code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=2 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :Optional[int] = parent __magic_name__ :List[Any] = 1_3 __magic_name__ :Union[str, Any] = 7 __magic_name__ :Optional[Any] = True __magic_name__ :Tuple = True __magic_name__ :List[str] = True __magic_name__ :List[Any] = True __magic_name__ :int = 9_9 __magic_name__ :Any = 3_2 __magic_name__ :Union[str, Any] = 2 __magic_name__ :List[str] = 4 __magic_name__ :List[Any] = 3_7 __magic_name__ :Tuple = '''gelu''' __magic_name__ :Any = 0.1 __magic_name__ :str = 0.1 __magic_name__ :List[str] = 5_1_2 __magic_name__ :int = 1_6 __magic_name__ :Any = 2 __magic_name__ :List[Any] = 0.02 __magic_name__ :Optional[Any] = 3 __magic_name__ :Tuple = 4 __magic_name__ :Optional[Any] = None def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ :str = None if self.use_input_mask: __magic_name__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ :str = None if self.use_token_type_ids: __magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ :Union[str, Any] = None __magic_name__ :Tuple = None __magic_name__ :str = None if self.use_labels: __magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ :List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ :List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ :str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :int = TFRoFormerModel(config=__lowerCAmelCase ) __magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __magic_name__ :List[str] = [input_ids, input_mask] __magic_name__ :Any = model(__lowerCAmelCase ) __magic_name__ :List[str] = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = True __magic_name__ :List[str] = TFRoFormerForCausalLM(config=__lowerCAmelCase ) __magic_name__ :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Optional[Any] = model(__lowerCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = TFRoFormerForMaskedLM(config=__lowerCAmelCase ) __magic_name__ :Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :int = self.num_labels __magic_name__ :str = TFRoFormerForSequenceClassification(config=__lowerCAmelCase ) __magic_name__ :Optional[int] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :str = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = self.num_choices __magic_name__ :Tuple = TFRoFormerForMultipleChoice(config=__lowerCAmelCase ) __magic_name__ :int = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __magic_name__ :Optional[Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __magic_name__ :Union[str, Any] = tf.tile(tf.expand_dims(__lowerCAmelCase , 1 ) , (1, self.num_choices, 1) ) __magic_name__ :str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __magic_name__ :Tuple = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = self.num_labels __magic_name__ :Any = TFRoFormerForTokenClassification(config=__lowerCAmelCase ) __magic_name__ :str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[str] = TFRoFormerForQuestionAnswering(config=__lowerCAmelCase ) __magic_name__ :List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } __magic_name__ :Union[str, Any] = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) :Union[str, Any] = config_and_inputs __magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) a__ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) a__ = False a__ = False def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A ( self ): """simple docstring""" __magic_name__ :List[str] = TFRoFormerModelTester(self ) __magic_name__ :List[str] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" __magic_name__ :Optional[Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): @slow def A ( self ): """simple docstring""" __magic_name__ :int = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) __magic_name__ :Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) __magic_name__ :Optional[Any] = model(__lowerCAmelCase )[0] # TODO Replace vocab size __magic_name__ :int = 5_0_0_0_0 __magic_name__ :Tuple = [1, 6, vocab_size] self.assertEqual(output.shape , __lowerCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __magic_name__ :Any = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCAmelCase , atol=1E-4 ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): a__ = 1e-4 def A ( self ): """simple docstring""" __magic_name__ :Optional[int] = tf.constant([[4, 1_0]] ) __magic_name__ :Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __magic_name__ :Optional[Any] = emba(input_ids.shape ) __magic_name__ :List[str] = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __magic_name__ :Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) __magic_name__ :Optional[int] = emba.weight[:3, :5] tf.debugging.assert_near(__lowerCAmelCase , __lowerCAmelCase , atol=self.tolerance ) @require_tf class lowerCamelCase_ ( unittest.TestCase ): a__ = 1e-4 def A ( self ): """simple docstring""" # 2,12,16,64 __magic_name__ :int = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __magic_name__ :str = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __magic_name__ :int = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) __magic_name__ :List[str] = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] __magic_name__ , __magic_name__ :Union[str, Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :Tuple = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __magic_name__ :List[str] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __lowerCAmelCase , atol=self.tolerance )
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
import numpy as np from PIL import Image def _A ( _lowercase , _lowercase , _lowercase ) -> np.ndarray: """simple docstring""" __UpperCamelCase = np.array(_lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 # compute the shape of the output matrix __UpperCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __UpperCamelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __UpperCamelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __UpperCamelCase = 0 __UpperCamelCase = 0 return updated_arr def _A ( _lowercase , _lowercase , _lowercase ) -> np.ndarray: """simple docstring""" __UpperCamelCase = np.array(_lowercase ) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix' ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 # compute the shape of the output matrix __UpperCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __UpperCamelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __UpperCamelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __UpperCamelCase = 0 __UpperCamelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image __snake_case = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
1
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["""MobileViTFeatureExtractor"""] UpperCAmelCase_ = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
2
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Any = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): lowerCAmelCase = args.pruning_method lowerCAmelCase = args.threshold lowerCAmelCase = args.model_name_or_path.rstrip('/' ) lowerCAmelCase = args.target_model_path print(F'Load fine-pruned model from {model_name_or_path}' ) lowerCAmelCase = torch.load(os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) ) lowerCAmelCase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) elif "classifier" in name or "qa_output" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) elif "bias" in name: lowerCAmelCase = tensor print(F'Copied layer {name}' ) else: if pruning_method == "magnitude": lowerCAmelCase = MagnitudeBinarizer.apply(inputs=_UpperCAmelCase , threshold=_UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "topK": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase = TopKBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase = ThresholdBinarizer.apply(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) elif pruning_method == "l0": if "mask_scores" in name: continue lowerCAmelCase = name[:-6] lowerCAmelCase = model[F'{prefix_}mask_scores'] lowerCAmelCase ,lowerCAmelCase = -0.1, 1.1 lowerCAmelCase = torch.sigmoid(_UpperCAmelCase ) lowerCAmelCase = s * (r - l) + l lowerCAmelCase = s_bar.clamp(min=0.0 , max=1.0 ) lowerCAmelCase = tensor * mask print(F'Pruned layer {name}' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: lowerCAmelCase = os.path.join( os.path.dirname(_UpperCAmelCase ) , F'bertarized_{os.path.basename(_UpperCAmelCase )}' ) if not os.path.isdir(_UpperCAmelCase ): shutil.copytree(_UpperCAmelCase , _UpperCAmelCase ) print(F'\nCreated folder {target_model_path}' ) torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) __UpperCamelCase : List[Any] = parser.parse_args() main(args)
4
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = BlipImageProcessor() _lowerCAmelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _lowerCAmelCase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = InstructBlipProcessor(_lowercase , _lowercase , _lowercase ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).tokenizer def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).qformer_tokenizer def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 ) _lowerCAmelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowercase ) self.assertIsInstance(processor.qformer_tokenizer , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(_lowercase , return_tensors="""np""" ) _lowerCAmelCase = processor(images=_lowercase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = processor(text=_lowercase ) _lowerCAmelCase = tokenizer(_lowercase , return_token_type_ids=_lowercase ) _lowerCAmelCase = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(_lowercase ): processor() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(_lowercase ) _lowerCAmelCase = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=_lowercase , images=_lowercase ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "" lowerCamelCase_ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase_ = None # compression type in fsspec. ex: "gzip" lowerCamelCase_ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self :Optional[int] , __A :str = "" , __A :Optional[str] = None , __A :Optional[dict] = None , **__A :List[str] ) -> Any: """simple docstring""" super().__init__(self , **__A ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode SCREAMING_SNAKE_CASE__ = fsspec.open( __A , mode="""rb""" , protocol=__A , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) SCREAMING_SNAKE_CASE__ = os.path.basename(self.file.path.split("""::""" )[0] ) SCREAMING_SNAKE_CASE__ = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) SCREAMING_SNAKE_CASE__ = None @classmethod def _snake_case ( cls :Any , __A :Tuple ) -> List[str]: """simple docstring""" return super()._strip_protocol(__A ).lstrip("""/""" ) def _snake_case ( self :Union[str, Any] ) -> Tuple: """simple docstring""" if self.dir_cache is None: SCREAMING_SNAKE_CASE__ = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} SCREAMING_SNAKE_CASE__ = {f["""name"""]: f} def _snake_case ( self :Optional[int] , __A :str ) -> str: """simple docstring""" return self.file.open().read() def _snake_case ( self :List[str] , __A :str , __A :str = "rb" , __A :int=None , __A :List[str]=True , __A :Optional[Any]=None , **__A :Union[str, Any] , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ = self._strip_protocol(__A ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "bz2" lowerCamelCase_ = "bz2" lowerCamelCase_ = ".bz2" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "gzip" lowerCamelCase_ = "gzip" lowerCamelCase_ = ".gz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "lz4" lowerCamelCase_ = "lz4" lowerCamelCase_ = ".lz4" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "xz" lowerCamelCase_ = "xz" lowerCamelCase_ = ".xz" class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "zstd" lowerCamelCase_ = "zstd" lowerCamelCase_ = ".zst" def __init__( self :List[Any] , __A :str , __A :str = "rb" , __A :Optional[str] = None , __A :Optional[dict] = None , __A :int = DEFAULT_BLOCK_SIZE , **__A :Optional[int] , ) -> Union[str, Any]: """simple docstring""" super().__init__( fo=__A , mode=__A , target_protocol=__A , target_options=__A , block_size=__A , **__A , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 SCREAMING_SNAKE_CASE__ = self.file.__enter__ class UpperCamelCase_ : def __init__( self :int , __A :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = file_ def __enter__( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self._file.__enter__() return self def __exit__( self :Optional[Any] , *__A :List[Any] , **__A :int ) -> Tuple: """simple docstring""" self._file.__exit__(*__A , **__A ) def __iter__( self :Any ) -> Optional[int]: """simple docstring""" return iter(self._file ) def _snake_case ( self :Dict ) -> Dict: """simple docstring""" return next(self._file ) def __getattr__( self :Union[str, Any] , __A :List[str] ) -> Optional[Any]: """simple docstring""" return getattr(self._file , __A ) def fixed_enter(*__A :List[Any] , **__A :Optional[int] ): return WrappedFile(_enter(*__A , **__A ) ) SCREAMING_SNAKE_CASE__ = fixed_enter
6
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
0
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_snake_case ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
7
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Any = 3 __A : Optional[Any] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
8
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 16_000 ) -> Union[str, Any]: A__ = int(round(sample_rate * max_length ) ) if len(__UpperCamelCase ) <= sample_length: return wav A__ = randint(0 , len(__UpperCamelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __lowerCAmelCase : """simple docstring""" A__ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"help": "Name of a dataset from the datasets package"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "A file containing the training audio paths and labels."} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "A file containing the validation audio paths and labels."} ) A__ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) A__ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) A__ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) A__ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) A__ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A__ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) A__ : float = field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class __lowerCAmelCase : """simple docstring""" A__ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) A__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A__ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"help": "Name or path of preprocessor config."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) A__ : Optional[bool] = field( default=UpperCAmelCase_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) A__ : bool = field( default=UpperCAmelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def _a ( self : Dict ): """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , _snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def A ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A__ , A__ , A__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A__ , A__ , A__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , __UpperCamelCase , __UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() A__ = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. A__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. A__ = DatasetDict() A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) A__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy A__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. A__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) A__ = feature_extractor.model_input_names[0] def train_transforms(__UpperCamelCase ): A__ = [] for audio in batch[data_args.audio_column_name]: A__ = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__UpperCamelCase ) A__ = feature_extractor(__UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) A__ = {model_input_name: inputs.get(__UpperCamelCase )} A__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__UpperCamelCase ): A__ = [audio['array'] for audio in batch[data_args.audio_column_name]] A__ = feature_extractor(__UpperCamelCase , sampling_rate=feature_extractor.sampling_rate ) A__ = {model_input_name: inputs.get(__UpperCamelCase )} A__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. A__ = raw_datasets['train'].features[data_args.label_column_name].names A__ , A__ = {}, {} for i, label in enumerate(__UpperCamelCase ): A__ = str(__UpperCamelCase ) A__ = label # Load the accuracy metric from the datasets package A__ = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase ): A__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__UpperCamelCase , references=eval_pred.label_ids ) A__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__UpperCamelCase ) , labelaid=__UpperCamelCase , idalabel=__UpperCamelCase , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) A__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: A__ = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__UpperCamelCase , output_all_columns=__UpperCamelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: A__ = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__UpperCamelCase , output_all_columns=__UpperCamelCase ) # Initialize our trainer A__ = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=__UpperCamelCase , tokenizer=__UpperCamelCase , ) # Training if training_args.do_train: A__ = None if training_args.resume_from_checkpoint is not None: A__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: A__ = last_checkpoint A__ = trainer.train(resume_from_checkpoint=__UpperCamelCase ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: A__ = trainer.evaluate() trainer.log_metrics('eval' , __UpperCamelCase ) trainer.save_metrics('eval' , __UpperCamelCase ) # Write model card and (optionally) push to hub A__ = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCamelCase ) else: trainer.create_model_card(**__UpperCamelCase ) if __name__ == "__main__": main()
9
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
def _snake_case ( __snake_case , __snake_case ): while a != 0: _UpperCamelCase , _UpperCamelCase = b % a, a return b def _snake_case ( __snake_case , __snake_case ): if gcd(__snake_case , __snake_case ) != 1: _UpperCamelCase = f"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(__snake_case ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1, 0, a _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0, 1, m while va != 0: _UpperCamelCase = ua // va _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
10
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
0
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" if any(not isinstance(__A , __A) or x < 0 for x in sequence): raise TypeError('''Sequence must be list of non-negative integers''') for _ in range(len(__A)): for i, (rod_upper, rod_lower) in enumerate(zip(__A , sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
11
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : List[str] = 't5' __lowerCAmelCase : List[str] = ['past_key_values'] __lowerCAmelCase : List[str] = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self , SCREAMING_SNAKE_CASE_=3_21_28 , SCREAMING_SNAKE_CASE_=5_12 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=20_48 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=8 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=1_28 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=1E-6 , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_="relu" , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Optional[Any] = vocab_size lowercase__ : Union[str, Any] = d_model lowercase__ : Union[str, Any] = d_kv lowercase__ : List[Any] = d_ff lowercase__ : Optional[Any] = num_layers lowercase__ : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ : Any = num_heads lowercase__ : Tuple = relative_attention_num_buckets lowercase__ : Union[str, Any] = relative_attention_max_distance lowercase__ : str = dropout_rate lowercase__ : Dict = layer_norm_epsilon lowercase__ : Optional[int] = initializer_factor lowercase__ : str = feed_forward_proj lowercase__ : Optional[int] = use_cache lowercase__ : str = self.feed_forward_proj.split("""-""") lowercase__ : Tuple = act_info[-1] lowercase__ : Optional[int] = act_info[0] == """gated""" if len(SCREAMING_SNAKE_CASE_) > 1 and act_info[0] != "gated" or len(SCREAMING_SNAKE_CASE_) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""") # for backwards compatibility if feed_forward_proj == "gated-gelu": lowercase__ : str = """gelu_new""" super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) class _snake_case ( UpperCAmelCase_ ): @property def lowercase__ ( self): '''simple docstring''' lowercase__ : str = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: lowercase__ : List[str] = """past_encoder_sequence + sequence""" lowercase__ : int = {0: """batch"""} lowercase__ : Optional[Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowercase__ : int = {0: """batch""", 1: """decoder_sequence"""} lowercase__ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction="""inputs""") return common_inputs @property def lowercase__ ( self): '''simple docstring''' return 13
12
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
0
'''simple docstring''' A__ : dict[tuple[int, int, int], int] = {} def UpperCAmelCase__ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __lowerCamelCase : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __lowerCamelCase : Tuple = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __lowerCamelCase : int = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __lowerCamelCase : List[Any] = _calculate(days - 1 , UpperCAmelCase_ , 0 ) __lowerCamelCase : Optional[int] = state_late + state_absent + state_ontime __lowerCamelCase : Union[str, Any] = prizestrings return prizestrings def UpperCAmelCase__ ( UpperCAmelCase_ : int = 30 ) -> int: return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
13
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
0
from __future__ import annotations import math def __UpperCAmelCase ( __a : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__a ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True a__ = [num for num in range(3, 100001, 2) if not is_prime(num)] def __UpperCAmelCase ( __a : int ) -> list[int]: """simple docstring""" if not isinstance(__a ,__a ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _a : Dict = [] for num in range(len(__a ) ): _a : Optional[Any] = 0 while 2 * i * i <= odd_composites[num]: _a : Optional[int] = odd_composites[num] - 2 * i * i if is_prime(__a ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__a ) == n: return list_nums return [] def __UpperCAmelCase ( ) -> int: """simple docstring""" return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
14
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = 384 if "tiny" in model_name: lowercase__ = [3, 3, 9, 3] lowercase__ = [96, 192, 384, 768] if "small" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [96, 192, 384, 768] if "base" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [128, 256, 512, 1024] lowercase__ = 512 if "large" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [192, 384, 768, 1536] lowercase__ = 768 if "xlarge" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [256, 512, 1024, 2048] lowercase__ = 1024 # set label information lowercase__ = 150 lowercase__ = """huggingface/label-files""" lowercase__ = """ade20k-id2label.json""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = ConvNextConfig( depths=__magic_name__ , hidden_sizes=__magic_name__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) lowercase__ = UperNetConfig( backbone_config=__magic_name__ , auxiliary_in_channels=__magic_name__ , num_labels=__magic_name__ , idalabel=__magic_name__ , labelaid=__magic_name__ , ) return config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" lowercase__ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = dct.pop(__magic_name__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="""cpu""" )["""state_dict"""] lowercase__ = get_upernet_config(__magic_name__ ) lowercase__ = UperNetForSemanticSegmentation(__magic_name__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(__magic_name__ ) if "bn" in key: lowercase__ = key.replace("""bn""" , """batch_norm""" ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify on image lowercase__ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("""RGB""" ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): lowercase__ = model(__magic_name__ ) if model_name == "upernet-convnext-tiny": lowercase__ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": lowercase__ = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": lowercase__ = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": lowercase__ = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": lowercase__ = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A : Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : List[str] = logging.get_logger(__name__) __A : str = { 'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json', } class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' lowerCamelCase__ = "resnet" lowerCamelCase__ = ["basic", "bottleneck"] def __init__( self : List[Any] , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : int=[256, 512, 1024, 2048] , __lowerCamelCase : Dict=[3, 4, 6, 3] , __lowerCamelCase : List[str]="bottleneck" , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Union[str, Any] , ): super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = downsample_in_first_stage SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' lowerCamelCase__ = version.parse("1.11" ) @property def _snake_case ( self : List[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _snake_case ( self : Union[str, Any] ): return 1e-3
16
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "swinv2" __lowerCamelCase : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _lowerCAmelCase=224 , _lowerCAmelCase=4 , _lowerCAmelCase=3 , _lowerCAmelCase=96 , _lowerCAmelCase=[2, 2, 6, 2] , _lowerCAmelCase=[3, 6, 12, 24] , _lowerCAmelCase=7 , _lowerCAmelCase=4.0 , _lowerCAmelCase=True , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.1 , _lowerCAmelCase="gelu" , _lowerCAmelCase=False , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase=32 , **_lowerCAmelCase , ) -> Tuple: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = depths _lowerCAmelCase = len(_lowerCAmelCase ) _lowerCAmelCase = num_heads _lowerCAmelCase = window_size _lowerCAmelCase = mlp_ratio _lowerCAmelCase = qkv_bias _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = drop_path_rate _lowerCAmelCase = hidden_act _lowerCAmelCase = use_absolute_embeddings _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = initializer_range _lowerCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase = int(embed_dim * 2 ** (len(_lowerCAmelCase ) - 1) ) _lowerCAmelCase = (0, 0, 0, 0)
18
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=2 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , __a=0 , ) -> Any: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope _UpperCamelCase = projection_dim def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) _UpperCamelCase = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = TFDPRContextEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder(config=__a) _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = TFDPRReader(config=__a) _UpperCamelCase = model(__a , attention_mask=__a) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowercase__ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__a) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__a) @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRContextEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained(__a) self.assertIsNotNone(__a) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFDPRReader.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''') _UpperCamelCase = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] _UpperCamelCase = model(__a)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _UpperCamelCase = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4))
19
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
0
def _lowercase( __a : list ): a__ =len(__a ) for i in range(1 , __a ): a__ =collection[i] a__ =0 a__ =i - 1 while low <= high: a__ =(low + high) // 2 if val < collection[mid]: a__ =mid - 1 else: a__ =mid + 1 for j in range(__a , __a , -1 ): a__ =collection[j - 1] a__ =val return collection if __name__ == "__main__": _lowerCAmelCase: Optional[int] = input('Enter numbers separated by a comma:\n').strip() _lowerCAmelCase: str = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
20
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
0
from __future__ import annotations def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None ): if start is None: __magic_name__ : Tuple =0 if end is None: __magic_name__ : Tuple =len(lowerCamelCase ) - 1 if start >= end: return __magic_name__ : str =(start + end) // 2 slowsort(lowerCamelCase , lowerCamelCase , lowerCamelCase ) slowsort(lowerCamelCase , mid + 1 , lowerCamelCase ) if sequence[end] < sequence[mid]: __magic_name__ , __magic_name__ : Tuple =sequence[mid], sequence[end] slowsort(lowerCamelCase , lowerCamelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
21
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' from math import pi, sqrt def snake_case_ (UpperCamelCase : float ): '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(UpperCamelCase ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(UpperCamelCase ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case_ (): '''simple docstring''' assert gamma(0.5 ) == sqrt(UpperCamelCase ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() _snake_case : Optional[Any] = 1.0 while num: _snake_case : Dict = float(input('Gamma of: ')) print(F'''gamma({num}) = {gamma(num)}''') print('\nEnter 0 to exit...')
