property def lowerCAmelCase_ ( self : Union[str, Any] ): return { self.image_column: "image", self.label_column: "labels", }
17
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
1
from __future__ import annotations from fractions import Fraction def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __SCREAMING_SNAKE_CASE ( a__ : int ) -> list[str]: __A : Dict = [] __A : List[Any] = 11 __A : int = int("""1""" + """0""" * digit_len ) for num in range(a__ ,a__ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a__ ,a__ ): solutions.append(f"""{num}/{den}""" ) den += 1 num += 1 __A : int = 10 return solutions def __SCREAMING_SNAKE_CASE ( a__ : int = 2 ) -> int: __A : int = 1.0 for fraction in fraction_list(a__ ): __A : Union[str, Any] = Fraction(a__ ) result *= frac.denominator / frac.numerator return int(a__ ) if __name__ == "__main__": print(solution())
17
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
1
from __future__ import annotations import math def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : bool ,a__ : list[int] ,a__ : float ) -> int: if depth < 0: raise ValueError("""Depth cannot be less than 0""" ) if not scores: raise ValueError("""Scores cannot be empty""" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 ,node_index * 2 ,a__ ,a__ ,a__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,a__ ,a__ ,a__ ) ,) if is_max else min( minimax(depth + 1 ,node_index * 2 ,a__ ,a__ ,a__ ) ,minimax(depth + 1 ,node_index * 2 + 1 ,a__ ,a__ ,a__ ) ,) ) def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = [90, 23, 6, 33, 21, 65, 123, 34423] __A : List[Any] = math.log(len(a__ ) ,2 ) print(f"""Optimal value : {minimax(0 ,0 ,a__ ,a__ ,a__ )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : int = '''src/diffusers''' UpperCAmelCase_ : List[Any] = '''.''' # This is to make sure the diffusers module imported is the one in the repo. UpperCAmelCase_ : str = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) UpperCAmelCase_ : int = spec.loader.load_module() def __SCREAMING_SNAKE_CASE ( a__ : Union[str, Any] ,a__ : str ) -> Dict: return line.startswith(a__ ) or len(a__ ) <= 1 or re.search(r"""^\s*\)(\s*->.*:|:)\s*$""" ,a__ ) is not None def __SCREAMING_SNAKE_CASE ( a__ : Tuple ) -> Union[str, Any]: __A : int = object_name.split(""".""" ) __A : List[str] = 0 # First let's find the module where our object lives. __A : Any = parts[i] while i < len(a__ ) and not os.path.isfile(os.path.join(a__ ,f"""{module}.py""" ) ): i += 1 if i < len(a__ ): __A : Any = os.path.join(a__ ,parts[i] ) if i >= len(a__ ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(a__ ,f"""{module}.py""" ) ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: __A : int = f.readlines() # Now let's find the class / func in the code! __A : int = """""" __A : Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(a__ ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" ,lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a__ ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __A : Optional[int] = line_index while line_index < len(a__ ) and _should_continue(lines[line_index] ,a__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : Dict = lines[start_index:line_index] return "".join(a__ ) UpperCAmelCase_ : Tuple = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') UpperCAmelCase_ : List[Any] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') UpperCAmelCase_ : Tuple = re.compile(r'''<FILL\s+[^>]*>''') def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ) -> List[Any]: __A : Optional[int] = code.split("""\n""" ) __A : Optional[int] = 0 while idx < len(a__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a__ ): return re.search(r"""^(\s*)\S""" ,lines[idx] ).groups()[0] return "" def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ) -> Dict: __A : str = len(get_indent(a__ ) ) > 0 if has_indent: __A : List[Any] = f"""class Bla:\n{code}""" __A : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ,preview=a__ ) __A : int = black.format_str(a__ ,mode=a__ ) __A , __A : Optional[int] = style_docstrings_in_code(a__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str=False ) -> Tuple: with open(a__ ,"""r""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: __A : int = f.readlines() __A : str = [] __A : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a__ ): __A : str = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __A , __A , __A : List[str] = search.groups() __A : Any = find_code_in_diffusers(a__ ) __A : Dict = get_indent(a__ ) __A : int = line_index + 1 if indent == theoretical_indent else line_index + 2 __A : Optional[int] = theoretical_indent __A : List[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __A : Tuple = True while line_index < len(a__ ) and should_continue: line_index += 1 if line_index >= len(a__ ): break __A : Optional[int] = lines[line_index] __A : Optional[int] = _should_continue(a__ ,a__ ) and re.search(f"""^{indent}# End copy""" ,a__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __A : int = lines[start_index:line_index] __A : Optional[Any] = """""".join(a__ ) # Remove any nested `Copied from` comments to avoid circular copies __A : Dict = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(a__ ) is None] __A : Dict = """\n""".join(a__ ) # Before comparing, use the `replace_pattern` on the original code. if len(a__ ) > 0: __A : Tuple = replace_pattern.replace("""with""" ,"""""" ).split(""",""" ) __A : Optional[int] = [_re_replace_pattern.search(a__ ) for p in patterns] for pattern in patterns: if pattern is None: continue __A , __A , __A : int = pattern.groups() __A : Optional[int] = re.sub(a__ ,a__ ,a__ ) if option.strip() == "all-casing": __A : Union[str, Any] = re.sub(obja.lower() ,obja.lower() ,a__ ) __A : Optional[Any] = re.sub(obja.upper() ,obja.upper() ,a__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __A : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) __A : int = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __A : str = lines[:start_index] + [theoretical_code] + lines[line_index:] __A : int = start_index + 1 if overwrite and len(a__ ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(a__ ,"""w""" ,encoding="""utf-8""" ,newline="""\n""" ) as f: f.writelines(a__ ) return diffs def __SCREAMING_SNAKE_CASE ( a__ : bool = False ) -> Tuple: __A : Any = glob.glob(os.path.join(a__ ,"""**/*.py""" ) ,recursive=a__ ) __A : Optional[Any] = [] for filename in all_files: __A : Dict = is_copy_consistent(a__ ,a__ ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(a__ ) > 0: __A : Any = """\n""".join(a__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": UpperCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') UpperCAmelCase_ : Optional[Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
17
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
1
import datasets UpperCAmelCase_ : str = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' UpperCAmelCase_ : str = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' UpperCAmelCase_ : Any = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __SCREAMING_SNAKE_CASE ( a__ : Optional[int] ,a__ : str ) -> List[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): def lowerCAmelCase_ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowerCAmelCase_ ( self : List[Any] , __A : List[Any] , __A : Optional[Any] ): return {"accuracy": simple_accuracy(__A , __A )}
17
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=_lowercase ) class lowerCamelCase_ ( _lowercase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowercase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _lowercase : ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _lowercase : str = "question" _lowercase : str = "context" _lowercase : str = "answers" @property def lowerCAmelCase_ ( self : Union[str, Any] ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
17
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class lowerCamelCase_ ( _lowercase ): _lowercase : Any = '''vivit''' def __init__( self : Any , __A : str=224 , __A : List[str]=32 , __A : Any=[2, 16, 16] , __A : List[Any]=3 , __A : Dict=768 , __A : Union[str, Any]=12 , __A : Optional[int]=12 , __A : str=3072 , __A : Any="gelu_fast" , __A : Optional[Any]=0.0 , __A : Union[str, Any]=0.0 , __A : Optional[int]=0.0_2 , __A : Optional[Any]=1e-0_6 , __A : Optional[int]=True , **__A : str , ): __A : Optional[Any] = hidden_size __A : Any = num_hidden_layers __A : Any = num_attention_heads __A : str = intermediate_size __A : List[str] = hidden_act __A : Tuple = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Union[str, Any] = initializer_range __A : Any = layer_norm_eps __A : Dict = image_size __A : int = num_frames __A : Optional[int] = tubelet_size __A : str = num_channels __A : int = qkv_bias super().__init__(**__A )
17