22
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available snake_case__ : Optional[Any] = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Any = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys snake_case__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
'''simple docstring''' from __future__ import annotations def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int )-> list[list[int]]: '''simple docstring''' __snake_case = [] create_all_state(1 , _lowerCamelCase , _lowerCamelCase , [] , _lowerCamelCase ) return result def _UpperCamelCase (_lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : list[int] , _lowerCamelCase : list[list[int]] , )-> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_lowerCamelCase , total_number - level + 2 ): current_list.append(_lowerCamelCase ) create_all_state(i + 1 , _lowerCamelCase , level - 1 , _lowerCamelCase , _lowerCamelCase ) current_list.pop() def _UpperCamelCase (_lowerCamelCase : list[list[int]] )-> None: '''simple docstring''' for i in total_list: print(*_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : str = generate_all_combinations(n, k) print_all_state(total_list)
24
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset a_ = random.Random() def lowerCamelCase__ ( _a , _a=1.0 , _a=None , _a=None): if rng is None: SCREAMING_SNAKE_CASE : List[str] = global_rng SCREAMING_SNAKE_CASE : Optional[int] = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str , a : Any , a : Union[str, Any]=7 , a : List[Any]=400 , a : str=2000 , a : Dict=2048 , a : List[Any]=128 , a : Tuple=1 , a : Union[str, Any]=512 , a : List[str]=30 , a : Tuple=4_4100 , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : List[str] = min_seq_length SCREAMING_SNAKE_CASE : List[str] = max_seq_length SCREAMING_SNAKE_CASE : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE : Dict = spectrogram_length SCREAMING_SNAKE_CASE : Optional[int] = feature_size SCREAMING_SNAKE_CASE : List[Any] = num_audio_channels SCREAMING_SNAKE_CASE : Optional[Any] = hop_length SCREAMING_SNAKE_CASE : List[Any] = chunk_length SCREAMING_SNAKE_CASE : List[str] = sampling_rate def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __UpperCamelCase ( self : Optional[int] , a : int=False , a : Tuple=False ) -> Union[str, Any]: """simple docstring""" def _flatten(a : Any ): return list(itertools.chain(*a ) ) if equal_length: SCREAMING_SNAKE_CASE : Optional[int] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE : Any = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =TvltFeatureExtractor def __UpperCamelCase ( self : int ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : int = TvltFeatureExtractionTester(self ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a , "spectrogram_length" ) ) self.assertTrue(hasattr(a , "feature_size" ) ) self.assertTrue(hasattr(a , "num_audio_channels" ) ) self.assertTrue(hasattr(a , "hop_length" ) ) self.assertTrue(hasattr(a , "chunk_length" ) ) self.assertTrue(hasattr(a , "sampling_rate" ) ) def __UpperCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = feat_extract_first.save_pretrained(a )[0] check_json_file_has_correct_format(a ) SCREAMING_SNAKE_CASE : Any = self.feature_extraction_class.from_pretrained(a ) SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : int = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : str = dict_first.pop("mel_filters" ) SCREAMING_SNAKE_CASE : str = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def __UpperCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(a , "feat_extract.json" ) feat_extract_first.to_json_file(a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class.from_json_file(a ) SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE : Tuple = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE : str = dict_first.pop("mel_filters" ) SCREAMING_SNAKE_CASE : Optional[Any] = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(a , a ) ) self.assertEqual(a , a ) def __UpperCamelCase ( self : Dict ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE : str = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE : str = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE : Tuple = feature_extractor(a , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor( a , return_tensors="np" , sampling_rate=4_4100 , mask_audio=a ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(a ) SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor(a , return_tensors="np" , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __UpperCamelCase ( self : List[Any] , a : str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE : Dict = ds.sort("id" ).select(range(a ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE : Tuple = TvltFeatureExtractor() SCREAMING_SNAKE_CASE : Any = feature_extractor(a , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , a , atol=1e-4 ) )
25
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : Union[str, Any] = len(_lowerCamelCase ) # We need to create solution object to save path. __snake_case : Optional[Any] = [[0 for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase )] __snake_case : int = run_maze(_lowerCamelCase , 0 , 0 , _lowerCamelCase ) if solved: print("""\n""".join(str(_lowerCamelCase ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" __snake_case : str = len(_lowerCamelCase ) # Final check point. if i == j == (size - 1): __snake_case : Tuple = 1 return True __snake_case : Union[str, Any] = (not i < 0) and (not j < 0) # Check lower bounds __snake_case : int = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __snake_case : Union[str, Any] = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __snake_case : Union[str, Any] = 1 # check for directions if ( run_maze(_lowerCamelCase , i + 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j + 1 , _lowerCamelCase ) or run_maze(_lowerCamelCase , i - 1 , _lowerCamelCase , _lowerCamelCase ) or run_maze(_lowerCamelCase , _lowerCamelCase , j - 1 , _lowerCamelCase ) ): return True __snake_case : Dict = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
26
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __A : List[str] = { "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], "tokenization_tapas": ["TapasTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCamelCase_ = 1_2_8_0_2_2 UpperCamelCase_ = 1_2_8_0_2_8 @require_sentencepiece class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[str] = MaMaaaTokenizer A : Optional[int] = False A : Tuple = False A : Optional[Any] = True def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : str = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] SCREAMING_SNAKE_CASE : List[str] = dict(zip(A, range(len(A ) ) ) ) SCREAMING_SNAKE_CASE : List[str] = Path(self.tmpdirname ) save_json(A, save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(A, save_dir / VOCAB_FILES_NAMES['spm_file'] ) SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self, **A ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname, **A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return ( "This is a test", "This is a test", ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = '</s>' SCREAMING_SNAKE_CASE : List[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ), A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Tuple = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0], '</s>' ) self.assertEqual(vocab_keys[1], '<unk>' ) self.assertEqual(vocab_keys[-1], '<s>' ) self.assertEqual(len(A ), tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def UpperCamelCase_ ( self ): '''simple docstring''' pass def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ), [2, 3, 4, 5, 6], ) SCREAMING_SNAKE_CASE : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(A, ['▁This', '▁is', '▁a', '▁t', 'est'] ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_string(A ) self.assertEqual(A, 'This is a test' ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'input_ids': [[128_022, 110_108, 397, 11, 38_272, 2_247, 124_811, 285, 18_105, 1_586, 207, 7, 39_534, 4_428, 397, 1_019, 18_105, 1_586, 207, 7, 41_337, 16_786, 241, 7, 20_214, 17, 125_690, 10_398, 7, 44_378, 58_069, 68_342, 7_798, 7_343, 11, 299, 33_310, 4, 158, 37_350, 94_077, 4_569, 299, 33_310, 90, 4, 52_840, 290, 4, 31_270, 112, 299, 682, 4, 52_840, 39_953, 14_079, 193, 52_519, 90_894, 17_894, 120_697, 11, 40_445, 551, 17, 1_019, 52_519, 90_894, 17_756, 963, 11, 40_445, 480, 17, 9_792, 1_120, 5_173, 1_393, 6_240, 16_786, 241, 120_996, 28, 1_245, 1_393, 118_240, 11_123, 1_019, 93_612, 2_691, 10_618, 98_058, 120_409, 1_928, 279, 4, 40_683, 367, 178, 207, 1_019, 103, 103_121, 506, 65_296, 5, 2], [128_022, 21_217, 367, 117, 125_450, 128, 719, 7, 7_308, 40, 93_612, 12_669, 1_116, 16_704, 71, 17_785, 3_699, 15_592, 35, 144, 9_584, 241, 11_943, 713, 950, 799, 2_247, 88_427, 150, 149, 118_813, 120_706, 1_019, 106_906, 81_518, 28, 1_224, 22_799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128_022, 1_658, 123_311, 5_155, 5_578, 4_722, 279, 14_947, 2_366, 1_120, 1_197, 14, 1_348, 9_232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A, model_name='facebook/m2m100_418M', revision='c168bae485c864188cf9aa0e4108b0b6934dc91e', ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): '''simple docstring''' A : Dict = '''facebook/m2m100_418M''' A : Dict = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] A : Optional[int] = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off A : Dict = [EN_CODE, 593, 1_949, 115_781, 4, 71_586, 4_234, 60_633, 126_233, 432, 123_808, 15_592, 1_197, 117_132, 120_618, 5, 2] @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' SCREAMING_SNAKE_CASE : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en', tgt_lang='fr' ) SCREAMING_SNAKE_CASE : List[Any] = 1 return cls def UpperCamelCase_ ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id('ar' ), 128_006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ), 128_022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ), 128_076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ), 128_063 ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer.get_vocab() self.assertEqual(len(A ), self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'], 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ), A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 'en' SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.assertIn(A, self.tokenizer.all_special_ids ) # fmt: off SCREAMING_SNAKE_CASE : List[Any] = [FR_CODE, 5_364, 82, 8_642, 4, 294, 47, 8, 14_028, 136, 3_286, 9_706, 6, 90_797, 6, 144_012, 162, 88_128, 30_061, 5, 2] # fmt: on SCREAMING_SNAKE_CASE : int = self.tokenizer.decode(A, skip_special_tokens=A ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=A ) self.assertEqual(A, A ) self.assertNotIn(self.tokenizer.eos_token, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[int] = MaMaaaTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.lang_token_to_id, A ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 'en' SCREAMING_SNAKE_CASE : Tuple = 'fr' SCREAMING_SNAKE_CASE : Any = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=A, return_tensors='pt' ) SCREAMING_SNAKE_CASE : List[str] = shift_tokens_right( batch['labels'], self.tokenizer.pad_token_id, self.tokenizer.eos_token_id ) for k in batch: SCREAMING_SNAKE_CASE : Any = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) SCREAMING_SNAKE_CASE : str = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) SCREAMING_SNAKE_CASE : int = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens, [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.tokenizer._build_translation_inputs('A test', return_tensors='pt', src_lang='en', tgt_lang='ar' ) self.assertEqual( nested_simplify(A ), { # en_XX, A, test, EOS 'input_ids': [[128_022, 58, 4_183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 128_006, }, )
28
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCamelCase ( unittest.TestCase ): def __init__( self , UpperCAmelCase , UpperCAmelCase=7 , UpperCAmelCase=3 , UpperCAmelCase=18 , UpperCAmelCase=30 , UpperCAmelCase=400 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=[0.5, 0.5, 0.5] , UpperCAmelCase=[0.5, 0.5, 0.5] , ): lowerCamelCase_ = size if size is not None else {'''shortest_edge''': 18} lowerCamelCase_ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std def UpperCAmelCase__ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ): lowerCamelCase_ = LevitImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCAmelCase , '''size''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase_ = image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase_ = image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase__ ( self ): # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase_ = image_processing(UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
29
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
0
from ..utils import DummyObject, requires_backends class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Dict: requires_backends(cls ,['''flax''', '''transformers'''] ) class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> str: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls ,['''flax''', '''transformers'''] ) class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Optional[Any]: requires_backends(cls ,['''flax''', '''transformers'''] ) class __a( metaclass=_a ): """simple docstring""" lowerCAmelCase = ['''flax''', '''transformers'''] def __init__( self ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> Any: requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def a__ ( cls ,*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) -> List[str]: requires_backends(cls ,['''flax''', '''transformers'''] )
30
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Optional[Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
31
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCAmelCase = load_file(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _UpperCAmelCase = pipeline.text_encoder else: _UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _UpperCAmelCase = pipeline.unet # find the target layer _UpperCAmelCase = layer_infos.pop(0 ) while len(SCREAMING_SNAKE_CASE_ ) > -1: try: _UpperCAmelCase = curr_layer.__getattr__(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase = layer_infos.pop(0 ) elif len(SCREAMING_SNAKE_CASE_ ) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCAmelCase = layer_infos.pop(0 ) _UpperCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(SCREAMING_SNAKE_CASE_ ) else: pair_keys.append(SCREAMING_SNAKE_CASE_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE_ ) return pipeline if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.base_model_path UpperCAmelCase_ = args.checkpoint_path UpperCAmelCase_ = args.dump_path UpperCAmelCase_ = args.lora_prefix_unet UpperCAmelCase_ = args.lora_prefix_text_encoder UpperCAmelCase_ = args.alpha UpperCAmelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
32
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
33
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
0
"""simple docstring""" def __snake_case ( _lowercase = 100_0000 ): """simple docstring""" UpperCamelCase = set(range(3 ,_lowercase ,2 ) ) primes.add(2 ) for p in range(3 ,_lowercase ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,_lowercase ,_lowercase ) ) ) UpperCamelCase = [float(_lowercase ) for n in range(limit + 1 )] for p in primes: for n in range(_lowercase ,limit + 1 ,_lowercase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
34
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ :Optional[int] = logging.get_logger(__name__) a_ :Union[str, Any] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class lowercase ( _UpperCAmelCase ): lowerCamelCase : Union[str, Any] = '''marian''' lowerCamelCase : Tuple = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , _lowercase : str=5_81_01 , _lowercase : Union[str, Any]=None , _lowercase : Tuple=10_24 , _lowercase : List[Any]=12 , _lowercase : int=40_96 , _lowercase : int=16 , _lowercase : str=12 , _lowercase : List[str]=40_96 , _lowercase : Tuple=16 , _lowercase : List[Any]=0.0 , _lowercase : Any=0.0 , _lowercase : List[Any]=True , _lowercase : Dict=True , _lowercase : Union[str, Any]="gelu" , _lowercase : int=10_24 , _lowercase : Optional[Any]=0.1 , _lowercase : List[Any]=0.0 , _lowercase : Optional[int]=0.0 , _lowercase : str=0.02 , _lowercase : Tuple=5_81_00 , _lowercase : int=False , _lowercase : Any=5_81_00 , _lowercase : Tuple=0 , _lowercase : Tuple=0 , _lowercase : List[Any]=True , **_lowercase : int , ): SCREAMING_SNAKE_CASE__ : List[str] = vocab_size SCREAMING_SNAKE_CASE__ : Dict = decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = d_model SCREAMING_SNAKE_CASE__ : Tuple = encoder_ffn_dim SCREAMING_SNAKE_CASE__ : int = encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE__ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Tuple = decoder_layers SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_attention_heads SCREAMING_SNAKE_CASE__ : int = dropout SCREAMING_SNAKE_CASE__ : Optional[int] = attention_dropout SCREAMING_SNAKE_CASE__ : List[str] = activation_dropout SCREAMING_SNAKE_CASE__ : Union[str, Any] = activation_function SCREAMING_SNAKE_CASE__ : Tuple = init_std SCREAMING_SNAKE_CASE__ : Optional[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = decoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = use_cache SCREAMING_SNAKE_CASE__ : str = encoder_layers SCREAMING_SNAKE_CASE__ : Any = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : str = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class lowercase ( _UpperCAmelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Any = {0: '''batch'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def lowercase__ ( self : Tuple ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super().outputs else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = super(_lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers for i in range(_lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : str = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : str = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : Dict = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : Optional[int] = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE__ : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = self.num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : str = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.num_layers SCREAMING_SNAKE_CASE__ : str = min(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = max(_lowercase , _lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : List[Any] = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def lowercase__ ( self : int , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): SCREAMING_SNAKE_CASE__ : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Any = seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Any = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : List[str] = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def lowercase__ ( self : Optional[Any] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : str = tokenizer.num_special_tokens_to_add(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : List[Any] = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def lowercase__ ( self : List[str] , _lowercase : PreTrainedTokenizer , _lowercase : int = -1 , _lowercase : int = -1 , _lowercase : bool = False , _lowercase : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def lowercase__ ( self : str , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Optional[int] , _lowercase : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Optional[Any] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase ) @property def lowercase__ ( self : Dict ): return 1E-4
35
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Dict = '''''' __lowerCamelCase : Union[str, Any] = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(self ,**SCREAMING_SNAKE_CASE_ ) snake_case : List[Any] = repo_info snake_case : Dict = token snake_case : Any = None def snake_case_ ( self ): '''simple docstring''' if self.dir_cache is None: snake_case : str = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes snake_case : Union[str, Any] = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(SCREAMING_SNAKE_CASE_ ): {"""name""": str(SCREAMING_SNAKE_CASE_ ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = "rb" ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' if not isinstance(self.repo_info ,SCREAMING_SNAKE_CASE_ ): raise NotImplementedError(F"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) snake_case : Tuple = hf_hub_url(self.repo_info.id ,SCREAMING_SNAKE_CASE_ ,revision=self.repo_info.sha ) return fsspec.open( SCREAMING_SNAKE_CASE_ ,mode=SCREAMING_SNAKE_CASE_ ,headers=get_authentication_headers_for_url(SCREAMING_SNAKE_CASE_ ,use_auth_token=self.token ) ,client_kwargs={"""trust_env""": True} ,).open() def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' self._get_dirs() snake_case : List[Any] = self._strip_protocol(SCREAMING_SNAKE_CASE_ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_=False ,**SCREAMING_SNAKE_CASE_ ): '''simple docstring''' self._get_dirs() snake_case : List[str] = PurePosixPath(path.strip("""/""" ) ) snake_case : Optional[int] = {} for p, f in self.dir_cache.items(): snake_case : List[str] = PurePosixPath(p.strip("""/""" ) ) snake_case : int = p.parent if root == path: snake_case : Any = f snake_case : Optional[Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
36
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
0
from __future__ import annotations from collections import namedtuple def UpperCamelCase_ ( __a , __a , __a ) -> tuple: a__ : Union[str, Any] = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
37
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : Dict = logging.get_logger(__name__) A_ : Any = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''detr''' lowerCamelCase__ = ['''past_key_values'''] lowerCamelCase__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_0_0 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case__ : Optional[int] = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = backbone_config.get("""model_type""" ) snake_case__ : List[Any] = CONFIG_MAPPING[backbone_model_type] snake_case__ : Dict = config_class.from_dict(__SCREAMING_SNAKE_CASE ) # set timm attributes to None snake_case__ , snake_case__ , snake_case__ : int = None, None, None snake_case__ : List[Any] = use_timm_backbone snake_case__ : Optional[int] = backbone_config snake_case__ : Tuple = num_channels snake_case__ : str = num_queries snake_case__ : Optional[int] = d_model snake_case__ : Tuple = encoder_ffn_dim snake_case__ : Union[str, Any] = encoder_layers snake_case__ : List[str] = encoder_attention_heads snake_case__ : Dict = decoder_ffn_dim snake_case__ : Any = decoder_layers snake_case__ : Optional[int] = decoder_attention_heads snake_case__ : List[Any] = dropout snake_case__ : List[str] = attention_dropout snake_case__ : Tuple = activation_dropout snake_case__ : List[str] = activation_function snake_case__ : List[str] = init_std snake_case__ : Optional[Any] = init_xavier_std snake_case__ : int = encoder_layerdrop snake_case__ : Any = decoder_layerdrop snake_case__ : int = encoder_layers snake_case__ : Dict = auxiliary_loss snake_case__ : Dict = position_embedding_type snake_case__ : Tuple = backbone snake_case__ : str = use_pretrained_backbone snake_case__ : Union[str, Any] = dilation # Hungarian matcher snake_case__ : int = class_cost snake_case__ : Optional[int] = bbox_cost snake_case__ : Dict = giou_cost # Loss coefficients snake_case__ : List[str] = mask_loss_coefficient snake_case__ : Optional[Any] = dice_loss_coefficient snake_case__ : Optional[Any] = bbox_loss_coefficient snake_case__ : List[Any] = giou_loss_coefficient snake_case__ : Optional[int] = eos_coefficient super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def __UpperCamelCase ( self ): return self.encoder_attention_heads @property def __UpperCamelCase ( self ): return self.d_model @classmethod def __UpperCamelCase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return cls(backbone_config=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case__ : Union[str, Any] = self.backbone_config.to_dict() snake_case__ : Tuple = self.__class__.model_type return output class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = version.parse('''1.11''' ) @property def __UpperCamelCase ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def __UpperCamelCase ( self ): return 1e-5 @property def __UpperCamelCase ( self ): return 1_2
38
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class snake_case_ : '''simple docstring''' def __init__( self : Tuple , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any]=1_3 , _UpperCamelCase : Dict=7 , _UpperCamelCase : List[str]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : List[Any]=True , _UpperCamelCase : str=9_9 , _UpperCamelCase : str=3_2 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : Optional[Any]=4 , _UpperCamelCase : Any=3_7 , _UpperCamelCase : Tuple="gelu" , _UpperCamelCase : Optional[Any]=0.1 , _UpperCamelCase : List[Any]=0.1 , _UpperCamelCase : Union[str, Any]=5_1_2 , _UpperCamelCase : Optional[int]=1_6 , _UpperCamelCase : Tuple=2 , _UpperCamelCase : Optional[Any]=0.02 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Optional[Any]=4 , _UpperCamelCase : List[str]=None , ) ->Tuple: snake_case_ = parent snake_case_ = 1_3 snake_case_ = 7 snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = True snake_case_ = 9_9 snake_case_ = 3_8_4 snake_case_ = 2 snake_case_ = 4 snake_case_ = 3_7 snake_case_ = '''gelu''' snake_case_ = 0.1 snake_case_ = 0.1 snake_case_ = 5_1_2 snake_case_ = 1_6 snake_case_ = 2 snake_case_ = 0.02 snake_case_ = 3 snake_case_ = 4 snake_case_ = 1_2_8 snake_case_ = 2 snake_case_ = 9 snake_case_ = 1 snake_case_ = None def snake_case__( self : Optional[Any] ) ->Optional[int]: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__( self : Optional[int] , _UpperCamelCase : Any , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Any , _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int ) ->Optional[int]: snake_case_ = TFConvBertModel(config=_UpperCamelCase ) snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} snake_case_ = [input_ids, input_mask] snake_case_ = model(_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__( self : str , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] ) ->Optional[int]: snake_case_ = TFConvBertForMaskedLM(config=_UpperCamelCase ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__( self : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : int , _UpperCamelCase : str , _UpperCamelCase : int , _UpperCamelCase : List[Any] ) ->Dict: snake_case_ = self.num_labels snake_case_ = TFConvBertForSequenceClassification(config=_UpperCamelCase ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : int , _UpperCamelCase : int , _UpperCamelCase : List[Any] , _UpperCamelCase : int , _UpperCamelCase : List[Any] ) ->str: snake_case_ = self.num_choices snake_case_ = TFConvBertForMultipleChoice(config=_UpperCamelCase ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = tf.tile(tf.expand_dims(_UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__( self : Any , _UpperCamelCase : int , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] ) ->str: snake_case_ = self.num_labels snake_case_ = TFConvBertForTokenClassification(config=_UpperCamelCase ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[Any] ) ->Tuple: snake_case_ = TFConvBertForQuestionAnswering(config=_UpperCamelCase ) snake_case_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__( self : List[str] ) ->List[Any]: snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ( snake_case_ ), ) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Dict = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Union[str, Any] = False SCREAMING_SNAKE_CASE : int = False def snake_case__( self : str ) ->Union[str, Any]: snake_case_ = TFConvBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=3_7 ) def snake_case__( self : List[str] ) ->Optional[Any]: self.config_tester.run_common_tests() def snake_case__( self : str ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def snake_case__( self : str ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def snake_case__( self : int ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def snake_case__( self : str ) ->Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def snake_case__( self : str ) ->str: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True snake_case_ = True if hasattr(_UpperCamelCase , '''use_cache''' ): snake_case_ = True snake_case_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) snake_case_ = getattr(self.model_tester , '''key_length''' , _UpperCamelCase ) for model_class in self.all_model_classes: snake_case_ = self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) snake_case_ = model_class(_UpperCamelCase ) snake_case_ = len(model(_UpperCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCamelCase , saved_model=_UpperCamelCase ) snake_case_ = os.path.join(_UpperCamelCase , '''saved_model''' , '''1''' ) snake_case_ = tf.keras.models.load_model(_UpperCamelCase ) snake_case_ = model(_UpperCamelCase ) if self.is_encoder_decoder: snake_case_ = outputs['''encoder_hidden_states'''] snake_case_ = outputs['''encoder_attentions'''] else: snake_case_ = outputs['''hidden_states'''] snake_case_ = outputs['''attentions'''] self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) snake_case_ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def snake_case__( self : Union[str, Any] ) ->Tuple: snake_case_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(_UpperCamelCase ) def snake_case__( self : List[str] ) ->Any: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True snake_case_ = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) snake_case_ = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) snake_case_ = getattr(self.model_tester , '''key_length''' , _UpperCamelCase ) snake_case_ = getattr(self.model_tester , '''key_length''' , _UpperCamelCase ) def check_decoder_attentions_output(_UpperCamelCase : List[Any] ): snake_case_ = len(_UpperCamelCase ) self.assertEqual(out_len % 2 , 0 ) snake_case_ = outputs.decoder_attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCamelCase : Dict ): snake_case_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: snake_case_ = True snake_case_ = False snake_case_ = model_class(_UpperCamelCase ) snake_case_ = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ = len(_UpperCamelCase ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) if self.is_encoder_decoder: snake_case_ = model_class(_UpperCamelCase ) snake_case_ = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_decoder_attentions_output(_UpperCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] snake_case_ = True snake_case_ = model_class(_UpperCamelCase ) snake_case_ = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) # Check attention is always last and order is fine snake_case_ = True snake_case_ = True snake_case_ = model_class(_UpperCamelCase ) snake_case_ = model(self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCamelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCamelCase ) check_encoder_attentions_output(_UpperCamelCase ) @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def snake_case__( self : Any ) ->int: snake_case_ = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) snake_case_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case_ = model(_UpperCamelCase )[0] snake_case_ = [1, 6, 7_6_8] self.assertEqual(output.shape , _UpperCamelCase ) snake_case_ = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 )
39
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
40
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
0
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow lowerCAmelCase__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class lowercase_ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Path ,lowercase__ : Union[str, None] = None ,lowercase__ : Union[List[str], None] = None ,lowercase__ : Union[str, List[str], None] = None ,lowercase__ : bool = True ,): __lowercase = [file for file in os.listdir(lowercase__ ) if os.path.isfile(os.path.join(lowercase__ ,lowercase__ ) )] if identifier is not None: __lowercase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(lowercase__ ,lowercase__ ): for n_ in n_identifier: __lowercase = [file for file in files if n_ not in file] else: __lowercase = [file for file in files if n_identifier not in file] __lowercase = ignore_files or [] ignore_files.append('''__init__.py''' ) __lowercase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' ,lowercase__ ) if only_modules: __lowercase = file.split('''.''' )[0] try: __lowercase = getattr(lowercase__ ,lowercase__ ) __lowercase = doctest.DocTestSuite(lowercase__ ) __lowercase = unittest.TextTestRunner().run(lowercase__ ) self.assertIs(len(result.failures ) ,0 ) except AttributeError: logger.info(F"{module_identifier} is not a module." ) else: __lowercase = doctest.testfile(str('''..''' / directory / file ) ,optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed ,0 ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = Path('''src/transformers''' ) __lowercase = '''modeling''' __lowercase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(lowercase__ ,identifier=lowercase__ ,ignore_files=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = Path('''src/transformers''' ) __lowercase = '''tokenization''' self.analyze_directory(lowercase__ ,identifier=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = Path('''src/transformers''' ) __lowercase = '''configuration''' self.analyze_directory(lowercase__ ,identifier=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = Path('''src/transformers''' ) __lowercase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(lowercase__ ,n_identifier=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = Path('''docs/source''' ) __lowercase = ['''favicon.ico'''] self.analyze_directory(lowercase__ ,ignore_files=lowercase__ ,only_modules=lowercase__ )
41
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
0
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ) -> Dict: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _UpperCamelCase ( __UpperCamelCase ) -> list[tuple[int, int]]: lowerCamelCase_ = 0 lowerCamelCase_ = len(__UpperCamelCase ) # No of vertices in graph lowerCamelCase_ = [0] * n lowerCamelCase_ = [False] * n def dfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): lowerCamelCase_ = True lowerCamelCase_ = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,id_ ) lowerCamelCase_ = min(low[at] ,low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCamelCase_ = min(low[at] ,low[to] ) lowerCamelCase_ = [] for i in range(__UpperCamelCase ): if not visited[i]: dfs(__UpperCamelCase ,-1 ,__UpperCamelCase ,id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
42
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
0
from __future__ import annotations from collections.abc import Generator def _a ( ): """simple docstring""" lowercase__ = {} lowercase__ = 2 while True: lowercase__ = factor_map.pop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if factor: lowercase__ = factor + prime while x in factor_map: x += factor lowercase__ = factor else: lowercase__ = prime yield prime prime += 1 def _a ( SCREAMING_SNAKE_CASE = 1E10 ): """simple docstring""" lowercase__ = sieve() lowercase__ = 1 while True: lowercase__ = next(SCREAMING_SNAKE_CASE ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(SCREAMING_SNAKE_CASE ) n += 2 if __name__ == "__main__": print(solution())
43
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'vinvino02/glpn-kitti': 'https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json', # See all GLPN models at https://huggingface.co/models?filter=glpn } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'glpn' def __init__( self : Tuple,__A : Optional[int]=3,__A : Optional[int]=4,__A : str=[2, 2, 2, 2],__A : Union[str, Any]=[8, 4, 2, 1],__A : Tuple=[3_2, 6_4, 1_6_0, 2_5_6],__A : int=[7, 3, 3, 3],__A : str=[4, 2, 2, 2],__A : int=[1, 2, 5, 8],__A : List[Any]=[4, 4, 4, 4],__A : Optional[int]="gelu",__A : int=0.0,__A : Tuple=0.0,__A : Tuple=0.02,__A : Optional[int]=0.1,__A : Optional[int]=1e-6,__A : Optional[int]=6_4,__A : Optional[Any]=1_0,__A : Tuple=-1,**__A : List[str],): super().__init__(**__A ) _lowerCamelCase : Tuple = num_channels _lowerCamelCase : Union[str, Any] = num_encoder_blocks _lowerCamelCase : Dict = depths _lowerCamelCase : List[Any] = sr_ratios _lowerCamelCase : str = hidden_sizes _lowerCamelCase : Any = patch_sizes _lowerCamelCase : Any = strides _lowerCamelCase : Dict = mlp_ratios _lowerCamelCase : int = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Union[str, Any] = drop_path_rate _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = decoder_hidden_size _lowerCamelCase : int = max_depth _lowerCamelCase : Dict = head_in_index
44
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCAmelCase_ : """simple docstring""" def __init__( self :str , lowerCamelCase__ :Dict ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden UpperCamelCase__ :Optional[Any] = deepcopy(lowerCamelCase__ ) elif os.path.exists(lowerCamelCase__ ): with io.open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase__ :int = json.load(lowerCamelCase__ ) else: try: UpperCamelCase__ :int = baseaa.urlsafe_baadecode(lowerCamelCase__ ).decode("""utf-8""" ) UpperCamelCase__ :Union[str, Any] = json.loads(lowerCamelCase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) UpperCamelCase__ :Tuple = config self.set_stage_and_offload() def __a ( self :Tuple ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. UpperCamelCase__ :Dict = self.get_value("""zero_optimization.stage""" , -1 ) # offload UpperCamelCase__ :Tuple = False if self.is_zeroa() or self.is_zeroa(): UpperCamelCase__ :Optional[int] = set(["""cpu""", """nvme"""] ) UpperCamelCase__ :Optional[Any] = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: UpperCamelCase__ :Optional[int] = True def __a ( self :Union[str, Any] , lowerCamelCase__ :str ): UpperCamelCase__ :Tuple = self.config # find the config node of interest if it exists UpperCamelCase__ :Any = ds_key_long.split(""".""" ) UpperCamelCase__ :int = nodes.pop() for node in nodes: UpperCamelCase__ :Dict = config.get(lowerCamelCase__ ) if config is None: return None, ds_key return config, ds_key def __a ( self :Dict , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[Any]=None ): UpperCamelCase__ , UpperCamelCase__ :Dict = self.find_config_node(lowerCamelCase__ ) if config is None: return default return config.get(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Tuple , lowerCamelCase__ :str , lowerCamelCase__ :Tuple=False ): UpperCamelCase__ :Tuple = self.config # find the config node of interest if it exists UpperCamelCase__ :Optional[Any] = ds_key_long.split(""".""" ) for node in nodes: UpperCamelCase__ :Any = config UpperCamelCase__ :Optional[Any] = config.get(lowerCamelCase__ ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCamelCase__ ) def __a ( self :Any , lowerCamelCase__ :str ): UpperCamelCase__ :Any = self.get_value(lowerCamelCase__ ) return False if value is None else bool(lowerCamelCase__ ) def __a ( self :List[Any] , lowerCamelCase__ :List[Any] ): UpperCamelCase__ :Dict = self.get_value(lowerCamelCase__ ) return False if value is None else not bool(lowerCamelCase__ ) def __a ( self :Dict ): return self._stage == 2 def __a ( self :List[str] ): return self._stage == 3 def __a ( self :Optional[int] ): return self._offload class lowerCAmelCase_ : """simple docstring""" def __init__( self :Union[str, Any] , lowerCamelCase__ :int ): UpperCamelCase__ :Union[str, Any] = engine def __a ( self :str , lowerCamelCase__ :List[str] , **lowerCamelCase__ :Optional[int] ): # runs backpropagation and handles mixed precision self.engine.backward(lowerCamelCase__ , **lowerCamelCase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :Dict , lowerCamelCase__ :Tuple ): super().__init__(lowerCamelCase__ , device_placement=lowerCamelCase__ , scaler=lowerCamelCase__ ) UpperCamelCase__ :Union[str, Any] = hasattr(self.optimizer , """overflow""" ) def __a ( self :int , lowerCamelCase__ :str=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __a ( self :List[Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __a ( self :List[Any] ): if self.__has_overflow__: return self.optimizer.overflow return False class lowerCAmelCase_ ( lowercase ): """simple docstring""" def __init__( self :List[Any] , lowerCamelCase__ :Any , lowerCamelCase__ :Tuple ): super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :Union[str, Any] ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCAmelCase_ : """simple docstring""" def __init__( self :Optional[Any] , lowerCamelCase__ :List[str] , lowerCamelCase__ :Dict=0.001 , lowerCamelCase__ :Optional[int]=0 , **lowerCamelCase__ :List[Any] ): UpperCamelCase__ :Any = params UpperCamelCase__ :Tuple = lr UpperCamelCase__ :Optional[int] = weight_decay UpperCamelCase__ :Optional[Any] = kwargs class lowerCAmelCase_ : """simple docstring""" def __init__( self :Any , lowerCamelCase__ :int , lowerCamelCase__ :int=None , lowerCamelCase__ :List[str]=0 , **lowerCamelCase__ :List[str] ): UpperCamelCase__ :Optional[Any] = optimizer UpperCamelCase__ :List[Any] = total_num_steps UpperCamelCase__ :Any = warmup_num_steps UpperCamelCase__ :Any = kwargs
45
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be trained.'} ) lowerCAmelCase__ = field( default='./' , metadata={'help': 'Save dir where model repo is cloned and models updates are saved to.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path of training dataset.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCAmelCase__ = field(default=2 , metadata={'help': 'Batch size for training.'} ) lowerCAmelCase__ = field(default=2 , metadata={'help': 'Batch size for evaluation.'} ) lowerCAmelCase__ = field(default=0.1 , metadata={'help': 'Value of weight decay.'} ) lowerCAmelCase__ = field( default=1_0_0_0_0 , metadata={'help': 'Size of buffer used to shuffle streaming dataset.'} ) lowerCAmelCase__ = field(default=2E-4 , metadata={'help': 'Learning rate fo training.'} ) lowerCAmelCase__ = field(default='cosine' , metadata={'help': 'Learning rate.'} ) lowerCAmelCase__ = field( default=7_5_0 , metadata={'help': 'Number of warmup steps in the learning rate schedule.'} ) lowerCAmelCase__ = field( default=1_6 , metadata={'help': 'Number of gradient accumulation steps.'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Use gradient checkpointing to reduce memory footprint.'} ) lowerCAmelCase__ = field(default=5_0_0_0_0 , metadata={'help': 'Maximum number of training steps.'} ) lowerCAmelCase__ = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCAmelCase__ = field(default=1_0_2_4 , metadata={'help': 'Sequence lengths used for training.'} ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'Training seed.'} ) lowerCAmelCase__ = field( default=1_0_2_4 , metadata={'help': 'Interval to save checkpoints. Measured as number of forward passes not training steps.'} , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'States path if the training should continue from a checkpoint folder.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'If True the data is pretokenized.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-valid' , metadata={'help': 'Name or path of validation dataset.'} ) lowerCAmelCase__ = field(default=2 , metadata={'help': 'Batch size used for evaluation.'} ) lowerCAmelCase__ = field( default=-1 , metadata={'help': 'Maximum number of evaluation steps. If -1 the full dataset is evaluated.'} ) lowerCAmelCase__ = field(default=1_0_2_4 , metadata={'help': 'Length of sequences to be evaluated.'} ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Model name or path of model to be evaluated.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Number of workers used for code evaluation.'} ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'The number of human-eval tasks to run. If not included all tasks are evaluated.'} , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'Sample from the language model\'s output distribution.'} ) lowerCAmelCase__ = field(default=0.2 , metadata={'help': 'Sampling temperature used for generation.'} ) lowerCAmelCase__ = field(default=2_5_6 , metadata={'help': 'Maximum number of newly generated tokens.'} ) lowerCAmelCase__ = field(default=0 , metadata={'help': 'Top-k parameter used for generation.'} ) lowerCAmelCase__ = field(default=0.95 , metadata={'help': 'Top-p parameter used for nucleus sampling.'} ) lowerCAmelCase__ = field(default=1_0 , metadata={'help': 'Number of generations to run in parallel.'} ) lowerCAmelCase__ = field( default=2_0_0 , metadata={'help': 'Number of completions to generate for each sample.'} ) lowerCAmelCase__ = field(default=1 , metadata={'help': 'Random seed used for evaluation.'} ) lowerCAmelCase__ = field( default='eval_results.json' , metadata={'help': 'Random seed used for evaluation.'} ) lowerCAmelCase__ = field( default='0' , metadata={'help': 'Allow `code_eval` to execute Python code on machine'} ) lowerCAmelCase__ = field( default=-1 , metadata={ 'help': ( 'Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive' ' number corresponds to which GPU device id to run on.' ) } , ) @dataclass class A_ : lowerCAmelCase__ = field( default=_a , metadata={ 'help': 'The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.' } , ) lowerCAmelCase__ = field( default='transformersbook/codeparrot' , metadata={'help': 'Folder or name of dataset to process.'} ) lowerCAmelCase__ = field( default='codeparrot-clean' , metadata={'help': 'Folder to save processed processed dataset.'} ) lowerCAmelCase__ = field( default=1_0_0_0_0_0 , metadata={'help': 'Number of files to save per JSON output file.'} ) lowerCAmelCase__ = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCAmelCase__ = field( default=1_0_0_0 , metadata={'help': 'Maximum line length in file, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=1_0_0 , metadata={'help': 'Maximum mean line length in file, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=0.25 , metadata={'help': 'Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=1.5 , metadata={'help': 'Minimum character token ratio for the file, otherwise file is filtered.'} ) lowerCAmelCase__ = field( default=0.7 , metadata={'help': 'Probability for filtering config, test and uncommon files.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} , ) lowerCAmelCase__ = field( default=_a , metadata={'help': 'If True, near-duplicate samples are removed.'} ) lowerCAmelCase__ = field( default=0.85 , metadata={'help': 'Jaccard threshold for near-duplicate samples.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='gpt2' , metadata={'help': 'Base tokenizer to build new tokenizer from.'} ) lowerCAmelCase__ = field( default='transformersbook/codeparrot-train' , metadata={'help': 'Dataset to train tokenizer on.'} ) lowerCAmelCase__ = field(default='content' , metadata={'help': 'Column containing text data to process.'} ) lowerCAmelCase__ = field(default=2_0_0_0_0_0 , metadata={'help': 'Number of examples to train tokenizer on.'} ) lowerCAmelCase__ = field( default=3_2_7_6_8 , metadata={'help': 'Number of examples to train the tokenizer on.'} ) lowerCAmelCase__ = field(default='codeparrot' , metadata={'help': 'Name of new tokenizer.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Push saved tokenizer to the hub.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Name or path to the tokenizer.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot-clean-train' , metadata={'help': 'Name or path to the dataset to pretokenize.'} ) lowerCAmelCase__ = field( default='tokenized-codeparrot-train' , metadata={'help': 'Repo name of the pretokenized data.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Number of workers used for code evaluation.'} ) @dataclass class A_ : lowerCAmelCase__ = field( default='gpt2-large' , metadata={'help': 'Configuration to use for model initialization.'} ) lowerCAmelCase__ = field( default='codeparrot/codeparrot' , metadata={'help': 'Tokenizer attached to model.'} ) lowerCAmelCase__ = field(default='codeparrot' , metadata={'help': 'Name of the created model.'} ) lowerCAmelCase__ = field(default=_a , metadata={'help': 'Push saved tokenizer to the hub.'} )
46
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''xlm-roberta-xl''' def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=2_5_0_8_8_0 , SCREAMING_SNAKE_CASE__ : Any=2_5_6_0 , SCREAMING_SNAKE_CASE__ : List[Any]=3_6 , SCREAMING_SNAKE_CASE__ : Tuple=3_2 , SCREAMING_SNAKE_CASE__ : str=1_0_2_4_0 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Dict=5_1_4 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Dict=0.02 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1e-05 , SCREAMING_SNAKE_CASE__ : int=1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : int="absolute" , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[int] = vocab_size __a : int = hidden_size __a : Any = num_hidden_layers __a : Optional[Any] = num_attention_heads __a : Any = hidden_act __a : int = intermediate_size __a : int = hidden_dropout_prob __a : Dict = attention_probs_dropout_prob __a : int = max_position_embeddings __a : Tuple = type_vocab_size __a : Any = initializer_range __a : Any = layer_norm_eps __a : List[str] = position_embedding_type __a : Dict = use_cache __a : Dict = classifier_dropout class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": __a : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
47
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
0
'''simple docstring''' from __future__ import annotations def A ( UpperCamelCase_ : int | float | str , UpperCamelCase_ : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] lowerCAmelCase__ = int(UpperCamelCase_ ) lowerCAmelCase__ = int(UpperCamelCase_ ) lowerCAmelCase__ = [] for temp in range(int(UpperCamelCase_ ) ): series.append(F"""1 / {pow(temp + 1 , int(UpperCamelCase_ ) )}""" if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase__ : str = int(input("Enter the last number (nth term) of the P-Series")) UpperCAmelCase__ : List[Any] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
48
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase : Dict = False try: _lowercase : Union[str, Any] = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class _UpperCAmelCase : def __init__( self : Optional[int] , _lowercase : str = None , _lowercase : list = [] ): __UpperCAmelCase = 0 __UpperCAmelCase = choices __UpperCAmelCase = prompt if sys.platform == "win32": __UpperCAmelCase = '''*''' else: __UpperCAmelCase = '''➔ ''' def a ( self : Dict , _lowercase : Dict , _lowercase : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowercase ) else: forceWrite(self.choices[index] , _lowercase ) def a ( self : List[str] , _lowercase : int ): if index == self.position: forceWrite(F''' {self.arrow_char} ''' ) self.write_choice(_lowercase ) else: forceWrite(F''' {self.choices[index]}''' ) reset_cursor() def a ( self : List[Any] , _lowercase : Direction , _lowercase : int = 1 ): __UpperCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowercase ) move_cursor(_lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def a ( self : Any ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def a ( self : Any ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def a ( self : str ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def a ( self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowercase )] for number in range(10 )] ) def a ( self : Tuple ): __UpperCAmelCase = int(chr(self.current_selection ) ) __UpperCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowercase ) else: return else: return def a ( self : str , _lowercase : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __UpperCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowercase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __UpperCAmelCase = int(builtins.input() ) except ValueError: __UpperCAmelCase = default_choice else: __UpperCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(_lowercase , '''\n''' ) return choice
49
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'cvt' def __init__( self ,_lowerCAmelCase=3 ,_lowerCAmelCase=[7, 3, 3] ,_lowerCAmelCase=[4, 2, 2] ,_lowerCAmelCase=[2, 1, 1] ,_lowerCAmelCase=[64, 1_92, 3_84] ,_lowerCAmelCase=[1, 3, 6] ,_lowerCAmelCase=[1, 2, 10] ,_lowerCAmelCase=[4.0, 4.0, 4.0] ,_lowerCAmelCase=[0.0, 0.0, 0.0] ,_lowerCAmelCase=[0.0, 0.0, 0.0] ,_lowerCAmelCase=[0.0, 0.0, 0.1] ,_lowerCAmelCase=[True, True, True] ,_lowerCAmelCase=[False, False, True] ,_lowerCAmelCase=["dw_bn", "dw_bn", "dw_bn"] ,_lowerCAmelCase=[3, 3, 3] ,_lowerCAmelCase=[1, 1, 1] ,_lowerCAmelCase=[2, 2, 2] ,_lowerCAmelCase=[1, 1, 1] ,_lowerCAmelCase=[1, 1, 1] ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=1E-12 ,**_lowerCAmelCase ,): super().__init__(**_lowerCAmelCase ) lowerCamelCase__ = num_channels lowerCamelCase__ = patch_sizes lowerCamelCase__ = patch_stride lowerCamelCase__ = patch_padding lowerCamelCase__ = embed_dim lowerCamelCase__ = num_heads lowerCamelCase__ = depth lowerCamelCase__ = mlp_ratio lowerCamelCase__ = attention_drop_rate lowerCamelCase__ = drop_rate lowerCamelCase__ = drop_path_rate lowerCamelCase__ = qkv_bias lowerCamelCase__ = cls_token lowerCamelCase__ = qkv_projection_method lowerCamelCase__ = kernel_qkv lowerCamelCase__ = padding_kv lowerCamelCase__ = stride_kv lowerCamelCase__ = padding_q lowerCamelCase__ = stride_q lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps