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( a__ : List[Any] ,a__ : List[Any] ,a__ : List[Any] ) -> List[Any]: __A : List[str] = os.path.abspath(a__ ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model __A : Optional[Any] = tf.train.list_variables(a__ ) __A : Union[str, Any] = [] __A : List[str] = [] __A : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __A : List[str] = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' __A : int = name[1:] # figure out how many levels deep the name is __A : Optional[Any] = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(a__ ) # read data __A : Optional[Any] = tf.train.load_variable(a__ ,a__ ) names.append("""/""".join(a__ ) ) arrays.append(a__ ) logger.info(f"""Read a total of {len(a__ ):,} layers""" ) # Sanity check if len(set(a__ ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(a__ ) )})""" ) __A : Union[str, Any] = list(set(a__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(a__ ,a__ ): __A : Optional[Any] = full_name.split("""/""" ) __A : Any = model __A : List[str] = [] for i, m_name in enumerate(a__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __A : Tuple = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __A : Any = getattr(a__ ,"""embeddings""" ) __A : int = getattr(a__ ,"""LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __A : Dict = getattr(a__ ,"""encoder""" ) __A : Dict = getattr(a__ ,"""layer""" ) __A : Optional[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __A : List[str] = getattr(a__ ,"""pooler""" ) __A : str = getattr(a__ ,"""dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __A : Optional[Any] = getattr(a__ ,"""embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __A : Any = getattr(a__ ,"""word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __A : Optional[int] = getattr(a__ ,"""position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __A : List[Any] = getattr(a__ ,"""token_type_embeddings""" ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append("""weight""" ) __A : int = getattr(a__ ,"""weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __A : Union[str, Any] = getattr(a__ ,"""attention""" ) __A : List[Any] = getattr(a__ ,"""self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __A : List[str] = getattr(a__ ,"""attention""" ) __A : int = getattr(a__ ,"""output""" ) __A : List[Any] = getattr(a__ ,"""LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __A : Union[str, Any] = getattr(a__ ,"""attention""" ) __A : List[str] = getattr(a__ ,"""output""" ) __A : Optional[Any] = getattr(a__ ,"""dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __A : List[Any] = getattr(a__ ,"""output""" ) __A : int = getattr(a__ ,"""dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __A : int = getattr(a__ ,"""output""" ) __A : Optional[int] = getattr(a__ ,"""LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __A : Union[str, Any] = getattr(a__ ,"""key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __A : str = getattr(a__ ,"""query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __A : List[str] = getattr(a__ ,"""value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __A : str = getattr(a__ ,"""intermediate""" ) __A : Union[str, Any] = getattr(a__ ,"""dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __A : Optional[Any] = getattr(a__ ,"""output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __A : int = getattr(a__ ,"""bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __A : Any = getattr(a__ ,"""weight""" ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary __A : List[Any] = """.""".join(a__ ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" ,a__ ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" ,a__ ): __A : int = array.reshape(pointer.data.shape ) if "kernel" in full_name: __A : int = array.transpose() if pointer.shape == array.shape: __A : Dict = torch.from_numpy(a__ ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : str ,a__ : Optional[int] ) -> Optional[Any]: # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) __A : Tuple = BertConfig.from_json_file(a__ ) __A : Optional[int] = BertModel(a__ ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(a__ ,a__ ,a__ ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
17
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
1
from __future__ import annotations UpperCAmelCase_ : Any = list[list[int]] # assigning initial values to the grid UpperCAmelCase_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution UpperCAmelCase_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def __SCREAMING_SNAKE_CASE ( a__ : Matrix ,a__ : int ,a__ : int ,a__ : int ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def __SCREAMING_SNAKE_CASE ( a__ : Matrix ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def __SCREAMING_SNAKE_CASE ( a__ : Matrix ) -> Matrix | None: if location := find_empty_location(a__ ): __A , __A : Optional[int] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 ,10 ): if is_safe(a__ ,a__ ,a__ ,a__ ): __A : List[str] = digit if sudoku(a__ ) is not None: return grid __A : Tuple = 0 return None def __SCREAMING_SNAKE_CASE ( a__ : Matrix ) -> None: for row in grid: for cell in row: print(a__ ,end=""" """ ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') UpperCAmelCase_ : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