50
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
'''simple docstring''' import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int: """simple docstring""" UpperCAmelCase = model.config UpperCAmelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , ) UpperCAmelCase = MBartConfig( is_decoder=SCREAMING_SNAKE_CASE_ , is_encoder_decoder=SCREAMING_SNAKE_CASE_ , add_cross_attention=SCREAMING_SNAKE_CASE_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=SCREAMING_SNAKE_CASE_ , add_final_layer_norm=SCREAMING_SNAKE_CASE_ , ) return encoder_config, decoder_config def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]: """simple docstring""" if "encoder.model" in name: UpperCAmelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: UpperCAmelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: UpperCAmelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: UpperCAmelCase = '''encoder.''' + name if "attn.proj" in name: UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCAmelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": UpperCAmelCase = '''encoder.layernorm.bias''' return name def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCAmelCase = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCAmelCase = key.split('''.''' ) UpperCAmelCase = int(key_split[3] ) UpperCAmelCase = int(key_split[5] ) UpperCAmelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase = val[:dim, :] UpperCAmelCase = val[dim : dim * 2, :] UpperCAmelCase = val[-dim:, :] else: UpperCAmelCase = val[:dim] UpperCAmelCase = val[dim : dim * 2] UpperCAmelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: UpperCAmelCase = val return orig_state_dict def __snake_case ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : int=False ) -> List[Any]: """simple docstring""" UpperCAmelCase = DonutModel.from_pretrained(SCREAMING_SNAKE_CASE_ ).eval() # load HuggingFace model UpperCAmelCase, UpperCAmelCase = get_configs(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = DonutSwinModel(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = MBartForCausalLM(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = VisionEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase = original_model.state_dict() UpperCAmelCase = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify results on scanned document UpperCAmelCase = load_dataset('''hf-internal-testing/example-documents''' ) UpperCAmelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) UpperCAmelCase = XLMRobertaTokenizerFast.from_pretrained(SCREAMING_SNAKE_CASE_ , from_slow=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) UpperCAmelCase = DonutProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = processor(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": UpperCAmelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCAmelCase = '''When is the coffee break?''' UpperCAmelCase = task_prompt.replace('''{user_input}''' , SCREAMING_SNAKE_CASE_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": UpperCAmelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: UpperCAmelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": UpperCAmelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": UpperCAmelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt UpperCAmelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) UpperCAmelCase = original_model.decoder.tokenizer(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )[ '''input_ids''' ] UpperCAmelCase = original_model.encoder.model.patch_embed(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase, UpperCAmelCase = model.encoder.embeddings(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) # verify encoder hidden states UpperCAmelCase = original_model.encoder(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = model.encoder(SCREAMING_SNAKE_CASE_ ).last_hidden_state assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) # verify decoder hidden states UpperCAmelCase = original_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).logits UpperCAmelCase = model(SCREAMING_SNAKE_CASE_ , decoder_input_ids=SCREAMING_SNAKE_CASE_ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) a__ : Optional[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
51
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
0
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''efficientformer''' def __init__( self , _UpperCAmelCase = [3, 2, 6, 4] , _UpperCAmelCase = [48, 96, 224, 448] , _UpperCAmelCase = [True, True, True, True] , _UpperCAmelCase = 448 , _UpperCAmelCase = 32 , _UpperCAmelCase = 4 , _UpperCAmelCase = 7 , _UpperCAmelCase = 5 , _UpperCAmelCase = 8 , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 16 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = 1e-5 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 1e-1_2 , _UpperCAmelCase = 224 , _UpperCAmelCase = 1e-0_5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __a : Optional[int] = hidden_act __a : List[str] = hidden_dropout_prob __a : List[str] = hidden_sizes __a : List[Any] = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : List[Any] = initializer_range __a : Optional[int] = layer_norm_eps __a : Union[str, Any] = patch_size __a : Dict = num_channels __a : Dict = depths __a : Optional[int] = mlp_expansion_ratio __a : Any = downsamples __a : Any = dim __a : Dict = key_dim __a : Dict = attention_ratio __a : Any = resolution __a : str = pool_size __a : List[Any] = downsample_patch_size __a : Any = downsample_stride __a : str = downsample_pad __a : Union[str, Any] = drop_path_rate __a : str = num_metaad_blocks __a : List[Any] = distillation __a : str = use_layer_scale __a : Optional[int] = layer_scale_init_value __a : Optional[Any] = image_size __a : Optional[int] = batch_norm_eps
52
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple ): # Load checkpoint __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCAmelCase = v else: __lowerCAmelCase = v __lowerCAmelCase = chkpt['params'] __lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase_, (torch.FloatTensor, numpy.ndarray) )} __lowerCAmelCase = chkpt['dico_word2id'] __lowerCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@', '' ): i for s, i in vocab.items()} # Save pytorch-model __lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, indent=2 ) + '\n' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, indent=2 ) + '\n' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
53
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Tuple ={ """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict =[ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __lowercase : List[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
54
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :Optional[Any] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Tuple = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
55
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
0
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil _a : Optional[Any] = 100 _a : Dict = set(range(3, NUM_PRIMES, 2)) primes.add(2) _a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_0_0 ) def _a (lowercase__ : int ) -> set[int]: """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __snake_case = set() __snake_case = 42 __snake_case = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _a (lowercase__ : int = 5_0_0_0 ) -> int | None: """simple docstring""" for number_to_partition in range(1 , lowercase__ ): if len(partition(lowercase__ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f'''{solution() = }''')
56
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Union[str, Any] = 'ylacombe/bark-small' UpperCamelCase_: Optional[int] = tempfile.mkdtemp() UpperCamelCase_: Dict = 'en_speaker_1' UpperCamelCase_: List[Any] = 'This is a test string' UpperCamelCase_: Tuple = 'speaker_embeddings_path.json' UpperCamelCase_: Tuple = 'speaker_embeddings' def _a ( self , **_lowerCamelCase ): return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCamelCase ) def _a ( self ): shutil.rmtree(self.tmpdirname ) def _a ( self ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_: Dict = BarkProcessor(tokenizer=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _a ( self ): UpperCamelCase_: Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase_: Optional[int] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _a ( self ): UpperCamelCase_: Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase_: int = 3_5 UpperCamelCase_: Optional[int] = 2 UpperCamelCase_: int = 8 UpperCamelCase_: Union[str, Any] = { 'semantic_prompt': np.ones(_lowerCamelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase_: Dict = processor(text=self.input_string , voice_preset=_lowerCamelCase ) UpperCamelCase_: str = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: List[Any] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) UpperCamelCase_: Tuple = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase_: int = processor(text=self.input_string , voice_preset=self.voice_preset ) def _a ( self ): UpperCamelCase_: Tuple = self.get_tokenizer() UpperCamelCase_: str = BarkProcessor(tokenizer=_lowerCamelCase ) UpperCamelCase_: List[str] = processor(text=self.input_string ) UpperCamelCase_: List[Any] = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
57
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=1_8 , _lowercase=3_0 , _lowercase=4_0_0 , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=None , _lowercase=True , _lowercase=[0.5, 0.5, 0.5] , _lowercase=[0.5, 0.5, 0.5] , ) -> Tuple: '''simple docstring''' snake_case_ : Any = size if size is not None else {"""shortest_edge""": 1_8} snake_case_ : str = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} snake_case_ : List[str] = parent snake_case_ : Optional[Any] = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Any = image_size snake_case_ : int = min_resolution snake_case_ : Tuple = max_resolution snake_case_ : Tuple = do_resize snake_case_ : int = size snake_case_ : Union[str, Any] = do_center_crop snake_case_ : Union[str, Any] = crop_size snake_case_ : Optional[int] = do_normalize snake_case_ : List[str] = image_mean snake_case_ : Optional[Any] = image_std def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ : Dict = LevitImageProcessingTester(self ) @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , """image_mean""" ) ) self.assertTrue(hasattr(_lowercase , """image_std""" ) ) self.assertTrue(hasattr(_lowercase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowercase , """do_resize""" ) ) self.assertTrue(hasattr(_lowercase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowercase , """size""" ) ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8} ) self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} ) snake_case_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} ) self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input snake_case_ : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : str = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input snake_case_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : Dict = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input snake_case_ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched snake_case_ : int = image_processing(_lowercase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
58
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "CLIPImageProcessor" lowercase_ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__(self : List[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase_ , ) lowerCamelCase__: int =kwargs.pop("feature_extractor") lowerCamelCase__: int =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__(self : List[Any] , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , **UpperCAmelCase_ : Any) ->Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: lowerCamelCase__: List[Any] =self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: lowerCamelCase__: int =self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: lowerCamelCase__: str =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]) ->Dict: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any) ->Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.tokenizer.model_input_names lowerCamelCase__: str =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
59
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
0
import os from pathlib import Path def lowerCamelCase_ ( ) -> Tuple: """simple docstring""" from torch.utils.cpp_extension import load snake_case_ : List[str] = Path(_UpperCamelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' snake_case_ : Any = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , _UpperCamelCase , with_cuda=_UpperCamelCase , extra_include_paths=[str(_UpperCamelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
60
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase = logging.get_logger(__name__) # TODO: upload to AWS UpperCamelCase = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "retribert" def __init__( self : int , SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 , SCREAMING_SNAKE_CASE__ : Optional[Any]=768 , SCREAMING_SNAKE_CASE__ : Optional[int]=8 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=3_072 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=512 , SCREAMING_SNAKE_CASE__ : Optional[Any]=2 , SCREAMING_SNAKE_CASE__ : Tuple=0.02 , SCREAMING_SNAKE_CASE__ : List[Any]=1e-1_2 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=128 , SCREAMING_SNAKE_CASE__ : str=0 , **SCREAMING_SNAKE_CASE__ : List[Any] , ) -> Tuple: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = hidden_act lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = share_encoders lowerCAmelCase__ = projection_dim
61
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Union[str, Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Any = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Dict = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : List[Any] = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : List[Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Tuple = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : List[str] = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : str = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Tuple = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Optional[Any] = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Tuple = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : List[str] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Any = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : int = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
62
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
0
from collections.abc import Sequence def lowerCamelCase__ ( __lowerCamelCase : Sequence[float] , __lowerCamelCase : bool = False ): if not arr: return 0 __UpperCAmelCase : Optional[int] = 0 if allow_empty_subarrays else float("""-inf""" ) __UpperCAmelCase : Optional[int] = 0.0 for num in arr: __UpperCAmelCase : str = max(0 if allow_empty_subarrays else num , curr_sum + num ) __UpperCAmelCase : Dict = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() a : Dict = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
63
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Optional[int] = logging.get_logger(__name__) lowercase_ : Optional[Any] = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _lowerCamelCase ( UpperCamelCase_ ): __a = "vit_mae" def __init__( self , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.0 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-12 , lowerCAmelCase=224 , lowerCAmelCase=16 , lowerCAmelCase=3 , lowerCAmelCase=True , lowerCAmelCase=16 , lowerCAmelCase=512 , lowerCAmelCase=8 , lowerCAmelCase=2048 , lowerCAmelCase=0.75 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Optional[int]: super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= hidden_size SCREAMING_SNAKE_CASE__: List[str]= num_hidden_layers SCREAMING_SNAKE_CASE__: Dict= num_attention_heads SCREAMING_SNAKE_CASE__: Any= intermediate_size SCREAMING_SNAKE_CASE__: Tuple= hidden_act SCREAMING_SNAKE_CASE__: Optional[int]= hidden_dropout_prob SCREAMING_SNAKE_CASE__: Dict= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: Dict= initializer_range SCREAMING_SNAKE_CASE__: List[Any]= layer_norm_eps SCREAMING_SNAKE_CASE__: int= image_size SCREAMING_SNAKE_CASE__: str= patch_size SCREAMING_SNAKE_CASE__: str= num_channels SCREAMING_SNAKE_CASE__: Tuple= qkv_bias SCREAMING_SNAKE_CASE__: Union[str, Any]= decoder_num_attention_heads SCREAMING_SNAKE_CASE__: Tuple= decoder_hidden_size SCREAMING_SNAKE_CASE__: List[Any]= decoder_num_hidden_layers SCREAMING_SNAKE_CASE__: Union[str, Any]= decoder_intermediate_size SCREAMING_SNAKE_CASE__: List[Any]= mask_ratio SCREAMING_SNAKE_CASE__: List[str]= norm_pix_loss
64
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class __lowercase ( unittest.TestCase ): def __lowercase ( self : str ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() ,encoding="""utf-8""" ,check=A ,) assert hasattr(self ,"""env""" ) def __lowercase ( self : Any ,A : Any ): '''simple docstring''' # configuration for running training on smdistributed Model Parallel UpperCAmelCase__ : Tuple = { """enabled""": True, """processes_per_host""": 8, } UpperCAmelCase__ : str = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCAmelCase__ : Optional[int] = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCAmelCase__ : Union[str, Any] = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" ,instance_count=A ,instance_type=self.instance_type ,debugger_hook_config=A ,hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } ,metric_definitions=self.env.metric_definitions ,distribution=A ,py_version="""py36""" ,) def __lowercase ( self : Dict ,A : Tuple ): '''simple docstring''' TrainingJobAnalytics(A ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def __lowercase ( self : Tuple ,A : Union[str, Any] ): '''simple docstring''' # create estimator UpperCAmelCase__ : Optional[int] = self.create_estimator(A ) # run training estimator.fit() # result dataframe UpperCAmelCase__ : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase__ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) UpperCAmelCase__ : List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase__ : Any = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" ,999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" ,"""w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} ,A )
65
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
import numpy as np UpperCamelCase = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class lowerCAmelCase_ : def __init__( self ): _lowercase : Any = np.array(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase , _lowercase : List[str] = np.where(letter == self.SQUARE ) _lowercase : Optional[int] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : int = self.SQUARE[indexa - 1, indexa - 1] return letter def __a ( self , _lowerCAmelCase ): _lowercase : int = message.lower() _lowercase : Optional[Any] = message.replace(' ' , '' ) _lowercase : Optional[Any] = message.replace('j' , 'i' ) _lowercase : Optional[int] = np.empty((2, len(_lowerCAmelCase )) ) for letter_index in range(len(_lowerCAmelCase ) ): _lowercase : Any = self.letter_to_numbers(message[letter_index] ) _lowercase : Tuple = numbers[0] _lowercase : int = numbers[1] _lowercase : int = first_step.reshape(2 * len(_lowerCAmelCase ) ) _lowercase : Tuple = '' for numbers_index in range(len(_lowerCAmelCase ) ): _lowercase : int = int(second_step[numbers_index * 2] ) _lowercase : List[Any] = int(second_step[(numbers_index * 2) + 1] ) _lowercase : Optional[int] = self.numbers_to_letter(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = encoded_message + letter return encoded_message def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = message.lower() message.replace(' ' , '' ) _lowercase : Optional[Any] = np.empty(2 * len(_lowerCAmelCase ) ) for letter_index in range(len(_lowerCAmelCase ) ): _lowercase : List[Any] = self.letter_to_numbers(message[letter_index] ) _lowercase : int = numbers[0] _lowercase : Union[str, Any] = numbers[1] _lowercase : Optional[int] = first_step.reshape((2, len(_lowerCAmelCase )) ) _lowercase : Tuple = '' for numbers_index in range(len(_lowerCAmelCase ) ): _lowercase : Tuple = int(second_step[0, numbers_index] ) _lowercase : Dict = int(second_step[1, numbers_index] ) _lowercase : List[Any] = self.numbers_to_letter(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = decoded_message + letter return decoded_message
66
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] , snake_case__ :List[Any] , snake_case__ :Any=[] ) -> Any: _lowercase = size[0] - overlap_pixels * 2 _lowercase = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowercase = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowercase = np.pad(snake_case__ , mode='linear_ramp' , pad_width=snake_case__ , end_values=0 ) if "l" in remove_borders: _lowercase = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowercase = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowercase = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowercase = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[Any] , snake_case__ :List[str] , snake_case__ :List[str] ) -> Dict: return max(snake_case__ , min(snake_case__ , snake_case__ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :[int] , snake_case__ :[int] , snake_case__ :[int] ) -> Optional[Any]: return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :[int] , snake_case__ :int , snake_case__ :[int] ) -> Dict: _lowercase = list(snake_case__ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowercase = clamp_rect(snake_case__ , [0, 0] , [image_size[0], image_size[1]] ) return rect def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :int , snake_case__ :Dict , snake_case__ :str ) -> Tuple: _lowercase = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(snake_case__ , (original_slice, 0) ) return result def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple , snake_case__ :Tuple ) -> List[str]: _lowercase = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowercase = tile.crop(snake_case__ ) return tile def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[str] , snake_case__ :Optional[int] ) -> Tuple: _lowercase = n % d return n - divisor class A_ ( UpperCAmelCase ): """simple docstring""" def __init__( self : str ,__A : AutoencoderKL ,__A : CLIPTextModel ,__A : CLIPTokenizer ,__A : UNetaDConditionModel ,__A : DDPMScheduler ,__A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] ,__A : int = 350 ,) -> Union[str, Any]: super().__init__( vae=__A ,text_encoder=__A ,tokenizer=__A ,unet=__A ,low_res_scheduler=__A ,scheduler=__A ,max_noise_level=__A ,) def __UpperCAmelCase ( self : Dict ,__A : Dict ,__A : Tuple ,__A : List[Any] ,__A : str ,__A : Optional[Any] ,__A : Union[str, Any] ,__A : Optional[int] ,**__A : List[Any] ) -> int: torch.manual_seed(0 ) _lowercase = ( min(image.size[0] - (tile_size + original_image_slice) ,x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) ,y * tile_size ), min(image.size[0] ,(x + 1) * tile_size ), min(image.size[1] ,(y + 1) * tile_size ), ) _lowercase = add_overlap_rect(__A ,__A ,image.size ) _lowercase = image.crop(__A ) _lowercase = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowercase = translated_slice_x - (original_image_slice / 2) _lowercase = max(0 ,__A ) _lowercase = squeeze_tile(__A ,__A ,__A ,__A ) _lowercase = to_input.size _lowercase = to_input.resize((tile_size, tile_size) ,Image.BICUBIC ) _lowercase = super(__A ,self ).__call__(image=__A ,**__A ).images[0] _lowercase = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) ,Image.BICUBIC ) _lowercase = unsqueeze_tile(__A ,__A ) _lowercase = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) ,Image.BICUBIC ) _lowercase = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) _lowercase = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) ,tile_border * 4 ,remove_borders=__A ) ,mode='L' ,) final_image.paste( __A ,(crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) ,__A ) @torch.no_grad() def __call__( self : List[Any] ,__A : Union[str, List[str]] ,__A : Union[PIL.Image.Image, List[PIL.Image.Image]] ,__A : int = 75 ,__A : float = 9.0 ,__A : int = 50 ,__A : Optional[Union[str, List[str]]] = None ,__A : Optional[int] = 1 ,__A : float = 0.0 ,__A : Optional[torch.Generator] = None ,__A : Optional[torch.FloatTensor] = None ,__A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__A : int = 1 ,__A : int = 128 ,__A : int = 32 ,__A : int = 32 ,) -> int: _lowercase = Image.new('RGB' ,(image.size[0] * 4, image.size[1] * 4) ) _lowercase = math.ceil(image.size[0] / tile_size ) _lowercase = math.ceil(image.size[1] / tile_size ) _lowercase = tcx * tcy _lowercase = 0 for y in range(__A ): for x in range(__A ): self._process_tile( __A ,__A ,__A ,__A ,__A ,__A ,__A ,prompt=__A ,num_inference_steps=__A ,guidance_scale=__A ,noise_level=__A ,negative_prompt=__A ,num_images_per_prompt=__A ,eta=__A ,generator=__A ,latents=__A ,) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: # Run a demo _lowercase = 'stabilityai/stable-diffusion-x4-upscaler' _lowercase = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case__ , revision='fp16' , torch_dtype=torch.floataa ) _lowercase = pipe.to('cuda' ) _lowercase = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(snake_case__ :int ): print(F"""progress: {obj["progress"]:.4f}""" ) obj["image"].save('diffusers_library_progress.jpg' ) _lowercase = pipe(image=snake_case__ , prompt='Black font, white background, vector' , noise_level=40 , callback=snake_case__ ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
67
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __A = logging.get_logger(__name__) __A = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) __A = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __A = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) __A = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) __A = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) __A = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) __A = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) __A = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) __A = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) __A = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) __A = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) __A = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) __A = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) __A = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __A = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __A = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Union[str, Any] = FLAX_MODEL_MAPPING __A = auto_class_update(FlaxAutoModel) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING __A = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : int = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __A = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Dict = FLAX_MODEL_FOR_MASKED_LM_MAPPING __A = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Union[str, Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __A = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[int] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Any = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __A = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __A = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __A = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Dict = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __A = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Tuple = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __A = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : Optional[Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __A = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class _A ( _BaseAutoModelClass ): """simple docstring""" lowerCamelCase : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __A = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
68
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
0
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __UpperCAmelCase ( ) -> Dict: __snake_case = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } __snake_case = Dataset.from_dict(_UpperCAmelCase ) return dataset class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Any ): """simple docstring""" __snake_case = get_dataset() __snake_case = make_duplicate_clusters(a_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = get_dataset() __snake_case , __snake_case = deduplicate_dataset(a_ ) self.assertEqual(len(a_ ) , 2 ) print(a_ ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , a_ )
69
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : int = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
70
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from __future__ import annotations def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[list[str]] , _SCREAMING_SNAKE_CASE : int , ) -> None: """simple docstring""" UpperCAmelCase_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_SCREAMING_SNAKE_CASE ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" UpperCAmelCase_ : list[list[str]] = [] depth_first_search([] , [] , [] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Print all the boards for board in boards: for column in board: print(_SCREAMING_SNAKE_CASE ) print("" ) print(len(_SCREAMING_SNAKE_CASE ) , "solutions were found." ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
71
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' import math class __magic_name__ : def _A( self , snake_case_ , snake_case_ ): lowercase =0.0 lowercase =0.0 for i in range(len(snake_case_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def _A( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): for i in range(len(snake_case_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def UpperCamelCase ( ) -> None: '''simple docstring''' lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowercase =SelfOrganizingMap() lowercase =3 lowercase =0.5 for _ in range(lowercase_ ): for j in range(len(lowercase_ ) ): # training sample lowercase =training_samples[j] # Compute the winning vector lowercase =self_organizing_map.get_winner(lowercase_ , lowercase_ ) # Update the winning vector lowercase =self_organizing_map.update(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # classify test sample lowercase =[0, 0, 0, 1] lowercase =self_organizing_map.get_winner(lowercase_ , lowercase_ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
72
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): print('\nThe shortest path matrix using Floyd Warshall algorithm\n') for i in range(_UpperCAmelCase): for j in range(_UpperCAmelCase): if dist[i][j] != float('inf'): print(int(dist[i][j]) , end='\t') else: print('INF' , end='\t') print() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = [[float('inf') for _ in range(_UpperCAmelCase)] for _ in range(_UpperCAmelCase)] for i in range(_UpperCAmelCase): for j in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_UpperCAmelCase): # looping through rows of graph array for i in range(_UpperCAmelCase): # looping through columns of graph array for j in range(_UpperCAmelCase): if ( dist[i][k] != float('inf') and dist[k][j] != float('inf') and dist[i][k] + dist[k][j] < dist[i][j] ): SCREAMING_SNAKE_CASE = dist[i][k] + dist[k][j] _print_dist(_UpperCAmelCase , _UpperCAmelCase) return dist, v if __name__ == "__main__": a_ : Dict = int(input('Enter number of vertices: ')) a_ : str = int(input('Enter number of edges: ')) a_ : Tuple = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): a_ : Dict = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) a_ : str = int(input('Enter source:')) a_ : Any = int(input('Enter destination:')) a_ : List[Any] = float(input('Enter weight:')) a_ : str = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
73
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
0
from __future__ import annotations import math import random from typing import Any class __UpperCamelCase : """simple docstring""" def __init__( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : list[Any] = [] __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : int = 0 def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return self.head == self.tail def UpperCAmelCase__ ( self : Tuple , _A : Any ): """simple docstring""" self.data.append(_A ) __SCREAMING_SNAKE_CASE : Dict = self.tail + 1 def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.data[self.head] __SCREAMING_SNAKE_CASE : Dict = self.head + 1 return ret def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return self.tail - self.head def UpperCAmelCase__ ( self : Any ): """simple docstring""" print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class __UpperCamelCase : """simple docstring""" def __init__( self : Any , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = data __SCREAMING_SNAKE_CASE : MyNode | None = None __SCREAMING_SNAKE_CASE : MyNode | None = None __SCREAMING_SNAKE_CASE : int = 1 def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" return self.data def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return self.left def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return self.right def UpperCAmelCase__ ( self : str ): """simple docstring""" return self.height def UpperCAmelCase__ ( self : str , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = data def UpperCAmelCase__ ( self : Union[str, Any] , _A : MyNode | None ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = node def UpperCAmelCase__ ( self : List[str] , _A : MyNode | None ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = node def UpperCAmelCase__ ( self : Optional[Any] , _A : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = height def a__ ( snake_case ): """simple docstring""" if node is None: return 0 return node.get_height() def a__ ( snake_case , snake_case ): """simple docstring""" if a > b: return a return b def a__ ( snake_case ): """simple docstring""" print('''left rotation node:''' , node.get_data() ) __SCREAMING_SNAKE_CASE : int = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(snake_case ) return ret def a__ ( snake_case ): """simple docstring""" print('''right rotation node:''' , node.get_data() ) __SCREAMING_SNAKE_CASE : List[Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(snake_case ) __SCREAMING_SNAKE_CASE : Optional[int] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(snake_case ) return ret def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = node.get_left() assert left_child is not None node.set_left(left_rotation(snake_case ) ) return right_rotation(snake_case ) def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = node.get_right() assert right_child is not None node.set_right(right_rotation(snake_case ) ) return left_rotation(snake_case ) def a__ ( snake_case , snake_case ): """simple docstring""" if node is None: return MyNode(snake_case ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , snake_case ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected __SCREAMING_SNAKE_CASE : Optional[int] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child __SCREAMING_SNAKE_CASE : Optional[Any] = right_rotation(snake_case ) else: __SCREAMING_SNAKE_CASE : List[str] = lr_rotation(snake_case ) else: node.set_right(insert_node(node.get_right() , snake_case ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: __SCREAMING_SNAKE_CASE : int = node.get_right() assert right_child is not None if data < right_child.get_data(): __SCREAMING_SNAKE_CASE : Any = rl_rotation(snake_case ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = left_rotation(snake_case ) __SCREAMING_SNAKE_CASE : Optional[Any] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(snake_case ) return node def a__ ( snake_case ): """simple docstring""" while True: __SCREAMING_SNAKE_CASE : int = root.get_right() if right_child is None: break __SCREAMING_SNAKE_CASE : Union[str, Any] = right_child return root.get_data() def a__ ( snake_case ): """simple docstring""" while True: __SCREAMING_SNAKE_CASE : List[str] = root.get_left() if left_child is None: break __SCREAMING_SNAKE_CASE : str = left_child return root.get_data() def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = root.get_left() __SCREAMING_SNAKE_CASE : List[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: __SCREAMING_SNAKE_CASE : List[str] = get_left_most(snake_case ) root.set_data(snake_case ) root.set_right(del_node(snake_case , snake_case ) ) elif left_child is not None: __SCREAMING_SNAKE_CASE : List[Any] = left_child elif right_child is not None: __SCREAMING_SNAKE_CASE : Dict = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(snake_case , snake_case ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(snake_case , snake_case ) ) if get_height(snake_case ) - get_height(snake_case ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): __SCREAMING_SNAKE_CASE : Dict = left_rotation(snake_case ) else: __SCREAMING_SNAKE_CASE : Any = rl_rotation(snake_case ) elif get_height(snake_case ) - get_height(snake_case ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): __SCREAMING_SNAKE_CASE : Optional[Any] = right_rotation(snake_case ) else: __SCREAMING_SNAKE_CASE : Any = lr_rotation(snake_case ) __SCREAMING_SNAKE_CASE : Any = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(snake_case ) return root class __UpperCamelCase : """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : MyNode | None = None def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" return get_height(self.root ) def UpperCAmelCase__ ( self : str , _A : Any ): """simple docstring""" print('''insert:''' + str(_A ) ) __SCREAMING_SNAKE_CASE : Dict = insert_node(self.root , _A ) def UpperCAmelCase__ ( self : Tuple , _A : Any ): """simple docstring""" print('''delete:''' + str(_A ) ) if self.root is None: print('''Tree is empty!''' ) return __SCREAMING_SNAKE_CASE : int = del_node(self.root , _A ) def __str__( self : int , ): # a level traversale, gives a more intuitive look on the tree """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = '''''' __SCREAMING_SNAKE_CASE : Optional[int] = MyQueue() q.push(self.root ) __SCREAMING_SNAKE_CASE : Any = self.get_height() if layer == 0: return output __SCREAMING_SNAKE_CASE : Optional[int] = 0 while not q.is_empty(): __SCREAMING_SNAKE_CASE : str = q.pop() __SCREAMING_SNAKE_CASE : Union[str, Any] = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_A ) q.push(_A ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space __SCREAMING_SNAKE_CASE : Optional[int] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _A ) - 1: __SCREAMING_SNAKE_CASE : Union[str, Any] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def a__ ( ): """simple docstring""" import doctest doctest.testmod() if __name__ == "__main__": _test() lowercase_ = AVLtree() lowercase_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
74
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
'''simple docstring''' import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel UpperCamelCase__ = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } UpperCamelCase__ = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def a__ ( lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = create_model( '''HTSAT-tiny''' , '''roberta''' , lowerCAmelCase__ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=lowerCAmelCase__ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : int = {} UpperCAmelCase__ : Any = R'''.*sequential.(\d+).*''' UpperCAmelCase__ : Optional[int] = R'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase__ : List[str] = key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): # replace sequential layers with list UpperCAmelCase__ : Any = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) UpperCAmelCase__ : Any = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(lowerCAmelCase__ )//3}.linear.""" ) elif re.match(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase__ : Union[str, Any] = int(re.match(lowerCAmelCase__ , lowerCAmelCase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase__ : Dict = 1 if projecton_layer == 0 else 2 UpperCAmelCase__ : Union[str, Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase__ : Dict = value UpperCAmelCase__ : List[Any] = mixed_qkv.size(0 ) // 3 UpperCAmelCase__ : str = mixed_qkv[:qkv_dim] UpperCAmelCase__ : Dict = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase__ : Union[str, Any] = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase__ : str = query_layer UpperCAmelCase__ : Tuple = key_layer UpperCAmelCase__ : int = value_layer else: UpperCAmelCase__ : List[Any] = value return model_state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[int]: UpperCAmelCase__ , UpperCAmelCase__ : Dict = init_clap(lowerCAmelCase__ , enable_fusion=lowerCAmelCase__ ) clap_model.eval() UpperCAmelCase__ : Union[str, Any] = clap_model.state_dict() UpperCAmelCase__ : Optional[int] = rename_state_dict(lowerCAmelCase__ ) UpperCAmelCase__ : Tuple = ClapConfig() UpperCAmelCase__ : Tuple = enable_fusion UpperCAmelCase__ : Union[str, Any] = ClapModel(lowerCAmelCase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) transformers_config.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') UpperCamelCase__ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
75
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class UpperCAmelCase_ ( unittest.TestCase ): def _lowerCamelCase ( self ) -> str: __lowercase : Any = '''hf-internal-testing/tiny-random-t5''' __lowercase : int = AutoTokenizer.from_pretrained(UpperCamelCase_ ) __lowercase : Any = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) __lowercase : Tuple = tokenizer('''This is me''' , return_tensors='''pt''' ) __lowercase : List[str] = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) __lowercase : Dict = model.generate(**UpperCamelCase_ ) __lowercase : int = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) __lowercase : str = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) __lowercase : List[str] = model_reloaded.generate(**UpperCamelCase_ ) self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ ) ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : str = '''hf-internal-testing/tiny-random-t5''' __lowercase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ) __lowercase : Any = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(UpperCamelCase_ ): model.save_pretrained(UpperCamelCase_ ) __lowercase : Tuple = model.reverse_bettertransformer() model.save_pretrained(UpperCamelCase_ )
76
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase = 0 ) -> list: """simple docstring""" __UpperCAmelCase : List[str] = length or len(UpperCamelCase ) __UpperCAmelCase : List[str] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: __UpperCAmelCase , __UpperCAmelCase : int = list_data[i + 1], list_data[i] __UpperCAmelCase : List[Any] = True return list_data if not swapped else bubble_sort(UpperCamelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
77
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
0
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness SCREAMING_SNAKE_CASE_: Union[str, Any] ='\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' SCREAMING_SNAKE_CASE_: str ='\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' SCREAMING_SNAKE_CASE_: Tuple ='\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' SCREAMING_SNAKE_CASE_: Optional[int] ='\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' SCREAMING_SNAKE_CASE_: Optional[Any] ='The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def _lowercase (self : str ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def _lowercase (self : Optional[Any] , __a : int , __a : Union[str, Any] , __a : str=[1, 10, 100] , __a : Optional[int]=4 , __a : List[Any]=3.0 ): if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=__a ) as executor: UpperCAmelCase_ = [] UpperCAmelCase_ = Counter() UpperCAmelCase_ = 0 UpperCAmelCase_ = defaultdict(__a ) for task_id, (candidates, test_case) in enumerate(zip(__a , __a ) ): for candidate in candidates: UpperCAmelCase_ = candidate + "\n" + test_case UpperCAmelCase_ = (test_program, timeout, task_id, completion_id[task_id]) UpperCAmelCase_ = executor.submit(__a , *__a ) futures.append(__a ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__a ): UpperCAmelCase_ = future.result() results[result["task_id"]].append((result["completion_id"], result) ) UpperCAmelCase_ , UpperCAmelCase_ = [], [] for result in results.values(): result.sort() UpperCAmelCase_ = [r[1]["passed"] for r in result] total.append(len(__a ) ) correct.append(sum(__a ) ) UpperCAmelCase_ = np.array(__a ) UpperCAmelCase_ = np.array(__a ) UpperCAmelCase_ = k UpperCAmelCase_ = {f"""pass@{k}""": estimate_pass_at_k(__a , __a , __a ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[int] ) -> Tuple: '''simple docstring''' def estimator(snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ = itertools.repeat(snake_case_ , len(snake_case_ ) ) else: assert len(snake_case_ ) == len(snake_case_ ) UpperCAmelCase_ = iter(snake_case_ ) return np.array([estimator(int(snake_case_ ) , int(snake_case_ ) , snake_case_ ) for n, c in zip(snake_case_ , snake_case_ )] )
78
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase ): return f"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() def __UpperCAmelCase ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 4, 64, 64) , _lowerCAmelCase=False ): UpperCAmelCase__ : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def __UpperCAmelCase ( self , _lowerCAmelCase=False , _lowerCAmelCase="CompVis/stable-diffusion-v1-4" ): UpperCAmelCase__ : int = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Optional[Any] = """bf16""" if fpaa else None UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder="""unet""" , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def __UpperCAmelCase ( self , _lowerCAmelCase=0 , _lowerCAmelCase=(4, 77, 768) , _lowerCAmelCase=False ): UpperCAmelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa UpperCAmelCase__ : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]], [17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]], [8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]], [3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]], # fmt: on ] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Dict = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = model.apply( {"""params""": params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCAmelCase__ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase__ : List[Any] = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]], [17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]], [8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]], [3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]], # fmt: on ] ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = self.get_latents(_lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Any = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 77, 1024) , fpaa=_lowerCAmelCase ) UpperCAmelCase__ : Dict = model.apply( {"""params""": params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape UpperCAmelCase__ : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCAmelCase__ : Any = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-2 )
79
UpperCAmelCase_ : dict[tuple[int, int, int], int] = {} def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : int ,a__ : int ) -> int: # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on __A : List[Any] = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one __A : Dict = _calculate(days - 1 ,a__ ,late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 __A : List[str] = _calculate(days - 1 ,absent + 1 ,0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter __A : int = _calculate(days - 1 ,a__ ,0 ) __A : Optional[int] = state_late + state_absent + state_ontime __A : Tuple = prizestrings return prizestrings def __SCREAMING_SNAKE_CASE ( a__ : int = 30 ) -> int: return _calculate(a__ ,absent=0 ,late=0 ) if __name__ == "__main__": print(solution())
17
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCamelCase : Tuple = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def snake_case ( lowerCamelCase ): '''simple docstring''' config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def snake_case ( lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase ) def snake_case ( lowerCamelCase ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __lowercase = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(lowerCamelCase , id=lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' if exitstatus == 5: __lowercase = 0 # Doctest custom flag to ignore output. __UpperCamelCase : Optional[Any] = doctest.register_optionflag("""IGNORE_RESULT""") __UpperCamelCase : List[Any] = doctest.OutputChecker class __UpperCamelCase ( _lowerCAmelCase ): def _a ( self : List[str] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Optional[int] = CustomOutputChecker __UpperCamelCase : Optional[Any] = HfDoctestModule __UpperCamelCase : Any = HfDocTestParser
80
class lowerCamelCase_ : def __init__( self : Dict , __A : int , __A : Tuple , __A : List[Any] ): __A : Optional[int] = None __A : Any = None __A : int = graph self._normalize_graph(__A , __A ) __A : str = len(__A ) __A : Optional[int] = None def lowerCAmelCase_ ( self : int , __A : Any , __A : Optional[Any] ): if sources is int: __A : Dict = [sources] if sinks is int: __A : Optional[int] = [sinks] if len(__A ) == 0 or len(__A ) == 0: return __A : str = sources[0] __A : Dict = sinks[0] # make fake vertex if there are more # than one source or sink if len(__A ) > 1 or len(__A ) > 1: __A : Optional[Any] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __A : List[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __A : str = max_input_flow __A : Union[str, Any] = 0 __A : Any = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __A : int = max_input_flow __A : Optional[Any] = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : Optional[Any] , __A : Dict ): __A : Dict = algorithm(self ) class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : str ): __A : Any = flow_network __A : int = flow_network.verticesCount __A : List[Any] = flow_network.sourceIndex __A : Union[str, Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __A : Optional[int] = flow_network.graph __A : str = False def lowerCAmelCase_ ( self : List[Any] ): if not self.executed: self._algorithm() __A : Any = True def lowerCAmelCase_ ( self : List[str] ): pass class lowerCamelCase_ ( _lowercase ): def __init__( self : Any , __A : List[str] ): super().__init__(__A ) # use this to save your result __A : str = -1 def lowerCAmelCase_ ( self : Any ): if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class lowerCamelCase_ ( _lowercase ): def __init__( self : List[Any] , __A : Dict ): super().__init__(__A ) __A : Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] __A : Optional[Any] = [0] * self.verticies_count __A : Union[str, Any] = [0] * self.verticies_count def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __A : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __A : Dict = 0 while i < len(__A ): __A : List[Any] = vertices_list[i] __A : Optional[Any] = self.heights[vertex_index] self.process_vertex(__A ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__A ) ) __A : Any = 0 else: i += 1 __A : Optional[int] = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : Optional[Any] , __A : str ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__A , __A ) self.relabel(__A ) def lowerCAmelCase_ ( self : Dict , __A : List[str] , __A : Optional[Any] ): __A : Union[str, Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Optional[Any] , __A : Tuple ): __A : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __A : Dict = self.heights[to_index] if min_height is not None: __A : Optional[int] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = [0] UpperCAmelCase_ : Dict = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
17
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser( description=( "Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="bert", choices=["bert"]) parser.add_argument("--model_name", default="bert-base-uncased", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_bert-base-uncased_0247911.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _snake_case : Dict = parser.parse_args() if args.model_type == "bert": _snake_case : Dict = BertForMaskedLM.from_pretrained(args.model_name) _snake_case : List[Any] = "bert" else: raise ValueError("args.model_type should be \"bert\".") _snake_case : List[str] = model.state_dict() _snake_case : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: _snake_case : Union[str, Any] = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: _snake_case : Dict = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] _snake_case : str = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: _snake_case : Optional[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] _snake_case : int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] _snake_case : Optional[Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] _snake_case : int = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] _snake_case : Any = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] _snake_case : List[str] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] _snake_case : Union[str, Any] = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] _snake_case : Tuple = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 _snake_case : Dict = state_dict["cls.predictions.decoder.weight"] _snake_case : Tuple = state_dict["cls.predictions.bias"] if args.vocab_transform: for w in ["weight", "bias"]: _snake_case : Dict = state_dict[f'''cls.predictions.transform.dense.{w}'''] _snake_case : int = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