17
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase_ : def __init__( self : Tuple , __A : List[Any] , __A : List[Any]=13 , __A : List[str]=30 , __A : Optional[int]=2 , __A : Optional[Any]=3 , __A : Optional[Any]=True , __A : List[Any]=True , __A : Dict=32 , __A : List[str]=5 , __A : Tuple=4 , __A : Dict=37 , __A : List[Any]="gelu" , __A : str=0.1 , __A : Dict=0.1 , __A : Optional[Any]=10 , __A : Optional[int]=0.0_2 , __A : int=3 , __A : Union[str, Any]=None , __A : Union[str, Any]=2 , ): __A : List[Any] = parent __A : List[Any] = batch_size __A : List[str] = image_size __A : Optional[Any] = patch_size __A : Union[str, Any] = num_channels __A : Union[str, Any] = is_training __A : Any = use_labels __A : Any = hidden_size __A : str = num_hidden_layers __A : List[Any] = num_attention_heads __A : Optional[Any] = intermediate_size __A : Dict = hidden_act __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Union[str, Any] = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : Optional[int] = scope __A : List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __A : Tuple = (image_size // patch_size) ** 2 __A : int = num_patches + 2 def lowerCAmelCase_ ( self : Dict ): __A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A : List[str] = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : str = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : str ): return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowerCAmelCase_ ( self : str , __A : Dict , __A : List[str] , __A : Any ): __A : Any = DeiTModel(config=__A ) model.to(__A ) model.eval() __A : Optional[int] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : str , __A : Dict , __A : int , __A : Tuple ): __A : List[str] = DeiTForMaskedImageModeling(config=__A ) model.to(__A ) model.eval() __A : int = model(__A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __A : Dict = 1 __A : Tuple = DeiTForMaskedImageModeling(__A ) model.to(__A ) model.eval() __A : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : Union[str, Any] = model(__A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : int , __A : int , __A : Any , __A : List[Any] ): __A : Union[str, Any] = self.type_sequence_label_size __A : Optional[Any] = DeiTForImageClassification(__A ) model.to(__A ) model.eval() __A : Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __A : Optional[int] = 1 __A : Union[str, Any] = DeiTForImageClassification(__A ) model.to(__A ) model.eval() __A : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __A : Optional[Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : int ): __A : Optional[Any] = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ) : Optional[int] = config_and_inputs __A : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : Optional[int] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _lowercase : Dict = ( { '''feature-extraction''': DeiTModel, '''image-classification''': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _lowercase : Any = False _lowercase : int = False _lowercase : Optional[int] = False def lowerCAmelCase_ ( self : str ): __A : Dict = DeiTModelTester(self ) __A : int = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : int ): __A , __A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Any = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def lowerCAmelCase_ ( self : str ): __A , __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Optional[Any] = model_class(__A ) __A : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : Dict = [*signature.parameters.keys()] __A : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __A ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : Tuple ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__A ) def lowerCAmelCase_ ( self : str ): __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def lowerCAmelCase_ ( self : Optional[Any] , __A : int , __A : Dict , __A : Optional[Any]=False ): __A : Any = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase_ ( self : Optional[int] ): if not self.model_tester.is_training: return __A , __A : int = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __A : List[str] = model_class(__A ) model.to(__A ) model.train() __A : Dict = self._prepare_for_class(__A , __A , return_labels=__A ) __A : Any = model(**__A ).loss loss.backward() def lowerCAmelCase_ ( self : Tuple ): __A , __A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __A : Optional[Any] = False __A : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __A : Any = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() __A : Union[str, Any] = self._prepare_for_class(__A , __A , return_labels=__A ) __A : int = model(**__A ).loss loss.backward() def lowerCAmelCase_ ( self : List[Any] ): __A , __A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __A : str = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), *get_values(__A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type["title"]}""" ): __A : Tuple = problem_type["""title"""] __A : Optional[int] = problem_type["""num_labels"""] __A : Union[str, Any] = model_class(__A ) model.to(__A ) model.train() __A : int = self._prepare_for_class(__A , __A , return_labels=__A ) if problem_type["num_labels"] > 1: __A : int = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) __A : Optional[Any] = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: __A : List[str] = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowerCAmelCase_ ( self : Union[str, Any] ): for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : Optional[Any] = DeiTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def __SCREAMING_SNAKE_CASE ( ) -> Any: __A : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : List[Any] ): return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def lowerCAmelCase_ ( self : Optional[int] ): __A : Any = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( __A ) __A : int = self.default_image_processor __A : List[str] = prepare_img() __A : Optional[Any] = image_processor(images=__A , return_tensors="""pt""" ).to(__A ) # forward pass with torch.no_grad(): __A : int = model(**__A ) # verify the logits __A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __A ) __A : str = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowerCAmelCase_ ( self : str ): __A : List[str] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) __A : Union[str, Any] = self.default_image_processor __A : Any = prepare_img() __A : List[str] = image_processor(images=__A , return_tensors="""pt""" ) __A : List[Any] = inputs.pixel_values.to(__A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __A : Tuple = model(__A )
17
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
1
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): def __init__( self : Union[str, Any] , *__A : Optional[int] , **__A : Optional[Any] ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
17
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase_ : _lowercase : int _lowercase : int class lowerCamelCase_ : def __init__( self : Tuple , __A : int ): __A : list[list[Edge]] = [[] for _ in range(__A )] __A : Optional[int] = size def __getitem__( self : Optional[Any] , __A : int ): return iter(self._graph[vertex] ) @property def lowerCAmelCase_ ( self : Optional[int] ): return self._size def lowerCAmelCase_ ( self : Optional[Any] , __A : int , __A : int , __A : int ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(__A , __A ) ) def lowerCAmelCase_ ( self : Optional[int] , __A : int , __A : int ): __A : Any = deque([start_vertex] ) __A : list[int | None] = [None] * self.size __A : Any = 0 while queue: __A : Dict = queue.popleft() __A : int = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __A : Union[str, Any] = current_distance + edge.weight __A : int = distances[edge.destination_vertex] if ( isinstance(__A , __A ) and new_distance >= dest_vertex_distance ): continue __A : str = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
UpperCAmelCase_ : Optional[int] = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def __SCREAMING_SNAKE_CASE ( a__ : float ) -> str: assert type(a__ ) in (int, float) and decimal == int(a__ ) __A : List[str] = int(a__ ) __A : List[Any] = """""" __A : int = False if decimal < 0: __A : Tuple = True decimal *= -1 while decimal > 0: __A , __A : List[Any] = divmod(a__ ,16 ) __A : Union[str, Any] = values[remainder] + hexadecimal __A : Optional[Any] = """0x""" + hexadecimal if negative: __A : Tuple = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
17
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
1
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) # TODO Update this UpperCAmelCase_ : Union[str, Any] = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase_ ( _lowercase ): _lowercase : int = '''esm''' def __init__( self : Dict , __A : Any=None , __A : Optional[Any]=None , __A : Tuple=None , __A : Any=768 , __A : Optional[Any]=12 , __A : int=12 , __A : Union[str, Any]=3072 , __A : Optional[Any]=0.1 , __A : Dict=0.1 , __A : Union[str, Any]=1026 , __A : Any=0.0_2 , __A : Any=1e-1_2 , __A : str="absolute" , __A : List[str]=True , __A : List[Any]=None , __A : List[str]=False , __A : Optional[int]=False , __A : Optional[Any]=None , __A : str=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) __A : Dict = vocab_size __A : int = hidden_size __A : Any = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : str = intermediate_size __A : List[Any] = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : Optional[int] = max_position_embeddings __A : Dict = initializer_range __A : Optional[Any] = layer_norm_eps __A : Tuple = position_embedding_type __A : Union[str, Any] = use_cache __A : Optional[Any] = emb_layer_norm_before __A : Tuple = token_dropout __A : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) __A : str = EsmFoldConfig() elif isinstance(__A , __A ): __A : str = EsmFoldConfig(**__A ) __A : List[Any] = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) __A : Tuple = get_default_vocab_list() else: __A : Tuple = vocab_list else: __A : int = None __A : Optional[Any] = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , __A ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : List[str] = super().to_dict() if isinstance(self.esmfold_config , __A ): __A : str = self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase_ : _lowercase : str = None _lowercase : bool = True _lowercase : bool = False _lowercase : bool = False _lowercase : bool = False _lowercase : float = 0 _lowercase : bool = True _lowercase : bool = False _lowercase : int = 128 _lowercase : "TrunkConfig" = None def lowerCAmelCase_ ( self : Optional[Any] ): if self.trunk is None: __A : str = TrunkConfig() elif isinstance(self.trunk , __A ): __A : Union[str, Any] = TrunkConfig(**self.trunk ) def lowerCAmelCase_ ( self : Any ): __A : Optional[int] = asdict(self ) __A : Optional[Any] = self.trunk.to_dict() return output @dataclass class lowerCamelCase_ : _lowercase : int = 48 _lowercase : int = 1024 _lowercase : int = 128 _lowercase : int = 32 _lowercase : int = 32 _lowercase : int = 32 _lowercase : float = 0 _lowercase : float = 0 _lowercase : bool = False _lowercase : int = 4 _lowercase : Optional[int] = 128 _lowercase : "StructureModuleConfig" = None def lowerCAmelCase_ ( self : int ): if self.structure_module is None: __A : Any = StructureModuleConfig() elif isinstance(self.structure_module , __A ): __A : Optional[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) __A : int = self.sequence_state_dim // self.sequence_head_width __A : Optional[Any] = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def lowerCAmelCase_ ( self : int ): __A : Optional[Any] = asdict(self ) __A : Any = self.structure_module.to_dict() return output @dataclass class lowerCamelCase_ : _lowercase : int = 384 _lowercase : int = 128 _lowercase : int = 16 _lowercase : int = 128 _lowercase : int = 12 _lowercase : int = 4 _lowercase : int = 8 _lowercase : float = 0.1 _lowercase : int = 8 _lowercase : int = 1 _lowercase : int = 2 _lowercase : int = 7 _lowercase : int = 10 _lowercase : float = 1e-8 _lowercase : float = 1e5 def lowerCAmelCase_ ( self : Tuple ): return asdict(self ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
17
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase_ : Union[str, Any] = data_utils.TransfoXLTokenizer UpperCAmelCase_ : Optional[Any] = data_utils.TransfoXLCorpus UpperCAmelCase_ : Union[str, Any] = data_utils UpperCAmelCase_ : int = data_utils def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : List[str] ,a__ : List[Any] ,a__ : Optional[int] ) -> str: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(a__ ,"""rb""" ) as fp: __A : str = pickle.load(a__ ,encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(f"""Save vocabulary to {pytorch_vocab_dump_path}""" ) __A : List[Any] = corpus.vocab.__dict__ torch.save(a__ ,a__ ) __A : List[Any] = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" ,a__ ) __A : Optional[Any] = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(f"""Save dataset to {pytorch_dataset_dump_path}""" ) torch.save(a__ ,a__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __A : Optional[Any] = os.path.abspath(a__ ) __A : List[str] = os.path.abspath(a__ ) print(f"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""" ) # Initialise PyTorch model if transfo_xl_config_file == "": __A : str = TransfoXLConfig() else: __A : str = TransfoXLConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Union[str, Any] = TransfoXLLMHeadModel(a__ ) __A : List[Any] = load_tf_weights_in_transfo_xl(a__ ,a__ ,a__ ) # Save pytorch-model __A : int = os.path.join(a__ ,a__ ) __A : Tuple = os.path.join(a__ ,a__ ) print(f"""Save PyTorch model to {os.path.abspath(a__ )}""" ) torch.save(model.state_dict() ,a__ ) print(f"""Save configuration file to {os.path.abspath(a__ )}""" ) with open(a__ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) UpperCAmelCase_ : str = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
17
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
1