81
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ) -> str | Literal[False]: __A : Tuple = list(a__ ) __A : Optional[int] = list(a__ ) __A : int = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count += 1 __A : int = """_""" if count > 1: return False else: return "".join(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[str] ) -> list[str]: __A : Optional[Any] = [] while True: __A : Tuple = ["""$"""] * len(a__ ) __A : Union[str, Any] = [] for i in range(len(a__ ) ): for j in range(i + 1 ,len(a__ ) ): __A : int = compare_string(binary[i] ,binary[j] ) if k is False: __A : List[str] = """*""" __A : Any = """*""" temp.append("""X""" ) for i in range(len(a__ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(a__ ) == 0: return pi __A : Optional[Any] = list(set(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : int ,a__ : Sequence[float] ) -> list[str]: __A : List[str] = [] for minterm in minterms: __A : List[Any] = """""" for _ in range(a__ ): __A : Union[str, Any] = str(minterm % 2 ) + string minterm //= 2 temp.append(a__ ) return temp def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : int ) -> bool: __A : Optional[Any] = list(a__ ) __A : Tuple = list(a__ ) __A : Any = 0 for i in range(len(a__ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __SCREAMING_SNAKE_CASE ( a__ : list[list[int]] ,a__ : list[str] ) -> list[str]: __A : Optional[int] = [] __A : Tuple = [0] * len(a__ ) for i in range(len(chart[0] ) ): __A : str = 0 __A : Any = -1 for j in range(len(a__ ) ): if chart[j][i] == 1: count += 1 __A : Optional[Any] = j if count == 1: __A : int = 1 for i in range(len(a__ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(a__ ) ): __A : List[str] = 0 temp.append(prime_implicants[i] ) while True: __A : Optional[Any] = 0 __A : Any = -1 __A : int = 0 for i in range(len(a__ ) ): __A : List[Any] = chart[i].count(1 ) if count_n > max_n: __A : Dict = count_n __A : Tuple = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(a__ ) ): __A : Union[str, Any] = 0 def __SCREAMING_SNAKE_CASE ( a__ : list[str] ,a__ : list[str] ) -> list[list[int]]: __A : Any = [[0 for x in range(len(a__ ) )] for x in range(len(a__ ) )] for i in range(len(a__ ) ): __A : List[Any] = prime_implicants[i].count("""_""" ) for j in range(len(a__ ) ): if is_for_table(prime_implicants[i] ,binary[j] ,a__ ): __A : Union[str, Any] = 1 return chart def __SCREAMING_SNAKE_CASE ( ) -> None: __A : Any = int(input("""Enter the no. of variables\n""" ) ) __A : List[str] = [ float(a__ ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] __A : Dict = decimal_to_binary(a__ ,a__ ) __A : Union[str, Any] = check(a__ ) print("""Prime Implicants are:""" ) print(a__ ) __A : Optional[Any] = prime_implicant_chart(a__ ,a__ ) __A : Any = selection(a__ ,a__ ) print("""Essential Prime Implicants are:""" ) print(a__ ) if __name__ == "__main__": import doctest doctest.testmod() main()
17
0
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float(moles / volume ) * nfactor ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
82
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( a__ : List[str] ,a__ : Dict ,a__ : Union[str, Any] ,a__ : Any ) -> Optional[int]: # noqa: E741 while r - l > 1: __A : Any = (l + r) // 2 if v[m] >= key: __A : Optional[int] = m else: __A : List[Any] = m # noqa: E741 return r def __SCREAMING_SNAKE_CASE ( a__ : list[int] ) -> int: if len(a__ ) == 0: return 0 __A : str = [0] * len(a__ ) __A : List[str] = 1 __A : List[Any] = v[0] for i in range(1 ,len(a__ ) ): if v[i] < tail[0]: __A : int = v[i] elif v[i] > tail[length - 1]: __A : Union[str, Any] = v[i] length += 1 else: __A : Any = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''ybelkada/fonts''' def snake_case_ ( ): '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' '''Pix2StructImageProcessor. Please upgrade torch.''' ) def snake_case_ ( A_ : Tuple, A_ : List[Any], A_ : Union[str, Any] ): '''simple docstring''' requires_backends(A_, ['''torch'''] ) _check_torch_version() _lowerCamelCase : Optional[Any] = image_tensor.unsqueeze(0 ) _lowerCamelCase : Optional[Any] = torch.nn.functional.unfold(A_, (patch_height, patch_width), stride=(patch_height, patch_width) ) _lowerCamelCase : Tuple = patches.reshape(image_tensor.size(0 ), image_tensor.size(1 ), A_, A_, -1 ) _lowerCamelCase : str = patches.permute(0, 4, 2, 3, 1 ).reshape( image_tensor.size(2 ) // patch_height, image_tensor.size(3 ) // patch_width, image_tensor.size(1 ) * patch_height * patch_width, ) return patches.unsqueeze(0 ) def snake_case_ ( A_ : str, A_ : int = 36, A_ : str = "black", A_ : str = "white", A_ : int = 5, A_ : int = 5, A_ : int = 5, A_ : int = 5, A_ : Optional[bytes] = None, A_ : Optional[str] = None, ): '''simple docstring''' requires_backends(A_, '''vision''' ) # Add new lines so that each line is no more than 80 characters. _lowerCamelCase : Optional[Any] = textwrap.TextWrapper(width=80 ) _lowerCamelCase : int = wrapper.wrap(text=A_ ) _lowerCamelCase : List[Any] = '''\n'''.join(A_ ) if font_bytes is not None and font_path is None: _lowerCamelCase : Optional[int] = io.BytesIO(A_ ) elif font_path is not None: _lowerCamelCase : Union[str, Any] = font_path else: _lowerCamelCase : str = hf_hub_download(A_, '''Arial.TTF''' ) _lowerCamelCase : Optional[Any] = ImageFont.truetype(A_, encoding='''UTF-8''', size=A_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _lowerCamelCase : Union[str, Any] = ImageDraw.Draw(Image.new('''RGB''', (1, 1), A_ ) ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = temp_draw.textbbox((0, 0), A_, A_ ) # Create the actual image with a bit of padding around the text. _lowerCamelCase : int = text_width + left_padding + right_padding _lowerCamelCase : Dict = text_height + top_padding + bottom_padding _lowerCamelCase : int = Image.new('''RGB''', (image_width, image_height), A_ ) _lowerCamelCase : Optional[Any] = ImageDraw.Draw(A_ ) draw.text(xy=(left_padding, top_padding), text=A_, fill=A_, font=A_ ) return image def snake_case_ ( A_ : np.ndarray, A_ : str, **A_ : Optional[int] ): '''simple docstring''' requires_backends(A_, '''vision''' ) # Convert to PIL image if necessary _lowerCamelCase : List[str] = to_pil_image(A_ ) _lowerCamelCase : Union[str, Any] = render_text(A_, **A_ ) _lowerCamelCase : int = max(header_image.width, image.width ) _lowerCamelCase : List[Any] = int(image.height * (new_width / image.width) ) _lowerCamelCase : Dict = int(header_image.height * (new_width / header_image.width) ) _lowerCamelCase : List[Any] = Image.new('''RGB''', (new_width, new_height + new_header_height), '''white''' ) new_image.paste(header_image.resize((new_width, new_header_height) ), (0, 0) ) new_image.paste(image.resize((new_width, new_height) ), (0, new_header_height) ) # Convert back to the original framework if necessary _lowerCamelCase : Optional[int] = to_numpy_array(A_ ) if infer_channel_dimension_format(A_ ) == ChannelDimension.LAST: _lowerCamelCase : int = to_channel_dimension_format(A_, ChannelDimension.LAST ) return new_image class __snake_case ( _lowercase): snake_case__ : str = ["flattened_patches"] def __init__( self : str , __lowerCAmelCase : bool = True , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : int = 2_0_4_8 , __lowerCAmelCase : bool = False , **__lowerCAmelCase : Optional[int] , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} _lowerCamelCase : List[str] = do_normalize _lowerCamelCase : Dict = do_convert_rgb _lowerCamelCase : Union[str, Any] = max_patches _lowerCamelCase : Any = is_vqa def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : int , __lowerCAmelCase : dict , **__lowerCAmelCase : Union[str, Any] ): """simple docstring""" requires_backends(self.extract_flattened_patches , '''torch''' ) _check_torch_version() # convert to torch _lowerCamelCase : Any = to_channel_dimension_format(__lowerCAmelCase , ChannelDimension.FIRST ) _lowerCamelCase : int = torch.from_numpy(__lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : Union[str, Any] = patch_size['''height'''], patch_size['''width'''] _lowerCamelCase , _lowerCamelCase : Dict = get_image_size(__lowerCAmelCase ) # maximize scale s.t. _lowerCamelCase : Any = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _lowerCamelCase : str = max(min(math.floor(scale * image_height / patch_height ) , __lowerCAmelCase ) , 1 ) _lowerCamelCase : Optional[int] = max(min(math.floor(scale * image_width / patch_width ) , __lowerCAmelCase ) , 1 ) _lowerCamelCase : List[Any] = max(num_feasible_rows * patch_height , 1 ) _lowerCamelCase : str = max(num_feasible_cols * patch_width , 1 ) _lowerCamelCase : Optional[Any] = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode='''bilinear''' , align_corners=__lowerCAmelCase , antialias=__lowerCAmelCase , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _lowerCamelCase : int = torch_extract_patches(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = patches.shape _lowerCamelCase : int = patches_shape[1] _lowerCamelCase : Union[str, Any] = patches_shape[2] _lowerCamelCase : Optional[int] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _lowerCamelCase : List[Any] = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _lowerCamelCase : List[Any] = torch.arange(__lowerCAmelCase ).reshape([rows, 1] ).repeat(1 , __lowerCAmelCase ).reshape([rows * columns, 1] ) _lowerCamelCase : Any = torch.arange(__lowerCAmelCase ).reshape([1, columns] ).repeat(__lowerCAmelCase , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _lowerCamelCase : int = row_ids.to(torch.floataa ) _lowerCamelCase : str = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _lowerCamelCase : Any = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _lowerCamelCase : Any = torch.nn.functional.pad(__lowerCAmelCase , [0, 0, 0, max_patches - (rows * columns)] ).float() _lowerCamelCase : Any = to_numpy_array(__lowerCAmelCase ) return result def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Dict ): """simple docstring""" if image.dtype == np.uinta: _lowerCamelCase : Tuple = image.astype(np.floataa ) # take mean across the whole `image` _lowerCamelCase : List[str] = np.mean(__lowerCAmelCase ) _lowerCamelCase : Dict = np.std(__lowerCAmelCase ) _lowerCamelCase : Tuple = max(__lowerCAmelCase , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , **__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : ImageInput , __lowerCAmelCase : Optional[str] = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[int] = None , __lowerCAmelCase : Optional[Dict[str, int]] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCAmelCase : Any , ): """simple docstring""" _lowerCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase : str = patch_size if patch_size is not None else self.patch_size _lowerCamelCase : List[Any] = max_patches if max_patches is not None else self.max_patches _lowerCamelCase : Any = self.is_vqa if kwargs.get('''data_format''' , __lowerCAmelCase ) is not None: raise ValueError('''data_format is not an accepted input as the outputs are ''' ) _lowerCamelCase : Tuple = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase : Optional[Any] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase : Optional[Any] = [to_numpy_array(__lowerCAmelCase ) for image in images] if is_vqa: if header_text is None: raise ValueError('''A header text must be provided for VQA models.''' ) _lowerCamelCase : str = kwargs.pop('''font_bytes''' , __lowerCAmelCase ) _lowerCamelCase : int = kwargs.pop('''font_path''' , __lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowerCamelCase : Optional[Any] = [header_text] * len(__lowerCAmelCase ) _lowerCamelCase : Dict = [ render_header(__lowerCAmelCase , header_text[i] , font_bytes=__lowerCAmelCase , font_path=__lowerCAmelCase ) for i, image in enumerate(__lowerCAmelCase ) ] if do_normalize: _lowerCamelCase : Dict = [self.normalize(image=__lowerCAmelCase ) for image in images] # convert to torch tensor and permute _lowerCamelCase : Optional[int] = [ self.extract_flattened_patches(image=__lowerCAmelCase , max_patches=__lowerCAmelCase , patch_size=__lowerCAmelCase ) for image in images ] # create attention mask in numpy _lowerCamelCase : Union[str, Any] = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _lowerCamelCase : str = BatchFeature( data={'''flattened_patches''': images, '''attention_mask''': attention_masks} , tensor_type=__lowerCAmelCase ) return encoded_outputs
83
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
17
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , ): super().__init__() lowercase = value_function lowercase = unet lowercase = scheduler lowercase = env lowercase = env.get_dataset() lowercase = {} for key in self.data.keys(): try: lowercase = self.data[key].mean() except: # noqa: E722 pass lowercase = {} for key in self.data.keys(): try: lowercase = self.data[key].std() except: # noqa: E722 pass lowercase = env.observation_space.shape[0] lowercase = env.action_space.shape[0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if type(snake_case ) is dict: return {k: self.to_torch(snake_case ) for k, v in x_in.items()} elif torch.is_tensor(snake_case ): return x_in.to(self.unet.device ) return torch.tensor(snake_case , device=self.unet.device ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case ): for key, val in cond.items(): lowercase = val.clone() return x_in def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): lowercase = x.shape[0] lowercase = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase = torch.full((batch_size,) , snake_case , device=self.unet.device , dtype=torch.long ) for _ in range(snake_case ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase = self.value_function(x.permute(0 , 2 , 1 ) , snake_case ).sample lowercase = torch.autograd.grad([y.sum()] , [x] )[0] lowercase = self.scheduler._get_variance(snake_case ) lowercase = torch.exp(0.5 * posterior_variance ) lowercase = model_std * grad lowercase = 0 lowercase = x.detach() lowercase = x + scale * grad lowercase = self.reset_xa(snake_case , snake_case , self.action_dim ) lowercase = self.unet(x.permute(0 , 2 , 1 ) , snake_case ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase = self.scheduler.step(snake_case , snake_case , snake_case , predict_epsilon=snake_case )['prev_sample'] # apply conditions to the trajectory (set the initial state) lowercase = self.reset_xa(snake_case , snake_case , self.action_dim ) lowercase = self.to_torch(snake_case ) return x, y def __call__( self , snake_case , snake_case=64 , snake_case=32 , snake_case=2 , snake_case=0.1 ): # normalize the observations and create batch dimension lowercase = self.normalize(snake_case , 'observations' ) lowercase = obs[None].repeat(snake_case , axis=0 ) lowercase = {0: self.to_torch(snake_case )} lowercase = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase = randn_tensor(snake_case , device=self.unet.device ) lowercase = self.reset_xa(snake_case , snake_case , self.action_dim ) lowercase = self.to_torch(snake_case ) # run the diffusion process lowercase , lowercase = self.run_diffusion(snake_case , snake_case , snake_case , snake_case ) # sort output trajectories by value lowercase = y.argsort(0 , descending=snake_case ).squeeze() lowercase = x[sorted_idx] lowercase = sorted_values[:, :, : self.action_dim] lowercase = actions.detach().cpu().numpy() lowercase = self.de_normalize(snake_case , key='actions' ) # select the action with the highest value if y is not None: lowercase = 0 else: # if we didn't run value guiding, select a random action lowercase = np.random.randint(0 , snake_case ) lowercase = denorm_actions[selected_index, 0] return denorm_actions
84
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : str = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( _lowercase ): _lowercase : Dict = '''unispeech''' def __init__( self : str , __A : Tuple=32 , __A : List[str]=768 , __A : Dict=12 , __A : Union[str, Any]=12 , __A : Tuple=3072 , __A : Any="gelu" , __A : int=0.1 , __A : Optional[int]=0.1 , __A : List[Any]=0.1 , __A : Any=0.0 , __A : List[str]=0.0 , __A : int=0.1 , __A : List[Any]=0.1 , __A : List[str]=0.0_2 , __A : List[str]=1e-5 , __A : List[Any]="group" , __A : int="gelu" , __A : Any=(512, 512, 512, 512, 512, 512, 512) , __A : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __A : Tuple=(10, 3, 3, 3, 3, 2, 2) , __A : Optional[int]=False , __A : Any=128 , __A : Union[str, Any]=16 , __A : Optional[Any]=False , __A : str=True , __A : Dict=0.0_5 , __A : Optional[Any]=10 , __A : Dict=2 , __A : int=0.0 , __A : List[str]=10 , __A : str=0 , __A : List[str]=320 , __A : List[Any]=2 , __A : Tuple=0.1 , __A : Optional[int]=100 , __A : Any=256 , __A : Dict=256 , __A : Tuple=0.1 , __A : List[str]="mean" , __A : int=False , __A : List[str]=False , __A : List[Any]=256 , __A : str=80 , __A : Tuple=0 , __A : Tuple=1 , __A : int=2 , __A : Dict=0.5 , **__A : List[Any] , ): super().__init__(**__A , pad_token_id=__A , bos_token_id=__A , eos_token_id=__A ) __A : Dict = hidden_size __A : Optional[Any] = feat_extract_norm __A : List[Any] = feat_extract_activation __A : str = list(__A ) __A : Optional[Any] = list(__A ) __A : Optional[int] = list(__A ) __A : List[Any] = conv_bias __A : Optional[int] = num_conv_pos_embeddings __A : List[Any] = num_conv_pos_embedding_groups __A : int = len(self.conv_dim ) __A : Optional[Any] = num_hidden_layers __A : List[str] = intermediate_size __A : Union[str, Any] = hidden_act __A : Optional[int] = num_attention_heads __A : Tuple = hidden_dropout __A : Optional[Any] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Dict = feat_proj_dropout __A : Optional[int] = final_dropout __A : Dict = layerdrop __A : Optional[int] = layer_norm_eps __A : Optional[Any] = initializer_range __A : Optional[int] = num_ctc_classes __A : Dict = vocab_size __A : List[str] = do_stable_layer_norm __A : Tuple = use_weighted_layer_sum __A : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __A : Tuple = apply_spec_augment __A : Union[str, Any] = mask_time_prob __A : Optional[Any] = mask_time_length __A : List[Any] = mask_time_min_masks __A : List[Any] = mask_feature_prob __A : Any = mask_feature_length __A : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __A : Any = num_codevectors_per_group __A : Tuple = num_codevector_groups __A : List[str] = contrastive_logits_temperature __A : Optional[int] = feat_quantizer_dropout __A : int = num_negatives __A : List[str] = codevector_dim __A : int = proj_codevector_dim __A : Union[str, Any] = diversity_loss_weight # ctc loss __A : List[str] = ctc_loss_reduction __A : Any = ctc_zero_infinity # pretraining loss __A : Union[str, Any] = replace_prob @property def lowerCAmelCase_ ( self : int ): return functools.reduce(operator.mul , self.conv_stride , 1 )
17
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case ( UpperCamelCase_ ): def __init__( self : str , a_ : Optional[Any] , a_ : Optional[Any]=13 , a_ : List[Any]=7 , a_ : Optional[int]=True , a_ : Any=True , a_ : Dict=True , a_ : Tuple=True , a_ : str=True , a_ : Tuple=False , a_ : Optional[int]=False , a_ : Union[str, Any]=False , a_ : int=2 , a_ : Dict=99 , a_ : Union[str, Any]=0 , a_ : str=32 , a_ : Union[str, Any]=5 , a_ : Any=4 , a_ : int=0.1 , a_ : Any=0.1 , a_ : List[str]=512 , a_ : Optional[int]=12 , a_ : Union[str, Any]=2 , a_ : List[Any]=0.02 , a_ : Tuple=3 , a_ : int=4 , a_ : Optional[int]="last" , a_ : List[str]=None , a_ : List[Any]=None , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Optional[int] = batch_size SCREAMING_SNAKE_CASE__ : Optional[int] = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : str = use_input_lengths SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : List[str] = gelu_activation SCREAMING_SNAKE_CASE__ : str = sinusoidal_embeddings SCREAMING_SNAKE_CASE__ : Any = causal SCREAMING_SNAKE_CASE__ : Optional[Any] = asm SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_langs SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = n_special SCREAMING_SNAKE_CASE__ : Any = hidden_size SCREAMING_SNAKE_CASE__ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Dict = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : int = max_position_embeddings SCREAMING_SNAKE_CASE__ : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : str = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[Any] = num_choices SCREAMING_SNAKE_CASE__ : List[Any] = summary_type SCREAMING_SNAKE_CASE__ : Optional[Any] = use_proj SCREAMING_SNAKE_CASE__ : List[str] = scope def __lowercase( self : Optional[int] )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : str = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ : Dict = None if self.use_input_lengths: SCREAMING_SNAKE_CASE__ : Optional[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : Optional[int] = None SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size] , 2 ).float() SCREAMING_SNAKE_CASE__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE__ : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowercase( self : int )-> Any: """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __lowercase( self : List[Any] , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : Any , a_ : Union[str, Any] , a_ : List[str] , a_ : List[Any] , a_ : int , a_ : Any , )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = FlaubertModel(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , lengths=a_ , langs=a_ ) SCREAMING_SNAKE_CASE__ : int = model(a_ , langs=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase( self : str , a_ : str , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : Any , a_ : int , a_ : Tuple , a_ : str , )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaubertWithLMHeadModel(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase( self : Any , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : str , a_ : int , a_ : Union[str, Any] , a_ : List[Any] , a_ : Any , a_ : Any , a_ : Union[str, Any] , )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = FlaubertForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model(a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = model(a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase( self : Tuple , a_ : Tuple , a_ : int , a_ : Optional[Any] , a_ : Optional[int] , a_ : Tuple , a_ : List[Any] , a_ : int , a_ : Optional[int] , a_ : int , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = FlaubertForQuestionAnswering(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , ) SCREAMING_SNAKE_CASE__ : List[Any] = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , ) ((SCREAMING_SNAKE_CASE__) , ) : Optional[Any] = result_with_labels.to_tuple() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ , start_positions=a_ , end_positions=a_ ) ((SCREAMING_SNAKE_CASE__) , ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowercase( self : Dict , a_ : int , a_ : Optional[int] , a_ : Tuple , a_ : Dict , a_ : Any , a_ : List[str] , a_ : str , a_ : List[Any] , a_ : int , )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = FlaubertForSequenceClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = model(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowercase( self : List[str] , a_ : Tuple , a_ : str , a_ : Optional[Any] , a_ : List[Any] , a_ : Tuple , a_ : List[Any] , a_ : List[Any] , a_ : Optional[int] , a_ : List[str] , )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Any = FlaubertForTokenClassification(a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : List[str] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase( self : Optional[int] , a_ : Union[str, Any] , a_ : str , a_ : List[str] , a_ : Any , a_ : Any , a_ : Any , a_ : List[Any] , a_ : Optional[Any] , a_ : Any , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.num_choices SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaubertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() SCREAMING_SNAKE_CASE__ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE__ : Dict = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase( self : Optional[Any] )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE__ : Optional[int] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class snake_case ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowercase_ = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __lowercase( self : Union[str, Any] , a_ : str , a_ : List[Any] , a_ : int , a_ : str , a_ : Union[str, Any] )-> int: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowercase( self : Optional[Any] , a_ : List[Any] , a_ : int , a_ : List[str]=False )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) SCREAMING_SNAKE_CASE__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def __lowercase( self : List[str] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = FlaubertModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self , config_class=a_ , emb_dim=37 ) def __lowercase( self : Dict )-> Any: """simple docstring""" self.config_tester.run_common_tests() def __lowercase( self : Tuple )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a_ ) def __lowercase( self : Optional[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a_ ) def __lowercase( self : Union[str, Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a_ ) def __lowercase( self : Union[str, Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a_ ) def __lowercase( self : List[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a_ ) def __lowercase( self : Dict )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a_ ) def __lowercase( self : Tuple )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a_ ) @slow def __lowercase( self : int )-> List[Any]: """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : Tuple = FlaubertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def __lowercase( self : str )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return SCREAMING_SNAKE_CASE__ : Tuple = True SCREAMING_SNAKE_CASE__ : Any = model_class(config=a_ ) SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(a_ , a_ ) SCREAMING_SNAKE_CASE__ : str = torch.jit.trace( a_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , 'traced_model.pt' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.jit.load(os.path.join(a_ , 'traced_model.pt' ) , map_location=a_ ) loaded(inputs_dict['input_ids'].to(a_ ) , inputs_dict['attention_mask'].to(a_ ) ) @require_torch class snake_case ( unittest.TestCase ): @slow def __lowercase( self : Union[str, Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(a_ )[0] SCREAMING_SNAKE_CASE__ : Dict = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a_ ) SCREAMING_SNAKE_CASE__ : str = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
85
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ = cs.out[:-1] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Tuple ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = tokenizer.decode(greedy_ids[0] ) A_ = TextIteratorStreamer(UpperCAmelCase ) A_ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A_ = Thread(target=model.generate , kwargs=UpperCAmelCase ) thread.start() A_ = "" for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase ) A_ = greedy_ids[:, input_ids.shape[1] :] A_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase , skip_prompt=UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=10 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A_ = cs.out[:-1] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A_ = AutoTokenizer.from_pretrained("distilgpt2" ) A_ = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = torch.ones((1, 5) , device=UpperCAmelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A_ = TextStreamer(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) model.generate(UpperCAmelCase , max_new_tokens=1 , do_sample=UpperCAmelCase , streamer=UpperCAmelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A_ = cs.out[:-1] # Remove the final "\n" A_ = tokenizer(UpperCAmelCase , return_tensors="pt" ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __A ( self : int ): A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) A_ = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(UpperCAmelCase ) A_ = -1 A_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCAmelCase ) A_ = TextIteratorStreamer(UpperCAmelCase , timeout=0.001 ) A_ = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} A_ = Thread(target=model.generate , kwargs=UpperCAmelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCAmelCase ): A_ = "" for new_text in streamer: streamer_text += new_text
86
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( a__ : Optional[Any] ,a__ : Union[str, Any] ,a__ : Optional[int] ) -> List[Any]: # Initialise PyTorch model __A : Dict = MobileBertConfig.from_json_file(a__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __A : Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint __A : Dict = load_tf_weights_in_mobilebert(a__ ,a__ ,a__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() ,a__ ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
17
0
from random import randint from tempfile import TemporaryFile import numpy as np def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" A__ = 0 if start < end: A__ = randint(lowercase_ , lowercase_ ) A__ = a[end] A__ = a[pivot] A__ = temp A__ , A__ = _in_place_partition(lowercase_ , lowercase_ , lowercase_ ) count += _in_place_quick_sort(lowercase_ , lowercase_ , p - 1 ) count += _in_place_quick_sort(lowercase_ , p + 1 , lowercase_ ) return count def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Any: """simple docstring""" A__ = 0 A__ = randint(lowercase_ , lowercase_ ) A__ = a[end] A__ = a[pivot] A__ = temp A__ = start - 1 for index in range(lowercase_ , lowercase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value A__ = new_pivot_index + 1 A__ = a[new_pivot_index] A__ = a[index] A__ = temp A__ = a[new_pivot_index + 1] A__ = a[end] A__ = temp return new_pivot_index + 1, count _lowerCamelCase : Optional[Any] = TemporaryFile() _lowerCamelCase : str = 100 # 1000 elements are to be sorted _lowerCamelCase , _lowerCamelCase : List[str] = 0, 1 # mean and standard deviation _lowerCamelCase : Union[str, Any] = np.random.normal(mu, sigma, p) np.save(outfile, X) print("""The array is""") print(X) outfile.seek(0) # using the same array _lowerCamelCase : str = np.load(outfile) _lowerCamelCase : List[Any] = len(M) - 1 _lowerCamelCase : List[str] = _in_place_quick_sort(M, 0, r) print( """No of Comparisons for 100 elements selected from a standard normal distribution""" """is :""" ) print(z)
87
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType UpperCAmelCase = logging.get_logger(__name__) class lowercase__ ( A_ ): __UpperCAmelCase = '''vision-encoder-decoder''' __UpperCAmelCase = True def __init__( self , **SCREAMING_SNAKE_CASE) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}') _lowerCamelCase : int = kwargs.pop("""encoder""") _lowerCamelCase : List[Any] = encoder_config.pop("""model_type""") _lowerCamelCase : Tuple = kwargs.pop("""decoder""") _lowerCamelCase : Tuple = decoder_config.pop("""model_type""") _lowerCamelCase : int = AutoConfig.for_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[Any] = True @classmethod def UpperCamelCase_ ( cls , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""") _lowerCamelCase : List[Any] = True _lowerCamelCase : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self) -> Any: _lowerCamelCase : Optional[Any] = copy.deepcopy(self.__dict__) _lowerCamelCase : Any = self.encoder.to_dict() _lowerCamelCase : Optional[int] = self.decoder.to_dict() _lowerCamelCase : List[Any] = self.__class__.model_type return output class lowercase__ ( A_ ): __UpperCAmelCase = version.parse('''1.11''' ) @property def UpperCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self) -> float: return 1e-4 @property def UpperCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}}) class lowercase__ ( A_ ): @property def UpperCamelCase_ ( self) -> Mapping[str, Mapping[int, str]]: _lowerCamelCase : Dict = OrderedDict() _lowerCamelCase : Dict = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowerCamelCase : Union[str, Any] = {0: """batch""", 1: """past_decoder_sequence + sequence"""} _lowerCamelCase : Optional[Any] = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = -1 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , ) -> Mapping[str, Any]: import torch _lowerCamelCase : Optional[Any] = OrderedDict() _lowerCamelCase : List[Any] = super().generate_dummy_inputs( SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , seq_length=SCREAMING_SNAKE_CASE , is_pair=SCREAMING_SNAKE_CASE , framework=SCREAMING_SNAKE_CASE) _lowerCamelCase , _lowerCamelCase : List[Any] = dummy_input["""input_ids"""].shape _lowerCamelCase : List[str] = (batch, encoder_sequence, self._config.encoder_hidden_size) _lowerCamelCase : List[str] = dummy_input.pop("""input_ids""") _lowerCamelCase : Tuple = dummy_input.pop("""attention_mask""") _lowerCamelCase : Dict = torch.zeros(SCREAMING_SNAKE_CASE) return common_inputs class lowercase__ ( A_ ): @property def UpperCamelCase_ ( self) -> None: pass def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = "default") -> OnnxConfig: _lowerCamelCase : List[Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE)
88
import math class lowerCamelCase_ : def __init__( self : Union[str, Any] , __A : List[str]=0 ): # a graph with Node 0,1,...,N-1 __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # adjacency matrix for weight __A : str = [ [math.inf for j in range(0 , __A )] for i in range(0 , __A ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase_ ( self : str , __A : Union[str, Any] , __A : Any , __A : Optional[int] ): __A : List[Any] = w def lowerCAmelCase_ ( self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __A : List[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[str] ): return self.dp[u][v] if __name__ == "__main__": UpperCAmelCase_ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
17
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase="resnet50", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=3, lowerCamelCase=True, lowerCamelCase=True, ) -> Tuple: """simple docstring""" _lowercase : Optional[Any] = parent _lowercase : List[Any] = out_indices if out_indices is not None else [4] _lowercase : Optional[int] = stage_names _lowercase : Any = out_features _lowercase : int = backbone _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : List[Any] = num_channels _lowercase : Union[str, Any] = use_pretrained_backbone _lowercase : Optional[int] = is_training def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : List[str] = self.get_config() return config, pixel_values def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size, num_channels=self.num_channels, out_features=self.out_features, out_indices=self.out_indices, stage_names=self.stage_names, use_pretrained_backbone=self.use_pretrained_backbone, backbone=self.backbone, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = TimmBackbone(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.feature_map[-1].shape, (self.batch_size, model.channels[-1], 14, 14), ) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() _lowercase , _lowercase : List[Any] = config_and_inputs _lowercase : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : Dict = (TimmBackbone,) if is_torch_available() else () lowercase_ : Optional[Any] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} lowercase_ : Union[str, Any] = False lowercase_ : Optional[Any] = False lowercase_ : Optional[Any] = False lowercase_ : Any = False def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Union[str, Any] = TimmBackboneModelTester(self) _lowercase : str = ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = 'resnet18' _lowercase : Any = 'microsoft/resnet-18' _lowercase : List[str] = AutoBackbone.from_pretrained(lowerCamelCase, use_timm_backbone=lowerCamelCase) _lowercase : int = AutoBackbone.from_pretrained(lowerCamelCase) self.assertEqual(len(timm_model.out_features), len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names), len(transformers_model.stage_names)) self.assertEqual(timm_model.channels, transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices, (-1,)) self.assertEqual(transformers_model.out_indices, [len(timm_model.stage_names) - 1]) _lowercase : List[Any] = AutoBackbone.from_pretrained(lowerCamelCase, use_timm_backbone=lowerCamelCase, out_indices=[1, 2, 3]) _lowercase : int = AutoBackbone.from_pretrained(lowerCamelCase, out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices, transformers_model.out_indices) self.assertEqual(len(timm_model.out_features), len(transformers_model.out_features)) self.assertEqual(timm_model.channels, transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def UpperCamelCase ( self) -> str: """simple docstring""" pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def UpperCamelCase ( self) -> str: """simple docstring""" pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" pass @unittest.skip('Safetensors is not supported by timm.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(lowerCamelCase) _lowercase : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : List[Any] = [*signature.parameters.keys()] _lowercase : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = True _lowercase : List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality _lowercase : str = self.all_model_classes[0] _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) _lowercase : Union[str, Any] = self._prepare_for_class(lowerCamelCase, lowerCamelCase) _lowercase : List[str] = model(**lowerCamelCase) _lowercase : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models _lowercase : str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowercase : List[Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCamelCase) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(**lowerCamelCase) self.assertEqual(len(result.feature_maps), len(config.out_indices)) self.assertEqual(len(model.channels), len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None _lowercase : Dict = copy.deepcopy(lowerCamelCase) _lowercase : Optional[Any] = None _lowercase : List[str] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : List[str] = model(**lowerCamelCase) self.assertEqual(len(result.feature_maps), 1) self.assertEqual(len(model.channels), 1) # Check backbone can be initialized with fresh weights _lowercase : Dict = copy.deepcopy(lowerCamelCase) _lowercase : List[str] = False _lowercase : List[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(**lowerCamelCase)
89
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class a__ ( a__ ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_ , '''width_multiplier''' ) ) class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_=13 , lowerCamelCase_=64 , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_="swish" , lowerCamelCase_=3 , lowerCamelCase_=32 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_=10 , lowerCamelCase_=None , lowerCamelCase_=0.25 , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , ) -> Tuple: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = make_divisible(5_12 * width_multiplier , divisor=8 ) lowerCAmelCase__ = hidden_act lowerCAmelCase__ = conv_kernel_size lowerCAmelCase__ = output_stride lowerCAmelCase__ = classifier_dropout_prob lowerCAmelCase__ = use_labels lowerCAmelCase__ = is_training lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = width_multiplier lowerCAmelCase__ = ffn_dropout lowerCAmelCase__ = attn_dropout def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels, pixel_labels def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = MobileViTVaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MobileViTVaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = MobileViTVaForSemanticSegmentation(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCAmelCase__ = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCAmelCase__ = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a__ ( a__ , a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : Tuple = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase__ : int = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Optional[int] = False lowercase__ : int = False lowercase__ : List[str] = False def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = MobileViTVaModelTester(self ) lowerCAmelCase__ = MobileViTVaConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: pass def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase_ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase__ = outputs.hidden_states lowerCAmelCase__ = 5 self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCAmelCase__ = 2 for i in range(len(lowerCamelCase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> int: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = MobileViTVaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _snake_case ( ) -> int: lowerCAmelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( lowerCamelCase_ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: lowerCAmelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ = model.to(lowerCamelCase_ ) lowerCAmelCase__ = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ ) lowerCAmelCase__ = outputs.logits # verify the logits lowerCAmelCase__ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , lowerCamelCase_ ) lowerCAmelCase__ = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=lowerCamelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase_ , atol=1e-4 ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: lowerCAmelCase__ = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ = model.to(lowerCamelCase_ ) lowerCAmelCase__ = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase_ ) lowerCAmelCase__ = outputs.logits.detach().cpu() lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ , target_sizes=[(50, 60)] ) lowerCAmelCase__ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , lowerCamelCase_ ) lowerCAmelCase__ = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ ) lowerCAmelCase__ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , lowerCamelCase_ )
90
from math import sqrt def __SCREAMING_SNAKE_CASE ( a__ : int = 1000000 ) -> int: __A : int = 0 __A : int = 0 __A : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(a__ ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
17
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = 'ylacombe/bark-small' A = tempfile.mkdtemp() A = 'en_speaker_1' A = 'This is a test string' A = 'speaker_embeddings_path.json' A = 'speaker_embeddings' def _SCREAMING_SNAKE_CASE ( self : Any ,**A_ : Any ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ) -> List[str]: shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Dict: A = self.get_tokenizer() A = BarkProcessor(tokenizer=A_ ) processor.save_pretrained(self.tmpdirname ) A = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) A = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) A = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token='(BOS)' ,eos_token='(EOS)' ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def _SCREAMING_SNAKE_CASE ( self : str ) -> str: A = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) A = 35 A = 2 A = 8 A = { 'semantic_prompt': np.ones(A_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset A = processor(text=self.input_string ,voice_preset=A_ ) A = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(A_ ,np.array([] ) ).tolist() ) # test loading voice preset from npz file A = os.path.join(self.tmpdirname ,'file.npz' ) np.savez(A_ ,**A_ ) A = processor(text=self.input_string ,voice_preset=A_ ) A = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(A_ ,np.array([] ) ).tolist() ) # test loading voice preset from the hub A = processor(text=self.input_string ,voice_preset=self.voice_preset ) def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: A = self.get_tokenizer() A = BarkProcessor(tokenizer=A_ ) A = processor(text=self.input_string ) A = tokenizer( self.input_string ,padding='max_length' ,max_length=256 ,add_special_tokens=A_ ,return_attention_mask=A_ ,return_token_type_ids=A_ ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
91
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : List[str] = ['''pixel_values'''] def __init__( self : Dict , __A : bool = True , __A : Optional[Dict[str, int]] = None , __A : PILImageResampling = PILImageResampling.BILINEAR , __A : bool = True , __A : Dict[str, int] = None , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , **__A : int , ): super().__init__(**__A ) __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 256} __A : Dict = get_size_dict(__A , default_to_square=__A ) __A : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : str = do_resize __A : Dict = size __A : Any = resample __A : Optional[Any] = do_center_crop __A : List[str] = crop_size __A : Optional[int] = do_rescale __A : int = rescale_factor __A : Union[str, Any] = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Optional[Any] , __A : np.ndarray , __A : Dict[str, int] , __A : PILImageResampling = PILImageResampling.BICUBIC , __A : Optional[Union[str, ChannelDimension]] = None , **__A : List[Any] , ): __A : str = get_size_dict(__A , default_to_square=__A ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __A : Dict = get_resize_output_image_size(__A , size=size["""shortest_edge"""] , default_to_square=__A ) return resize(__A , size=__A , resample=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : Dict[str, int] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str , ): __A : str = get_size_dict(__A ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__A , size=(size["""height"""], size["""width"""]) , data_format=__A , **__A ) def lowerCAmelCase_ ( self : List[str] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Optional[int] ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Any , __A : np.ndarray , __A : Union[float, List[float]] , __A : Union[float, List[float]] , __A : Optional[Union[str, ChannelDimension]] = None , **__A : Tuple , ): return normalize(__A , mean=__A , std=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : int , __A : ImageInput , __A : Optional[bool] = None , __A : Dict[str, int] = None , __A : PILImageResampling = None , __A : bool = None , __A : Dict[str, int] = None , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[float, List[float]]] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : List[str] = do_resize if do_resize is not None else self.do_resize __A : Any = size if size is not None else self.size __A : Union[str, Any] = get_size_dict(__A , default_to_square=__A ) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __A : List[Any] = crop_size if crop_size is not None else self.crop_size __A : int = get_size_dict(__A , param_name="""crop_size""" ) __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Optional[int] = image_mean if image_mean is not None else self.image_mean __A : List[str] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __A : Union[str, Any] = [to_numpy_array(__A ) for image in images] if do_resize: __A : int = [self.resize(image=__A , size=__A , resample=__A ) for image in images] if do_center_crop: __A : Optional[Any] = [self.center_crop(image=__A , size=__A ) for image in images] if do_rescale: __A : List[Any] = [self.rescale(image=__A , scale=__A ) for image in images] if do_normalize: __A : Any = [self.normalize(image=__A , mean=__A , std=__A ) for image in images] __A : int = [to_channel_dimension_format(__A , __A ) for image in images] __A : Tuple = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A ) def lowerCAmelCase_ ( self : int , __A : List[str] , __A : List[Tuple] = None ): __A : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__A ) != len(__A ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__A ): __A : str = target_sizes.numpy() __A : int = [] for idx in range(len(__A ) ): __A : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__A ) __A : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__A ) else: __A : List[str] = logits.argmax(dim=1 ) __A : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
17
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : int ) -> str: lowercase : Tuple =int(__magic_name__ ) if decimal in (0, 1): # Exit cases for the recursion return str(__magic_name__ ) lowercase , lowercase : Optional[Any] =divmod(__magic_name__ , 2 ) return binary_recursive(__magic_name__ ) + str(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ : str ) -> str: lowercase : List[Any] =str(__magic_name__ ).strip() if not number: raise ValueError('''No input value was provided''' ) lowercase : str ='''-''' if number.startswith('''-''' ) else '''''' lowercase : List[str] =number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return f'''{negative}0b{binary_recursive(int(__magic_name__ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
92
class lowerCamelCase_ : def __init__( self : Dict , __A : Tuple , __A : Optional[int] , __A : int ): __A : List[str] = name __A : Optional[int] = value __A : Optional[Any] = weight def __repr__( self : Any ): return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def lowerCAmelCase_ ( self : Union[str, Any] ): return self.value def lowerCAmelCase_ ( self : str ): return self.name def lowerCAmelCase_ ( self : str ): return self.weight def lowerCAmelCase_ ( self : Dict ): return self.value / self.weight def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : Optional[int] ,a__ : Union[str, Any] ) -> int: __A : Tuple = [] for i in range(len(a__ ) ): menu.append(Things(name[i] ,value[i] ,weight[i] ) ) return menu def __SCREAMING_SNAKE_CASE ( a__ : Tuple ,a__ : Any ,a__ : Optional[int] ) -> Tuple: __A : Optional[int] = sorted(a__ ,key=a__ ,reverse=a__ ) __A : Optional[Any] = [] __A , __A : Tuple = 0.0, 0.0 for i in range(len(a__ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
17
0
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: """simple docstring""" lowerCAmelCase__ :Optional[Any] = multiprocessing.Manager() lowerCAmelCase__ :Optional[int] = manager.list() lowerCAmelCase__ :str = multiprocessing.Process(target=_SCREAMING_SNAKE_CASE , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Any: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil lowerCAmelCase__ :Any = shutil.rmtree lowerCAmelCase__ :Dict = os.rmdir lowerCAmelCase__ :int = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: lowerCAmelCase__ :Optional[Any] = {} with swallow_io(): with time_limit(_SCREAMING_SNAKE_CASE ): exec(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F"failed: {e}" ) # Needed for cleaning up. lowerCAmelCase__ :Optional[Any] = rmtree lowerCAmelCase__ :Union[str, Any] = rmdir lowerCAmelCase__ :Optional[int] = chdir @contextlib.contextmanager def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" def signal_handler(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , _SCREAMING_SNAKE_CASE ) signal.signal(signal.SIGALRM , _SCREAMING_SNAKE_CASE ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __A () ->int: """simple docstring""" lowerCAmelCase__ :Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(_SCREAMING_SNAKE_CASE ): with contextlib.redirect_stderr(_SCREAMING_SNAKE_CASE ): with redirect_stdin(_SCREAMING_SNAKE_CASE ): yield @contextlib.contextmanager def __A () ->List[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(_SCREAMING_SNAKE_CASE ): yield dirname class _lowerCAmelCase ( a ): """simple docstring""" pass class _lowerCAmelCase ( io.StringIO ): """simple docstring""" def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' raise OSError def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' raise OSError def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' raise OSError def snake_case ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return False class _lowerCAmelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" __magic_name__ :List[Any] = """stdin""" @contextlib.contextmanager def __A (_SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" if root == ".": yield return lowerCAmelCase__ :Dict = os.getcwd() os.chdir(_SCREAMING_SNAKE_CASE ) try: yield except BaseException as exc: raise exc finally: os.chdir(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE=None ) ->int: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :List[Any] = None import os lowerCAmelCase__ :Optional[Any] = '1' lowerCAmelCase__ :Optional[Any] = None lowerCAmelCase__ :List[Any] = None lowerCAmelCase__ :Optional[Any] = None lowerCAmelCase__ :Optional[int] = None lowerCAmelCase__ :int = None lowerCAmelCase__ :Optional[int] = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :List[Any] = None lowerCAmelCase__ :Any = None lowerCAmelCase__ :Any = None lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :str = None lowerCAmelCase__ :str = None lowerCAmelCase__ :List[str] = None lowerCAmelCase__ :Optional[int] = None lowerCAmelCase__ :int = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Optional[int] = None lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :Dict = None lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :Optional[int] = None import shutil lowerCAmelCase__ :Dict = None lowerCAmelCase__ :str = None lowerCAmelCase__ :str = None import subprocess lowerCAmelCase__ :List[str] = None # type: ignore lowerCAmelCase__ :int = None import sys lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :Union[str, Any] = None lowerCAmelCase__ :List[str] = None lowerCAmelCase__ :List[str] = None
93
UpperCAmelCase_ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_5818, } def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : str ,a__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: __A : Optional[int] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(a__ )}""" ) raise ValueError(a__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
17
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase_ : Optional[Any] = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
17
0
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase_ (__A ): __magic_name__ = ['''image_processor''', '''tokenizer'''] __magic_name__ = '''FlavaImageProcessor''' __magic_name__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[int] , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: UpperCAmelCase_ : Any = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCAmelCase_ , ) UpperCAmelCase_ : Tuple = kwargs.pop("feature_extractor" ) UpperCAmelCase_ : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = self.image_processor def __call__( self : List[Any] , lowerCAmelCase_ : Optional[ImageInput] = None , lowerCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase_ : Union[bool, str, TruncationStrategy] = False , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : int = 0 , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : Optional[int] , ) -> List[Any]: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase_ : Union[str, Any] = self.tokenizer( text=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , stride=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_overflowing_tokens=lowerCAmelCase_ , return_special_tokens_mask=lowerCAmelCase_ , return_offsets_mapping=lowerCAmelCase_ , return_length=lowerCAmelCase_ , verbose=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if images is not None: UpperCAmelCase_ : Optional[Any] = self.image_processor( lowerCAmelCase_ , return_image_mask=lowerCAmelCase_ , return_codebook_pixels=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_ , ) if text is not None and images is not None: encoding.update(lowerCAmelCase_ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase_ ) , tensor_type=lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowerCAmelCase_ : int , **lowerCAmelCase_ : List[str] ) -> Any: return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase_ : List[str] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]: return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: UpperCAmelCase_ : List[Any] = self.tokenizer.model_input_names UpperCAmelCase_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCAmelCase_ , ) return self.image_processor_class @property def _SCREAMING_SNAKE_CASE ( self : str ) -> int: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCAmelCase_ , ) return self.image_processor
95
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase_ : Optional[Any] = [ {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.de'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.en'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.fr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.frr'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.it'''}, {'''dataset''': '''wikipedia''', '''config_name''': '''20220301.simple'''}, {'''dataset''': '''snli''', '''config_name''': '''plain_text'''}, {'''dataset''': '''eli5''', '''config_name''': '''LFQA_reddit'''}, {'''dataset''': '''wiki40b''', '''config_name''': '''en'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.compressed'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.nq.no_index'''}, {'''dataset''': '''wiki_dpr''', '''config_name''': '''psgs_w100.multiset.no_index'''}, {'''dataset''': '''natural_questions''', '''config_name''': '''default'''}, ] def __SCREAMING_SNAKE_CASE ( a__ : str=True ) -> List[Any]: if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=_lowercase ) ) class lowerCamelCase_ ( _lowercase ): _lowercase : Optional[int] = None _lowercase : str = None def lowerCAmelCase_ ( self : Dict , __A : Optional[int] , __A : Optional[Any] ): with TemporaryDirectory() as tmp_dir: __A : List[Any] = dataset_module_factory(__A , cache_dir=__A ) __A : Tuple = import_main_class(dataset_module.module_path , dataset=__A ) __A : DatasetBuilder = builder_cls( cache_dir=__A , config_name=__A , hash=dataset_module.hash , ) __A : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__A ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) __A : Union[str, Any] = cached_path(__A , cache_dir=__A ) self.assertTrue(os.path.exists(__A ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : Dict ) -> Optional[Any]: __A : Optional[Any] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" __A : Union[str, Any] = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : List[Any] = import_main_class(dataset_module.module_path ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam __A : Any = None builder_instance.download_and_prepare() __A : Union[str, Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( a__ : List[str] ) -> List[str]: __A : Tuple = dataset_module_factory("""wikipedia""" ,cache_dir=a__ ) __A : str = import_main_class(dataset_module.module_path ,dataset=a__ ) __A : DatasetBuilder = builder_cls( cache_dir=a__ ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) __A : Optional[int] = builder_instance.as_streaming_dataset() assert ds assert isinstance(a__ ,a__ ) assert "train" in ds assert isinstance(ds["""train"""] ,a__ ) assert next(iter(ds["""train"""] ) )
17
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[int]=1_3 , __snake_case : Tuple=7 , __snake_case : Optional[Any]=True , __snake_case : List[str]=True , __snake_case : List[Any]=True , __snake_case : List[str]=True , __snake_case : Dict=9_9 , __snake_case : Dict=3_2 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=4 , __snake_case : List[str]=3_7 , __snake_case : str="gelu" , __snake_case : List[str]=0.1 , __snake_case : Tuple=0.1 , __snake_case : str=5_1_2 , __snake_case : Optional[int]=1_6 , __snake_case : List[str]=2 , __snake_case : str=0.02 , __snake_case : Optional[int]=3 , __snake_case : List[str]=4 , __snake_case : Any=None , __snake_case : int=0 , ) -> int: __magic_name__: int = parent __magic_name__: Tuple = batch_size __magic_name__: List[Any] = seq_length __magic_name__: str = is_training __magic_name__: Union[str, Any] = use_input_mask __magic_name__: Any = use_token_type_ids __magic_name__: Tuple = use_labels __magic_name__: Tuple = vocab_size __magic_name__: Tuple = hidden_size __magic_name__: str = num_hidden_layers __magic_name__: List[Any] = num_attention_heads __magic_name__: Any = intermediate_size __magic_name__: List[Any] = hidden_act __magic_name__: Optional[int] = hidden_dropout_prob __magic_name__: Dict = attention_probs_dropout_prob __magic_name__: Union[str, Any] = max_position_embeddings __magic_name__: Tuple = type_vocab_size __magic_name__: List[str] = type_sequence_label_size __magic_name__: Union[str, Any] = initializer_range __magic_name__: List[str] = num_labels __magic_name__: List[Any] = num_choices __magic_name__: str = scope __magic_name__: Dict = projection_dim def lowerCamelCase__ ( self : List[Any] ) -> int: __magic_name__: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__: List[str] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __magic_name__: Dict = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__: Dict = None if self.use_token_type_ids: __magic_name__: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__: str = None __magic_name__: Tuple = None __magic_name__: List[str] = None if self.use_labels: __magic_name__: Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__: Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__: Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__: List[str] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) __magic_name__: Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : str , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Optional[Any]: __magic_name__: int = TFDPRContextEncoder(config=__snake_case ) __magic_name__: Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__: Optional[Any] = model(__snake_case , token_type_ids=__snake_case ) __magic_name__: Tuple = model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , __snake_case : int , __snake_case : List[str] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] ) -> int: __magic_name__: Any = TFDPRQuestionEncoder(config=__snake_case ) __magic_name__: Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__: List[Any] = model(__snake_case , token_type_ids=__snake_case ) __magic_name__: int = model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase__ ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : str , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : int ) -> List[Any]: __magic_name__: List[str] = TFDPRReader(config=__snake_case ) __magic_name__: Dict = model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__: int = self.prepare_config_and_inputs() ( ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ( __magic_name__ ), ): Optional[int] = config_and_inputs __magic_name__: List[str] = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase__ ( self : Any ) -> List[Any]: __magic_name__: List[Any] = TFDPRModelTester(self ) __magic_name__: Optional[Any] = ConfigTester(self , config_class=__snake_case , hidden_size=3_7 ) def lowerCamelCase__ ( self : List[str] ) -> str: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[str] ) -> str: __magic_name__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__snake_case ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: __magic_name__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__snake_case ) def lowerCamelCase__ ( self : Dict ) -> List[str]: __magic_name__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__snake_case ) @slow def lowerCamelCase__ ( self : Optional[int] ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: Tuple = TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: str = TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: Optional[Any] = TFDPRQuestionEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: Optional[int] = TFDPRReader.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class __A ( unittest.TestCase ): @slow def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[int]: __magic_name__: int = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) __magic_name__: Optional[Any] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] __magic_name__: Optional[Any] = model(__snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __magic_name__: List[Any] = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() , expected_slice.numpy() , atol=1E-4 ) )
96
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
0
__a = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def a ( snake_case__: str ): '''simple docstring''' lowercase_ = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} lowercase_ = 0 lowercase_ = 0 while place < len(snake_case__ ): if (place + 1 < len(snake_case__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a ( snake_case__: int ): '''simple docstring''' lowercase_ = [] for arabic, roman in ROMAN: ((lowercase_) , (lowercase_)) = divmod(snake_case__ , snake_case__ ) result.append(roman * factor ) if number == 0: break return "".join(snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
97
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a__ ( lowercase : Dict, lowercase : str, lowercase : str, lowercase : Path, lowercase : str = None, lowercase : str = None, lowercase : str = None, ) -> str: """simple docstring""" if config_name_or_path is None: _UpperCamelCase = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: _UpperCamelCase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: _UpperCamelCase = question_encoder_name_or_path _UpperCamelCase = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. _UpperCamelCase = RagConfig.from_pretrained(lowercase ) _UpperCamelCase = AutoConfig.from_pretrained(lowercase ) _UpperCamelCase = AutoConfig.from_pretrained(lowercase ) _UpperCamelCase = gen_config _UpperCamelCase = question_encoder_config _UpperCamelCase = model_class.from_pretrained_question_encoder_generator( lowercase, lowercase, config=lowercase ) rag_model.save_pretrained(lowercase ) # Sanity check. model_class.from_pretrained(lowercase ) # Save tokenizers. _UpperCamelCase = AutoTokenizer.from_pretrained(lowercase ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) _UpperCamelCase = AutoTokenizer.from_pretrained(lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : Union[str, Any] = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
98
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __a = nn.Parameter(lowerCAmelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __a = nn.Parameter(lowerCAmelCase__ ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # set torch weights for 1-to-1 comparison __a = np.asarray(weights[0] ) __a = np.asarray(weights[1] ) __a = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase__ ).view(-1 , lowerCAmelCase__ ).contiguous().transpose(0 , 1 ) , ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # set torch weights for 1-to-1 comparison __a = np.asarray(weights[0] ) __a = np.asarray(weights[1] ) __a = np.asarray(weights[2] ) __a = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCAmelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCAmelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCAmelCase__ ).view(-1 , lowerCAmelCase__ ).contiguous().transpose(0 , 1 ) , ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # layernorm 1 __a = weights[0][0][0] __a = np.asarray(layer_norm_a[0] ) __a = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCAmelCase__ ) , torch.tensor(lowerCAmelCase__ ) , ) # lsh weights + output __a = weights[0][1] if len(lowerCAmelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCAmelCase__ , torch_block.attention , lowerCAmelCase__ ) else: set_layer_weights_in_torch_local(lowerCAmelCase__ , torch_block.attention , lowerCAmelCase__ ) # intermediate weighs __a = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCAmelCase__ ) == 4: __a = intermediate_weights[2] # layernorm 2 __a = np.asarray(intermediate_weights[0][0] ) __a = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCAmelCase__ ) , torch.tensor(lowerCAmelCase__ ) , ) # intermediate dense __a = np.asarray(intermediate_weights[1][0] ) __a = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase__ ) , ) # intermediate out __a = np.asarray(intermediate_weights[4][0] ) __a = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase__ ) , ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # reformer model __a = torch_model.reformer # word embeds __a = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCAmelCase__ ) , ) if isinstance(weights[3] , lowerCAmelCase__ ): __a = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __a = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __a = nn.Parameter(torch.tensor(lowerCAmelCase__ ) ) __a = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCAmelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __a = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # output layer norm __a = np.asarray(weights[7][0] ) __a = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCAmelCase__ ) , torch.tensor(lowerCAmelCase__ ) , ) # output embeddings __a = np.asarray(weights[9][0] ) __a = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCAmelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCAmelCase__ ) , ) def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): # Initialise PyTorch model __a = ReformerConfig.from_json_file(lowerCAmelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) __a = ReformerModelWithLMHead(lowerCAmelCase__ ) with open(lowerCAmelCase__ , """rb""" ) as f: __a = pickle.load(lowerCAmelCase__ )["""weights"""] set_model_weights_in_torch(lowerCAmelCase__ , lowerCAmelCase__ , config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
99
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = '''EncodecFeatureExtractor''' _lowercase : Any = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self : List[Any] , __A : Any , __A : Tuple ): super().__init__(__A , __A ) __A : Dict = self.feature_extractor __A : List[str] = False def lowerCAmelCase_ ( self : Union[str, Any] , __A : str=None , __A : Tuple=None , __A : Dict=True ): return self.tokenizer.get_decoder_prompt_ids(task=__A , language=__A , no_timestamps=__A ) def __call__( self : Optional[Any] , *__A : Tuple , **__A : Tuple ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__A , **__A ) __A : str = kwargs.pop("""audio""" , __A ) __A : Optional[Any] = kwargs.pop("""sampling_rate""" , __A ) __A : int = kwargs.pop("""text""" , __A ) if len(__A ) > 0: __A : int = args[0] __A : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if text is not None: __A : Dict = self.tokenizer(__A , **__A ) if audio is not None: __A : Optional[int] = self.feature_extractor(__A , *__A , sampling_rate=__A , **__A ) if audio is None: return inputs elif text is None: return audio_inputs else: __A : List[Any] = audio_inputs["""input_values"""] if "padding_mask" in audio_inputs: __A : int = audio_inputs["""padding_mask"""] return inputs def lowerCAmelCase_ ( self : List[str] , *__A : int , **__A : Tuple ): __A : Optional[int] = kwargs.pop("""audio""" , __A ) __A : List[str] = kwargs.pop("""padding_mask""" , __A ) if len(__A ) > 0: __A : Dict = args[0] __A : Optional[int] = args[1:] if audio_values is not None: return self._decode_audio(__A , padding_mask=__A ) else: return self.tokenizer.batch_decode(*__A , **__A ) def lowerCAmelCase_ ( self : Optional[Any] , *__A : Dict , **__A : Any ): return self.tokenizer.decode(*__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : Union[str, Any] , __A : Optional = None ): __A : List[str] = to_numpy(__A ) __A , __A , __A : Tuple = audio_values.shape if padding_mask is None: return list(__A ) __A : Union[str, Any] = to_numpy(__A ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __A : List[str] = seq_len - padding_mask.shape[-1] __A : Tuple = 1 - self.feature_extractor.padding_value __A : Optional[int] = np.pad(__A , ((0, 0), (0, difference)) , """constant""" , constant_values=__A ) __A : int = audio_values.tolist() for i in range(__A ): __A : str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __A : List[Any] = sliced_audio.reshape(__A , -1 ) return audio_values
17
0
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _A : List[Any] = """ @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ _A : Dict = """\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. """ _A : Dict = """ Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=[\"About 95 species are currently accepted .\"] >>> predictions=[\"About 95 you now get in .\"] >>> references=[[\"About 95 species are currently known .\"]] >>> wiki_split = datasets.load_metric(\"wiki_split\") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0} """ def __snake_case ( lowerCAmelCase_ ) -> List[str]: def remove_articles(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(lowerCAmelCase_ , ''' ''' , lowerCAmelCase_ ) def white_space_fix(lowerCAmelCase_ ): return " ".join(text.split() ) def remove_punc(lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCAmelCase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCAmelCase_ ) ) ) ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: return int(normalize_answer(lowerCAmelCase_ ) == normalize_answer(lowerCAmelCase_ ) ) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int: SCREAMING_SNAKE_CASE__ = [any(compute_exact(lowerCAmelCase_ , lowerCAmelCase_ ) for ref in refs ) for pred, refs in zip(lowerCAmelCase_ , lowerCAmelCase_ )] return (sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ )) * 1_0_0 def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: SCREAMING_SNAKE_CASE__ = [rgram for rgrams in rgramslist for rgram in rgrams] SCREAMING_SNAKE_CASE__ = Counter(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = Counter(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = Counter() for sgram, scount in sgramcounter.items(): SCREAMING_SNAKE_CASE__ = scount * numref SCREAMING_SNAKE_CASE__ = Counter(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = Counter() for cgram, ccount in cgramcounter.items(): SCREAMING_SNAKE_CASE__ = ccount * numref # KEEP SCREAMING_SNAKE_CASE__ = sgramcounter_rep & cgramcounter_rep SCREAMING_SNAKE_CASE__ = keepgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE__ = sgramcounter_rep & rgramcounter SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 if len(lowerCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = keeptmpscorea / len(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) SCREAMING_SNAKE_CASE__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) SCREAMING_SNAKE_CASE__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: SCREAMING_SNAKE_CASE__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION SCREAMING_SNAKE_CASE__ = sgramcounter_rep - cgramcounter_rep SCREAMING_SNAKE_CASE__ = delgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE__ = sgramcounter_rep - rgramcounter SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ = 1 if len(lowerCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = deltmpscorea / len(lowerCAmelCase_ ) # ADDITION SCREAMING_SNAKE_CASE__ = set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = set(lowerCAmelCase_ ) & set(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 if len(lowerCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = addtmpscore / len(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: SCREAMING_SNAKE_CASE__ = addtmpscore / len(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = 0 if addscore_precision > 0 or addscore_recall > 0: SCREAMING_SNAKE_CASE__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: SCREAMING_SNAKE_CASE__ = len(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ssent.split(''' ''' ) SCREAMING_SNAKE_CASE__ = csent.split(''' ''' ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for rsent in rsents: SCREAMING_SNAKE_CASE__ = rsent.split(''' ''' ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] ragramslist.append(lowerCAmelCase_ ) for i in range(0 , len(lowerCAmelCase_ ) - 1 ): if i < len(lowerCAmelCase_ ) - 1: SCREAMING_SNAKE_CASE__ = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 2: SCREAMING_SNAKE_CASE__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 3: SCREAMING_SNAKE_CASE__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(lowerCAmelCase_ ) ragramslist.append(lowerCAmelCase_ ) ragramslist.append(lowerCAmelCase_ ) ragramslist.append(lowerCAmelCase_ ) for i in range(0 , len(lowerCAmelCase_ ) - 1 ): if i < len(lowerCAmelCase_ ) - 1: SCREAMING_SNAKE_CASE__ = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 2: SCREAMING_SNAKE_CASE__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 3: SCREAMING_SNAKE_CASE__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(lowerCAmelCase_ ) for i in range(0 , len(lowerCAmelCase_ ) - 1 ): if i < len(lowerCAmelCase_ ) - 1: SCREAMING_SNAKE_CASE__ = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 2: SCREAMING_SNAKE_CASE__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(lowerCAmelCase_ ) if i < len(lowerCAmelCase_ ) - 3: SCREAMING_SNAKE_CASE__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(lowerCAmelCase_ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = SARIngram(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 SCREAMING_SNAKE_CASE__ = sum([delascore, delascore, delascore, delascore] ) / 4 SCREAMING_SNAKE_CASE__ = sum([addascore, addascore, addascore, addascore] ) / 4 SCREAMING_SNAKE_CASE__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = True , lowerCAmelCase_ = "13a" , lowerCAmelCase_ = True ) -> Optional[Any]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: SCREAMING_SNAKE_CASE__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: SCREAMING_SNAKE_CASE__ = sacrebleu.metrics.bleu._get_tokenizer(lowerCAmelCase_ )()(lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = sacrebleu.TOKENIZERS[tokenizer]()(lowerCAmelCase_ ) elif tokenizer == "moses": SCREAMING_SNAKE_CASE__ = sacremoses.MosesTokenizer().tokenize(lowerCAmelCase_ , return_str=lowerCAmelCase_ , escape=lowerCAmelCase_ ) elif tokenizer == "penn": SCREAMING_SNAKE_CASE__ = sacremoses.MosesTokenizer().penn_tokenize(lowerCAmelCase_ , return_str=lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE__ = sentence if not return_str: SCREAMING_SNAKE_CASE__ = normalized_sent.split() return normalized_sent def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: if not (len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )): raise ValueError('''Sources length must match predictions and references lengths.''' ) SCREAMING_SNAKE_CASE__ = 0 for src, pred, refs in zip(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): sari_score += SARIsent(normalize(lowerCAmelCase_ ) , normalize(lowerCAmelCase_ ) , [normalize(lowerCAmelCase_ ) for sent in refs] ) SCREAMING_SNAKE_CASE__ = sari_score / len(lowerCAmelCase_ ) return 1_0_0 * sari_score def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="exp" , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> Any: SCREAMING_SNAKE_CASE__ = len(references[0] ) if any(len(lowerCAmelCase_ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) SCREAMING_SNAKE_CASE__ = [[refs[i] for refs in references] for i in range(lowerCAmelCase_ )] SCREAMING_SNAKE_CASE__ = sacrebleu.corpus_bleu( lowerCAmelCase_ , lowerCAmelCase_ , smooth_method=lowerCAmelCase_ , smooth_value=lowerCAmelCase_ , force=lowerCAmelCase_ , lowercase=lowerCAmelCase_ , use_effective_order=lowerCAmelCase_ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case ( datasets.Metric ): '''simple docstring''' def lowercase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def lowercase_ ( self , A_ , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} result.update({'''sari''': compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({'''exact''': compute_em(predictions=A_ , references=A_ )} ) return result
100
def __SCREAMING_SNAKE_CASE ( a__ : int ) -> int: if not isinstance(a__ ,a__ ): raise TypeError("""Input value must be an 'int' type""" ) __A : Union[str, Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
17
0